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Generalized Dyck Shifts ⋆

Marie-Pierre Béal1 and Pavel Heller1

Université Paris-Est, Laboratoire d’informatique Gaspard-Monge, UMR 8049 CNRS
beal@u-pem.frpavel.heller@u-pem.fr

Abstract. We introduce a new class of subshifts of sequences, called
generalized Dyck shifts, which extends the class of Dyck shifts introduced
by Krieger. The finite factors of these shifts are factors of generalized
Dyck words. Generalized Dyck words were introduced by Labelle and
Yeh who exhibited unambiguous algebraic grammars generating these
context-free languages. Other unambiguous algebraic grammars for gen-
eralized Dyck languages were found by Duchon. We define a coding of
periodic patterns of generalized Dyck shifts which allows to compute
their zeta function. We prove that the zeta function of a generalized
Dyck shift is the commutative image of the generating function of an
unambiguous context-free language and is thus an N-algebraic series.

1 Introduction

The Dyck shift introduced by Krieger in [9] is the set of bi-infinite sequences
of symbols whose finite factors are factors of Dyck words, or well-parenthesized
words. To be well-parenthesized, a word needs to have exactly as many opening
parentheses (represented here by the letter a) as closing parentheses (repre-
sented by the letter b) with the added condition that each opening parenthesis
is matched with a closing parenthesis. If one gives the height value +1 to the
letter a and the height value −1 to the letter b, this condition means that the
total height of a Dyck word is 0 and the height of each prefix of a Dyck word is
nonnegative.

Dyck shifts are symbolic dynamical systems which are not sofic and belong
to larger classes of shifts like Markov-Dyck shifts (see [13], [10]), or sofic-Dyck
shifts (see [1]).

In [11] Labelle and Yeh introduced the notion of generalized Dyck words
where potentially a larger set of height values are used. They proved the un-
ambiguous context-free nature of generalized Dyck words and exhibited unam-
biguous context-free grammars for these languages. In [6], Duchon gave new
unambiguous context-free grammars for them. Generalized Dyck words were
also studied from the point of view of Lyndon words by Melançon and Jacquet
in [7].
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d’Investissements d’Avenir” (Project ACRONYME no. ANR-10-LABX-58) and by
the region of Île-de-France through the DIM RDM-IdF



In this paper we show how to define a shift from generalized Dyck words.
This shift is called a generalized Dyck shift. We assign class values to letters
(for instance, we assign the class value α to the letters a and b). In order to get
a nontrivial shift we need to have at least two class values. Generalized Dyck
words and factor-free generalized Dyck words are defined recursively as follows.
Factor-free generalized Dyck words are the nonempty sequences w of letters of
a same class such that h(w) = 0, h(w1) > 0 for any proper prefix w1 of w,
and which have no proper factor with these properties. This includes the letters
of height 0. Generalized Dyck words are defined as either the empty word or
sequences a1d1 · · · akdk where di are generalized Dyck words and a1 · · · ak is a
factor-free generalized Dyck word. The generalized Dyck shift is the set of bi-
infinite sequences of symbols whose finite factors are factors of generalized Dyck
words. These shifts extend the Dyck shift of Krieger.

We give a computation of the zeta function of generalized Dyck shifts which
counts the periodic sequences of the shift. We prove that the multivariate zeta
function of a generalized Dyck shift is the commutative image of a product of
the generating series of the stars of unambiguous context-free circular codes, the
codes being cyclically disjoint. The result is based on an encoding of the periodic
patterns of the shift. As a consequence the zeta function of a generalized Dyck
shift is an N-algebraic series.

Section 2 provides some background on shifts. In Section 3 we define the
notions of generalized Dyck words and generalized Dyck shifts. We give unam-
biguous context-free grammars generating several languages linked to generalized
Dyck words. The computation of the multivariate and ordinary zeta functions
of a generalized Dyck shift is given in Section 4. This section contains the de-
composition of the multivariate zeta function of a generalized Dyck shift into
the commutative image of a product of the generating series of the stars of two
unambiguous context-free circular codes.

2 Background on shifts

We refer to [12] for basic notions in symbolic dynamics. Let A be a finite alpha-
bet. We denote by A∗ the set of words over A and by A+ the set of nonempty
words over A.

A factor of a word w is a word u such that w = vuz for some words v, z. A
proper factor of a word w is a factor distinct from w and the empty word.

A shift of sequences X is defined as the set XF of bi-infinite sequences of
symbols of A avoiding some set F of finite words (i.e. having no finite factor in
F ). The set F is called a set of forbidden factors of X. We denote by B(X) the
set of finite blocks of X, that is the set of allowed finite factors of X.

When F can be chosen finite (resp. regular, visibly pushdown), X is called
a shift of finite type (resp. a sofic shift, a sofic-Dyck shift). The full shift over A
is the set AZ.

Shifts of sequences may be defined as closed subsets of AZ invariant by
the shift transformation σ, where σ((xi)i∈Z) = (xi+1)i∈Z. Sets of bi-infinite



sequences which are invariant by the shift transformation without being nec-
essarily closed subsets of AZ are called σ-invariant sets. The orbit of a sequence
x ∈ AZ is the set of all σi(x) for i ∈ Z. A period of a sequence x ∈ AZ is a
positive integer p such that σp(x) = x.

A (topological) conjugacy from X ⊆ AZ to Y ⊆ BZ is a bijective continuous
map from X onto Y which commutes with the shift transformation. Observe
that a conjugacy preserves the periods of a sequence.

3 Generalized Dyck words

In this paper, we consider a finite alphabet A ⊂ Z × Σ, where Σ is a finite
alphabet, equipped with two functions: a height function h from A to Z and a
class function c from A to Σ. Letters with positive height will be denoted by
A+ and letters with negative height by A−. The set of letters of class α will
be denoted by Aα. The set of letters of class α with positive (resp. negative)
heigth is denoted by Aα,+ (resp. Aα,−). We assume that all sets Aα have both
letters with a positive and with a negative height. We set (iα, α) ∈ Aα,+ and
(−jα, α) ∈ Aα,−. The height of a nonempty word is the sum of the height of its
letters. The height of the empty word is 0.

A factor-free generalized Dyck word is a nonempty sequence w of letters
of a same class such that h(w) = 0, h(w1) > 0 for any proper prefix w1 of w,
and which has no proper factor with these properties. This includes the letters of
height 0. Note that it is a sequence of letters in a same class. We denote by D̃α the
set of factor-free generalized Dyck words in A+

α and D̃ = ⊔αD̃α. A generalized
Dyck word is defined recursively as follows. It is either the empty word or a
sequence a1d1 · · · akdk where each di is a generalized Dyck word and a1 · · · ak
is a factor-free generalized Dyck word, or a concatenation of generalized Dyck
words. We denote by Dα the set of generalized Dyck words built from factor-free
sequences a1 · · · ak in A+

α . We denote by D the set of generalized Dyck words.
Note that D = ∪αDα ∪ {ε}.

Hence a nonempty generalized Dyck word can be obtained by inserting after
each letter of a factor-free generalized Dyck word, other generalized Dyck words.
Further (see [6, Theorem 7]) this decomposition is unique.

A word is factor-free if no proper factor of this word belongs to D. The set
of factor-free words of a language L is denoted by L̃. Generalized Dyck words
(resp. factor-free generalized Dyck words) will be simply called Dyck words (resp.
factor-free Dyck words).

A prime Dyck word over A is a Dyck word which is not empty and not the
product of shorter Dyck words. Note that the empty word is a Dyck word which
is not prime. We denote by P the set of prime Dyck words.

Observe that P is a prefix and suffix code. A factor-free Dyck word is prime
but the converse is not true. If w is a Dyck word over A then h(w) = 0 and
h(w1) ≥ 0 for each prefix w1 of w. If w is a prime Dyck word over A then
h(w) = 0 and h(w1) > 0 for each proper prefix w1 of w.



Example 1. LetΣ = {α, β} andA = {a = (+3, α), b = (−2, α), a′ = (+3, β), b′ =
(−2, β)}. The word ababb is a factor-free Dyck word overA, a(a′b′a′b′b′)b (a′b′a′b′b′)
abb (see Figure 1) is a prime Dyck word over A which is not factor-free.

The generalized Dyck shift over A is the set of bi-infinite sequences whose
blocks are factors of a Dyck word over A. We denote this shift by XA. It is thus
a coded system as defined by Blanchard and Hansel [4].

Example 2. If Σ is a singleton the generalized Dyck shift is just the full shift,
i.e. the set of all bi-infinite sequences over A. So the notion of generalized Dyck
shift is interesting only for alphabets Σ of size at least two.

Example 3. If Σ = {α, β} and A = {”(” = (+1, α), ”)” = (−1, α), ”[” =
(+1, β), ”]” = (−1, β)}, the shift XA is the Dyck shift with two kinds of paren-
theses.

Example 4. If Σ = {α, β} and A = {a = (+3, α), b = (−2, α), a′ = (+3, β), b′ =
(−2, β)}, for instance the sequences · · · bbb.aaaa · · · , ω(aba′b′abbaba′b′b′abb)ω be-
long to XA.

Fig. 1. The prime Dyck word a(a′
b
′
a
′
b
′
b
′)b(a′

b
′
a
′
b
′
b
′)abb of Example 1. Symbols a or

a
′ are represented by up edges while symbols b or b

′ by down edges according to the
height of the symbols. Symbols in Aα (resp. Aβ) are represented by red (resp. blue)
edges.

Following Duchon [6] we set m = maxa∈A+
h(a), n = −mina∈A−

h(a). We
define for α ∈ Σ, i > 0, j > 0,

– L̃i,α the set of factor-free words w ∈ A+
α with height i such that each proper

prefix w1 of w has a height h(w1) > i.
– R̃j,α the set of factor-free words w ∈ A+

α with height −j such that each
proper prefix w1 of w has a height h(w1) > 0.

– Li,α
1 the set of nonempty words w = a1d1a2 · · · dk−1ak with k ≥ 1, di ∈ D,

a1a2 . . . ak ∈ L̃i,α.

1 The definition of Li differs here from the one given in [6].



– Rj,α the set of nonempty words w = a1d1a2 · · · dk−1ak with k ≥ 1, di ∈ D,

a1a2 . . . ak ∈ R̃j,α.
– Pα the set of nonempty words w = a1d1a2 · · · dk−1ak with k ≥ 1, di ∈ D,

a1a2 . . . ak ∈ D̃α.

We set Li =
⋃

α Li,α, Rj =
⋃

α Rj,α, L =
⋃m

i=1 Li, R =
⋃n

j=1 Rj . Note that
a word in Li,α or Rj,β does not end nor start with a nonempty Dyck word by
definition.

In terms of lattice paths, Li,α is a set of paths that start in (0, 0) and end on
the line y = i without having a step ending on or under this line before the last
step. The set Rj,α is a set of paths that start in (0, 0) and end on the level −j
without having a step ending on or going below the line y = 0 before the last
step (see Figure 2).

L1,α
D

R1,α

Fig. 2. The prime Dyck word a(a′
b
′
a
′
b
′
b
′)b(a′

b
′
a
′
b
′
b
′)abb of Example 1 in L1,αDR1,α.

By definition Li,α and Rj,α are codes which are both prefix and suffix. The
set Li,α does not overlap strictly with Lj,α. Indeed, if uv ∈ Li,α and vw ∈ Lj,α,
h(v) < 0 unless v is the empty word or v = uv. A word of Li,α is neither prefix
nor suffix of a word in Lj,β with α 6= β. Observe also that Li,α is empty for
i > m and Rj,α is empty for j > n.

Lemma 1. We have the following unambiguous grammars for Li, Rj, P :

L̃i,α =
∑

h(a)=i,c(a)=α

a+
∑

k>i

L̃k,αR̃k−i,α (1)

R̃j,α =
∑

h(a)=−j,c(a)=α

a+
∑

k

L̃k,αR̃k+j,α (2)

D̃α =
∑

h(a)=0,c(a)=α

a+
∑

k

L̃k,αR̃k,α (3)

Li,α =
∑

h(a)=i,c(a)=α

a+
∑

k>i

Lk,αDRk−i,α (4)

Rj,α =
∑

h(a)=−j,c(a)=α

a+
∑

k

Lk,αDRk+j,α (5)



Pα =
∑

h(a)=0

a+
∑

k

Lk,αDRk,α (6)

P =
∑

α

Pα, D = P ∗, Li =
∑

α

Li,α, Rj =
∑

α

Rj,α. (7)

Proof. We have L̃i,αR̃j,β with α 6= β forbidden in L̃i,α, R̃j,α, D̃α. We have

L̃k,αR̃k−i,α ⊆ L̃i,α for any k > i. If w ∈ L̃i,α, if |w| > 1, let u be the unique
proper prefix of w such that h(u) is minimal. Let h(u) = k > i and w = uv.
Then u ∈ L̃k,α and v ∈ R̃k−i,α. Further, if uv = u′v′ with u ∈ L̃k,α, v ∈ R̃k−i,α,

u′ ∈ L̃k′,α, v
′ ∈ R̃k′−i,α. One has for instance u prefix of u′. Let u′ = uu”. Then

k ≥ k′. If k > k′, then v /∈ R̃k−i,α. Thus k = k′, u” ∈ D, implying u” = ε. This
proves Equation (1). Equations (2), (3) are obtained similarly.

We have Lk,αDRk−i,α ⊆ Li,α. If w ∈ Li,α and if |w| > 1 let u be the smallest
proper prefix of w such that h(u) is minimal and t be the largest proper prefix
of w such that h(t) is minimal (see Figure 2). We have t = uv with v ∈ D and
w = uvz. Then u ∈ Lk,α and z ∈ Rk−i,α. Further, if uvz = u′v′z′ with u ∈ Lk,α,
z ∈ Rk−i,α, u

′ ∈ Lk′,α, z
′ ∈ Rk′−i,α, v, v

′ ∈ D, then for instance u is a prefix
of u′. Assume that u is a strict prefix of u′. Let u′ = uu′′. Then k ≥ k′. If
k > k′, then vz /∈ DRk−i,α. Thus k = k′. Then u” ∈ D \ {ε}, a contradiction
since u′ ∈ Lk′,α dos not end with a nonempty word of D. Thus u = u′. Similarly,
z = z′ and thus v = v′. This proves Equation (4). Equations (5), (6) are obtained
similarly.

We consider the free monoid generated by A with a zero quotiented by the
following relations

a1 · · · ak = 1 if a1 · · · ak is a factor-free Dyck word

w = 0, if w ∈ L̃i,αR̃j,β with α 6= β and i, j > 0.

where 1 is the unity of the monoid.
For a word w over A, we denote by w ∈ A∗ ∪ {0,1} its reduced form which

is the unique word obtained by applying the above relations.
For instance ( ] reduces to 0 in the Dyck shift.
Observe that a word z in L̃i,αR̃j,β with α 6= β is not factor of a Dyck word.

Indeed, if z is a factor of a Dyck word d, it is a factor uv, where u ∈ L̃i,α,

v ∈ R̃j,β , of a1d1 · · · akdk where di ∈ D and a1 · · · ak is a factor-free Dyck word.
If none ai is a factor of uv, then uv is a factor of some di whose length is shorter
than d. By recurrence on the size of d we obtain that uv is factor of a factor-
free Dyck word. Since uv ∈ A+

αA
+
β , we get a contradiction. Observe that, since

u ∈ L̃i,α, v ∈ R̃j,β and di ∈ D for 1 ≤ i ≤ k, di cannot overlap nor be a factor of
uv unless di is the empty word. Thus if ai is factor of u or v for some 1 ≤ i ≤ k,
then uv = a1 · · · ak and d1 = d2 = · · · dk−1 = ε. This gives a contradiction since
uv ∈ A+

αA
+
β with α 6= β and a1 · · · ak ∈ A+

γ for some γ.
The set of words reducing to 1 is the set of Dyck words. If two Dyck words

overlap, the overlapping word is a Dyck word: if uv and vw are Dyck words,



then u, v, w also. Dyck words. Thus if uv and vw reduce to 1, then u, v, w also.
Further, a factor-free word has no suffix being a prefix of a word in L̃i,αR̃j,β

with α 6= β. Hence a word reducing to 1 has no non trivial overlap with a word
reducing to 0. As a consequence the reduced form is unique.

Proposition 1. The reduced form of a word w is either 0, 1, u, v or uv where

u ∈ R̃js,βs
· · · R̃j1,β1

v ∈ L̃i1,α1
· · · L̃ir,αr

for some j1, . . , js, i1, . . , ir > 0 and β1, . . , βs, α1, . . , αr ∈ Σ.

Proof. Assume that w 6= 0,1. Let u be the unique prefix of w of minimal height,
the unicity coming from the fact that w is reduced. This prefix may be the empty
word. We set w = uv. Then v has a unique decomposition into L̃i1,α1

· · · L̃ir,αr

where i1 + · · ·+ is = i with h(v) = i > 0. Indeed let z be the unique nonempty
prefix of v such that h(z) = i1 is minimal. The prefix z being reduced, it is
a factor-free word. As z does not contain any factor in L̃i,αR̃j,β with α 6= β,

i, j > 0, z ∈ L̃i1,α1
for some α1 ∈ Σ. The whole decomposition of v thus belongs

to L̃i1,α1
· · · L̃ir,αr

where i1 + · · ·+ ir = i. A symmetrical property holds for u.

Let uv ∈ R̃js,βs
· · · R̃j1,β1

L̃i1,α1
· · · L̃ir,αr

. Then uv 6= 0. Indeed, if uv contains

a factor z in L̃i,αR̃j,β with α 6= β and i, j > 0, then z = tt′ where t ∈ L̃i,α

and t′ ∈ R̃j,β . Since t cannot be a suffix of some word in R̃jk,βk
· · · R̃jk′ ,βk′

it

is a suffix of some word in R̃js,βs
· · · R̃j1,β1

L̃i1,α1
· · · L̃ik′ ,αk′

and t′ cannot be

a prefix of a word in L̃ik′+1,αk′+1
· · · L̃ir,αr

. Thus uv 6= 0. Further a word in

L̃i,αR̃j,β with α 6= β and i, j > 0 is not factor of a Dyck word, thus 0 6= 1.

Words whose reduced form is either 1 or u (resp. v) as above are called
matched-call (resp. matched-return). The set of matched-call (resp. matched-
return) words is denoted by MC(X) (resp. MR(X)). Thus matched-call words
are sequences of words in R+D and mached-return words are sequences of words
in L+D.

Example 5. For instance, the reduced form of the word ”) ( ( ) [ [ ] ] [” in the Dyck
shift with two kinds of parentheses is ”) ( [”. We have u =) in R̃1,α and v = ( [

in L̃1,αL̃1,β . In the shift of Example 1, the word ba(a′b′a′b′b′)ba has the reduced

form b(ab)a ∈ R̃2,αL̃1,αL̃3,α.

Proposition 2. The generalized Dyck shift is the set of sequences avoiding the
factors whose reduced form is 0.

Proof. First a word whose reduced form is 0 is not factor of a Dyck word. Con-
versely let w be a word over A. Its reduced form is either 0, 1 or u, v, uv with
u ∈ X = R̃js,βs

· · · R̃j1,β1
and v ∈ Y = L̃i1,α1

· · · L̃ir,αr
. Hence it is nonnull if and

only if it is a factor of a Dyck word. Indeed any word in X, Y or XY is factor of a
Dyck word since ((L̃iβ1

,β1
)j1(R̃j1,βs

)iβ1
−1) · · · ((L̃iβs ,βs

)js (R̃js,βs
)iβs−1) X ⊆ D,

Y ((L̃ir,αr
)jαr−1 (R̃jαr ,αr

)ir ) · · · ((L̃i1,α1
)jα1

−1(R̃jα1
,α1

)i1) ⊆ D and L̃iβ1
,β1

, . . . ,

R̃jα1
,α1

are non empty. Thus w itself is factor of a Dyck word.



Example 6. We continue with Example 4. Setting in this example Li = Li,α,
Ri = Ri,α, and L′

i = Li,β , R
′
i = Ri,β , ri = RiD, ℓi = LiD, we have

L3 = a L′
3 = a′

L2 = L3DR1 = aDR1 L′
2 = a′DR′

1

L1 = L2DR1 + L3DR2 L′
1 = L′

2DR′
1 + L′

3DR′
2

R2 = b R′
2 = b′

R1 = L1DR2 = L1Db R′
1 = L′

1Db′

P = L1DR1 + L2DR2 + L′
1DR′

1 + L′
2DR′

2

Thus R1 = L1Db = (aDR1DR1 + aDb)Db = aD((R1D)2 + bD)b. We can
set UbD = (R1D)2 + bD since R1 ∈ A∗b. We get r1 = R1D = ℓ1bD =
(aD)U(bD)(bD), ℓ1 = (aD)U(bD).

We have

R1D = (aD)U(bD)(bD) = (aD)((R1D)2 + bD)bD

= (aD)(aDUbDbDaDUbDbD + bD)bD.

Thus

U = ε+ (aD)U(bD)(bD)(aD)U(bD).

Similarly,

R′
1D = (a′D)V (b′D)(b′D)

V = ε+ (a′D)V (b′D)(b′D)(a′D)V (b′D).

We have

PD = (aD)U(bD)(aD)U(bD)(bD) + (aD)(aD)U(bD)(bD)(bD)+

(a′D)V (b′D)(a′D)V (b′D)(b′D) + (a′D)(a′D)V (b′D)(b′D)(b′D).

The right symbol D in all the above equations may be removed by right multi-
plication of both sides by (1− P ) which is the inverse of D.

4 Zeta function of generalized Dyck shifts

4.1 Multivariate zeta functions

We recall the notion of multivariate zeta function introduced by Berstel and
Reutenauer in [3], [14].

For K = Z or K = N (containing 0) we denote by K〈〈A〉〉 the set of noncom-
mutative formal power series over the alphabet A with coefficients in K. For each
language L of finite words over a finite alphabet A we define the characteristic
series of L as the series L =

∑
u∈L u in N〈〈A〉〉.



Let K[[A]] be the usual commutative algebra of formal power series in the
variables of A and π : K〈〈A〉〉 → K[[A]] be the natural homomorphism. Let S be
a commutative or noncommutative series. One can write S =

∑
n≥0[S]n where

each [S]n is the homogeneous part of S of degree n. The notation extends to
matrices H with coefficients in K〈〈A〉〉 or K[[A]] with ([H]n)pq = [Hpq]n, where
p, q are indices of H.

Call periodic pattern of a shift X a word u such that the bi-infinite concate-
nation of u belongs to X and denote P(X) the set of periodic patterns of X.
These definitions are extended to σ-invariant sets of bi-infinite sequences which
may not be shifts.

The multivariate zeta function Z(X) of a σ-invariant set X is the commuta-
tive series in Z[[A]]

Z(X) = exp
∑

n≥1

π[P(X)]n

n
.

The (ordinary) zeta function of a σ-invariant set X is

ζX(z) = exp
∑

n≥1

pn
zn

n
,

where pn is the number of sequences of X of period n, i.e. of sequences x such
that σn(x) = x.

Let θ : Z[[A]] → Z[[z]] be the homomorphism such that θ(a) = z for any letter
a ∈ A. If S ∈ Z[[A]], θ(S) will also be denoted by S(z). Note that ζX(z) =
θ(Z(X)).

It is known that the multivariate zeta function of a shift has nonnegative
integer coefficients [12].

4.2 Encoding of periodic sequences of a generalized Dyck shift

We say that two finite words x, y are conjugate if x = uv and y = vu for some
words u, v.

If C is a code, we denote by XC the σ-invariant set containing all bi-infinite
concatenation of words in C. This set is not a shift since it may not be closed.

The following proposition gives an encoding of the periodic patterns of a
generalized Dyck shift.

Proposition 3. Let X be the generalized Dyck shift over A. The set of periodic
patterns P(X) of X is

P(X) = P(XDL) ⊔ P(XR+P ).

Proof. Let z be a periodic pattern. Then x = · · · zz.zz · · · is a periodic sequence
of X. The reduced form of z is z = 1, u, v or u · v where

u ∈ R̃js,βs
· · · R̃j1,β1

v ∈ L̃i1,α1
· · · L̃ir,αr



If z is not already in MC(X) or in MR(X), then its reduced form is uv. In this
case z has a conjugate z′ whose reduced form is the reduced form of vu. We have

vu ∈ L̃i1,α1
· · · L̃ir,αr

R̃js,βs
· · · R̃j1,β1

.

Since · · · z′z′.z′z′ · · · ∈ X, we have αr = βs, and L̃ir,αr
R̃js,βs

is included in either

Lir−js,αr
or Rjs−ir,αr

orD. In the first case, αr = βs−1 and Lir−js,αr
R̃js−1,βs−1

is
then included in either Lir−js−js−1,αr

or Rjs−1−(ir−js),αr
orD. In the second case

αr−1 = βs and L̃ir−1,αr−1
Rjs−ir,αr

is then included in either Ljs−ir−ir−1,αr
or

Rir−1+ir−js,αr
or D. In the third case, αr−1 = βs−1 and L̃ir−1,αr−1

DR̃js−1,αr−1

is then included in either Lir−1−js−1,αr−1
or Rjs−1−ir−1,αr−1

or D. By iterat-
ing the reduction, we get that vu is included in some product equal to either
Lk1,γ1

. . . Lkn,γn
or Lk1,γ1

. . . Lkn,γn
D or Rkn,γn

. . . Rk1,γ1
or DRkn,γn

. . . Rk1,γ1

or D. This product vu is thus either in MC(X) or in MR(X).
If z′ is matched-call, then it is a product of words in P or in R. In this case

z is conjugate to a word in (P +R)∗.
If z′ is matched-return and not matched-call, i.e. z′ /∈ D, we can assume that

it does not end with a Dyck word (if z′ = uw with w Dyck, we could consider wu
instead). In that case it is a product of words in P ∗L = DL and z is conjugate
to a word in (DL)∗. As a consequence P(X) = P(XDL) ⊔ P(XR+P ).

Let us finally show that P(XDL)∩P(XR+P ) = ∅. Assume the contrary. Then
there are nonempty conjugate words w,w′ such that w is in (DL)∗ and w′ is in
(R+ P )∗.

This implies that the height of w is positive and the height of w′ is nonposi-
tive, contradicting the conjugacy of w and w′.

4.3 Computation of the zeta function

We recall below the notion of circular codes (see for instance [2]). We say that
a subset S of nonempty words over A is a circular code if for all n,m ≥ 1 and
x1, x2, . . . , xn ∈ S, y1, y2, . . . , ym ∈ S and p ∈ A∗ and s ∈ A+, the equalities
sx2x3 · · ·xnp = y1y2 · · · ym and x1 = ps imply n = m, p = ε and xi = yi for
each 1 ≤ i ≤ n.

Two codes C1 and C2 are cyclically disjoint if a word of C∗
1 which is conjugate

to a word of C∗
2 , is empty.

Proposition 4. The sets DL and P ⊔R are cyclically disjoint circular codes.

Proof. We first show that R⊔P is circular. Keeping the notation of the definition,
let x1, x2, . . . , xn ∈ S, y1, y2, . . . , ym ∈ S, p ∈ A∗ and s ∈ A+. We prove the claim
by induction on n + m. Suppose that sx2x3 · · ·xnp = y1y2 · · · ym and x1 = ps
imply n = m and xi = yi when n +m < N . Assume now that sx2x3 · · ·xnp =
y1y2 · · · ym and x1 = ps for some n,m with n+m = N .

If p was nonempty, then, since x1 = ps where s 6= ε, we have h(p) > 0. This
would contradict p being a suffix of y1y2 · · · ym, which is clearly matched-call,
hence we get p = ε. It follows that x1 is a prefix of y1 or the converse, implying
x1 = y1. By induction hypothesis we obtain that n = m and xi = yi.



Let us show that P ∗L is circular. Let us assume that s 6= x1. Since s is a
prefix of y1y2 · · · ym and is a suffix of x1, we have s ∈ P ∗L and p ∈ P ∗. As p 6= ε,
p ∈ P+. This contradicts the fact that p is a suffix of y1 · · · ym. Hence s = x1

and p = ε. Now x1 · · ·xn = y1y2 · · · ym implies x1 = y1 since xi, yi ∈ P ∗L. By
induction hypothesis we get n = m and xi = yi.

We now show that DL and P +R are cyclically disjoint. Let u ∈ (DL)∗ and
v ∈ (P +R)∗ such that u and v are two nonempty conjugate words. This implies
that the height of u is positive and the height of v is nonpositive, contradicting
the conjugacy of u and v.

Proposition 5. Let X be a generalized Dyck shift over A. The multivariate zeta
function of X has the following expression.

Z(X) = π((DL)∗(P +R)∗).

Proof. From Proposition 3 we get that the multivariate zeta function of X is
Z(X) = Z(XDL)Z(XP+R).

From [15, Proposition 4.7.11] (see also [2, Proposition 3.1],[8]), if C is a
circular code Z(XC) = π(C∗). The result follows from the fact that DL and
P +R are circular codes.

Example 7. We consider the Dyck shift X with two kinds of parentheses of
Example 3 defined by Σ = {α, β} and A = {”(” = (+1, α), ”)” = (−1, α), ”[” =
(+1, β), ”]” = (−1, β)}.

Setting a = ”(”, b = ”)”, a′ = ”[”, b′ = ”]′′, L1 = L1,α, L
′
1 = L1,β , R1 = R1,α,

R′
1 = R1,β , we have

L1 = a L′
1 = a′ (8)

R1 = b R′
1 = b′ (9)

P = L1DR1 + L′
1DR′

1 = aDb+ a′Db′ (10)

D = 1 + PD = 1 + aDbD + a′Db′D (11)

Thus
Z(X) = π((D(a+ a′))∗ (b+ b′ + aDb+ a′Db′)∗),

where D is defined by Equation 11. A computation gives the formula of Keller
for ζX(z) [8]:

ζX(z) =
2(1 +

√
1− 8z2)

(1− 4z +
√
1− 8z2)2

.

Example 8. We consider the shift XA defined by Σ = {α, β} and A = {a =
(+2, α), b = (−1, α), a′ = (+2, β), b′ = (−1, β)}.

Setting Li = Li,α, L
′
i = Li,β , and Ri = Ri,α, R

′
i = Ri,β , we have

L2 = a L′
2 = a′ (12)

R1 = b R′
1 = b′ (13)

L1 = L2DR1 = aDb L′
1 = a′Db′ (14)



P = L1DR1 + L′
1DR′

1 = aDbDb+ a′Db′Db′ (15)

D = 1 + PD = 1 + aDbDbD + a′Db′Db′D (16)

Thus

Z(X) = π((D(aDb+ a′Db′ + a+ a′))∗ (b+ b′ + aDbDb+ a′Db′Db′)∗),

where D is defined by Equation 16.

Let S be a multivariate series in N〈〈A〉〉. We denote by < S, u > the coefficient of
a word u in S. We say that S is N-algebraic if S− < S, ε > ε is the multivariate
generating series of some unambiguous context-free language. The multivariate
zeta function of a shift is N-algebraic if it is the commutative image of some mul-
tivariate N-algebraic series. In one variable, a series S(z) is N-algebraic if it is the
first component (S1(z)) of a system of equations Si(z) = Pi(z, S1(z), . . , Sr(z)),
where 1 ≤ i ≤ r and Pi are multivariate polynomials with coefficients in N (see
for instance [5]).

Corollary 1. The multivariate zeta function of a generalized Dyck shift is the
commutative image of a product of the generating series of the stars of unam-
biguous context-free circular codes, the codes being cyclically disjoint. The mul-
tivariate and ordinary zeta functions of a generalized Dyck shift are N-algebraic
series.

Proof. The result follows from Proposition 5 and the fact that DL and P ∪ R
are unambiguous context-free circular codes since the languages P,Li,α, Rj,β are
unambiguous context-free. Further DL and P ∪R are cyclically disjoint.
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