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Manuscript

Tree algebra of sofic tree languages

Nathalie Aubrun and Marie-Pierre Béal

Abstract We consider the languages of finite trees called

tree-shift languages which are factorial extensible tree

languages. These languages are sets of factors of sub-
shifts of infinite trees. We give effective syntactic char-

acterizations of two classes of regular tree-shift lan-

guages: the finite type tree languages and the tree lan-
guages which are almost of finite type. Each class corre-

sponds to a class of subshifts of trees which is invariant

by conjugacy. For this goal, we define a tree algebra

which is finer than the classical syntactic tree algebra
based on contexts. This allows us to capture the notion

of constant tree which is essential in the framework of

tree-shift languages.

1 Introduction

Infinite k-ary trees have a natural structure of symbolic

dynamical systems equipped with k shift transforma-

tions [1]. The ith shift transformation applied to a tree
gives the subtree rooted at the child number i of the

tree. A tree subshift is described by a set of finite block

trees which are forbidden, i.e. which never appear as
factor of some infinite tree of the subshift.

The set of trees which are factors of a subshift is

a language of finite ranked trees is called a tree-shift
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language. It is closed and stable by any shift transfor-

mation. This set of factors characterizes the subshift

and interesting properties of the subshift can be read
in its associated tree-shift language. The simplest class

of these languages is the class of tree languages of finite

type which corresponds to subshifts defined by a finite
set of forbidden block trees (or patterns). Languages of

finite patterns of tree-shifts of finite type are strictly lo-

cally testable tree languages [20] (also called k-testable

tree languages, or k-grams in the case of sequences).
For these languages, the effect of events that occured

beyond a certain depth window are ignored when pro-

cessing a tree. Probabilistic k-testable models are used
for pattern classification and stochastic learning [20].

In [1,3], we proved that the topological conjugacy

of tree subshifts of finite type is decidable, thus extend-

ing Williams’s conjugacy theorem for one-sided shifts
of sequences [17]. A larger class of tree languages is the

class of sofic tree languages (also called regular tree-

shift languages), which corresponds to sofic subshifts of
trees. Sofic tree-shifts have been studied in [2,4], [10]

and [13]. These tree languages are accepted by essen-

tial tree automata where all states are both initial and

final [2]. Among this class, the almost of finite type
tree-shift languages have the property of being accepted

by a (bottom-up) tree automaton which is both deter-

ministic and co-deterministic with a finite delay. The
corresponding class of subshifts constitutes a meaning-

ful intermediate class in between irreducible tree-shifts

of finite type and general sofic tree-shifts (see [9] and
[17]). In [2,4], we have shown any irreducible sofic tree-

shift has a minimal presentation which is synchronized.

We also described an algorithm for checking whether

a sofic tree subshift is almost of finite type. Almost of
finite type shifts enjoy various properties which are no

shared by all sofic shifts. It is the one big, natural class

of nice sofic shifts.
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In this paper, we give syntactic characterizations

of tree-shift languages of finite type and of almost of
finite type tree-shift languages. A syntactic characteri-

zation of almost of finite type word languages have been

obtained in [5]. Logics for sofic and finite type multi-
dimensional subshifts has also been explored in [16].

We first consider the three sorted syntactic tree al-

gebra introduced by Wilke in [21] and we easily de-
rive characterizations of tree-shift languages in this al-

gebra. The concept of tree-shift languages of finite type

is close to the notion of definite tree languages and

forests studied in [14], [18] and [7,6], to the notion of
frontier testable (also called reverse definite) tree lan-

guages in [21], and to the notion of generalized definite

tree languages [15]. It is more weaker than the notion
of locally testable tree languages [19]. In [14], Heuter

showed that it is decidable whether a regular tree lan-

guage is definite. Nivat and Podelski obtained a syntac-
tic characterization of this property in [18].

All these properties are however distinct from the

finite type condition that we consider here. In order to

characterize the tree-shift languages of finite type, we
introduce the important notion of constant tree known

for sequences [12]. However, we show that the notion

of constant tree is not well captured in the syntactic
tree algebra of [21]. We thus define a stronger tree al-

gebra which is still computable and finite for regular

languages. In this strong algebra, we give effective char-
acterizations of tree languages of finite type and of tree

languages which are almost of finite type. In the last

section, we show that this algebra may be refined again

while remaining finite and computable for regular lan-
guages.

The paper is organized as follows. Basic notions of

trees and contexts are recalled in Section 2. The notion
of Wilke’s tree algebra is briefly presented in Section 2.3

and a syntactic characterization of factorial extensible

tree languages is given in Section 2.4. The notion of
fine tree algebra is introduced in Section 3. The main

results, the characterizations of tree-shift languages of

finite type and almost of finite type are obtained in

Section 4.2 and Section 5. Both results use the notion
of constant tree and constant tree class explained in

Section 4.1.

2 Trees and contexts

2.1 Binary trees

The trees in this paper are finite, labeled and have a
fixed arity. We will consider only (complete) binary

trees (each node has zero or two children) but all re-

sults extend to k-ary trees where k is a nonnegative

integer. Formally, if Σ denotes the alphabet {0, 1} and

A is a finite alphabet, a tree is a partial function from
Σ∗ to A with a finite domain such that such that for

each node x, x0, x1 are either both not in the domain

or both in the domain. This implies that the domain is
prefix-closed. A set L of trees over a given alphabet A

is called a tree language over A.

The one-node tree made with label a is denoted by

(a), or simply by a when there is no confusion with the

label a. The empty tree is not allowed. If a is a label

and s, t are trees, then a(s, t) denotes the tree rooted
by a node labeled by a, with left child s and right child

t. If we take a tree and replace one of the leaves by a

special symbol � called the hole, we obtain a context.
The empty context, where the only node is the hole, is

denoted by �. A tree s can be substituted in place of

the hole of a context p, the resulting tree is denoted by
ps, as illustrated below:

p s ps

We will write pa instead of p(a) for a context p and a

letter a.

There is a natural composition operation on con-

texts: the context qp is formed by replacing the hole of

q with p. This context concatenation satisfies (pq)s =
p(qs) for all trees s. We also allow constructing contexts

from a label a, a tree s, and context q. The resulting

context is denoted by a(s, q), as illustrated below:

a

a

a s q a(s, q)

It satisfies a(s, q)t = a(s, qt) for all trees t. The con-
text a(p, t) is defined symmetrically. Note that a(s, t)

is the tree a(s, qb) for any context q and label b such

that qb = t. It is also equal to the tree a(pc, t) for any
context q and label c such that qc = s.

Borrowing conventions used in [7], [8] and [6], in the
implications and identities, the letters used for variables

will implicitly identify the type of the variables. Trees

will be denoted by the letters s, t, u, . .. Labels of nodes

will be denoted by a, b, c. Contexts will be denoted us-
ing letters p, q, r. We use letters A,B,C to denote the

alphabets, i.e. finite sets of labels. We use x, y, z to de-

note nodes, i.e. words in Σ∗ included in the domain of
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some tree. We shall denote by T and C the set of trees

and contexts respectively.

2.2 Sofic trees

A (bottom-up) tree automaton (see for instance [11])
works as follows. Fix a finite input alphabet A. The

tree automaton has a finite set of states Q, a set of

initial states I, a set of final states F , and a finite set
of transitions of the form (q0, q1)

a
−→ q, where q1, q2, q ∈

Q and a ∈ A. A computation (or a run) of the tree

automaton on a tree t labeled on A is a tree s labeled
on Q which is consistent with the transition function in

the following sense. If x is a node of s labeled by q with

children x0, x1 labeled by q0, q1 respectively, then there

is a transition (q0, q1)
tx−→ q. A computation is accepting

if the states labeling the leaves are initial and the state
labeling the root is final. The tree t is said to be accepted

by the tree automaton. The set a trees accepted by the

tree automaton is also called the language recognized by
the tree automaton. A tree language is regular if it is

recognized by some tree automaton. A tree automaton

also accepts contexts (seen as uncomplete binary trees

without their box).

A state q of a tree automaton is accessible if there

is a letter a and states q0, q1 such that (q0, q1)
a
−→ q is

a transition. A tree automaton is essential when all its
states are accessible. A sofic tree language is a regular

tree language accepted by an essential tree automaton

where all states are both initial and final. Such a tree

automaton is denoted (Q,A,∆), where ∆ is the set of
transitions. Note that all its computations are accepting

since we have assumed that all states are both initial

and final. The full language of trees is the set of all trees
of A. It is called the full tree-shift.

An infinite (binary and complete) tree is a total map

from Σ∗ to A. A factor (or subtree) of some (finite or
infinite) tree t with domain D is a finite tree s with

domain E such that there is a node x of t such that

x+E ⊆ D and s and t coincide on the domain of s. A

factorial language of trees is a language of (finite) trees
which is closed by factors.

If s, t are trees, we say that s ≺ t if, for any node

in the domain of s, x0 and x1 belong to the domain
of t, and s and t agree on the domain of s. Note that

all leaves of s are extended strictly in all directions.

Thus s ⊀ s. Roughly speaking, the extension is a ”fat”

extension. A language of trees L is extensible if and only
if, for any tree s in L, there is a tree t in L such that

s ≺ t. A tree-shift language is a factorial extensible tree

language.

It is shown in [2,4] that the sofic tree languages

are exactly the regular tree-shift languages. Moreover,
regular tree-shift languages are the set of factors of sofic

shifts of infinite trees.

2.3 Syntactic congruence

An equivalent definition of regular trees uses the Myhill-

Nerode syntactic congruence introduced by see [21].

This congruence is a three-sorted algebra (labels, trees,
contexts) called Wilke’s tree algebra (see [21]). It con-

sists in three congruences, one for the trees, one for the

contexts and one for the labels (seen as labels off inter-
nal nodes or as construction operators denoted a(, )).

Let L be a tree language. Two trees s, s′ are called

equivalent under L, written s ∼L s′, if

ps ∈ L ⇔ ps′ ∈ L

holds for every context p. Two contexts q, q′ are called

equivalent under L, written q ∼L q′, if and only if, for

any tree t, the two trees qt and q′t are equivalent under
L. When the language L in question is clear from the

context, we omit the subscript ∼L and simply write ∼.

Two labels a, a′ are called equivalent under L, written

a ∼L a′, if

pa(s, t) ∈ L ⇔ pa′(s, t) ∈ L

holds for every context p and any trees s, t.

Using standard techniques, one can show that a tree

language is regular if and only if its three syntactic
equivalences have finite index. Note that ∼L on A has

always a finite index since A is finite.

The syntactic equivalences form a congruence with
respect to the operations

a(s, t) a(p, t) a(s, q) pq ps (1)

on trees s, t, contexts p, q and labels a, as defined above.

Two elements (labels, trees, or contexts) are equiv-

alent if they are of the same sort and relate to L in the
same way in every possible context. We respectively de-

note by A, T and C the sets of classes of labels, trees,

contexts in the syntactic algebra of L. If s is a tree, p
a context, a a label, we will denote by [s], [p] and [a]

their class in this three-sorted algebra.

We define a partial order ≤ on trees as follows. If
s is a tree, we define the context of the tree as the set

(denoted cont(s)) of contexts p such that ps ∈ L. Let s, t

be trees. We set s ≤ t if and only if cont(s) ⊆ cont(t).

Note that [s] = [t] if and only if cont(s) = cont(t). We
thus set [s] ≤ [t] if cont(s) ⊆ cont(t). If [s] is a tree class

we call context of [s] the set of context classes [p] such

that ps ∈ L.
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2.4 Characterization of tree-shift languages

The goal of the paper is to give algebraic characteriza-
tions of some classes of tree-shift languages. These char-

acterizations are not purely syntactic but dot-syntactic

(i.e. with the use of the zero classes for non full tree-

shift languages). They may be used to obtain decidable
characterizations of several classes of sofic languages.

We first present the characterization of factorial ex-
tensible tree languages (i.e. tree-shift languages). This

characterization is easy to obtain in the three-sorted

algebra. The computation of all these properties can
be done in the finite syntactic algebra for regular tree

languages.

If L is a tree language, we denote by Im(L) the

classes which are Images of trees of L in the tree algebra.

Proposition 1 A tree language is factorial if and only

if its syntactic algebra satisfies the implication:

vα(g, h) ∈ Im(L) ⇒ vα, α, and α(g, h) ∈ Im(L) (2)

for any context class v, any tree classes g, h, and any

label class α.

Proof If the tree language L is factorial, Implication 2

comes from the definition of factorial. Conversely, let
us assume that Implication 2 is true. Let s be a factor

of a tree t in L. Then t = pu where the domain of s is

included in the domain of u. We have either u = a or
u = a(u1, u2). Since [pu] ∈ Im(L), [a], [a]([u1], [u2]) ∈

Im(L). Thus [u] ∈ Im(L). Thus we can assume that s is

a factor of t at the root of t. Let us assume that s 6= t.
Then there is a context q and trees u3, u4 such that

t = qb(u3, u4) and the domain of s is included in the

domain of t′ = qb. By Implication 2, [t′] ∈ Im(L) and

t′ has less nodes than t. By iterating this operation, we
get that [s] ∈ Im(L). Hence s ∈ L.

Proposition 2 A factorial tree language is extensible
if and only if its syntactic algebra satisfies the implica-

tion:

vα ∈ Im(L) ⇒ ∃ g, h ∈ T vα(g, h) ∈ Im(L) (3)

for any context class v and any label class α.

Proof Let us assume that L is factorial and extensible.

Let vα ∈ Im(L). Let p, a with [p] = v and [a] = α.
There is a tree s ∈ L with pa ≺ s. Hence there are

trees t, u such that the domain of pa(t, u) is included in

the domain of s. Since L is factorial, pa(t, u) ∈ L, thus

Implication 3 holds with g = [t] and h = [u]. Conversely,
let s be a tree of L and a be the label of a leaf of s,

E being the set of the other leaves of s. Then s = pa

and there are classes g, h such that [p][a](g, h) ∈ Im(L).

Let t, u with g = [t], h = [u]. We get pa(t, u) ∈ L. We

iterate this operation with the other leaves of E, which
are also leaves of pa(t, u), and get a tree s′ ∈ L such

s ≺ s′.

When a tree-shift language L is not the full language,

we denote by 0 the equivalence class of the trees that do
not belong to L. We also denote by 0 the equivalence

class of the contexts p such that, for any tree s, ps /∈

L, and the equivalence class of any label a for which
pa(s, t) /∈ L for any context p and trees s, t. Note the

consistency of these definitions: 0[s] = 0 for any tree s.

Transitive tree languages form an important class of
tree-shift languages which contains the almost of finite

tree-shift languages of Section 5. The notion of tran-

sitivity suitable for tree-shift languages was introduced

in [2]. A finite complete prefix code of Σ∗ is a prefix-free
set1 X of finite words in Σ∗ such that any word in Σ∗

which is longer than the words of X has a prefix in X.

t

s

t

t t

Fig. 1 A transitive tree-shift language. Let u denotes the tree
pictured. If s denotes the black block and t the white one, s is
a subtree of u rooted at ε, and t is a subtree of u rooted at any
x ∈ X, where X is the complete prefix code {00, 010, 011, 1}.

A tree-shift language L is transitive if for each pair

of trees s, t ∈ L there is a tree u ∈ L and a finite

complete prefix code X ⊂ Σ∗ with words of length at
least the height of s, such that s is a subtree of u rooted

at ε, and t is a subtree of u rooted at x for any x ∈ X.

For the sake of completeness, we give a syntactic
characterization of this property. Let P be a subset of

a tree language. We denote by A∗(P ) the set of trees

obtained by taking any tree in T and replacing its leaves

with some tree in P . For a tree class h in T , we denote
by A∗(h) the set of classes of trees in A∗(P ) where P

is the set of trees whose class is h.

Proposition 3 A tree-shift language is transitive if and

only if its syntactic algebra satisfies the following prop-
erty.

v 6= 0, h 6= 0 ⇒ ∃ g ∈ A∗(h) such that vg 6= 0

for any context class v and any tree class h.

1 i.e. no word is prefix of another one.
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Proof Assume that the tree-shift language L is transi-

tive. Let p, a, s with [pa] 6= 0, [p] = v and [s] = h. By
transitivity there is a tree t in A∗(s) ∩ L such that the

domain of pa is included into the domain of t. More-

over, if x denotes the box position of p, one can choose
t such that the subtree u of t rooted at x also belongs

to A∗(s). Setting g = [u], we get g ∈ A∗(h) and vg 6= 0

since pu ∈ L.

Conversely, let s, t be trees of L. Let s′ ∈ L such
that s ≺ s′. Let a be the label of one leaf of s′ and E be

the set of the other ones. Then s′ = pa. We note v = [p]

and h = [t]. There is a class g ∈ A∗(h) such that vg 6= 0
and t′ ∈ A∗(t) such that [t′] = g. The leaves in E are

also leaves of the tree pt′. By iterating the construction

with the other leaves we obtain that any leaf of s can

be extended into a tree in A∗(t), the whole tree staying
in L. This proves the transitivity.

The computation of the above property for regular tree

languages is based on the computation of the subset

A∗(h). We set A0(h) = {h}, A(h) = A0(h) ∪ {a(h, h) |
a ∈ A}. For any positive integer n, we define An(h) =

An−1(h) ∪ {a(f, g) | f, g ∈ An−1(h)}. Since the alge-

bra is finite, there is an integer n such that An(h) =
An+1(h). This set is equal to A∗(h).

Note that Propositions 1, 2, and 3 hold for the full

tree language since the full language is factorial, exten-

sible and transitive.

3 Strong tree algebra

We assume that L is a tree-shift language. The image

of trees not belonging to L in the tree algebra is thus
0. We denote by T 0 the set of tree classes distinct from

0. We will moreover assume that L is regular in order

to work with a finite tree algebra.

Since the equivalence ∼ will be too weak to charac-
terize synchronizing properties of tree-shift languages,

we introduce the notion of strong tree algebra of tree-

shift languages. We define a strong equivalence on trees,
denoted ≈, as follows.

Two trees s, t are called strong equivalent under L,

written s ≈ t if and only the set of equivalence classes

of s′ for s ≺ s′ is equal to the set of equivalence classes
of t′ for t ≺ t′.

We denote by [[s]] the class of s for ≈. We write

[[s]] ≤ [[t]] when the set of equivalence classes of s′ for

s ≺ s′ is included into the set of equivalence classes of t′

for t ≺ t′. Note that [[s]] ≤ [[t]] implies [s] ≤ [t]. Indeed,
let p such that ps ∈ L. Since L is a tree-shift language,

there is a tree u ∈ L such that ps ≺ u. Hence, there is

a tree s′ such that s ≺ s′ and ps′ ∈ L. Thus there is

a tree t′ with t ≺ t′ and pt′ ∈ L, which implies pt ∈ L

since L is factorial.
Two contexts p, q are called strong equivalent under

L, written p ≈ q, if and only if, for any tree t, the two

trees qt and q′t are strong equivalent under L. Finally,
the strong equivalence coincide with the equivalence ∼

for labels. If p is a context, we denote by [[p]] the strong

class of p. The null class is still denoted by 0.
One can easily check the following properties.

s ≈ s′ ⇒ ps ≈ ps′, (4)

a ≈ a′, s ≈ s′, t ≈ t′ ⇒ a(s, t) ≈ a′(s′, t′), (5)

a ≈ a′, p ≈ p′, t ≈ t′ ⇒ a(p, t) ≈ a′(p′, t′), (6)

a ≈ a′, s ≈ s′, q ≈ q′ ⇒ a(s, q) ≈ a′(s′, q′), (7)

p ≈ p′, q ≈ q′ ⇒ pq ≈ p′q′, (8)

p ≈ p′, s ≈ s′ ⇒ ps ≈ p′s′. (9)

We respectively denote by A, T and C the sets of

classes of labels, trees, contexts in this three-sorted strong

tree algebra of L.
We define two special tree automata accepting tree-

shift languages. The first one, the context tree automa-

ton, is a deterministic tree automaton whose states are
identified with nonnull tree classes. All its states are

both initial and final. The second one, called the de-

terminized context tree automaton, has a unique initial
state and is obtained by determinization of the previous

one.

The context tree automaton of a tree-shift language

L is the (uncomplete) deterministic tree automaton de-
noted by (T 0, A,∆), where T 0 is the set of nonnull tree

classes of L. All states of this tree automaton are initial

and final. The transitions of ∆ are ([s], [t])
a
−→ [a(s, t)],

where s, t are trees and [a(s, t)] is nonnull. Since L is

factorial and extensible, it recognizes the language L.

Indeed, if s ∈ L, we can extend s to a tree t by extend-
ing each leaf e of s with trees se (on the left) and te (on

the right). Hence there is a computation of the context

tree automaton on s starting with states [se], [te], for

all leaves e of s, and rooted with [t]. This proves that
the context tree automaton accepts s. Conversely, if s is

accepted by the context tree automaton, there is a com-

putation of the tree automaton on s. Its root is some
state [t] 6= 0 where s ≺ t. Since t belongs to L, then s

also.

The determinized context tree automaton is the de-
terministic tree automaton (P(T 0), A, δ, i, F ) whose set

of states are the parts of T 0, with a unique initial state

i = T 0, F = P(T 0), and with transitions (P,Q)
a
−→

{a(g, h) | g ∈ P, h ∈ Q, a(g, h) 6= 0}. It accepts the lan-
guage L. If T is finite, P(T 0) is finite. Thus this tree

automaton is finite if L is regular. We denote δ(i, s)

by I(s).
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Lemma 1 Let s be a tree. We have I(s) = {[t] | s ≺

t and [t] 6= 0}.

Proof It is clear that if t is a tree such that [t] 6= 0

and s ≺ t, then [t] ∈ I(s). Conversely, if g ∈ I(s) =

δ(i, s), then g 6= 0 and there is computation of s in the
context tree automaton whose root is g. The leaves of

this computation being nonnull classes of trees, g is the

class of a tree t such that s ≺ t.

As a consequence of Lemma 1 we obtain the follow-
ing corollaries.

Corollary 1 Let s, t be two trees. We have [[s]] ≤ [[t]] if

and only if I(s) ⊆ I(t) and thus [[s]] = [[t]] if and only if
I(s) = I(t).

Corollary 2 The strong tree algebra of a tree-shift lan-

guage has finite index if and only if the language is reg-

ular.

Proof The strong equivalence is finer that the equiva-

lence ∼. Thus it has an infinite number of classes when

the language L is not regular. Conversely, if L is regular,

the number of strong tree classes is bounded above by
the number of states of the determinized context tree

automaton.

Let n be a positive integer. A block tree of height n
is a tree whose domain is the set of all words of Σ∗ of

length at most n− 1. We denote by Tn (resp. T≥n) the

set of block trees of height n (resp. greater than or equal

to n) and by Tn(resp. T≥n) the set of strong equivalence
classes of trees in Tn (resp. T≥n). We denote by Tω the

set of strong classes g such that, for any integer m,

there is an integer n ≥ m and a block tree s of height n
such that g = [[s]]. If the number of strong tree classes

is finite, there are nonnegative integers m, k such that

Tm = Tm+k. It follows that T≥m = T≥m+k and thus
Tω = T≥m = ∪k−1

i=0 Tm+i. Similarly Cω, is the set of

strong context classes v such that, for any integer n,

there is a context p and a tree s of height greater than

n with [[p]] = v and ps is a block tree.

4 Tree-shift languages of finite type

4.1 Constant trees

In this section, we introduce the notion of constant tree

(or intrinsically synchronizing tree). It corresponds to

the notion of constant of a semigroup which is used

to capture the synchronization properties of word lan-
guages (see [12]), or to the notion of intrinsically syn-

chronizing word of symbolic dynamical systems [17, ex-

ercise 3.3.4 p. 85].

Let L be a tree language. A tree s is a constant for

P ⊆ L if the following implication holds.

pt, qu ∈ P ⇒ pu, qt ∈ P.

for any contexts p, q and any trees t, u with s ≺ t and

s ≺ u. A tree is a constant if it is a constant for L (see
Figure 2).

p

s

f

and

q

s
g

∈ L ⇒

p

s
g

and

q

s
f

∈ L

Fig. 2 A constant tree s.

Thus, by definition, s is constant if and only if either

[s] = 0 or [t] = [s] for any tree t such that s ≺ t and
[t] 6= 0. In particular, if s is constant and s ≺ t, then t

is constant. Similarly, a context p is a constant if and

only if [ps] = [pt] for any trees s, t such that [ps] 6= 0
and [pt] 6= 0.

The following proposition gives a characterization

of constant trees. It is a corollary of Lemma 1.

Proposition 4 Let s be a tree. Then s is constant if
and only if either s /∈ L or card(I(s)) = 1.

Note that some tree classes in the syntactic tree

algebra may contain both constant and non constant

trees. Indeed, let us consider the path-testable tree lan-
guage (see [6]) whose trees have their branch labels

(read from the leaves to the root) accepted by the finite

automaton of Figure 3. In the three-sorted algebra, we

1 2

b b

aa

c

Fig. 3 A finite automaton defining a path-testable tree lan-
guage.

have [b] = [a]. The tree a is constant while b is not.
Indeed, a(b(c, c), a), c(b(a, a), a) belong to the tree lan-

guage but c(b(c, c), a) does not. Hence the notion of

constant is not well captured in the syntactic tree alge-
bra.

We now define the notion of constant class in the

syntactic tree algebra and in the strong tree algebra
as follows. A constant class of T (resp. C) is a class

for the equivalence ∼ containing only constant trees

(resp. constant contexts). Similarly, a constant class of
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T (resp. C) is a class for the equivalence ≈ containing

only constant trees (resp. constant contexts).

As a consequence of Proposition 4 and 1, if s, t are

trees and [[s]] = [[t]], then s is a constant if and only if t

is constant.

Corollary 3 Let [[s]] be a strong tree class. Then [[s]] is

constant if and only [[s]] = 0 or card(I(s)) = 1.

A 0-minimal class (for the equivalence ∼) of trees is

a nonnull class which is minimal for the partial order ≤.
The following proposition proves the existence of non-

null constant tree classes in the syntactic tree algebra

(and thus in the strong tree algebra).

Proposition 5 Any 0-minimal tree class is constant.

Proof Let us assume that h is a nonnull minimal tree

class for the equivalence ∼. We show that any tree of

this class is constant.

If h is not constant, let s in h which is not constant.

Let h1, h2 in I(s) with h1 6= h2. We have h1 ∈ I(s),

h1 ≤ h and h1 6= 0. Since h is 0-minimal, we get h1 = h.
Similarly h2 = h and thus h1 = h− 2, a contradiction.

Let us assume that h1 6= h = [s]. Then there is a

context class v such that vh1 = 0 and vh 6= 0. Hence
h1 < h, a contradiction.

4.2 Characterization of tree-shifts of finite type

A tree-shift language is of finite type if it is defined by
a finite set of forbidden factors, i.e. there is a finite set

of trees F such that a tree belongs to the language if

and only if it does not contain any tree in F as factors.
Equivalently, a tree-shift language is of finite type if

there is a positive integer m such that any block tree of

height m is a constant tree.

A tree-shift language of finite type is regular and a

regular tree-shift language is of finite type if and only if

it is recognized by an essential deterministic local tree

automaton where all states are initial and final (see [2]).
The locality of a tree automaton is defined as follows.

Let m be a positive integer. A deterministic m-local

tree automaton is a tree automaton A such that any
two computations of A on a same block tree of height

m end have the same root. A tree automaton is local (or

definite) if it is m-local for some nonnegative integer m
(and m stands for memory).

The notion of tree-shift languages of finite type is

close to the notion of definite languages of trees and

forests given in [14], [18], and [7,6], for which the mem-
bership depends only on the nodes of height at most n.

It is however different and a syntactic characterization

of finite type tree-shift languages may not be obtained

in the syntactic tree algebra2 but in the strong tree

algebra.

Theorem 1 A regular tree-shift language is of finite

type if and only if the following property holds in the

strong tree algebra,

[[s]] ∈ Tω ⇒ [[s]] is constant.

Proof Let L be a regular tree-shift language of finite

type. There is a positive integerm such that every block

tree of height m is constant. Let [[s]] ∈ Tω which is non-

null. There is a block tree t in L of height greater than
m such that [[t]] = [[s]]. The tree t is constant since it

extends a block tree of height m. Thus [[s]] is a constant

strong tree class.
Conversely, let us assume that L is a regular tree-

shift language such that any strong tree class of Tω is

constant. Let m be an integer such that Tω = T≥m. Let
s be a block tree of height n ≥ m. Then [[s]] ∈ Tn ⊆ Tω.

It follows that [[s]] is constant and thus s is a constant

tree.

Example 1 In Figure 4.2 is pictured a tree of a tree-

shift language on the alphabet {a, b}. The language is
the set of trees containing an even number of a between

two b on any path in the tree. Moreover, any two paths

starting at a same node and ending at nodes labelled
by b have the same number of a modulus 2. Hence the

tree a(a(b, b), b) is not allowed. This tree-shift language

is not of finite type.

b

a

a a

b b

a

a a

a a

[b]

[b]

[a] [a(b, b)]

[b] [b]

[a]

[a] [a]

[a] [a]

Fig. 4 An tree-shift language which is not of finite type and
the computation of its class in its syntactic tree algebra. Fac-
tor trees containing an even number of a between two b on
some path in the tree are forbidden.

We have

T = {[a], [b], [a(b, b)], 0},

T = {[[a]], [[b]], [[a(b, b)]], 0},

Tω = T.

The strong tree class [[a]] is not a constant class. Indeed,
[[a(b, b)]] 6= [[a]]. As a consequence the language L is not

of finite type.

2 In particular the condition (vωg 6= 0, vωh 6= 0) ⇒ (vωg =
vωh) (obtained in [7,6] for definite languages) is sufficient but
not necessary for a tree-shift language to be of finite type.
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5 Almost of finite type tree-shift languages

In this section, we define the notion of almost of fi-

nite type tree languages. We refer to [17] for the no-

tion of almost of finite type shifts. These languages
are regular transitive tree-shift languages recognized by

a tree automaton which is both deterministic and co-

deterministic with a finite delay. They correspond to a
class of symbolic dynamical tree-shifts which is in be-

tween tree-shifts of finite type and sofic tree-shifts. The

class of almost finite type tree-shift languages strictly
contains transitive tree-shift languages of finite type

and it is strictly smaller than the class of regular tree-

shift languages.

A tree automaton is irreducible if for each pair of
states p, q, there is a finite complete prefix code X of

Σ∗ and a finite computation c of the automaton on a

tree such that cε = p and cx = q for each x ∈ X. We
say that a tree s (or a context p) is a synchronizing tree

(or context) of a tree automaton if all computations of

the tree automaton on s have the same root. A synchro-
nizing tree of the context tree automaton is a constant

tree and conversely. A tree automaton A = (V,A,∆)

is co-deterministic (or left-closing) with delay m if any

two computations of A on a same block tree of height
m + 1 which have the same root, are equal at the two

nodes x = 0 and x = 1.

It is proved in [2,4] that there is a unique mini-
mal deterministic irreducible and synchronized tree au-

tomaton accepting a transitive regular tree-shift lan-

guage. It is equal to the unique irreducible component
of the context tree automaton, called the Fischer cover
3 of the tree language. Moreover a regular transitive

tree-shift language is almost of finite type if and only if

its right Fischer cover is co-deterministic with a finite
delay.

Theorem 2 A regular transitive tree-shift language is

almost of finite type if and only if the following property
holds in its strong tree algebra.
{

[[s]] ≤ [[t]], [[s′]] ≤ [[t]]

[[ps]] 6= 0, [[ps′]] 6= 0,
⇒ [[s]] = [[s′]], (10)

where [[s]], [[s′]] are constant strong tree classes, [[p]] is a

constant strong context class of Cω, and [[t]] is a strong
tree class of Tω.

Proof Let us assume that L is an almost of finite type

tree language. We denote by F the unique irreducible
component of the context tree automaton of L. There

is a positive integer m such that the tree automaton F

is co-deterministic with delay m.

3 also called the Shannon cover.

Let [[s]], [[s′]] be constant strong tree classes, [[t]] be

a strong tree class of Tω, [[p]] be a strong constant con-
text class, with [[s]], [[s′]] ≤ [[t]] and [[ps]], [[ps′]] 6= 0. These

conditions imply [[pt]], [[s]], [[s′]] 6= 0. Since [[s]], [[s′]] are

nonnull constant classes and L is transitive, I(s) = {h}
and I(s′) = {h′}, where h and h′ are states of the irre-

ducible component F . Since [[p]] ∈ Cω, there is a context

q and a tree t′ of height greater than m with qt′ is a
block tree and [[p]] = [[q]]. We have [[qs]] = [[ps]] 6= 0

and [[qs′]] 6= 0. Since [[t]] ∈ Tω, there is a block tree u

of height greater than m such that [[u]] = [[t]]. We have

h, h′ ∈ I(u). Let c (resp. c′) be a computation of F
on u with root h (resp. h′). Let us assume that q has

a its symbol � at the node x. Since [[qs]] 6= 0 (resp.

[[qs′]] 6= 0), there is a computation d (resp. d′) of F on
qu such that the label of d at the node x is h (resp.

h′). Since the context q is constant, these two compu-

tations d and d′ have the same root. The irreducible
tree automaton F being co-deterministic with delay m,

we obtain that h = h′ and thus [[s]] = [[s′]].

Conversely, let us assume that Implication 10 holds.
Let m be an integer such that Tω = T≥m. Let t =

a(t0, t1) be a block tree of height greater than or equal

to m+1 such that there are two computations c and c′

of F on t ending with a same root h. The strong tree

classes [[t0]] and [[t1]] belong to T≥m = Tω.

Let us assume that h0 (resp. h′
0) is the label of c

(resp. c′) at the node 0 while h1 (resp. h′
1) is the la-

bel of c (resp. c′) at the node 1. Since h0, h
′
0, h1, h

′
1 are

states of F , and since F is irreducible, there are con-
stant trees s0, s

′
0, s1, s

′
1 such that [si] = hi, [s

′
i
] = h′

i
,

for i = 0, 1. We have [[s0]] ≤ [[t0]], [[s
′
0]] ≤ [[t0]] (resp.

[[s1]] ≤ [[t1]], [[s
′
1]] ≤ [[t1]]). By construction, the classes

[a(s0, t1)], [a(s
′
0, t1)], [a(t0, s1)], [a(t0, s

′
1)] are nonnull.

Let u be a constant tree. Since F is irreducible, there

is a computation in F on a tree t′ with all initial states

equal to h, with root [u], and such that u is a subtree
of t′ at its root. Let t” be the the tree obtained from t′

by extending all its leaves left and right with the tree t.

The trees t′, t” are constants. Let x be the position of
one leaf of t′. Let p be the context obtained from t” by

replacing the tree t0 at position x0 by the box symbol.

Let q be the context obtained from t” by replacing the
tree t1 at position x1 by the box symbol. We have [[p]],

[[q]] in Cω and [[p]], [[q]] are constant contexts. We get

[[ps0]] 6= 0, [[ps′0]] 6= 0 (resp. [[qs1]] 6= 0, [[qs′1]] 6= 0). By

Implication 10 used two times, we obtain [[s0]] = [[s′0]]
and [[s1]] = [[s′1]]. Hence h0 = h′

0 and h1 = h′
1, showing

that F is co-deterministic with delay m and L is almost

of finite type.
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Example 2 We want to check Property 10 for the lan-

guage L of Example 1. We have

T = Tω = {[[a]], [[b]], [[a(b, b)]]}.

The nonnull constant strong tree classes are [[b]], [[a(b, b)]]

with [[b]] ≤ [[a]], [[a(b, b)]] ≤ [[a]].

The nonnul constant strong context classes are [[b(�, b)]]

and [[a(�, b)]]. Since there is nothing to check in Prop-
erty 10 when [[t]] is a constant strong tree class, we only

consider the case [[t]] = [[a]]. With [[p]] = [[b(�, b)]], we

have [[pb]] 6= 0 but but [[pa(b, b)]] = 0. Thus Implica-
tion 10 is true. With [[p]] = [[a(�, b)]], we have [[pb]] 6= 0

but [[pa(b, b)]] = 0. As a consequence, the language is

almost of finite type.

A deterministic and co-deterministic tree automa-

ton with delay 1 accepting L is described in Figure 2.
The two states q0 and q1 control the parity of the num-

ber of a encountered from any last b below.

a : q0

q1 q1

a : q1

q0 q0

b : q0

q0 q0

Fig. 5 The transitions of a deterministic and co-deterministic
with delay 1 tree automaton which accepts the trees whose
paths have an odd number of a between two b.

6 Strong tree algebra of order two

In this final section, we show that an even stronger tree

algebra, called the strong tree algebra of order two, can

be defined for tree-shift languages. A new equivalence,
denoted ≈2, refines the strong equivalence as follows.

Let s, t be a trees, we say that s ≤2 t when the set

of strong equivalence classes of s′ for s ≺ s′ is included

into the set of strong equivalence classes of t′ for t ≺ t′.

Two trees s, t are called equivalent in the strong tree
algebra of order two, written s ≈2 t, if s ≤2 t and

t ≤2 s. We denote by [[s]]2 the class of s for ≈2. We write

[[s]]2 ≤ [[t]]2 when s ≤2 t. This property is independent

of the choice of the class representative. For a tree-shift
language L, we have

[[s]]2 ≤ [[t]]2 ⇒ [[s]] ≤ [[t]] ⇒ [s] ≤ [t].

Indeed, the second implication was shown in Section 3.

The first one comes from the following argument. If
[[s]]2 ≤ [[t]]2, then

{{cont(s”) | s′ ≺ s”} | s ≺ s′}

⊆ {{cont(t”) | t′ ≺ t”} | t ≺ t′}.

Since L is a tree-shift language, we have cont(s′) =
⋃

s′≺s”
cont(s”). Hence, for any tree s′ with s ≺ s′,

there is a tree t′ with t ≺ t′ and cont(s′) = cont(t′), or,

equivalently, [[s]] ≤ [[t]].

Thus s ≈2 t implies s ≈ t but the converse is not

true as is shown in Example 3 below. The equivalence

≈2 is thus strictly stronger than ≈.

Two contexts p, q are called equivalent in the strong

tree algebra of order two, written p ≈2 q, if and only if,
for any tree t, the two trees qt and q′t are equivalent for

the strong equivalence of order two. Properties similar

to the ones of Equations 4 to 9 are satisfied.

Corollary 4 The strong tree algebra of order two of

a tree-shift language has finite index if and only if the
language is regular.

Proof The strong equivalence or order 2 is stronger

that the equivalence. Thus it has an infinite number of
classes when the language L is not regular. Conversely,

if L is regular, the number of states of the determinized

context tree automaton is finite. For any tree s, let P (s)
be the set of subsets of I(s) equal to I(t) for some

tree t with s ≺ t. We have [[s]]2 = [[t]]2 if and only if

P (s) = P (t). As a consequence, the number of strong
tree classes is bounded above by the number of subsets

of states of the determinized context tree automaton.

Example 3 We consider the (path-testable) tree lan-
guage where any of branch of a tree (from the bottom

to the top) is the label of path in the finite word au-

tomaton of Figure 6. We have

6 2 7

4 1 5

8 3 9

x

x

x

x

x

x

c

c d

d

a

a

a1

a

b

a2

b

b

a3 a4

a4

a5 a6

a0

a0

Fig. 6 The automaton A on the alphabet A =
{a, b, a0, . . , a6}.

[[a]] = {[a] = [a(c, c)], [a(a1, a1)], [a(a3, a3)], [a(a5, a5)]},

[[b]] = {[b] = [b(d, d)] = [a], [b(a2, a2)] = [a(a1, a1)],

[b(a4, a4)] = [a(a3, a3)], [b(a6, a6)] = [a(a5, a5)]}

= [[a]],
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and

[[a(c, c)]] = {[a(c, c)] = [a], [a(c, c(a3, a3))] = [a(a3, a3)],

[a(c, c(a1, a1))] = [a(a1, a1)]},

[[b(d, d)]] = {[b(d, d)] = [a], [d(b, b(a2, a2))] = [a(a1, a1)],

[d(b, b(a6, a6))] = [a(a5, a5)]}

6= [[a(c, c)]].

Furthermore, one can check that there is no tree s with

b ≺ s such that [[s]] = [[a(c, c)]]. As a consequence, we
have [[a]] = [[b]] but [[a]]2 6= [[b]]2.

This example suggests a strict infinite hierarchy of

strong tree algebras extending the strong tree algebra of
order 2. In this paper, we have considered algebras with

contexts of arity 1 (i.e. with one box). Algebras with

multicontexts may also be investigated (see [6]). Forest
algebras (see [6]) may not be well suited for tree-shift

languages since the arity of these trees is fixed.
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