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Abstract

Background: Methylation measures quantified by microarray techniques can be affected by systematic variation
due to the technical processing of samples, which may compromise the accuracy of the measurement process
and contribute to bias the estimate of the association under investigation. The quantification of the contribution
of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.
In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate
the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium
HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a
case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2)
analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three
correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute
residuals were applied. The impact of each correcting method on the association between smoking status and DNA
methylation levels was evaluated, and results were compared with findings from a large meta-analysis.

Results: A sizeable proportion of systematic variability due to variables expressing ‘batch’ and ‘sample position’ within
‘chip’ was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After
application of ComBat or the residuals’ methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique
resulted in a reduced variability due to ‘batch’ (1.3%) and ‘sample position’ (0.6%), and in a diminished variability
attributable to ‘chip’ within a batch (0.9%). After ComBat or the residuals’ corrections, a larger number of significant
sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96).

Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the
PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative
findings than ComBat in the association between smoking and DNA methylation.
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Background
Epigenetics aims at investigating changes in gene activity
not attributable to changes in the DNA sequence [1]. An
increasing number of studies analysed epigenetics in
relation to modifiable environmental exposures of epide-
miologic interest, such as smoking [2–4], alcohol
consumption [5], maternal plasma folate [6] and other
vitamin involved in the one carbon metabolism pathway
[7], as well as the role of epigenetic profiles on the risk
of developing chronic diseases, including cancer [8].
DNA methylation is a mechanism of epigenetic regula-
tion that involves the addition of methyl groups (–CH3)
to the cytosine of a cytosine-guanine DNA sequence.
DNA methylation level at one CpG site is frequently
expressed as the percentage of cells that are methylated
at that specific site. The Illumina Infinium Human-
Methylation450K BeadChip (HM450K) quantifies DNA
methylation at more than 450,000 interrogated CpG
sites, expressing methylation level as the ratio of the
methylated probe intensity to the overall intensity, which
is the sum of the methylated and unmethylated probe
intensities [9].
Methylation levels are influenced by many factors

including aging [10] and environmental exposure [11,
12], but might also be affected by systematic variation
due to the processing of the biospecimens, e.g. variability
attributed to batch (a sub-group of samples processed at
the same time, 96 samples per batch in the HM450K),
chip position within batches (8 chips per batch in the
HM450K) and the position of the samples within the
chip [13]. Methods of correcting for the sources of
methylation variability include ComBat, based on an
empirical Bayes method [14] and the surrogate variables
analysis (SVA) [15, 16]. An alternative method consists
in the computation of residuals from a beta regression,
where methylation levels were regressed on the major
sources of methylation variability.
The large dimension of new generation methylation

arrays makes it difficult to quantify the amount of
variability attributable to systematic sources of variation.
The principal component partial R-square (PC-PR2)
method was developed to quantify the contribution of
sources of variation defined a priori in large dimensional
data [17].
Smoking exposure has been analysed in many studies

[2–4], which offers a large comparative pool of results.
Smoking has also been shown to have a major impact
on the epigenome and hence provides a large number of
significant CpGs to analyse. For these reasons, in this
work, we have chosen to evaluate the performance of
ComBat, SVA and the residuals’ method to correct for
potential systematic variability in methylation measure-
ments, in the association between smoking and DNA
methylation levels from DNA samples of subjects of a

nested case-control study on breast cancer conducted
within the European Prospective Investigation into Cancer
and nutrition (EPIC) study. The PC-PR2 method was used
to quantify the extent of total epigenetics variability before
and after applying each correcting method.

Methods
Study population
The EPIC study [18, 19] is a multicentre study that
recruited over 521,000 study participants, between 1992
and 2000 in 23 regional or national centres in 10 European
countries (Denmark, France, Germany, Greece, Italy,
Netherlands, Norway, Spain, Sweden and the UK). Among
the 367,903 women recruited in EPIC, we excluded 19,583
participants with prevalent cancers at recruitment (except
non-melanoma skin cancer) and 2892 women that were
lost during follow-up. Malignant primary breast cancer
(BC) occurred for 10,713 of them from 1992 to 2010. A
nested case-control study was designed among women
who completed dietary and lifestyle questionnaires and
provided blood samples at recruitment (baseline), which
included 3858 invasive BC cases. Each case was matched
to a randomly selected control among cancer-free women
by recruitment centre and the following baseline variables:
age, menopausal status, fasting status, current use of oral
contraceptive pill or hormone replacement therapy and
time of blood collection [20].

Genome-wide DNA profiling assessment
Genome-wide DNA-methylation profiles in buffy coat
samples was quantified using the Illumina Infinium
HumanMethylation450K (HM450K) BeadChip assay [9]
in 960 biospecimens of women included in the BC
nested case-control study [21]. The 480 cases were
selected based on estrogen receptor status and by selecting
equal proportions of subjects with above or below median
level of dietary folate. Matched controls were the same than
those selected for the whole study. A total of 20 biospeci-
mens with replicates were used to compare technical inter-
and intra-assay batch effects and then excluded from the
main analysis. We also excluded 19 matched pairs where at
least one of the two samples had a low-quality bisulfite
conversion efficiency (intensity signal < 4000) or which did
not pass all the Illumina GenomeStudio quality control
steps, which were based on built-in control probes for
staining, hybridization, extension, and specificity [22]. A
total of 451 completed matched pairs (n = 902) were
retained for the main statistical analyses. In any given
sample, probes with detection p value higher than 0.05
were assigned ‘missing’ status. After the exclusion of 14,548
cross-reactive probes, 47,963 probes overlapping known
SNPs with minor allele frequency (MAF) of ≥ 5% in the
overall population (European ancestry) [23] and 1483 low-

Perrier et al. Clinical Epigenetics  (2018) 10:38 Page 2 of 12



quality probes (missing in more than 5% of the samples),
421,583 probes were included in the statistical analyses.
For each probe, β value was calculated as the ratio of

methylated intensity and the overall intensity, defined as
the sum of methylated and unmethylated intensities.
The following preliminary adjustment steps were applied
to the β values: (i) color bias normalization using smooth
quantile normalization to correct for the two color chan-
nels; (ii) quantile normalization [24]; (iii) type I and type II
bias correction using the beta-mixture quantile
normalization (BMIQ) [25]. Then, M values, defined as

Mvalues ¼ log2ð βvalues
1−βvalues

Þ, were computed [26]. In this work,

the β and M values obtained after the preliminary
normalization steps were referred to as the raw β and M
values.
The amount of white blood cell counts (T cells (CD8+T

and CD4+T), natural killer (NK) cells, B cells, monocytes
and granulocytes) was quantified using Houseman’s esti-
mation method [27]. The percentage of granulocytes was
not included in this analysis as it is collinear with the five
other white blood cell counts: the total of the percentages
of the six leukocyte subtype counts is 1.
For the DNA methylation measurements with the

HM450K BeadChip, samples were aliquoted into 10 batches;
each batch was made of 8 chips, and each chip contained 12
samples (located in 2 columns of 6 rows). Chip position
represented the position of the chips within a batch, as illus-
trated in Fig. 1a, and sample position represented the
position of the samples within a chip, as in Fig. 1b.

Lifestyle exposures
Data on lifestyle exposures were collected at recruitment
through country- or centre-specific dietary and lifestyle

questionnaires [18]. Smoking status was categorized into
ever (former/current) and never smokers and was not
associated to any of the technical covariates.

Statistical analyses
In order to inspect the variability of DNA methylation
levels, we first visually inspected, via box plots, global
DNA methylation levels by batch, chip and sample
positions. The principal component partial R-square
(PC-PR2) method was used to quantify the contribution
of laboratory factors and other characteristics of the
samples to the between-sample variability observed [17].
First, principal component analysis (PCA) was carried
out, by the PC-PR2, on the matrix X of epigenetics data
of dimension n × p (n = 902: number of study samples
and p = 421,583: number of probes). In PCA, eigenvalues
and eigenvectors are usually obtained from the matrix X
′X of dimension p × p. In this case, and in general with
-omics data, p is very large (p≫ n), and the decomposition
of X′X can be cumbersome. A particularly appealing pro-
cedure consists in extracting eigenvalues and eigenvectors
from the matrix XX′, of dimension n × n [28], which is
way easier to handle, being n much smaller than p. Once
eigenvalues were extracted, the q first components
explained an amount of total variability in X greater than
a given threshold, i.e. 80% in this study. Then, each of the
q first PCA score components was, in turn, linearly
regressed on a list of independent covariates (Z), compris-
ing of laboratory factors and characteristics of the samples.
Values of the partial R2 statistics were assessed for each Z
covariate, separately in each component-specific model
[29]. An overall partial R2 was computed for each Z covar-
iate with a weighted average of their component-specific
partial R2 using the corresponding q eigenvalues as
weights, conditional to all other covariates in the model.
The covariates that we have entered into the regression
include batch, chip position, row sample position, recruit-
ment centre, proportions of leukocyte subtypes (CD8+T,
CD4+T, NK, B cells and monocytes), alcohol consumption
(g/day), age (year), BMI (kg/m2), menopausal status (post-
vs. pre-menopause), smoking (ever vs. never smokers), BC
status (case or control) and dietary folate intake (μg/day).

Removing unwanted variation
To remove the two most important sources of variation
identified with the PC-PR2 from DNA methylation
levels, three different correcting techniques were applied
to raw β and M values: residuals, ComBat and SVA. The
ComBat method [14] is a procedure based on an empir-
ical Bayes approach that can correct only for one covari-
ate at the time. Given the presence of multiple sources
of variation, we have applied two parametric ComBat in
multiple sequential steps: ComBat was first applied to
remove batch variability, and then a second ComBat step

a b

Fig. 1 Description of laboratory variables. a Position of chips within
batches, each batch was made of 8 chips. b Sample position within
chips, each chip contains 12 samples
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was run to remove variability due to row sample
position. Methylation β values that after the application
of ComBat were lower than 0 or larger than 1 were set
to 0 and 1 respectively. The surrogate variables analysis
(SVA) is a method developed to remove pre-identified
sources of variability but also non-known sources of
variability, i.e. variability which is not specified in the
SVA model, using surrogate variables [15, 16]. Once
surrogate variables were assessed by SVA, residuals from
a regression modeling methylation level according to the
surrogate variables were computed to remove the
unwanted variation.
As the β values are continuous in the [0,1] interval,

the calculation of the residuals for the residuals’ method
and SVA method were based on beta regression. To be
comparable to the ComBat and raw (i.e. uncorrected)
data, residuals computed with the residuals’ and the SVA
methods needed to be rescaled as follows:

resscaled; j ¼
resraw; j− min resraw; j

� �

max resraw; j
� �

− min resraw; j
� � max raw j

� �
− min raw j

� �� �

þ max raw j
� �

where j = 1…421,583, rawj represents the raw β values
measured in site j and resraw, j the residuals computed
for site j before transformation.
In order to check the efficacy of the three correcting

techniques, a second PC-PR2 analysis was used to quan-
tify the contribution of each laboratory factor to total
variability, after each of the normalization methods.
Same approach was used for M values using a linear

regression instead of beta regression to compute resid-
uals from the residuals’ and the SVA methods.
In order to compare sample individual values before

and after correction, raw and corrected β and M values
of the probe cg00000029 were visually inspected. In this
site, in addition to the three tested methods, a second
residuals’ method was also computed using random
effects instead of fixed affects to remove unwanted
variation, from a beta or linear mixed regression,
respectively for β and M values.

CpG site-specific models
The association between smoking status and each of the
421,583 CpG sites was carried out before and after appli-
cation of each normalization method. Beta regression
models were used for β values and linear regression
models for M values, with adjustment for chip position,
recruitment centre, percentages of five leukocyte
subtypes, age at recruitment, menopausal status and BC
status. The standard adjustment models, i.e. models
using the raw methylation values, were also adjusted for
batch and row sample position. In order to compare the
epigenome-wide distribution of p values with the

expected null distribution of p values, the inflation factor
λ was computed and the quantile-quantile (QQ) plots
were generated. The inflation factor was defined as the
ratio of the median of the observed log10 transformed p
values and the median of the expected log10 transformed
p values. False discovery rate (FDR) was used to control
for multiple testing. In order to compare the performance
of the different correction methods with a nominal
reference, the list of k significant CpG sites (q values < 0.05)
associated with smoking was compared to the results of a
large meta-analysis carried out in the CHARGE consor-
tium, a recent large meta-analysis on the link between the
epigenetic signature of cigarette smoking that pooled data
from 16 studies, and included about 16,000 individuals [4].
In CHARGE, smoking status was statistically significantly
associated with DNA methylation level (β values) in 18,760
sites, after FDR correction of p values.
In order to compare the performance of the correction

methods, the relative sensitivity and specificity of each
correcting method were computed. We considered the
CpG sites significantly associated to smoking in the
CHARGE consortium as the true positives, i.e. an
arbitrary gold standard, given that this is a well-powered
reference study and the largest to date.
Preprocessing steps and statistical analysis were carried

out using the R software (https://www.r-project.org/) and
Bioconductor packages [30], including ‘lumi’ and ‘wateR-
melon’ for the adjustment step, ‘sva’ [31] for ComBat and
SVA corrections, and ‘betareg’ for beta regression models.
The PC-PR2 method was computed using the R code
available in Fages et al.’s supplementary material [17].

Results
DNA measurements of the first and the last batches
were conducted roughly 3 months apart. DNA measure-
ment of two consecutive batches varied from 3 to
14 days. Box plots of global methylation (i.e. mean of
methylation levels in all the CpG sites) showed a
random variation of global methylation levels between
batches, as reported in Fig. 2a for β values. Global
methylation between chip positions did not present large
variation (Fig. 2b). Sample position within the chip
systematically influenced global methylation, with levels
by rows, showing a progressive constant increase in
methylation, a feature not observed by column, as
displayed in Fig. 2c. The impact of row sample position
on global methylation was even stronger when batches
were evaluated separately (Fig. 2d). Global methylation
computed with M values gave similar results
(Additional file 1: Figure S1).
Tables 1 and 2 show the results of PC-PR2 to quantify

the amount of total variability of DNA methylation
explained respectively by laboratory factors and charac-
teristics of the samples (recruitment centre, the five
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Fig. 2 Box plots of global methylation (β values) according to laboratory factors. a Batch. b Chip position within batches. c Sample position within chips.
d Batches and sample position within chips
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percentages of leukocyte subtypes, alcohol intake, age,
BMI, menopausal status, smoking, breast cancer status
and diet folate intake), for raw β and M values. Findings
were similar for raw β and M values; the largest contri-
bution to the overall variability came from row sample
position and batch explaining, respectively, 11.4 and
9.5% (β values), and 12.3 and 9.7% (M values) of overall
methylation variation. Chip position contributed to 6.5
and 6.8%, for raw β and M values respectively. The per-
centages of leukocyte subtypes and centre explained
most of the variation of DNA methylation due to sample
characteristics for raw β and M values. Each of the

remaining tested other sample characteristics explained
less than 0.5% of total variation.

Removing unwanted variation
All the three correcting methods decreased the contri-
bution of row position and batch to similar neglectable
levels, whereas only SVA appeared to reduce the contri-
bution to variability due to chip position (Table 1). The
amount of variability explained by laboratory factors and
sample characteristics for raw β values decreased from
30.4 to 17.9% and 17.1% using, respectively, the resid-
uals’ method and ComBat, and to 6.5% after SVA. The
PC-PR2 approach applied on M values estimated values
of partial R2 for laboratory factors and sample character-
istics similar to those of β values.
Corrected methylation values of the probe cg00000029

were very similar using ComBat or the residuals’
methods for β values and Μ values (Fig. 3). SVA
corrected values were the corrected values most different
from the raw values. Using the residuals’ method with
fixed or random effects for batch and row sample position
gave similar results.

CpG site-specific models
The frequency k of sites associated with smoking status
is shown in Table 3, consistently for β and M values. For
β values adjusted by batch and row sample position
(standard adjustment), smoking status was significantly
associated to methylation levels in 444 sites. The
number of CpG sites significantly associated with smoking
status was equal to 427 for the residuals’ method, 600 for
ComBat and 96 for SVA after correction. According to the
inflation factors and QQ plots, there was no evidence of
inflation for any methods (Additional file 2: Figure S2).
These frequencies were compared to the list of 18,760

sites identified in the CHARGE meta-analysis (Joehanes
et al. [4]). A total of 77 sites overlapped across the standard
adjustment and the three correcting methods in this study
and the sites identified in the consortium, as shown in the
Venn diagram for β values in Fig. 4a. In addition to these
sites, the standard adjustment, the residuals’ method and
the ComBat method shared a list of 249 significant sites
with CHARGE. The ComBat method resulted in the
largest frequency of sites overlapping with results in
CHARGE (k = 411), but also in the largest percentage of
sites not observed in CHARGE (31%). In contrast, SVA
identified the lowest number of significant sites (k = 96)
but the vast majority of them (92%) were also identified in
CHARGE.
As for M values, 322 sites were associated to smoking

using the standard adjustment, k = 332 after the resid-
uals’ method, k = 387 using ComBat, k = 144 after SVA
correction. A total of 111 sites overlapped all the
methods and CHARGE, as shown in Fig. 4b. SVA was

Table 1 Values of weighted partial R2 (%) from PC-PR2 analysis
indicating the proportion of variability of methylation levels,
before and after normalization step, explained by a specific
set of laboratory factors

Values Methodsa Row sample
position

Batch Chip
position

Totalb

β values Raw 11.4 9.5 6.5 30.4

Residuals 0.2 1.3 5.9 17.9

ComBat 0.2 1.3 6.0 17.1

SVA 0.6 1.3 0.9 6.5

M values Raw 12.3 9.7 6.8 30.7

Residuals 0.2 1.2 5.8 16.5

ComBat 0.2 1.3 6.2 17.0

SVA 0.4 0.7 0.8 5.3
aResiduals, COMBAT and SVA methods used to correct effect due to batch and
row sample position (within the chips)
bTotal variability explained by laboratory factors and characteristics of the samples
(recruitment centre, the five percentages of leukocyte subtypes, alcohol consumption,
age and BMI, menopausal status, smoking, BC status and dietary folate)

Table 2 Values of weighted partial R2 (%) from PC-PR2 analysis
indicating the proportion of variability of raw methylation levels
explained by a specific set of covariates

Characteristics of samples β values M values

Recruitment centre 3.0 2.9

Percentages of leukocyte subtypes

CD4T 3.2 3.2

CD8T 3.7 3.1

Natural killers 5.2 4.7

B cells 1.7 1.1

Monocytes 0.4 0.4

Alcohol intake at recruitment 0.2 0.1

Age at recruitment 0.4 0.4

BMI at recruitment 0.1 0.1

Menopausal status 0.2 0.2

Smoking status 0.1 0.2

Breast cancer status 0.1 0.1

Dietary folate 0.1 0.1
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the method leading to the lowest number of significant
sites, but also to the largest percentage of sites also
identified by CHARGE (93%). This percentage ranged
between 85 and 90% for all the other methods. According
to the inflation factors and QQ plots, there was no
evidence of inflation for any methods for M values
(Additional file 3: Figure S3). SVA showed the least
inflation in both β values and M values.
Sensitivity was similar for the standard adjustment, the

residuals’ method and the ComBat method with a value
about 0.020 for β values and over 0.015 for M values
(Table 3). SVA sensitivity was four times less for β values
and twice less for M values. SVA was the most specific

method with 1-specificity equals to 0.2×10− 4 for β values
and M values whereas ComBat was the least specific
with 1-specificity equals to 4.7×10− 4 and 1.3×10− 4 for β
values and M values, respectively.

Discussion
Batch effects on DNA methylation measurements have
already been documented [13]. Various correcting methods
have been recently used, including standard adjustment [3],
ComBat [6] and SVA [2]. Our findings suggested that batch
was not the only source of variation in the DNA methyla-
tion data from our EPIC study, as the position of the
sample within the chip and, to a lesser extent, chips within
batches, also contributed to total variability. Noteworthy,
while variation by batch was essentially random, the
position of the sample within the chip contributed systematic
variation, with methylation levels progressively increasing by
row, but not by column. This might be due to the washing
step which is done row by row in each chip during the
measurement of DNA methylation using HM450K.
Eventually, batch and row sample positions explained
cumulatively more than 20% of the methylation levels and
were the most important sources of variation. Further
replications are needed in others dataset from other labs to
validate our findings.
PC-PR2 is a powerful method to identify and quantify

random and systematic sources of variation in large-
scale datasets. Here, the method, initially developed for
metabolomics data [17], was successfully applied to
epigenetics data, a challenging set characterized by
hundreds of thousands of features, and can easily be
extendable to other -omics data. It is based on the

Fig. 3 DNA methylation levels of the CpG site cg00000029 before and after normalization step. a β values. b M values

Table 3 CpG site-specific regression models before and after
normalization step

Values Methods Significant
sitesb

CHARGEc Sensitivity 1-Specificity

β values Standard
adjustmenta

444 357 (80%) 1.9×10−2 2.2×10−4

Residuals 427 365 (85%) 1.9×10− 2 1.5×10− 4

ComBat 600 411 (69%) 2.2×10− 2 4.7×10− 4

SVA 96 89 (92%) 0.5×10−2 0.2×10−4

M values Standard
adjustmenta

322 274 (85%) 1.5×10−2 1.2×10−4

Residuals 332 299 (90%) 1.6×10−2 0.8×10−4

ComBat 387 335 (87%) 1.8×10−2 1.3×10−4

SVA 144 134 (93%) 0.7×10−2 0.2×10−4

Models are adjusted for chip position, recruitment centre, the five percentages of
leukocyte subtypes and age at recruitment, menopausal status and BC status
aAlso adjusted for batch and sample position
bNumber of significant sites for smoking status after p values FDR correction
cNumber (and percentage) of significant sites identified by the CHARGE meta-analysis
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combination of a principal component analysis (PCA)
and the concept of partial R2 in multivariable linear
regression. PC-PR2 quantifies the contribution of
variability of continuous and/or categorical covariates to
total variability in the outcome data, and in general
offers high level of flexibility to capture specific features
such as, say, non-linear effects and longitudinal data. A
particularly appealing feature is the possibility of
performing PCA by decomposing the matrix XX′ of

dimension n × n rather than X′X of dimension p × p that
would be virtually untreatable in the -omics domain. The
PC-PR2 can also be extended to the Infinium Methyla-
tionEPIC BeadChip (850K), which is the updated version
of HM450K.
Identifying unwanted sources of variation in epigenetics

data is a crucial step prior to statistical analysis. Each of
the three tested methods succeeded to correct DNA
methylation levels for the pre-specified sources of variability.

Fig. 4 Venn diagram of significantly identified CpG sites for smoking status using each correcting methods and CHARGE. a β values. b M values.
p values were corrected for multiple testing with FDR
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Percentages of variability due to batch and row sample
position diminished to marginal levels after the use of the
three methods. Other unknown or unmeasured experimen-
tal conditions are also likely to modify DNA methylation
measurements, such as differences in sample handling and
preparation and the room temperature during sample
processing. Overall, the procedures for sample treatment
are way more challenging to control, possibly because
detailed information on each sample are not always docu-
mented, and it is rather assumed that these are relatively
homogeneous across recruitment centres. Statistical adjust-
ment for centre is a standard practice in the analysis of
epigenetics data and of any laboratory measurements. In
this respect, SVA turned out to provide a correction on top
of the pre-specified sources of variability through the
estimation of surrogate variables possibly influencing overall
variability. It was remarkable that the variability attributed
to chip position, whose partial R2 values was 6.5% in the
raw data, decreased to 0.9% after SVA, even if chip position
was not included in the list of covariates of which we want
to remove the variability, specified in the SVA model.
Indeed, the surrogate variables, computed by a PCA step in
the SVA algorithm, capture the variability in the methyla-
tion data which is not already explained by the a priori list
of covariates (batch and row sample position). A challenge
of DNA methylation data is the presence of outliers that
can generate spurious associations. Techniques have been
introduced to filter out outliers through preliminary quality
control checks globally on all CpG sites [32]. This was
achieved through the Illumina GenomeStudio quality in the
present study [22]. Nevertheless, outlier values passed the
GenomeStudio quality control screening and were detected
after applying the residuals or SVA methods. On the
contrary, ComBat is based on an empirical Bayesian
procedure with an additive and a multiplicative component,
the latter contributing to shrink all observations, including
outliers [14]. This makes ComBat an attractive solution to
control outlier values in large-dimension data. Another
interesting feature is that ComBat preserved the observed
variability of methylation data in the [0, 1] interval for β
values, unlike the residuals’ and SVA methods, for which
the corrected values could fall outside the [0, 1] range.
The performance of the various correction methods

was evaluated in this study through the comparison with
results of association between smoking and methylation
from the CHARGE consortium, one of the largest studies
available to date. This could be a debatable choice but
allowed a reference group to be established to compute
relative sensitivity and specificity of each normalizing
method. The low sensitivity across all methods in our
analysis might be explained by the lack of power due to
the sample size: over 16,000 samples were included in
CHARGE against 902 in our study. Some different charac-
teristics of our population and the one of the CHARGE

consortium might also explain the difference in terms of
significant sites. For example, only women are included in
our analysis and half of them developed latter a breast
cancer. This makes more difficult the identification of false
positives based on the results from the CHARGE consor-
tium. The analysis showed that ComBat had the highest
level of relative sensitivity, i.e. relatively less false negative
CpG associated to smoking, compared to the residuals
and SVA, consistently for β or M values. On the other
hand, SVA came across as the method with, by far, the
highest specificity, possibly indicating lesser predisposition
to the commit of false positives. As SVA made a much
more aggressive correction of systematic variability, the
sites identified by SVA are more likely to be universal
disruption due to smoking which can explain its higher
specificity and its lower sensitivity. In order to avoid over-
adjustment using SVA, latent covariates related to sub-
groups such as the chip position should not be included
in the regression model. SVA outperformed both the
residuals and, in particular, ComBat, whose lack of specifi-
city turned out to be substantial. In research domains
characterized by the danger of populating the scientific
literature with false positive findings, like in the -omics
era, the performance of SVA towards conservative results
was deemed to be a valuable feature. Our results would
need to be replicated in another dataset.
The β values are approximations of the percentage of

methylation in a CpG site. Their distribution is often
skewed and ranged from 0 to 1. On the other hand, M
values approximate a normal distribution but are more
complex to interpret, as they do not have an obvious bio-
logical meaning. It has been recommended to use M
values for conducting methylation analysis and to use the
β values when reporting results due to their intuitive bio-
logical interpretation [26]. In our study, the PC-PR2
method identified the same sources of variability explaining
a similar amount of the total variability usingM or β values.
This is likely a consequence on the fact that PC-PR2 is a
descriptive method that does not use statistical inference.
The association between smoking and DNA methylation
was slightly attenuated in terms of number of significant
sites using the M values, rather than β values, for the
standard adjustment, residuals’ correction and ComBat
correction. Only SVA identified more significant sites with
the Μ values. β values were more sensitive but less specific
than M values, i.e. more significant sites, including both
true and false positive sites.
Approaches for correcting batch effects have been

compared using microarray data of gene-expression
profiles [33]. In that study, a parametric prior ComBat
and a non-parametric ComBat were compared to SVA
and to three other methods, including distance-weighted
discrimination [34], mean-centering [35] and geometric
ratio-based [36] methods. Using two microarray datasets
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from brain RNA samples and two simulated datasets,
ComBat outperformed overall the other methods. In
particular, both parametric and non-parametric ComBat
algorithms allowed a better control of the variation
attributed to batch effect and a better increase of Pearson’s
correlation coefficient of the replicates in the microarray
data and determined the largest AUC in their assessment
of overall performance.
ComBat has also been compared to six other methods to

correct for batch effect in microarray data [37], including
Deming regression [38], Passing-Bablok regression [39],
linear mixed model, a third-grade polynomial regression,
the non-linear Qspline method [40] and the ReplicateRUV
approach [41]. The first five methods calculate residuals
based on different regression models. ReplicateRUV
removes unwanted variation based on negative control
genes and sample replicates. The combination of quantile
normalization and ComBat in large-scale gene expression
data in the Gutenberg Health Study removed batch effect
and preserved biological variability [37].
In this work, we chose to focus on the residuals,

ComBat and SVA approaches, because they are the
currently most common methods used to remove
unwanted variation in DNA methylation. This work can
also be applied to the newer methods which are recently
available such as the Bacon approach, a Bayesian method
to control bias and inflation in EWAS and TWAS based
on estimation of the empirical null distribution [42].

Conclusions
Our results suggest that in order to reduce the contribution
to systematic variation of DNA methylation, it is essential
to randomly allocate samples within chips and batches.
This is particularly relevant in nested studies for case-
control pairs, possibly within the same row position within
a chip. We have shown that the PC-PR2 method on DNA
methylation levels lent itself as a very useful tool to explore
an a priori list of laboratory factors and sample characteris-
tics and to identify the ones possibly determining unwanted
variability in large-scale dimension sets such as epigenetics
data. This step turned out to be essential to guide the
choice of correcting methods, such as the regression-
based residuals, ComBat or SVA, and to further appreciate
the extent of these corrections. These steps should be part
of the pre-processing analysis of any -omics data. SVA
should specifically be considered when sources of variabil-
ity are not known. ComBat and the residuals’ method
require that potential sources of variability are identified.
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