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In this article, we consider flat and curved Riemannian symmetric spaces in the complex case and
we study their basic integral kernels, in potential and spherical analysis: heat, Newton, Poisson
kernels and spherical functions, i.e. the kernel of the spherical Fourier transform.

We introduce and exploit a simple new method of construction of these W -invariant kernels by
alternating sum formulas. We then use the alternating sum representation of these kernels to obtain
their asymptotic behavior. We apply our results to the Dyson Brownian Motion on Rd.
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1 Introduction and notations

Analysis on Riemannian symmetric spaces of Euclidean type, also called flat symmetric spaces, continues
to develop in recent years ([21, 23, 45, 46]). Its importance is due to its relationship with Dunkl analysis
([9, 12, 42]) together with the correspondence of the complex case with the parameter k = 1, in which
symmetric spaces of Euclidean type constitute the “geometric case”, frequently used as a model case
in most challenging open problems of Dunkl theory. The analysis on flat complex symmetric spaces
coincides with Weyl group invariant Dunkl analysis associated with multiplicity k = 1, see [9]. In
particular, the heat kernel pWt (X,Y ) is a special case of the heat kernel in the Weyl group invariant
Dunkl setting. We employ this intimate connection to Dunkl theory in our paper in Section 3 as one of
main tools of the proof of main theorems. This connection appears also in Proposition 2.8.

Another important aspect of this paper is to apply analysis on symmetric spaces of Euclidean type
to potential theory and to stochastic analysis of Dyson Brownian Motion, one of the most important
models of non-colliding particles, see the recent survey [29]. We expect further applications of our
results and techniques to other non-intersecting stochastic path problems related to root systems and to
multivariate stochastic processes related to Laplace-Beltrami operators on symmetric spaces, to Dunkl
Laplacians and to Schrödinger operators, see the discussion in Section 5. We thank an anonymous
referee for pointing out to us such further stochastic applications.

The objective of this paper is to study basic integral kernels, in potential theory and spherical analysis:
heat, Newton, Poisson kernels, Green function and spherical functions (i.e. the kernel of the spherical
Fourier transform), in the set-up of flat and curved symmetric spaces of complex type.

Our main results on the exact form and asymptotics of the heat, Poisson and Newton kernels (Theo-
rems 2.2, 3.11, 3.13 and Corollaries 5.6 and 5.7) are crucial for the future development of the potential
theory on flat and curved symmetric spaces of complex type, and for the potential theory of the Dyson
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Brownian Motion. These results are a starting point of research and a source of conjectures for the
corresponding kernels in the Weyl-invariant Dunkl setting (for the rank one case, refer to [19]).

The main result on asymptotics of the spherical functions contained in Theorem 4.5 is important
from the point of view of spherical analysis on symmetric spaces, because it generalizes significantly the
results of Helgason in [23], of Narayanan, Pasquale and Pusti in [36] and of Schapira in [44], for the flat
and curved symmetric spaces in the complex case, cf. Remark 4.9.

We recall now some basic terminology and facts about symmetric spaces associated to Cartan motion
groups.

Let G be a semisimple Lie group and let g = k⊕ p be the Cartan decomposition of G. We recall the
definition of the Cartan motion group and the flat symmetric space associated with the semisimple Lie
group G with maximal compact subgroup K. The Cartan motion group is the semi-direct product 5
G0 = K o p where the multiplication is defined by (k1, X1) · (k2, X2) = (k1 k2,Ad(k1)(X2) + X1).

The associated flat symmetric space is then M = p ' G0/K (the action of G0 on p is given by
(k,X) · Y = Ad(k)(Y ) +X).

We tacitly identify K-invariant measures, functions, differential operators on M with W -invariant
measures etc. on a.

The spherical functions for the symmetric space M are then given by

ψλ(X) =

∫
K

eλ(Ad(k)(X)) dk (1)

where λ is a complex linear functional on a ⊂ p, a Cartan subalgebra of the Lie algebra of G. To extend
λ to X ∈ Ad(K)a = p, one uses λ(X) = λ(πa(X)) where πa is the orthogonal projection with respect
to the Killing form (denoted throughout this paper by 〈·, ·〉). Note also that the spherical function for
the symmetric space G/K is given by

φλ(g) =

∫
K

e(λ−ρ)(H(g k)) dk (2)

where λ is a complex linear functional on a and the map H is defined via the Iwasawa decomposition
of G, namely g = k eH(g) n ∈ KAN and ρ = (1/2)

∑
α>0 mα α. Note that in [23, 24, 25], λ is replaced

by i λ.
Throughout this paper, we suppose that G is a semisimple complex Lie group. The complex root

systems are respectively An−1 for n ≥ 2 (where p consists of the n × n hermitian matrices with trace
0), Bn for n ≥ 2 (where p = i so(2n + 1)), Cn for n ≥ 3 (where p = i sp(n)) and Dn for n ≥ 4 (where
p = i so(2n)) for the classical cases and the exceptional root systems E6, E7, E8, F4 and G2.

Let ∆ be the Laplace-Beltrami operator on M and ∆W its restriction to W -invariant functions on a
where W is the corresponding Weyl group. Recall the formula

∆W f = π−1 ∆Rd

(π f), (3)

where π(X) =
∏
α>0 α(X) (see [25, Chap. II, Theorem 5.37]) in the Euclidean case.

In Section 2, we introduce and exploit a simple new method of construction of important K-invariant
kernels on the space M .

We show in Theorem 2.2 that if K(X,Y ) is an Euclidean kernel (heat kernel, potential kernel, Poisson

kernel, . . . ) for the Laplacian ∆Rd

, then the corresponding kernel acting on W -invariant functions on
M is given by the alternating sum

KW (X,Y ) =
1

|W |π(X)π(Y )

∑
w∈W

ε(w)K(X,w · Y ). (4)

Here and in Theorem 2.2 below, K(X,Y ) is an Euclidean kernel on the Cartan subalgebra a which
is isomorphic to Rd where d is the dimension of a and with the underlying scalar product being the
Killing form on a.
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The proof of Theorem 2.2 is short and easy and uses the simple form of the operator ∆W given in
(3).

It is well-known that the spherical functions of the space can be written explicitly as such alternating
sums ([25, Chap. IV, Proposition 4.10]).

The alternating sum formulas (4) also include determinantal formulas for transition probabilities
pWt (x, y) (equivalently, for heat kernels) of Karlin-McGregor type, proven for Dyson Brownian Motions
in Weyl chambers [18] and exploited in stochastic analysis (refer to [31, 32]).

The fact that alternating sums formulas (4) are true for many further analytic and stochastic kernels
beyond spherical functions and heat kernels, was surprisingly not published or exploited (we asked
experts of the field for an existing reference).

The approach with formulas (4) will allow us to provide asymptotics for kernels KW , using our
knowledge of the kernels K(X,Y ) on Rd as given in Table 1.

In Section 3, we discuss the asymptotic behaviour of the Poisson kernel especially when one or both
arguments are singular. These results translate well to the Newton kernel.

In Section 4, we compute asymptotics for the spherical functions ψλ(Y ) which can prove challenging
when either λ or Y are singular (i.e. such that at least one of the nonzero root vanish on X or Y ).

Our results depend on a property we call “Killing-max” namely the property that for X, Y ∈ a+,
〈X,w · Y 〉 = 〈X,Y 〉 if and only if w ∈ WXWY where WX = {w ∈ W : w ·X = X}. It is known that
this property is verified when either X or Y is non singular [23]. We prove in Appendix A, using the
classification of Lie algebras, that the Killing-max holds in almost all cases (only in the cases related to
the root systems E6, E7 and E8 is the question left unanswered).

We conclude with Section 5 where we apply the previous results to the heat kernel and Poisson and
Newton kernels for the Dyson Brownian Motion.

Acknowledgements. We thank M. Denkowski for advice with Lemma 2.3 and J.-J. Loeb for useful
discussions. We are grateful to both anonymous referees for their insightful comments and remarks that
greatly helped to improve the paper.

2 Kernels on flat symmetric spaces in the complex case

2.1 Definitions

We first recall the classical integral kernels on Rd in Table 1.
The integral kernels on the flat symmetric space M are considered with respect to the invariant

measure µ(dY ) = π2(Y ) dY on M . Their definition is analogous to the classical Rd and Riemannian
manifold case, with the W -invariance imposed on the operator, boundary problem and solutions. The
Dunkl-Poisson, Newton and Green kernels and their W -invariant versions were introduced and studied
in [16] and [19].

Definition 2.1 We define a kernel KW (X,Y ) for the operator ∆W and a boundary problem P
as the fundamental solution of this PDE problem, which is W -invariant in X-variable, for each Y .
Equivalently, KW (X,Y ) is an integral reproducing kernel for the W -invariant solutions of the problem
P and this kernel is W -invariant in X.

The uniqueness of KW (X,Y ) may be deduced, as in the classical case, from the uniqueness of the
spherical Fourier transform. Another approach for the existence of Poisson, Newton and Green kernels
is available from the point of view of stochastic diffusion processes [7]. Note that W -invariant Dunkl
processes are diffusions.

2.2 The method of alternating sums for constructing kernels on M

This method will be introduced and used in the proof of Theorem 2.2 below.

Theorem 2.2 Let M be a symmetric space of Euclidean type with G a complex simple Lie group of
rank d. Then the following formulas hold for X, Y ∈ a, a Cartan subalgebra associated with M .

Copyright line will be provided by the publisher
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PDE Kernel Solution{
∆Rd

u(X, t) = ∂
∂t u(X, t)

limt→0+ u(X, t) = f(X)
pt(X,Y ) =

e−
|X−Y |2

4 t

(4π t)d/2
u(X, t) =

∫
Rd

f(Y ) pt(X,Y ) dY

X ∈ Rd, t > 0{
∆Rd

u(X) = f(X) on Rd,
|u(X)| → 0 as X →∞

f ∈ Cc(Rd) N(X,Y ) = Φ(X − Y ), u(X) =

∫
Rd

f(Y )N(X,Y ) dY{
∆Rd

u(X) = 0 on B(X0, r)
u(X) = f(X) on ∂B(X0, r)

P (X,Y ) =
r2 − |X −X0|2

wd r |X − Y |d
u(X) =

∫
∂B(X0,r)

f(Y )P (X,Y ) dY{
∆Rd

u(X) = f(X) on B = B(0, 1)
u(X) = 0 on ∂B

GB(X,Y ) = Φ(X − Y ) u(X) =

∫
B

f(Y )GB(X,Y ) dY

−Φ(|X| (Y −X/|X|2))

where wd = 2πd/2/Γ(d/2) (the surface area of a sphere of radius 1 in Rd) and Φ(X) ={ 1
2π ln |X| if d = 2

1
(2−d)wd

|X|2−d if d ≥ 3
.

Table 1 The heat kernel pt, the Newton kernel N , the Poisson kernel P and the Green kernel GB for Rd

1. The heat kernel on M is given by

pWt (X,Y ) =
1

|W | (4π t)d/2 π(X)π(Y )

∑
w∈W

ε(w)e−
|X−w·Y |2

4 t (5)

2. The Newton kernel on M is given by

NW (X,Y ) =
1

2π |W |π(X)π(Y )

∑
w∈W

ε(w) ln |X − w · Y | when d = 2, (6)

NW (X,Y ) =
1

|W | (2− d)wd π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d−2
when d ≥ 3.

3. The Poisson kernel of the open unit ball B is given for X ∈ B and Y ∈ ∂B by

PW (X,Y ) =
1− |X|2

|W |wd π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d
(7)

4. The Green function of the unit ball is given by

GWB (X,Y ) =
1

|W |π(X)π(Y )

∑
w∈W

ε(w)GB(X,Y ), (8)

where GB(X,Y ) is the classical Green function of the unit ball B in Rd (refer to Table 1).

P r o o f. It is based on the following steps:

1. Write a kernel on Rd where d is the rank of M ;

2. Exploit formula (3);

3. Apply the W -invariance (the kernels on M must be W -invariant).

Copyright line will be provided by the publisher
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We give the proof in the Poisson kernel case; the other proofs are similar. The Poisson kernel of
B(0, 1) in the Euclidean case is

P (X,Y ) =
1− |X|2

wd |X − Y |d
.

If u is harmonic with respect to ∆W then π u is harmonic with respect to ∆Rd

. Hence

π(X)u(X) =

∫
∂B

1− |X|2

wd |X − Y |d
π(Y ) f(Y ) dY.

This is equivalent to

u(X) =

∫
∂B

1− |X|2

wd π(X)π(Y )

1

|X − Y |d
f(Y )π(Y )2 dY.

The reproducing kernel 1−|X|2
wd π(X)π(Y )

1
|X−Y |d is not W -invariant. We write the last equation |W | times,

replacing X by w ·X

u(X) = u(w ·X) =

∫
∂B

1− |X|2

wd π(w ·X)π(Y )

1

|w ·X − Y |d
f(Y )π(Y )2 dY

=

∫
∂B

1− |X|2

wd π(X)π(Y )

ε(w)

|X − w · Y |d
f(Y )π(Y )2 dY

and we sum up the |W | equations. We obtain

u(X) =
1

|W |wd

∫
∂B

1− |X|2

π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d
f(Y )π(Y )2 dY.

The formula for the Newton kernel requires more care. Let ũ be the solution of the inhomogeneous
Laplace equation on Rd, then

u(X) =

∑
w∈W ε(w) ũ(wX)

π(X)

solves the corresponding problem for ∆W . We need however to show that limX→∞ |u(X)| = 0. It is
useful to note that the function û(X) =

∑
w∈W ε(w) ũ(wX) is skew-symmetric.

For J ⊆ {1, 2, . . . , n}, les AJ = {x ∈ Rn : |xi| > 1/2 for i ∈ J , |xi| < 1 for i ∈ Jc}. Note that Rd is
the union of the open sets AJ . Now, on AJ with |J | ≥ 1 (so that X →∞),

lim
X→∞

∣∣∣∣ û(X)

π(x1, . . . , xd)

∣∣∣∣ = lim
(xi)i∈J→∞

∣∣∣∣ û(X)

π(x1, . . . , xd)

∣∣∣∣ = lim
∃i∈J,xi→0

∣∣∣∣ û((1/xi)i∈J , (xi)i∈Jc)

π((1/xi)i∈J , (xi)i∈Jc)

∣∣∣∣
= lim
|xi|<2,j∈J,|xi|>1,i∈Jc,∃i∈J,xi→0

∏
i∈J
|xi|d−1

∣∣∣∣∣ û((1/xi)i∈J , (xi)i∈Jc)

π((xi)i∈J)π((xi)i∈Jc)
∏
i∈J,j∈Jc(1− xi xj)

∣∣∣∣∣ .
Observe that û((1/xi)i∈J , (xi)i∈Jc) is continuous since limX→∞ ũ(X) = 0 and skew-symmetric in

(xi)i∈J and in (xi)i∈Jc . We remark also that it is zero when 1− xi xj = 0, i ∈ J , j ∈ Jc. Using Lemma
2.3 below, we can conclude that the term∣∣∣∣∣ û((1/xi)i∈J , (xi)i∈Jc)

π((xi)i∈J)π((xi)i∈Jc)
∏
i∈J,j∈Jc(1− xi xj)

∣∣∣∣∣
is an analytic function so that it remains bounded and that the limit is 0. We are grateful to the
anonymous referee for pointing out the need for additional justification in the Newton kernel case.
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Lemma 2.3 Let f : R2 → R, h : R2 → R two analytical functions such that h−1({0}) ⊂ f−1({0}).
Suppose that for each z0 = (x0, y0) ∈ h−1({0}), the order of y0 as a zero of h(x0, ·) is one (i.e.

h(x0, y) = (y − y0)h̃(y), h̃ analytical, h̃(y0) 6= 0).
Then there exists an analytical function g : R2 → R such that f = hg.

P r o o f. We apply the Weierstrass division theorem ([8, Th. 0.43(2)], [33, Th.6.1.3(1)]). For each
z0 = (x0, y0) ∈ h−1({0}) there exists a neighbourhood Vz0 and analytical functions vz0(x, y) and b1(x)
such that

f(x, y) = h(x, y)vz0(x, y) + b1(x).

For all (x, y) ∈ h−1(0) ∩ Vz0 the last equality gives 0 = 0 + b1(x), so that

f(x, y) = h(x, y)vz0(x, y), (x, y) ∈ Vz0 .

An application of the principle of identity ends the proof.

Remark 2.4 The properties of factorization of analytical functions of several real variables are not
as straightforward as one might hope. For example, consider f(x, y) = y3 which is zero whenever
x2 + y2 = 0. However, it is not true that f divided by x2 + y2 is analytic or even defined.

For the root systems of type A, we obtain the following determinantal formula for the heat kernel
on M . This formula may be also deduced from the formula for the transition function of the Dyson
Brownian Motion, based on the Doob transform and Karlin-MacGregor formula, see Section 5.

Corollary 2.5 Consider the flat complex symmetric space M with the root system Σ = Ad−1. Let

gt(u, v) = 1√
4π t

e−|u−v|
2/4t be the 1-dimensional classical heat kernel. The heat kernel on M is given by

pWt (X,Y ) =
1

|W |π(X)π(Y )
det (gt(xi, yj)) (9)

where x1, . . . , xd are the coordinates of X and y1, . . . , yd are the coordinates of Y .

P r o o f. Formula (9) follows from Theorem 2.2 (1) and the definition of determinant.

Remark 2.6 In [18], Grabiner computes determinant formulas for the transition probabilities of the
Dyson Brownian motion in the Weyl chambers of An−1, Bn, Cn and Dn.

Note that the alternating sum formula (4) reduces to a determinant if and only if the kernel K(X,Y )
has a multiplicative form

K(X,Y ) =

d∏
i=1

k(xi, yi).

This holds true for the transition probabilities of the Brownian Motion on Rd or, more generally, of any
multidimensional stochastic process X(t) with independent identically distributed components Xi(t).

Let us resume the method of alternating sums, applied in the proof of Theorem 2.2. An Euclidean

kernel K(X,Y ) (heat kernel, potential kernel, Poisson kernel, . . . ) for the Laplacian ∆Rd

is transformed
in the following way into the kernel KW acting on W -invariant functions on M :

KW (X,Y ) =
1

|W |π(X)π(Y )

∑
w∈W

ε(w)K(X,w · Y ). (10)

Formula (5) is immediate from the explicit form of the heat kernel in Dunkl theory (refer to [40])
together with Proposition 2.7 below. The formulas (6)-(9) are new.

However, in the harmonic analysis of flat symmetric spaces of complex type, the alternating sum
formula (11) for a spherical function on M given below is well known (see [25, Chap. IV, Proposition
4.8 and Chap. II, Theorem 5.35]). Dunkl had provided a proof for the root system An−1 in [10] using
a similar approach as ours.
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Proposition 2.7 Given λ ∈ a∗C (the dual of the complexification of a), the spherical function ψλ(X)
on M is given by the formula

ψλ(X) =
π(ρ)

2γπ(λ)π(X)

∑
w∈W

ε(w)e〈λ,w·X〉, (11)

where ρ = 1
2

∑
α∈Σ+ mαα =

∑
α∈Σ+ α and γ = |Σ+| is the number of positive roots.

We finish this section with a relation between the heat kernel and spherical functions which will
be useful in stochastic applications of our results, see Proposition 4.10 and Corollary 5.8. Proposition
2.8 is an immediate consequence of well-known results by Rösler in Dunkl theory (see for instance [40,
Lemma 4.5]) and of [9], ensuring that heat kernel and spherical functions on flat complex symmetric
spaces coincide with their Weyl group invariant analogues in Dunkl analysis when the multiplicity k = 1.

Proposition 2.8 Let M be a flat symmetric space of complex type. The following formula holds

pWt (X,Y ) =
1

|W | 2d πd/2 π(ρ)
t−

d
2−γ e

−|X|2−|Y |2
4t ψX

(
Y

2t

)
. (12)

Remark 2.9 We provide here a simple explanation for the constant occurring in (12). From (5) and
(11),

pWt (X,Y ) =
1

|W | (4π t)d/2 π(X)π(Y )

∑
w∈W

ε(w)e−
|X−w·Y |2

4 t

=
1

|W | 2d πd/2 π(ρ)
t−

d
2−γ

π(ρ)

2γ π(X)π
(
Y
2t

) ∑
w∈W

ε(w) e
〈X,w·Y 〉

2t

=
1

|W | 2d πd/2 π(ρ)
t−

d
2−γ e

−|X|2−|Y |2
4t ψX

(
Y

2t

)
.

Note that the constants in [40] lead to the same constant as in (12) even though the functional ρ is not
used in the context of Dunkl theory. The same phenomenon will appear for the constant for the Poisson
kernel, see Remark 3.5.

3 Asymptotic behavior of the kernels

To simplify the notation, we will write f
Y0∼ g if limX→Y0

f(X)
g(X) = 1.

The main results of this Section are Theorems 3.11 and 3.13 which give asymptotics of the Poisson
and Newton kernels of the flat complex symmetric space M . In their proofs, we need some knowledge
of Dunkl analysis on Rd.

Consider Rd with a root system Σ. The basic information on the Dunkl analysis in this context can
be found in [42]. Denote the Dunkl Laplacian by ∆k and the intertwining operator by Vk.

Recall now the formula of Dunkl ([11, 12]) for the Dunkl-Poisson kernel of the unit open ball B =
B(0, 1).

Pk(X,Y ) =
22 γ (d/2)γ
π(ρ) |W |wd

Vk

[
1− |X|2

(1− 2〈X, ·〉+ |X|2)γ+d/2

]
(Y ), X ∈ B, Y ∈ ∂B, γ =

∑
α∈Σ

kα.

(13)

The constant in (13) is different from the one given in [11, 12]. Our constant is explained below in
Remark 3.5.

The flat complex symmetric spaces M correspond to the formula (13) in the W -invariant case and
with kα = 1. Then γ = |Σ+| expresses the number of positive roots.

A formula for the Dunkl-Newton kernel Nk(X,Y ), analogous to (13), was proven in [16].
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3.1 Poisson kernel of the flat complex symmetric space

The following technical results will prove useful further on.

Lemma 3.1

∂(π) |X|−d = 2γ
γ−1∏
k=0

(−d/2− k)π(X) |X|−d−2 γ

∂(π) log |X| = (−2)γ−1 (γ − 1)!π(X) |X|−2 γ .

P r o o f. We see easily that |X|d+2 γ ∂(π) |X|−d is a skew polynomial of degree at most γ. It must
therefore be a constant multiple of π(X). Note from the definition of ∂(π) that

∂(π) f(X) =
∏
α>0

∂

∂tα

∣∣∣∣
tα=0

f(X +
∑
α>0

tαHα)

where Hα is defined by the relation 〈X,Hα〉 = α(X) for X ∈ a. Hence,

∂(π) |X|−d =
∏
α>0

∂

∂tα

∣∣∣∣
tα=0

〈X +
∑
α>0

tαHα, X +
∑
α>0

tαHα〉−d/2.

After applying the operators ∂
∂tα

∣∣∣
tα=0

, we will be left with the term

(−d/2) (−d/2− 1) · · · (d/2− (γ − 1)) 〈X,X〉−d/2−γ
∏
α>0

(2α(X))

and other terms which do not have the right form. This tells us that desired constant is 2γ
∏γ−1
k=0 (−d/2−

k).

A similar reasoning applies for the computation of ∂(π) log |X|.

Proposition 3.2 Let T (X,Y ) = 1
π(X)π(Y )

∑
w∈W

ε(w)
|X−w·Y |d . Then T (0, Y ) =

22 γ (d/2)γ
π(ρ) |Y |−d−2 γ .

P r o o f. Note first that ∂(π)X |X − Y |−d = 2γ
∏γ−1
k=0 (−d/2− k)π(X − Y ) |X − Y |−d−2 γ . Consider

B(X,Y ) = π(X)T (X,Y ) = 1
π(Y )

∑
w∈W ε(w) |X−w·Y |−d. We apply the differential operator ∂(π)|X=0

to B. We find

∂(π)(π)T (0, Y ) = 2γ
γ−1∏
k=0

(−d/2− k)
1

π(Y )

∑
w∈W

ε(w)π(X − w · Y ) |X − w · Y |−d−2 γ

∣∣∣∣∣
X=0

= (−1)γ 2γ
γ−1∏
k=0

(−d/2− k) |W | |Y |−d−2 γ .

Finally,

T (0, Y ) =
(−1)γ 2γ

∏γ−1
k=0 (−d/2− k) |W |
∂(π)(π)

|Y |−d−2 γ =
(−1)γ 2γ

∏γ−1
k=0 (−d/2− k) |W |

π(ρ) |W |/2γ
|Y |−d−2 γ

=
22 γ (d/2)γ

π(ρ)
|Y |−d−2 γ .
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Corollary 3.3 We have

PW (0, Y ) =
22 γ (d/2)γ
π(ρ) |W |wd

NW (0, Y ) =
−22 γ−1 (γ − 1)!

2π |W |π(ρ)
|Y |−2 γ if d = 2

NW (0, Y ) =
22 γ ((d− 2)/2)γ
|W | (2− d)wd π(ρ)

|Y |2−d−2 γ if d ≥ 3

Proposition 3.4 The Poisson kernel of the unit ball on the flat complex symmetric space M is given
by

PW (X,Y ) =
22 γ (d/2)γ
π(ρ) |W |wd

A∗
(

1− |X|2

(1− 2 〈X, ·〉+ |X|2)γ+d/2

)
(Y ), (14)

where A∗ denotes the dual Abel transform on M .

Proposition 3.4 will be essential to establish (17) in Theorem 3.11. Recall that the dual of the Abel
transform can be defined by the equation

A∗(f)(X) =

∫
K

f(πa(Ad(k)X)) dk

where, as before, πa is the orthogonal projection from p to a with respect to the Killing form. Note in
particular that A∗(eλ(·))(X) = ψλ(X). Note also (see [25, Ch. IV, Theorem 10.11]) that unless C(X)
reduces to {X}, there exists a density K(H,X) such that

A∗(f)(X) =

∫
C(X)

f(H)K(H,X) dH.

Proof of Proposition 3.4. It should be noted that for Weyl-invariant f , A∗(f) = Vk(f) (refer to [9]).
Since the argument of A∗ in (14) is not Weyl-invariant, some proof is needed. Let K(Z, Y ) be the kernel
of the dual Abel transform. Using (13), we have

PW (X,Y ) =

∑
w,w0∈W Pk(w ·X,w0 · Y )

|W |2
(with k = 1)

=
22 γ (d/2)γ
π(ρ) |W |3 wd

∑
w,w0∈W

∫
C(w0·Y )

1− |w ·X|2

(1− 2 〈w ·X,Z〉+ |w ·X|2)γ+d/2
dµw0·Y (Z)

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈w ·X,Z〉+ |X|2)γ+d/2
dµY (w−1

0 · Z)

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

Weyl-invariant︷ ︸︸ ︷∑
w,w0∈W

1

(1− 2 〈w ·X,w0 · Z〉+ |X|2)γ+d/2
dµY (Z)

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈w ·X,w0 · Z〉+ |X|2)γ+d/2
K(Z, Y ) dZ

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈X,w−1w0 · Z〉+ |X|2)γ+d/2
K(Z, Y ) dZ

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈X,Z〉+ |X|2)γ+d/2
K(w−1

0 wZ, Y ) dZ

=
22 γ (d/2)γ
π(ρ) |W |wd

(1− |X|2)

∫
C(Y )

1

(1− 2 〈X,Z〉+ |X|2)γ+d/2
K(Z, Y ) dZ.
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Remark 3.5 Note that our normalizing constant is different from what is found in [11, 12]. We ex-
plain here how they correspond in the complex case. In [11], the Poisson kernel PW (X,Y ) is normalized
in the following manner:

u(X) = c′d

∫
∂B(0,1)

f(y)PW (X,Y )π(Y )2 dY

wd

where c′d is such that

1 = c′d

∫
∂B(0,1)

π(Y )2 dY

wd

where, reading through [11, Page 1215],

c′d = 2γ (d/2)γ
∏
α>0

(
|α|2

2
(〈α, ρ〉/|α|2 + 1)

)−1

.

Our different normalizations come down to the equality

22 γ (d/2)γ
π(ρ) |W |wd

=
c′d
wd

which gives the interesting equality

π(ρ) |W |
2γ

=
∏
α>0

(
|α|2

2
(〈α, ρ〉/|α|2 + 1)

)
.

This equality is easily verified directly for the classical Lie algebras and for g2 (the other exceptional
Lie algebras require more work). It should be noted that in [11], Dunkl used the notation νh instead of
ρ but refers to the fact that Opdam uses ρ in [38].

Corollary 3.6 The Newton kernel of the flat complex symmetric space M is given by

NW (X,Y ) =
22 γ ((d− 2)/2)γ
|W | (2− d)wd π(ρ)

A∗
(

(|Y |2 − 2 〈X, ·〉+ |X|2)(2−d−2 γ)/2
)

(Y ).

P r o o f. We apply the same computations as for the Poisson kernel to formula [16, (6.1)] (the constant
has been adjusted to follow our conventions as per Remark 3.5).

We now start to study the asymptotic behavior of the Poisson kernel PW (X,Y ). Let us introduce
some notations. We define

R(X,Y ) =
∑
w∈W

ε(w)

|X − w · Y |d
and T (X,Y ) =

R(X,Y )

π(X)π(Y )

and therefore,

PW (X,Y ) =
1− |X|2

|W |wd
T (X,Y ).

The function R(X,Y ) is defined for X,Y ∈ a such that X 6∈ W · Y = {w · Y | w ∈ W}. We will denote
this domain by

D := {(X,Y ) ∈ a2| X 6∈W · Y }

The function T (X,Y ) is, for now, defined for non-singular X, Y ∈ a (i.e. such no nonzero root vanish
on X or on Y ) such that X 6∈WY . We will see in Proposition 3.10 that the function T (X,Y ) extends
by continuity to an analytic function on the domain D.

Studying the properties of PW (X,Y ) is equivalent to studying the properties of T (X,Y ) and R(X,Y ).
We will give some of them in Proposition 3.10. We start by introducing two auxiliary results.
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Lemma 3.7 Assume a1, . . . , ad are not all 0 and let U be an open set. Let q be an analytic function

on U which is 0 whenever
∑d
k=1 ak xk = 0. Then q(X) =

(∑d
k=1 ak xk

)
r(X) where r is a analytic

function on U .

P r o o f. The Lemma follows from Lemma 2.3. We give here an elementary proof.
Using a change of variable, we can assume that a1 = 1 and ai = 0 for i > 1. It is also enough to show

that for every X0 = (b1, . . . , bd) ∈ U , there exists ε > 0 such that the result holds in the ball B(X0, ε).
If X0 6= 0, then pick ε > 0 small enough so that (x1, . . . , xd) ∈ B(X0, ε) implies x1 6= 0. Then we can
pick r(X) = q(X)/x1.

Suppose now that b1 = 0. We then have q(x1, . . . , xd) = x1

r(X)︷ ︸︸ ︷∫ 1

0

∂

∂x1
q(t x1, x2, . . . , xd) dt for (x1, . . . , xd) ∈

B(X0, ε) ⊂ U .

Proposition 3.8 Let p(X) =
∏d
i=1 〈αi, X〉 where no αi’s is a multiple of another αj and let U

be an open set. If q is an analytic function on U which is 0 whenever αi(X) = 0 for some i then
q(X) = p(X) r(X) where r is an analytic function on U .

P r o o f. We use induction on n. Lemma 3.7 shows that the result is true for n = 1. Assume it is
true for n − 1, n ≥ 2 and write q(X) =

∏n−1
i=1 〈αi, X〉 r(X). Since q(X) = 0 when 〈αn, X〉 = 0, we

conclude that r(X) = 0 on the set {X|〈αn, X〉 = 0 and 〈αi, X〉 6= 0, i < n}. By continuity, we deduce
that r(X) = 0 when 〈αn, X〉 = 0 and, using Lemma 3.7 once more, we can conclude.

Remark 3.9 We thank the referee for pointing out that Lemma 3.7 and Proposition 3.8 can be also
be proven with the help of the Weierstrass division theorem, via Lemma 2.3.

Proposition 3.10

1. (Symmetry in X and Y ) R(X,Y ) = R(Y,X) and T (X,Y ) = T (Y,X).

2. (Skew-symmetry) R(w0X,Y ) = ε(w0)R(X,Y ) and R(X,w0Y ) = ε(w0)R(X,Y ).

3. (Nullity of R on singular arguments) R(X,Y ) is zero whenever at least one of X or Y is singular.

4. (analytic factorization of R, analytic extension of T to D.) There exists a function f analytic on D
such that R(X,Y ) = π(X)π(Y )f(X,Y ) on D. Equivalently, the function T extends to an analytic
function on D.

5. (Non-nullity of T and PW ) When X ∈ B and Y ∈ ∂B then T (X,Y ) > 0 and PW (X,Y ) > 0.

P r o o f. The proof of (1) and (2) is straightforward.

(3) Suppose α(Y ) = 0. We use Property 2 and ε(σα) = −1 where σα is the reflection with respect to
the hyperplane {α = 0}. Since R(X,Y )/π(Y ) is analytic, the statement follows.

(4) This follows from Proposition 3.8.

(5) This follows from Proposition 3.4. The dual Abel integral transform of a strictly positive function
is strictly positive.

Theorem 3.11 Let Y0 ∈ ∂B, Σ′ = {α ∈ Σ| α(Y0) = 0} and Σ′+ = Σ′ ∩ Σ+. Then

PW (X,Y0)
Y0∼ 22 γ′ (d/2)γ′

|W |wd π′(ρ′) (π′′(Y0))2

1− |X|2

|X − Y0|2γ′+d
(15)

where γ′ = |Σ′+| is the number of positive roots annihilating Y0, π′(Y ) =
∏
α∈Σ′+

〈α, Y 〉 and π′′(Y ) =∏
α∈Σ+\Σ′+

〈α, Y 〉.
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P r o o f. Let W ′ = {w ∈W |w ·Y = Y }. In this proof, we consider X ∈ V = B(Y0, ε) with ε > 0 fixed
and chosen in such a way that

α(V̄ ) ⊂ (0,∞) for α ∈ Σ+ \ Σ′+ and wV ∩ V = ∅ for every w ∈W \W ′.

Using Theorem 2.2, we have

PW (X,Y ) =
1

|W |wd
1− |X|2

π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d
.

We consider X ∈ V \ {Y0} and we deal with

T (X,Y0)=
|W |wd

1− |X|2
PW (X,Y0) =

1

π(X)π(Y0)

∑
w∈W

ε(w)

|X − w · Y0|d
=

R(X,Y0)

π(X)π(Y0)
. (16)

By Proposition 3.10 applied to the root systems Σ and Σ′, all the expressions in (16) are well defined
for X ∈ V \ {Y0}, if needed in the limit sense.

We decompose the sum
∑
w∈W into two terms, the first being the sum over the subgroup W ′ = {w ∈

W |w · Y0 = Y0} which is the Weyl group of the root subsystem Σ′. We obtain

T (X,Y0) =

∑
w∈W ε(w)|X − w · Y0|−d

π(X)π(Y0)
=

∑
w∈W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
+

∑
w∈W\W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
.

By Proposition 3.10, all the expressions in the last formula are well defined for X ∈ V \ {Y0}, if needed
in the limit sense. Denote

T1(X,Y0) =

∑
w∈W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
and T2(X,Y0) =

∑
w∈W\W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
.

Let π′(X) =
∏
α∈Σ′+

α(X) and π′′(X) =
∏
α∈Σ+\Σ′+

α(X). Observe that by Theorem 2.2,

π′′(X)π′′(Y0)T1(X,Y0) =

∑
w∈W ′ ε(w)|X − w · Y0|−d

π′(X)π′(Y0)
=
|W ′|wd
1− |X|2

PW
′
(X,Y0)

where PW
′
(X,Y ) is the Poisson kernel for the flat symmetric space (Rd,Σ′) corresponding to the

complex root system Σ′. The convex hull C ′(Y0) = conv(W ′ Y0) = {Y0}, so by Proposition 3.4 and the
properties of A∗,

1

1− |X|2
PW

′
(X,Y0) =

22 γ′ (d/2)γ′

π(ρ′) |W ′|wd

∫
C(Y0)

1

(1− 2 〈X,Z〉+ |X|2)γ′+d/2
δ{Y0}(dZ)

=
22 γ′ (d/2)γ′

π′(ρ′) |W ′|wd
1

|X − Y0|2γ′+d
(17)

where X ∈ B ∩ V .
We now prove that the function X 7→ T2(X,Y0) is bounded on V , which, together with (17), will

conclude the proof. We denote by

N(X,Y ) =
∑

w∈W\W ′
ε(w)|X − w · Y |−d

the numerator of T2. Observe that N(X,Y ) is an analytic function on V × V . The function

T2(X,Y ) =

∑
w∈W\W ′ ε(w)|X − w · Y |−d

π(X)π(Y )
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is well defined and analytic for (X,Y ) ∈ V × V \D with D = {(X,Y ) ∈ a× a : X = Y }, since T (X,Y )
and T1(X,Y ) have these properties by Proposition 3.10 and T2 = T − T1.

This implies that if X ′ ∈ V or Y ′ ∈ V are singular (i.e. α(X ′) = 0 or α(Y ′) = 0 for some α ∈ Σ′+)
and X ′ 6= Y ′ then the numerator N(X ′, Y ′) = 0 since otherwise the limit N(X,Y )/π(X)π(Y ) could
not exist when (X,Y )→ (X ′, Y ′).

We deduce that if X ′ ∈ V or Y ′ ∈ V and α(X ′) = 0 or α(Y ′) = 0 for some α ∈ Σ′+) then
N(X ′, Y ′) = 0. This is also true for X ′ = Y ′ since such points are limits when t tends to 1 of (tX ′, Y ′)
with singular tX ′ 6= Y ′ and N(tX ′, Y ′) converges to N(X ′, Y ′).

By Proposition 3.8, there exists a function F (X,Y ) analytic on V × V such that

N(X,Y ) = π′(X)π′(Y )F (X,Y ), X, Y ∈ V

and, finally,

T2(X,Y ) =
F (X,Y )

π′′(X)π′′(Y )
, X, Y ∈ V

(we have minX∈V̄ π′′(X) > 0 since π′′(V̄ ) ⊂ (0,∞)). In particular, the function X 7→ T2(X,Y0) is
bounded on V .

Remark 3.12 For the asymptotic properties of PW , besides the alternating sum formula, the ap-
proach via the Dunkl formula (13) and dual Abel transform, i.e. Proposition 3.4 is needed. We use it
to compute the leading term T1(X,Y ) in T (X,Y ).

3.2 Asymptotic behavior of the Newton kernel on flat complex symmetric
spaces

Using the same approach as in the proof of Theorem 3.11 together with Corollary 3.6, we conclude that

Theorem 3.13 Let Y0 ∈ a+. If d = 2 and α, β are the simple roots then

NW (X, 0) =
−22 γ−1 (γ − 1)!

2π |W |π(ρ)
|X|−2 γ (case Y0 = 0),

NW (X,Y0)
Y0∼ −22 γ′−1 (γ′ − 1)!

2π |W |π′′(Y0)2 〈α, α〉
|X − Y0|−2 where Y0 6= 0, α(Y0) 6= 0 and β(Y0) = 0.

If d ≥ 3

NW (X,Y0)
Y0∼ 22 γ′ ((d− 2)/2)γ′

|W | (2− d)wd π′(ρ′) (π′′(Y0))2

1

|X − Y0|2γ′+d−2
. (18)

Here γ′ = |Σ′+| is the number of positive roots annihilating Y0 and π′′(Y ) =
∏
α∈Σ+\Σ′+

〈α, Y 〉.

Remark 3.14 In the paper [20] exact estimates of the Poisson and Newton kernels PW and NW

were proven complementing the results of Theorem 3.11 and Theorem 3.13. For the Poisson kernel it is
proven that

PW (X,Y ) � PRd

(X,Y )∏
α∈Σ+ |X − σαY |2

where σα is the symmetry with respect to the hyperplane perpendicular to α.
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4 Asymptotic behavior of spherical functions on flat complex sym-
metric spaces

In this section we consider spherical functions on M , satisfying the formula

ψλ(Y ) =
π(ρ)

2γπ(λ)π(Y )

∑
w∈W

ε(w)e〈λ,w·Y 〉, λ ∈ aC, Y ∈ aR. (19)

Note that our notation is different from that of Helgason (in his notation the function given by (19) is
denoted ψ−i λ).

The following technical lemma will prove useful later in this section.

Lemma 4.1 Suppose G1 and G2 are subgroups of the finite group G. Then |G1G2| |G1 ∩ G2| =
|G1| |G2|.

P r o o f. The group G1 ×G2 acts on the set G1G2 ⊂ G via (g1, g2)(g) = g1 g g
−1
2 . Clearly the action

is transitive. The stabilizer of e ∈ G1G2 (e being the identity) is easily seen to be isomorphic to G1∩G2.
The orbit-stabilizer theorem ([43, Theorem 5.8]) implies then that |G1G2| |G1 ∩G2| = |G1| |G2|.

We introduce here some notation. If X ∈ a, we denote by Σ+
X the positive root system Σ+

X = {α ∈
Σ+ : α(X) = 0} and by WX the Weyl group generated by the symmetries sα with α ∈ Σ+

X (consequently,
WX = {w ∈ W : w · X = X}). We also write πX(Y ) =

∏
α∈Σ+

X
α(Y ) and cX = ∂(πX)(πX) (this

derivative is constant on a).
For X ∈ a we define the polynomial π′X(Y ) by π(Y ) = πX(Y )π′X(Y ). Denote

W (λ0, Y0) = {w ∈W : 〈λ0, w · Y0〉 = 〈λ0, Y0〉}.

Remark 4.2 We conjecture that the property W (λ0, Y0) = Wλ0
WY0

is valid for all root systems. In
Appendix A, we provide a series of proofs that cover all cases except for the exceptional root systems of
type E. We also point out that if one of λ0 or Y0 is regular then this property is also verified, see [23].

Denote the Weyl subgroup Wλ0,Y0
= Wλ0

∩WY0
= {w ∈ W : w · λ0 = λ0 and w · Y = Y }. The

group Wλ0,Y0
corresponds to the root system Σ+

λ0,Y0
= Σ+

λ0
∩ Σ+

Y0
. We write π0(Y ) = πλ0,Y0

(Y ) =∏
α∈Σ+

λ0,Y0

α(Y ) and cλ0,Y0 = ∂(πλ0,Y0)(πλ0,Y0). Denote by M the set of positive roots that are neither

in Σ+
λ0

nor in Σ+
Y0

, i.e. M = Σ+ \ (Σ+
λ0
∪ Σ+

Y0
). We also write πM(X) =

∏
α∈M α(X).

Proposition 4.3

(i) If w ∈WY then πY (w ·X) = ε(w)πY (X).

(ii) If w ∈WY then πY (∂)[f(w · Y )] = ε(w)(πY (∂)f)(w · Y ).

P r o o f. The property (i) is well known [24]. The property (ii) is straightforward for f(X) = e〈Z,X〉

and extends by linear density.

Proposition 4.4 Let λ0, Y0 be singular. The asymptotics of ψλ0
(t Y0) when t→∞ is given by the

following formula:

ψλ0(t Y0) ∼ C(λ0, Y0)t|Σ
+
Y0
|−|Σ+| ∑

w∈W (λ0,Y0)

ε(w)πY0(∂Y )
(
πλ0(w · Y )e〈λ0,w·Y 〉

) ∣∣
Y=t Y0

(20)

where C(λ0, Y0) = (cλ0 cY0 π
′
λ0

(λ0)π′Y0
(Y0))−1.

When W (λ0, Y0) = Wλ0 WY0 , the last formula simplifies to

ψλ0(t Y0) ∼ C1(λ0, Y0)t|Σ
+
Y0
|−|Σ+|πY0(∂Y )

(
πλ0(Y )e〈λ0,Y 〉

) ∣∣
Y=t Y0

(21)

where C1(λ0, Y0) = C(λ0, Y0)|Wλ0
| |WY0

|/|Wλ0,Y0
|.
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P r o o f. We start with the alternating sum formula for the spherical function ψλ, written in the
following way

π(λ)π(Y )ψλ(Y ) =
∑
w∈W

ε(w)e〈λ,w·Y 〉 (22)

We write π(λ) = πλ0
(λ)π′λ0

(λ) and π(Y ) = πY0
(Y )π′Y0

(Y ). We apply the operator L = πY0
(∂Y )πλ0

(∂λ)

to both sides of (22). Using the fact that πλ0
(∂λ) e〈λ,w·Y 〉 = πλ0

(w · Y )e〈λ,w·Y 〉, we obtain

cλ0
cY0

π′λ0
(λ0)π′Y0

(t Y0)ψλ0
(t Y0) =

∑
w∈W

ε(w)πY0
(∂Y )

(
πλ0

(w · Y ) e〈λ0,w·Y 〉
) ∣∣

Y=t Y0
.

In order to get the exact asymptotics of ψλ0
(t Y0), we only need to deal with w ∈ W such that 〈λ0, w ·

Y0〉 = 〈λ0, Y0〉. This gives the asymptotics (20).
We now assume that W (λ0, Y0) = Wλ0

WY0
. The asymptotics (20) simplify, since by Proposition 4.3,

we obtain for w = w1 w2 with w1 ∈Wλ0 and w2 ∈WY0

πY0
(∂Y )

(
πλ0

(w · Y ) e〈λ0,w·Y 〉
)

= ε(w1)πY0
(∂Y )

(
πλ0

(w2Y ) e〈λ0,w2Y 〉
)

= ε(w1) ε(w2)πY0
(∂Y )

(
πλ0

(Y ) e〈λ0,Y 〉
)

= ε(w)πY0
(∂Y )

(
πλ0

(Y ) e〈λ0,Y 〉
)
.

Using Lemma 4.1, we have |Wλ0
WY0
| = |Wλ0

||WY0
|/|Wλ0,Y0

|. We obtain the formula (21).

Theorem 4.5 Let λ0, Y0 be singular. Assume that W (λ0, Y0) = Wλ0
WY0

. Then the asymptotics of
ψλ0

(t Y0) when t→∞ are given by the following formula:

ψλ0
(t Y0) ∼ D(λ0, Y0) t−m et 〈λ0,Y0〉 (23)

where m is the number of positive roots that are neither in Σ+
λ0

nor in Σ+
Y0

i.e.

m = cardM = |Σ|+ − (|Σ+
λ0
|+ |Σ+

Y0
| − |Σ+

λ0
∩ Σ+

Y0
|)

and

D(λ0, Y0) =
cλ0,Y0

cλ0
cY0

|Wλ0 | |WY0 |
|WY0

∩Wλ0
|

1

πM(λ0)πM(Y0)
.

Remark 4.6 When Y0 is regular, the method of proof used in Theorem 3.11 for the asymptotics of
the Poisson kernel could have been used here. When both λ0 and Y0 are singular, that approach fails
to apply.

P r o o f. Using Leibniz formula, we have

πY0(∂Y )
(
πλ0(Y ) e〈λ0,Y 〉

) ∣∣
Y=t Y0

= π0(∂Y )
∏

α∈Σ+
Y0
\Σ+

λ0

∂Y (Aα)
(
πλ0(Y )e〈λ0,Y 〉

) ∣∣
Y=t Y0

= π0(∂Y )

 ∏
α∈Σ+

Y0
\Σ+

λ0

〈λ0, α〉πλ0
(Y ) e〈λ0,Y 〉 + P (Y ) e〈λ0,Y 〉

∣∣Y=t Y0
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The number of factors in each term P (Y ) of the form 〈η, Y 〉 where η is a root, is strictly less than
the number of factors in πλ0

i.e. less than |Σ+
λ0
|.

In the expression in the last line, all derivatives involving the term e〈λ0,Y 〉 give 0 since β(λ0) = 0 for
β ∈ Σ+

Y0
∩ Σ+

λ0
.

In the derivatives of πλ0
(Y ), any term that contains 〈β, Y 〉 with β ∈ Σ+

Y0
∩ Σ+

λ0
will be zero when

Y is replaced by t Y0. Thus, for a nonzero result, the operator π0(∂Y ) must be applied to π0(Y ), what
gives cλ0,Y0

> 0. We obtain

πY0
(∂Y )

(
πλ0

(Y ) e〈λ0,Y 〉
) ∣∣

Y=t Y0

=
∏

α∈Σ+
Y0
\Σ+

λ0

〈λ0, α〉
∏

γ∈Σ+
λ0
\Σ+

Y0

〈γ, t Y0〉 cλ0,Y0 e
t 〈λ0,Y0〉 + π0(∂Y )P (t Y0)et〈λ0,Y0〉

= cλ0,Y0 t
|Σ+
λ0
|−|Σ+

λ0
∩Σ+

Y0
| ∏
α∈Σ+

Y0
\Σ+

λ0

〈λ0, α〉
∏

γ∈Σ+
λ0
\Σ+

Y0

〈γ, Y0〉 et 〈λ0,Y0〉 + negligible terms.

We labeled as “negligible terms” the terms with the derivatives involving P (Y ). They have the
number of factors of the form 〈η, t Y0〉 strictly less then |Σ+

λ0
| − |Σ+

λ0,Y0
|, so strictly less than the term∏

γ∈Σ+
λ0
\Σ+

Y0

〈γ, t Y0〉. The rest follows from the definition of C(λ0, Y0).

Remark 4.7 We can give a more explicit expression for the constant D, using the formula

∂(π)π =
|W |π(ρ)

2γ
,

where ρ = 1
2

∑
α∈Σ+ mαα =

∑
α∈Σ+ α and γ = |Σ+| is the number of positive roots.

For X ∈ a, denote pX = πX(ρX). Analogously, we define pX1,X2 for the root system annihilating
both elements X1, X2 ∈ a. We have

D(λ0, Y0) =
2γλ0,Y0−γλ0−γY0

πM(λ0)πM(Y0)

pλ0,Y0

pλ0
pY0

,

and therefore

lim
t→∞

ψλ0
(t Y0)

t−m et〈λ0,Y0〉
=

2γλ0,Y0−γλ0−γY0

πM(λ0)πM(Y0)

pλ0,Y0

pλ0
pY0

Remark 4.8 As a quick application of Theorem 4.5, we find, in the flat complex case, a simple
proof of a general result of Vogel and Voit: for symmetric spaces with subexponential (here polynomial)
growth, the set of bounded spherical functions coincides with the support of the Plancherel measure of
the associated Gelfand pair (G0,K), G0 the Cartan motion group. See for instance Sections 3.2 and
3.3. of [41] for details. A proof in the flat complex case was also proposed by Helgason in [23].

Remark 4.9 Taking into account the relationship between the spherical functions in the flat case
and those in the curved case for the complex Lie groups, the estimates of spherical functions in [36, 44]
extend to the flat case.

In this case, Theorem 4.5 completes the estimates of [36, 44] providing the exact asymptotics. We
conjecture that asymptotics with appropriate constants and not only estimates hold in the results of
Narayanan, Pasquale and Pusti [36] and Schapira [44].

The asymptotic expansion given in [2, Proposition 3.8] for regular λ0 and Y0 implies asymptotics of
spherical functions in this case. Theorem 4.5 strengthens this result to singular λ0 and Y0.

Proposition 4.10 Let X and Y be singular and m′ = |Σ+
X ∪ Σ+

Y |. With the same notation as in
Theorem 4.5, we have

pWt (X,Y ) ∼ D(X,Y ) 2m−d

|W |πd/2 π(ρ)
t−

d
2−m

′
e
−|X−Y |2

4t

as t→ 0+.
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P r o o f. From Theorem 4.5, we have for t > 0 close to 0,

ψX(Y/(2 t)) ∼ D(X,Y ) (2 t)m e〈X,Y/(2 t)〉.

Combined with (12), this leads us to

pWt (X,Y ) ∼ 2m

|W | 2d πd/2 π(ρ)
t−

d
2−γ e

−|X|2−|Y |2
4t D(X,Y ) tm e〈X,Y/(2 t)〉

=
D(X,Y ) 2m

|W | 2d πd/2 π(ρ)
t−

d
2−(γ−m) e

−|X−Y |2
4t .

5 Applications to the Dyson Brownian motion and stochastic anal-
ysis

5.1 Definition and transition density of the Dyson Brownian motion

When a probabilist looks at formula (3), he or she sees in it the generator of the Doob h-transform (refer
to [39]) of the Brownian Motion on Rd with the excessive function h(X) = π(X). For the root system
Ad on Rd, the operator ∆W restricted to functions on a+, is the generator of the Dyson Brownian

Motion on a+ ⊂ Rd ([14]), i.e. the d Brownian independent particles B
(1)
t , . . . , B

(d)
t conditioned not to

collide. More generally, for any root system Σ on Rd, the construction of a Dyson Brownian Motion as
a Brownian Motion conditioned not to touch the walls of the positive Weyl chamber, can be done ith a
starting point X ∈ a+ ([18]).

Let us recall basic facts about the Doob h-transform and the Dyson Brownian Motion. Let Σ be a
root system on Rd and π(X) =

∏
α>0 〈α,X〉. It is known that π is ∆Rd -harmonic on Rd ([18]), so in

particular π is excessive.

Definition 5.1 Let Σ be a root system on Rd and π(X) =
∏
α>0 〈α,X〉. The Dyson Brownian

Motion DΣ
t on the positive Weyl chamber a+ is defined as the h-Doob transform of the Brownian

Motion on Rd, with h = π, i.e. its transition density is equal to

pD
t (X,Y ) =

π(Y )

π(X)
pkilled
t (X,Y ), X ∈ a+, Y ∈ a+, (24)

where pkilled
t (X,Y ) is the transition density of the Brownian Motion killed at the first strictly positive

time of touching ∂a+.

The infinitesimal generator of DΣ
t is given by the formula ([39])

∆Df = π−1∆Rd

(πf), supp f ⊂ a+, (25)

which coincides on a+ with formula (3) for ∆W . The only differences with the symmetric flat complex

case are that the domain of kernels KD(X,Y ) is restrained to X ∈ a+, Y ∈ a+, and that no invariant
measure π2(Y ) dY appears for the integral kernels in the Dyson Brownian Motion case. Consequently,
we obtain

Corollary 5.2 The transition density and the heat kernel of the Dyson Brownian Motion DΣ
t on

a+ ⊂ Rd is given by the formula

pD
t (X,Y ) =

π(Y )

π(X)

∑
w∈W

ε(w)ht(X − w · Y ), X ∈ a+, Y ∈ a+,

where ht(X − Y ) = 1
(4π t)d/2

e−
|X−Y |2

4 t is the Euclidean heat kernel on Rd.
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In the case Σ = Ap we have

pD
t (X,Y ) =

π(Y )

π(X)
det (gt(xi, yj)) , X ∈ a+, Y ∈ a+,

where gt(u, v) = 1√
4πt

e−|u−v|
2/4t is the 1-dimensional classical heat kernel.

P r o o f. We use Theorem 2.2 (1) and Corollary 2.5.

Comparing the formulas from Corollary 5.2 with formula (24), we obtain the following formulas for
the heat kernel of the Brownian Motion killed at the first strictly positive time of touching a wall of the
positive Weyl chamber.

Corollary 5.3 The transition density for the Brownian Motion killed when exiting the positive Weyl
chamber is given by the formula

pkilled
t (X,Y ) =

∑
w∈W

ε(w)ht(X − w · Y ). (26)

In the case Σ = Ad−1 we have

pkilled
t (X,Y ) = det (gt(xi, yj)) , (27)

Remark 5.4 Karlin and McGregor [28] showed formula (27) by different methods. In [18], formulas

for pkilled
t (X,Y ) for the root systems Bd, Cd and Dd are proven. Our method of alternating sums

provides a simple proof of formula (26) valid for any root system Σ.

5.2 Poisson and Newton kernels for the Dyson Brownian Motion

The Poisson and Newton kernels PD(X,Y ) and ND(X,Y ) are central objects of the potential theory
of the Dyson Brownian Motion DΣ

t and this is a first reason of studying them. However, these kernels
have stochastic interpretation and, consequently, are useful in stochastic analysis of the Dyson Brownian
Motion.

Denote by DΣ,X
t the Dyson Brownian Motion starting from X. Let X ∈ B(0, 1) and

T (X) = inf{t > 0 | DΣ,X
t 6∈ B(0, 1)}.

By the mean-value theorem for harmonic functions of general strong Markov processes (see [13, 26]),
called sometimes Kakutani’s Theorem ([7]), the Poisson kernel PD(X,Y ) is the density of the random
vector

DΣ,X
T (X)

on the sphere. This is the Dyson Brownian Motion starting from X inside the unit ball and stopped at
the first time T (X) of exiting the ball. If dY denotes the Lebesgue measure on the unit sphere, then
PD(X,Y )dY is called the harmonic measure of the Dyson Brownian Motion on the unit sphere.

The Newton kernel ND(X,Y ) is related to the transition probability pDt (X,Y ) of the Dyson Brownian
Motion by the formula ([7])

ND(X,Y ) =

∫ ∞
0

pDt (X,Y )dt.

The alternating sum formulas for the integral Poisson and Newton kernels PD and ND of the Dyson
Brownian Motion DΣ

t can be easily deduced from their counterparts (see Theorem 2.2) for the flat
complex symmetric spaces M , just by multiplying PW and NW by π(Y )2.
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Remark 5.5 We have

PD(X,Y ) = |W |π(Y )2 PW (X,Y ),

ND(X,Y ) = |W |π(Y )2NW (X,Y ) and

pDt (X,Y ) = |W |π(Y )2 pWt (X,Y ).

The Poisson kernel of the Dyson Brownian Motion extends continuously to X ∈ a+, Y ∈ a+. In
particular, PD(X,Y ) = 0 when Y is singular. The same remarks apply to the Newton kernel ND(X,Y )
and to the heat kernel.

These observations allow us to consider the ratios PD(X,Y )/π(Y )2, ND(X,Y )/π(Y )2 and pDt (X,Y )/π(Y )2

even when Y ∈ ∂a+.

Theorems 3.11 and 3.13 imply asymptotics for the Poisson and Newton kernels for the Dyson Brow-
nian Motion. For completeness and for their applications in the potential theory and in the stochastic
analysis of the process DΣ

t , we state these results here.

Corollary 5.6 The following formulas hold for X,Y ∈ a+

PD(X,Y ) =
(1− |X|2)π(Y )

wd π(X)

∑
w∈W

ε(w)

|X − w · Y |d

ND(X,Y ) =
π(Y )

2π π(X)

∑
w∈W

ε(w) ln |X − w · Y | when d = 2,

ND(X,Y ) =
π(Y )

(2− d)wd π(X)

∑
w∈W

ε(w)

|X − w · Y |d−2
when d ≥ 3.

Keeping in mind Remark 5.5, equations (15) and (18) lead us to the following result.

Corollary 5.7 Let Y0 ∈ a+, Σ′ = {α ∈ Σ| α(Y0) = 0}, Σ′+ = Σ′ ∩ Σ+, γ′ = |Σ′+| and π′(X) =∏
α∈Σ′+

〈α,X〉.

(i) Let Y0 ∈ ∂B. Then

PD(X,Y0)

π′(Y0)2

Y0∼ 22 γ′ (d/2)γ′

wd π′(ρ′)

1− |X|2

|X − Y0|2γ′+d
.

(ii) If d = 2, α, β are the simple roots, α(Y0) 6= 0, β(Y0) = 0, then

ND(X,Y0)

π′(Y0)2

Y0∼ −22 γ′−1 (γ′ − 1)!

2π 〈α, α〉
|X − Y0|−2.

(iii) If d ≥ 3, then

ND(X,Y0)

π′(Y0)2

Y0∼ 22 γ′ ((d− 2)/2)γ′

(2− d)wd π(ρ′)

1

|X − Y0|2γ′+d−2
.

5.3 On the transition probability of the Dyson Brownian Motion

The heat kernel pDt (X,Y ) of the Dyson Brownian Motion is nonzero for X ∈ a+ and Y ∈ a+ and zero
if Y ∈ ∂a+ as per Remark 5.5. By Proposition 4.10 we then have the following asymptotic result:

Corollary 5.8 Let X and Y be singular and m′ = |Σ+
X∪Σ+

Y |. With the same notation as in Theorem
4.5, we have

pDt (X,Y )

π(Y )2
∼ D(X,Y ) 2m−d

|W |πd/2 π(ρ)
t−

d
2−m

′
e
−|X−Y |2

4t

as t→ 0+.
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Remark 5.9 In [31, 32] an asymptotic formula in terms of Schur functions was used to analyze the
heat kernel of Dyson Brownian Motion.

We are grateful to one of the anonymous referees for suggesting that an asymptotic result for Dyson
heat kernel was a natural extension of our results. It lead us to Corollary 5.8.

5.4 Remarks on relations to stochastic analysis

At the beginning of Section 5.2 and in the asymptotic formulas for the Poisson and Newton kernels in
Corollary 5.6, the factor π(Y )2 appears as a common feature. In the context of random matrix theory
and non-colliding diffusive particle problems (the original Brownian motion models), this factor is very
important as follows.

(i) This factor π(Y )2 appearing in the probability density becomes zero if xj = xi. Then the system
has some “repulsive” interaction and it will be regarded as a determinantal (Fermion) point process.

(ii) The squared Vandermonde determinant π(Y )2 can be written as the determinant of a matrix whose
entries are given by orthonormal polynomials. This opens the way to applications to reproducing
kernels of Hilbert spaces spanned by these orthonormal functions.

(iii) The factor π(Y )2 is a special case with β = 2 in the general setting
∏N
j=1 (xj − xi)β important in

the theory of random matrices.

It is natural to ask whether it is possible to discuss the O’Connell and Macdonald stochastic processes
studied in [5, 30, 37] from the viewpoint of the present paper. The multivariate processes studied
there are related to the representation theory (e.g. Gelfand-Zetlin patterns), the symmetric functions
and special functions (e.g. Whittaker functions, Macdonald polynomials), and integrable systems (e.g.
quantum Toda lattice). This question is best left to another paper.

5.5 Curved case and relations to Schrödinger operators

The alternating sum formulas given in Section 2.2 have analogs in the curved complex case, considered
in this section. To underline the difference with the flat case, we denote the spherical and potential
analysis objects on M with a tilde (̃ ). The kernels in this section are with respect to the invariant
measure δ(Y ) dY where

δ(Y ) =
∏
α>0

sinh2 α(Y ).

The following method of construction of kernels is similar to the one presented in Section 2.2.

1. Exploit the formula for the Laplace-Beltrami operator on M ([25, Chap. II, Theorem 5.37]):

∆̃W f = δ−1/2 (∆Rd

− |ρ|2)(δ1/2 f)

2. Apply the W -invariance.

In this way, the Euclidean kernel K∆Rd−|ρ|2(X,Y ) (heat, potential, Poisson, . . . ) for the operator

∆Rd − |ρ|2 is transformed into the kernels K̃ for G/K:

K̃(X,Y ) =
1

δ1/2(X) δ1/2(Y )

∑
w∈W

ε(w)K∆Rd−|ρ|2(X,w · Y ). (28)

The estimates of the Newton kernel Ñ(X,Y ) for all curved Riemannian symmetric spaces G/K were
obtained in [1]. In the case when G is complex, it would be possible to apply our methods based on

formula (28), using the knowledge of the Newton kernel N(X,Y ) of the Schrödinger operator ∆Rd−|ρ|2,
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i.e. the |ρ|2-potential (|ρ|2-resolvent) of ∆Rd

. The Newton kernel N(X,Y ) may be expressed with the
Bessel function of third type Kd/2.

For the Poisson kernel for ∆W , we need to know the Poisson kernel for the Schrödinger operator

∆Rd − |ρ|2. This kernel is not known explicitly. However much intensive work was and is presently
being done in the analytic and stochastic theory of heat and other kernels for Schrödinger operators,
see e.g. [3, 4, 7]. In a further work, we plan to study thoroughly these results and apply them to the
estimates of the Poisson kernel on curved complex symmetric spaces.

A The Killing-max property

The aim of this appendix is to find precise conditions on w ∈W under which

〈λ,w · Y 〉 = 〈λ, Y 〉. (29)

Definition A.1 Let Wλ = {w ∈ W : w · λ = λ} (similarly for WY ). We will say that the property
Killing-max is satisfied if (29) is verified if and only if w ∈WλWY .

Remark A.2 It is clear that the condition w ∈ WλWY is sufficient. Property Killing-max is also
satisfied whenever at least one of λ or Y is regular (refer to [23]). We observe also that this property only
depends on the action of the Weyl group on the Cartan subalgebra a. Given that 〈λ,w ·Y 〉 = 〈w−1λ, Y 〉,
this problem is symmetric in λ and Y .

In Table 2, we describe the action of the Weyl group on the Cartan subalgebra in the case of the
noncompact and complex simple Lie algebras. Note that in the case of (f4(−26), so(9)), which is not in
the table, the Killing-max property is trivially true since the rank of the space is 1.

A.1 Type An (sl(n+ 1,F))

Lemma A.3 (“max principle” for permutations) Let λ, Y ∈ Rn with their entries in decreasing
order and let w ∈ Sn be a permutation. Suppose that the block of λ1 in λ has length j0 ≥ 1 and that the
block of Y1 in Y has length i0 ≥ 1. If minw−1({1, . . . , i0}) > j0 then 〈λ,w · Y 〉 < 〈λ, Y 〉.

Remark A.4 The lemma states that if 〈λ,w · Y 〉 = 〈λ, Y 〉 then the permutation w is such that
“maxY meets maxλ”, i.e. there exists i ≤ j0 such that (w · Y )i = y1.

P r o o f. Without loss of generality, we may assume that λ 6= λ1 1n and Y 6= y1 1n. Let i =
minw−1({1, . . . , i0}). By assumption, the first y1 appears in w · Y at the i-th position with i > j0.
Let w(1) = k, i.e. w · Y begins with yk. We have yk < y1 and λi < λ1. Consider w0 = (1i )w; we then
have

〈λ,w0 · Y 〉 − 〈λ,w · Y 〉 = (λ1 − λi) (y1 − yk) > 0.

By the standard property of the Weyl group, 〈λ,w0 · Y 〉 ≤ 〈λ, Y 〉. Hence, 〈λ,w · Y 〉 < 〈λ, Y 〉.

Corollary A.5 Property Killing-max is verified in the case of the root system An.

P r o o f. We use the same notation as in Lemma A.3 and in its proof. Suppose 〈λ, Y 〉 = 〈λ,w · Y 〉.
We use induction on n. The result is clear for n = 1. By Lemma A.3, there exists i ≤ j0 such that
w(i) ≤ i0.

We now apply the induction hypothesis to λ = (λ2, . . . , λn) and to Y = (y2, . . . , yn). Let λ′ =
(λ2, . . . , λn), Y ′ = (y2, . . . , yn) and note that [yw(1), . . . , ŷw(i), . . . , yw(n)] is a permutation of Y ′ (say

w′ · Y ′). We have 〈λ,w · Y 〉 = λi y1 +
∑n
k=2 λk yw′(k) where w′ is a permutation of {2, . . . , n}. We

then have 〈λ′, Y ′〉 = 〈λ,w′ · Y ′〉 since λi = λ1. By the induction hypothesis w′ = wλ′ wY ′ ∈ Wλ′WY ′ .
We extend wλ′ and wY ′ to wλ ∈ Wλ and wY ∈ WY by having them fix 1 in both cases. With the
permutation w0 = (1 i) ∈Wλ, we have w = (1 i)wλ wY ∈WλWY .
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Symmetric space Description of X ∈ a+ Action of w ∈ W ,
the Weyl group

Underlying
root system

SL(n,F)/SU(n,F),
F = R, C, H, n ≥ 2,
F = O, n = 3 (i.e. E6/F4)

X = diag[x1, . . . , xn],∑n
i=1 xi = 0,

x1 > · · · > xn

w ∈ Sn permutes
the entries xi

An−1

SO(p, q)/SO(p)×SO(q), 1 ≤ p < q,
SU(p, q)/SU(p)× SU(q) and
Sp(p, q)/Sp(p)× Sp(q), 1 ≤ p ≤ q,

X =

 0 DX 0
DX 0 0
0 0 0

,

DX = diag[x1, . . . , xp],
x1 > · · · > xp > 0

w permutes the xi’s
and changes any
number of signs

Bn

SO(p, p)/SO(p)× SO(p), p ≥ 2

X =

[
0 DX
DX 0

]
,

DX = diag[x1, . . . , xp],
x1 > · · · > xp−1 > |xp|

w permutes the
xi’s and changes
any even number
of signs

Dn

SO∗(2n)/U(n), n ≥ 3
X =

[
0n×n EX
−EX 0n×n

]
,

EX =
∑[n/2]
k=1 xk F2 k,2 k+1,

x1 > · · · > xn/2 > 0

w permutes the xi’s
and changes any
number of signs

Bn

Sp(n,R)/U(n) and
Sp(n,C)/Sp(n), n ≥ 1

[
0 iDX

−iDX 0

]
,

DX = diag[x1, . . . , xp],
x1 > · · · > xp−1 > xp > 0

w permutes the xi’s
and changes any
number of signs

Cn

SO(2n,C)/SO(2n), n ≥ 3 X = i
∑n
k=1 xk F2 k−1,2 k,

x1 > · · · > xp−1 > |xp|
w permutes the
xi’s and changes
any even number
of signs

Dn

SO(2n+ 1,C)/SO(2n+ 1), n ≥ 2 X = i
∑n
k=1 xk F2 k−1,2 k,

x1 > · · · > xp−1 > xp > 0
w permutes the xi’s
and changes any
number of signs

Bn

FC
4 /F4, (f4(4), sp(3) + su(2)) X = [x1, x2, x3, x4],

x2 > x3 > x4 > 0, x1 >
x2 + x3 + x4

Refer to [6] F4

GC
2 /G2, (g2(2), su(3) + su(2)) X = diag[x1, x2, x1 −

x2, 0, x2 − x1,−x2,−x1],
x1 > x2 > x1/2

Refer to [35] G2

Table 2 Action of the Weyl group (except for E6, E7 and E8)

A.2 Type Bn (so(2n+ 1,C)) and Cn (sp(n,C))

Proposition A.6 Property Killing-max is verified in the case of the root systems Bn and Cn.

P r o o f. Recall that Bn is the root system of so(2n+ 1,C). The positive Weyl chamber is defined by
the condition

λ1 > λ2 > · · · > λn > 0

The Weyl group is W = Sn o {±1}n; its elements are called “signed permutations”. It is straight-
forward to see that sign changes in w · Y strictly decrease 〈λ, Y 〉 unless the negative terms in w · Y are
in front of λi = 0.

More precisely, if w · Y has strictly negative terms in positions where λi > 0, then 〈λ,w · Y 〉 <
〈λ,w0 w · Y 〉 ≤ 〈λ, Y 〉 where w0 changes the negative signs in w · Y into positive ones.
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Thus, if (29) holds, all negative terms in w ·Y are in front of λi = 0. Then w0 ∈Wλ and 〈λ,w ·Y 〉 =
〈λ,w0 w · Y 〉. All the terms of w0w · Y are non-negative and the result for An applies.

To conclude, it suffices to recall that Cn is the root system for sp(n,C). We have W (Cn) = W (Bn),
the only difference is in the relative length of roots ([15, p. 227]).

A.3 Type Dn (so(2n,C))

The Weyl group W is composed by permutations and the signs change by pairs, i.e. of two terms
simultaneously. The positive Weyl chamber a+ is given by the condition

λ1 > λ2 > . . . > λn−1 > |λn|.

Lemma A.7 (The “max principle” forW (Dn)) Suppose that λ, Y ∈ a+ and that λ 6= a (1, . . . , 1,−1).
Suppose that the block of λ1 in λ has length 1 ≤ j0 < n. Suppose also that min{k : (w · Y )k = y1} > j0
or that {k : (w · Y )k = y1} = ∅. Then 〈λ,w · Y 〉 < 〈λ, Y 〉.

P r o o f. Suppose λ and Y are as in the statement of the lemma. If y1 appears in w·Y then 〈λ,w·Y 〉 <
〈λ, Y 〉 by Lemma A.3 so we can assume that only −y1 appears.

Using the standard property of the Weyl group over An, 〈λ,w · Y 〉 ≤ 〈λ,w0 w · Y 〉 where w0 ∈ Sn
re-orders the entries of w · Y in decreasing order. The last entry of w0 w · Y has to be −y1.

We first assume n = 2, or n ≥ 3 and j0 ≤ n − 2. As ±yn ≥ −yi for all i < n, we can suppose that
the (n − 1)-entry is −yi for some i. Using the element w1 of the Weyl group which changes signs and
permutes the last two entries, we have 〈λ,w1 w0 w · Y 〉 − 〈λ,w0 w · Y 〉 = (λn−1 + λn) (y1 + yi) ≥ 0. It is
easy to check that the last inequality is strict if n = 2. Finally, by another application of Lemma A.3,
〈λ,w1 w0 w · Y 〉 < 〈λ, Y 〉 and the result follows.

We next handle the case j0 ≥ n − 1, with n ≥ 3. Let λ = (a, . . . , a, b) with b ∈ (−a, a]. and
n ≥ 3. We will show that ∆ = 〈λ, Y 〉 − 〈λ,w0 w · Y 〉 > 0. If −yn appears in w0w · Y , we have, using∑
i 6=1,n a yi ≥

∑
i 6=1,n a (±yi),

∆ = 〈λ, Y 〉 − 〈λ,w0w · Y 〉 ≥ a y1 + b yn − [a (−yn) + b (−y1)] = (a+ b)(y1 + yn) > 0

where we used the hypothesis b 6= −a and the fact that y1 + yn > 0 (otherwise −yn = y1 appears in
w0w · Y ). If −yn does not appear in w0w · Y , another −yk appears among the n − 1 first entries of
w0w · Y . This time, we obtain ∆ ≥ (a+ b) y1 + a (yk − yn) + a yk + b yn > 0, where we used y1 > 0 (as
Y 6= 0), the hypothesis a+ b > 0, and the inequalities yk ≥ yn, a yk ≥ |b yn|.

Lemma A.8

P r o o f. Note that 〈λ, Y 〉 = (n−1) a b+a b = na b. The only way that 〈λ,w ·Y 〉 = na b is if w ·Y = Y
i.e. w ∈WY = Wλ.

Proposition A.9 Property Killing-max is verified in the case of the root system Dn.

P r o o f. We proceed by induction on n ≥ 2. Given Lemma A.8, if both λ and Y ∈ R (1, . . . , 1,−1)
then there is nothing to prove. Given the symmetry of the problem, if λ ∈ R (1, . . . , 1,−1) and Y 6∈
R (1, . . . , 1,−1), we can switch their roles and suppose that λ /∈ R (1, . . . , 1,−1).

The base case n = 2, in which, by Lemma A.8, we can assume that λ = (λ1, λ2) 6∈ R(1,−1), is clear
by inspection.

Assume the result true for n−1, n ≥ 3. As explained above, we may assume that λ 6∈ R(1, . . . , 1,−1).
By Lemma A.7, the equality (29) implies that “maxλ meets maxY ”. As in the case An, it follows

that there exist permutations σ ∈ Wλ and γ ∈ WY such that (σwγ · Y )1 = y1. We consider λ̃1 =

(λ2, λ3, . . . , λn), Ỹ1 = (Y2, . . . , Yn) and w̃1 = σwγ|ã where ã = {(x2, . . . , xn)| X = (xi)i≥1 ∈ a} and we
use the induction hypothesis or Lemma A.8 depending on the situation.
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A.4 Type F4

We use Helgason [24] and some simple facts about the Weyl group W = W (F4) from [6]. We consider
the simple roots α1 = e2−e3, α2 = e3−e4, α3 = e4 and α4 = (e1−e2−e3−e4)/2 and the corresponding
reflections sαi = si. It follows that a+ = {(x1, x2, x3, x4) : x1 > x2 + x3 + x4, x2 > x3 > x4 > 0}.

Denote α12 = e1 − e2 and s12 = sα12
. Note that α12 = α2 + 2α3 +α4 is a positive root. It is easy to

check that

s3 s4 s12 = s2 s3 s4 (30)

by inspection or using [6, Table 1] on the basis (ei).

Let X = (x1, x2, x3, x4) with x1 ≥ x2 ≥ x3 ≥ x4 ≥ 0, i.e. X ∈ a+(B4). We define WB4

X ⊂ W (B4) as
the subgroup generated by a subset of the symmetries s ∈ {s12, s1, s2, s3} such that s(X) = X.

Lemma A.10 Let λ ∈ a+(B4). Then WB4

λ ⊂Wλ.

P r o o f. Clear from the definition of WB4

λ .

Let α, β, γ denote the three sets of roots of F4 defined in [6, p. 85], with α = (±ei)
4
i=1. Let δ,

η ∈ {α, β, γ} and Wδη = {w ∈ W : w(δ) = η}. By [6], we have W = Wαα ∪Wαβ ∪Wαγ . In order to

describe the action of w ∈ W , we define wα0 = id, wβ0 = s3 s4 and wγ0 = s4. Then, by [6, Table 1], we
have wδ0(α) = δ with δ ∈ {α, β, γ}.

The following result is proven in [6]. Recall that W (B4) is the group of signed permutations of 4
elements.

Lemma A.11 Let δ ∈ {α, β, γ} and w ∈Wαδ. There exists σ ∈W (B4) such that if Y =
∑4
i=1 yi ei,

then w · Y =
∑4
i=1 yσ(i) w

δ
0(ei). Equivalently, (wδ0)−1 w is a signed permutation with respect to the basis

(ei).

Proposition A.12 Property Killing-max is verified in the case of the root system F4.

P r o o f. Suppose that λ =
∑4
i=1 λi ei, Y =

∑4
i=1 yi ei ∈ a+(F4) are singular. Our objective is to

solve the equation (29). We will assume from now on that (29) holds. We consider the three cases
w ∈Wαδ, where δ = α, β, γ.

If w ∈ Wαα, we note that a+(F4) ⊂ a+(B4). Lemma A.11, Proposition A.6 and Lemma A.10 imply

that w ∈WB4

λ WB4

Y ⊂WλWY .

In the case w ∈ Wαβ , we use w0 = wβ0 = s3 s4. If λ =
∑4
i=1 λi ei ∈ a+(F4) then λ′ = w−1

0 · λ =∑4
i=1 λ

′
i ei with λ′1 ≥ λ′2 ≥ λ′3 ≥ λ′4 ≥ 0 since

λ′ =
1

2
[(λ1+λ2+λ3−λ4) e1+(λ1+λ2−λ3+λ4) e2+(λ1−λ2+λ3+λ4) e3+(λ1−λ2−λ3−λ4) e4].

(31)

Using (29), Lemma A.11 and the standard property of the Killing form for B4, we have

〈λ, Y 〉 = 〈λ,w · Y 〉 = 〈w−1
0 · λ,w−1

0 w · Y 〉 ≤ 〈w−1
0 · λ, Y 〉 = 〈λ,w0 · Y 〉 ≤ 〈λ, Y 〉.

This means that 〈λ′, w−1
0 w · Y 〉 = 〈λ′, Y 〉 and therefore that w ∈ w0W

B4

λ′ W
B4

Y by Proposition A.6.
We reason similarly if w ∈Wαγ , with w0 = wγ0 = s4 and

λ′ = s4(λ) =
1

2
[(λ1 + λ2 + λ3 + λ4) e1 + (λ1 + λ2 − λ3 − λ4) e2 + (λ1 − λ2 + λ3 − λ4) e3

+ (λ1 − λ2 − λ3 + λ4) e4].

It therefore follows that w ∈ w0W
B4

λ′ W
B4

Y with λ′ = w−1
0 · λ.
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It is important to note that a feature of both cases w ∈Wαβ and w ∈Wαγ implies that the respective
w0 satisfy 〈λ, Y 〉 = 〈λ,w0 · Y 〉. It follows that these cases do not occur if α4 6∈ Σλ ∪ ΣY . Indeed, using

the formula si(X) = X − 2 αi(X)
‖αi‖2 αi, we have for wβ0 = s3 s4 and for wγ0 = s4,

〈λ, Y 〉 − 〈λ, s3 s4 Y 〉 = 2α4(λ)α4(Y ) + 2α3(λ)α3(Y ) + 2α3(λ)α4(Y ) (32)

〈λ, Y 〉 − 〈λ, s4 Y 〉 = 2α4(λ)α4(Y )

Thus 〈λ, Y 〉 6= 〈λ,w0 ·Y 〉 if α4 6∈ Σλ ∪ΣY and w ∈Wαβ or w ∈Wαγ . We showed above that in the case
w ∈Wαα, formula (29) implies that w ∈WλWY . The Proposition is thus proven for α4 6∈ Σλ ∪ ΣY .

It remains to treat the cases α4 ∈ Σλ or α4 ∈ ΣY . By symmetry of the problem (29), it is sufficient
to treat the case α4 ∈ Σλ, for any singular Y . We assume henceforth that α4 ∈ Σλ.

We showed above that in the case w ∈Wαα, formula (29) implies that w ∈WλWY .
If w ∈ Wαγ , we have w0 = wγ0 = s4 and therefore λ′ = s4 · λ = λ since α4 ∈ Σλ. Since s4 ∈ Wλ, we

have w ∈ s4W
B4

λ′ W
B4

Y = s4W
B4

λ WB4

Y ⊂WλWY .

Suppose that w ∈Wαβ and recall that w0 = wβ0 = s3 s4. By (32), we have the following two cases:
(A) α3(λ) = 0 or (B) α3(λ) 6= 0, α3(Y ) = 0 and α4(Y ) = 0.
In the case (A), we have w−1

0 · λ = λ i.e. λ′ = λ and s3 s4 ∈ Wλ. Therefore, we have w ∈
s3 s4W

B4

λ′ W
B4

Y = s3 s4W
B4

λ WB4

Y ⊂WλWY .
In the case (B), we compute using (31), λ′ = (λ2 + λ3, λ2 + λ4, λ3 + λ4, 0), where λ4 > 0. We will

be using s3 defined by s3(x1, x2, x3, x4) = (x1, x2, x3,−x4). Note that s3 · Y = Y since y4 = α3(Y ) = 0,
and that s3 commutes with s1 and s12. We consider the following mutually exclusive cases (B1)–(B4):

(B1) Σλ = {α4}: in that case, WB4

λ′ = {id, s3} and w ∈ s3 s4W
B4

λ′ W
B4

Y ⊂WY .

(B2) Σλ = {α1, α4}, i.e. λ2 = λ3 > λ4 > 0: in that case, WB4

λ′ = {id, s1} {id, s3}.
Since s1 commutes with s3 and s4, we have w ∈ {id, s1} s3 s4 {id, s3}WB4

Y ⊂WλWY .

(B3) Σλ = {α2, α4}, i.e. λ3 = λ4 > 0: in that case, WB4

λ′ = {id, s12} {id, s3}. Using (30), we find

that w ∈ {id, s2}s3 s4{id, s3}WB4

Y ⊂WλWY .

(B4) Σλ = {α1, α2, α4}, i.e. λ2 = λ3 = λ4 > 0: in that case, WB4

λ′ = {id, s12, s1, s12s1, s1s12, s1s12s1} {id, s3}.
Similarly as in (B2) and (B3), we verify that s3 s4W

B4

λ′ ⊂ WλWY . For example, s3 s4(s1s12s1) =

s1 s3 s4s12s1 = s1 s2 s3 s4 s1 = s1 s2 s1 s3 s4 ∈ WλWY . Thus (29) implies that w ∈ s3 s4W
B4

λ′ W
B4

Y ⊂
WλWY .

A.5 Type G2

The Cartan space is given by a(G2) = {HA,B = (A,B,A − B, 0, B − A,−B,−A) | A,B ∈ R} and two
simple positive roots are α(HA,B) = A−B and β(HA,B) = B − (A−B) = 2B −A. Consequently, the
positive Weyl chamber is given by a+ = {HA,B | A > B > A−B > 0}.

Note that it is sufficient to work on the space a = {hA,B = (A,B,A − B) : A,B ∈ R} which is
isomorphic to a(G2). We will work on this space a from now on. Observe also that the Weyl group
W is generated by sα which interchanges the first two entries and changes the sign of the third and
sβ = (2, 3), so it is included in S3 o {1,−1}3. This inclusion is strict: the group W has 12 elements and
S3 o {1,−1}3 has 6× 23 = 48 elements.

Proposition A.13 Property Killing-max is verified in the case of the root system G2.

P r o o f. Given that the root system is of rank 2, we only need to consider three cases of singular λ
and Y :

(C1) α(λ) = α(Y ) = 0: We have λ = (l, l, 0), Y = (y, y, 0), l, y > 0 and 〈λ,w · Y 〉 = 〈λ, Y 〉 = 2 l y. It
follows that 0 in Y cannot change position in w · Y and no y can become −y, so w · Y = Y and
w ∈WY .

(C2) α(λ) = β(Y ) = 0: We have λ = (l, l, 0), Y = (2 y, y, y), l, y > 0 and 〈λ,w · Y 〉 = 〈λ, Y 〉 = 3 l y.
Then no minus sign is possible in the first two terms of w ·Y and 2 y cannot go to the third position.
Consequently, using the fact that (hA,B)3 = (hA,B)1− (hA,B)2, we find that w · Y = (2 y, y, y) = Y
(so w ∈WY ) or w ·Y = (y, 2 y,−y) = sαY , which implies that sαw ∈WY and w ∈ sαWY ⊂WλWY .
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(C3) β(λ) = β(Y ) = 0: We have λ = (2 l, l, l), Y = (2 y, y, y), l, y > 0. Then 2 y must remain in the first
position in w · Y and no sign change can happen, thus w · Y = Y and w ∈WY .
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