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INTEGRAL KERNELS ON COMPLEX SYMMETRIC SPACES AND FOR THE DYSON

BROWNIAN MOTION

P. GRACZYK AND P. SAWYER

Abstract. In this article, we consider flat and curved Riemannian symmetric spaces in the complex case and we
study their basic integral kernels, in potential and spherical analysis: heat, Newton, Poisson kernels and spherical

functions, i.e. the kernel of the spherical Fourier transform.

We introduce and exploit a simple new method of construction of these W -invariant kernels by alternating sums.
We then use the alternating sum representation of these kernels to obtain their asymptotic behavior. We apply our

results to the Dyson Brownian Motion on Rd.

1. Introduction and notations

Analysis on Riemannian symmetric spaces of Euclidean type, also called flat symmetric spaces, continues to
develop in recent years ([12, 14, 26, 27]). Its importance is due to its relationship with Dunkl analysis ([6, 23]),
in which symmetric spaces of Euclidean type constitute the “geometric case”, frequently used as a model case in
most challenging open problems of Dunkl theory. A much less known application of symmetric spaces of Euclidean
type is stochastic analysis of Dyson Brownian Motion, one of the most important models of non-colliding particles
(see e.g. [19]).

The objective of this paper is to study basic integral kernels, in potential theory and spherical analysis: heat,
Newton, Poisson kernels, Green function and spherical functions (i.e. the kernel of the spherical Fourier transform),
in the set-up of flat and curved symmetric spaces of complex type.

Our main results on the exact form and asymptotics of the heat, Poisson and Newton kernels (Theorems 2.1, 4.9,
4.11 and Corollaries 6.5 and 6.6) are crucial for the future development of the potential theory on flat and curved
symmetric spaces of complex type, and for the potential theory of the Dyson Brownian Motion. These results are
a starting point of research and a source of conjectures for the corresponding kernels in the Weyl-invariant Dunkl
setting (for the rank one case, refer to [11]).

The main result on asymptotics of the spherical functions contained in Theorem 5.5 is important from the point
of view of spherical analysis on symmetric spaces, because it generalizes significantly the results of Helgason in
[14], of Narayanana, Pasquale and Pusti in [21] and of Schapira in [25], for the flat and curved symmetric spaces
in the complex case, cf. Remark 5.9.

We recall now some basic terminology and facts about symmetric spaces associated to Cartan motion groups.
Let G be a semisimple Lie group and let g = k⊕p be the Cartan decomposition of G. We recall the definition of

the Cartan motion group and the flat symmetric space associated with the semisimple Lie group G with maximal
compact subgroup K. The Cartan motion group is the semi-direct product G0 = K o p where the multiplication
is defined by (k1, X1) · (k2, X2) = (k1 k2, Ad(k1)(X2) +X1). The associated flat symmetric space is then M = p '
G0/K (the action of G0 on p is given by (k,X) · Y = Ad(k)(Y ) +X).

The spherical functions for the symmetric space M are then given by

(1.1) ψλ(X) =

∫
K

eλ( Ad(k)(X)) dk

where λ is a complex linear functional on a ⊂ p, a Cartan subalgebra of the Lie algebra of G. To extend λ to
X ∈ Ad(K)a = p, one uses λ(X) = λ(πa(X)) where πa is the orthogonal projection with respect to the Killing
form (denoted throughout this paper by 〈·, ·〉). Note also that the spherical function for the symmetric space G/K
is given by

(1.2) φλ(g) =

∫
K

e(λ−ρ)(H(g k)) dg

1
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where λ is a complex linear functional on a and the map H is defined via the Iwasawa decomposition of G, namely
g = k eH(g) n ∈ KAN and ρ = (1/2)

∑
α>0 mα α. Note that in [14, 15, 16], λ is replaced by i λ.

Throughout this paper, we suppose that G is a semisimple complex Lie group. The complex root systems are
respectively An for n ≥ 1 (where p consists of the n × n hermitian matrices with trace 0), Bn for n ≥ 2 (where
p = i so(2n + 1)), Cn for n ≥ 3 (where p = i sp(n)) and Dn for n ≥ 4 (where p = i so(2n)) for the classical cases
and the exceptional root systems E6, E7, E8, F4 and G2.

Let ∆ be the Laplace-Beltrami operator on M and ∆W its restriction to W -invariant functions on a where W
is the corresponding Weyl group. Recall the formula

(1.3) ∆W f = π−1 ∆Rd

(π f),

where π(X) =
∏
α>0 α(X) (see [16, Chap. II, Theorem 5.37]) in the Euclidean case.

In Section 2, we introduce and exploit a simple new method of construction of important W -invariant kernels
on the space M . This approach will allow us to provide asymptotic for these kernels. This method uses the simple
form of the operator ∆W given in (1.3) and our knowledge of the counterparts of the kernels on Rd as given in
Table 1.

We also apply our method to provide a new derivation of the formula for the spherical functions (1.1) in the
complex case. We conclude Section 2 by discussing other formulas for the heat kernel in the flat case.

In Section 3, we discuss the corresponding formulas in the curved case still based on the method of alternating
sums. This approach lends itself well in the case of the heat kernel and for the spherical functions. For the Newton
kernel, the formulas are more complicated and in the case of the Poisson kernels, the answer does not seem to be
known.

In Section 4, we discuss the asymptotic behaviour of the Poisson kernel especially when one or both arguments
are singular. These results translate well to the Newton kernel.

In Section 5, we compute asymptotics for the spherical functions ψλ(Y ) which can prove challenging when either
λ or Y are singular. Our results depend on a property we call “Killing-max” namely the property that for X,
Y ∈ a+, 〈X,w · Y 〉 = 〈X,Y 〉 if and only if w ∈ WXWY where WX = {w ∈ W : w ·X = X}. It is known that this
property is verified when either X or Y is non singular [14]. We prove in Appendix A, using the classification of
Lie algebras, that the Killing-max holds in almost all cases (only in the cases related to the root systems E6, E7

and E8 is the question left unanswered).
We conclude with Section 6 where we apply the previous results to the heat kernel and Poisson and Newton

kernels for the Dyson Brownian Motion.

2. Kernels on flat symmetric spaces in the complex case

2.1. Definitions. We first recall the classical integral kernels on Rd in Table 1.
The integral kernels on the flat symmetric space M are considered with respect to the invariant measure µ(dY ) =

π2(Y ) dY on M . Their definition is much the same as in the first column of Table 1 except that the operator ∆W

in (1.3) is used in place of ∆Rd

and that the measure dY in column 3 of that table is replaced by the measure
µ(dY ). We will use the superscript W to distinguish these operators from their Euclidean counterparts given in
Table 1. Recall also the formula

(2.1) NW (X,Y ) =

∫ ∞
0

pWt (X,Y ) dt

which has a counterpart in the Euclidean case.

2.2. The method of alternating sums for constructing kernels on M . This method will be introduced and
used in the proof of Theorem 2.1 below.

Theorem 2.1. Let M be a symmetric space of Euclidean type with G a complex simple Lie group of rank d. Then
the following formulas hold.

(1) The heat kernel on M is given by

pWt (X,Y ) =
1

|W | (4π t)d/2 π(X)π(Y )

∑
w∈W

ε(w)e−
|X−w·Y |2

4 t(2.2)
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PDE Kernel Solution{
∆Rd

u(X, t) = ∂
∂t u(X, t)

limt→0+ u(X, t) = f(X)
pt(X,Y ) =

e−
|X−Y |2

4 t

(4π t)d/2
u(X, t) =

∫
Rd

f(Y ) pt(X,Y ) dY

X ∈ Rd, t > 0{
∆Rd

u(X) = f(X) on Rd

|u(X)| → 0 as X →∞ N(X,Y ) = Φ(X − Y ), u(X) =

∫
Rd

f(Y )N(X,Y ) dY{
∆Rd

u(X) = 0 on B(x0, r)
u(X) = f(X) on ∂B(x0, r)

P (X,Y ) =
r2 − |X −X0|2

wd r |X − Y |d
u(X) =

∫
∂B(x0,r)

f(Y )P (X,Y ) dY{
∆Rd

u(X) = f(X) on B = B(0, 1)
u(X) = 0 on ∂B

GB(X,Y ) = Φ(X − Y ) u(X) =

∫
∂B

f(Y )GB(X,Y ) dY

−Φ(|X| (Y −X/|X|2))

where wd = 2πd/2/Γ(d/2) (the surface area of a sphere of radius 1 in Rd) and

Φ(X) =

{ 1
2π ln |X| if d = 2

1
(2−d)wd

|X|2−d if d ≥ 3
.

Table 1. The heat kernel pt, the Newton kernel N , the Poisson kernel P and the Green kernel
GB for Rd

(2) The Newton kernel on M is given by

NW (X,Y ) =
1

4π π(X)π(Y )

∑
w∈W

ε(w) ln |X − w · Y | when d = 2,(2.3)

NW (X,Y ) =
1

|W | (2− d)wd π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d−2
when d ≥ 3.

(3) The Poisson kernel of the open unit ball B is given for X ∈ B and Y ∈ ∂B by

PW (X,Y ) =
1− |X|2

|W |wd π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d
(2.4)

(4) The Green function of the unit ball is given by

GWB (X,Y ) =
1

|W |π(X)π(Y )

∑
w∈W

ε(w)GB(X,Y ),(2.5)

where GB(X,Y ) is the classical Green function of the unit ball B in Rd (refer to Table 1).

Proof. It is based on the following steps:

(1) Write a kernel on Rd where d is the rank of M ;
(2) Exploit the formula (1.3);
(3) Apply the W -invariance (the kernels on M must be W -invariant).

We give the proof in the Poisson kernel case; the other proofs are similar. The Poisson kernel of B(0, 1) in the
Euclidean case is

P (X,Y ) =
1− |X|2

wd |X − Y |d
.

If f is harmonic with respect to ∆W then π f is harmonic with respect to ∆Rd

. Hence

π(X) f(X) =

∫
∂B

1− |X|2

wd |X − Y |d
π(Y ) f(Y ) dY.

This is equivalent to

f(X) =

∫
∂B

1− |X|2

wd π(X)π(Y )

1

|X − Y |d
f(Y )π(Y )2 dY.
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The reproducing kernel 1−|X|2
wd π(X)π(Y )

1
|X−Y |d is not W -invariant. We write the last equation |W | times, replacing

X by w ·X

f(X) = f(w ·X) =

∫
∂B

1− |X|2

wd π(w ·X)π(Y )

1

|w ·X − Y |d
f(Y )π(Y )2 dY

=

∫
∂B

1− |X|2

wd π(X)π(Y )

ε(w)

|X − w · Y |d
f(Y )π(Y )2 dY

and we sum up the |W | equations. We obtain

f(X) =
1

|W |wd

∫
∂B

1− |X|2

π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d
f(Y )π(Y )2 dY.

�

For the root systems of type A, we obtain the following determinantal formula for the heat kernel on M .

Corollary 2.2. Consider the complex flat symmetric space M with the root system Σ = Ad. Let gt(u, v) =
1√
4π t

e−|u−v|
2/4t be the 1-dimensional classical heat kernel. The heat kernel on M is given by

pWt (X,Y ) =
1

|W |π(X)π(Y )
det (gt(xi, yj)) .(2.6)

Proof. Formula (2.6) follows from Theorem 2.1(1) and the definition of determinant. �

Let us resume the method of alternating sums, applied in the proof of Theorem 2.1. An Euclidean kernel

KRd

(X,Y ) (heat kernel, potential kernel, Poisson kernel, . . . ) for the Laplacian ∆Rd

is transformed in the following
way into the kernel KW acting on W -invariant functions on M :

(2.7) KW (X,Y ) =
1

|W |π(X)π(Y )

∑
w∈W

ε(w)KRd(X,w · Y ).

The formulas (2.2)-(2.6) are new. However, in the harmonic analysis of flat symmetric spaces of complex type
the alternating sum formula (2.8) for a spherical function on M given below is well known (see [16, Chap. IV,
Proposition 4.10]). Our method leading to formula (2.7) will allow us to give a new simple proof of formula (2.8)
given below.

We preface the result by a technical lemma which gives the values of alternating sums of the powers of the scalar
product 〈λ,X〉.

Lemma 2.3. Let γ be the number of positive roots and k ∈ N.

(i) When k = 0, 1, . . .γ − 1, we have
∑
w∈W ε(w) 〈λ,w ·X〉k = 0 for all λ and x.

(ii)
∑
w∈W ε(w) 〈λ,w ·X〉γ = 2γγ!

π(ρ) π(λ)π(X) for all λ and x.

(iii) If k ≥ γ + 1 and λ = 0 or X = 0 then∑
w∈W ε(w) 〈λ,w ·X〉k

π(λ)π(X)
= 0.

Proof. The polynomial Sk(λ,X) =
∑
w∈W ε(w)〈λ,w ·X〉k is skew-symmetric in λ and X and therefore it can be

factorized as Sk(λ,X) = π(λ)π(X)Rk(λ,X) where Rk(λ,X) is a polynomial.
When k ≤ γ − 1, the degree of Sk(λ,X) is at most k in λ and k in X, whereas the degree of π(λ)π(X) equals

γ in λ and γ in X. Thus Sk(λ,X) = 0.
When k ≥ γ + 1 and s, t ≥ 0, the numerator Sk(λ,X) satisfies Sk(sλ, tX) = sktkSk(λ,X), so Rk(sλ, tX) =

sk−γtk−γRk(λ,X) and thus Rk(0, X) = 0, Rk(λ, 0) = 0 and (iii) follows.
When k = γ we have Sγ(λ,X) = C π(λ)π(X). We use the differential operator ∂(π) verifying

∂(π)|λ e
〈λ,X〉 = π(X)e〈λ,X〉.
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By comparing the terms which are constant in λ on both sides of this equality and using an argument by
homogeneity, we obtain

∂(π)|λ 〈λ,X〉
γ = γ!π(X) and ∂(π)|λ Sγ(λ,X) = γ!

∑
w∈W

ε(w)π(w ·X) = γ!|W |π(X) 6= 0.

In order to determine the constant C, we apply the operator ∂(π) to both sides of the last equality and use the
formula

∂(π)π =
|W |π(ρ)

2γ
,

see [16, Chap. II, Cor. 5.36] (note that a different normalization of ρ is used in Helgason’s book). �

Proposition 2.4. A spherical function ψλ(X) on M is given by the formula

(2.8) ψλ(X) =
π(ρ)

2γπ(λ)π(X)

∑
w∈W

ε(w)e〈λ,w·X〉,

where ρ = 1
2

∑
α∈Σ+ mαα =

∑
α∈Σ+ α and γ = |Σ+| is the number of positive roots.

Proof. We give a new simple proof of formula (2.8), based on the method of alternating sums. We start with the
property

∆Rd

X e〈λ,X〉 = |λ|2 e〈λ,w·X〉

Similarly as in the proof of Theorem 2.1, we obtain that

∆W
X

(∑
w∈W ε(w) e〈λ,X〉

π(X)

)
= |λ|2

∑
w∈W ε(w) e〈λ,X〉

π(X)
.

By Lemma 2.3, ∑
w∈W

ε(w) e〈λ,X〉

π(X)

∣∣∣∣∣
X=0

=
2γ π(λ)

π(ρ)
.

Thus ψ(X) = π(ρ)
2γ π(λ)π(X)

∑
w∈W ε(w)e〈λ,w·X〉 is a W -invariant function such that ∆Wψ = |λ|2ψ and ψ(0) = 1.

This means that ψ = ψλ. �

2.3. Relations between the heat kernel and spherical functions. In this section we give formulas relating
the heat kernel pWt (X,Y ) with the spherical functions on M .

Proposition 2.5. Let M be a flat symmetric space of complex type. The following formula holds

(2.9) pt(X,Y ) =
1

|W | 2d πd/2 π(ρ)
t−

d
2−γ e

−|X|2−|Y |2
4t ψX

(
Y

2t

)
.

Proof. We start with formula (2.2), in which we write

e−
|X−w·Y |2

4 t = e
−|X|2−|Y |2

4t e
〈X,w·Y 〉

2t .

By formula (2.8) we obtain

1

π(X)π(Y )

∑
w∈W

ε(w) e
〈X,w·Y 〉

2t =
1

(2 t)γ π(X)π
(
Y
2t

) ∑
w∈W

ε(w) e
〈X,w·Y 〉

2t = t−γ
1

π(ρ)
ψX

(
Y

2t

)
.

and formula (2.9) follows. �

Let us finish by pointing out other formulas relating the heat kernel pt(X,Y ) with the centered heat kernel
ht(X) = pt(X, 0), with the product formula kernel k(H,x, y) and with the spherical functions ψλ.

The density ht(X) = pt(X, 0) is well known when G is a semisimple complex Lie group; we can simply deduce
it from formula (2.9)

ht(X) = pt(X, 0) =
1

|W | 2d πd/2 π(ρ)
t−

d
2−γ e−|X|

2/(4 t).(2.10)
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Remark 2.6. The passage from ht(X) to pt(X,Y ) is well understood at the group level:

pt(g, h) = ht(h
−1g),

which is equivalent to

pt(X,Y ) =

∫
K

ht(e
−Y k−1 eX) dk

and to

pt(X,Y ) =

∫
a

ht(H) k(H,−Y,X)π(H) dH,(2.11)

where the last formula contains the product formula kernel k which is defined by∫
a

ψλ(eH) k(H,X, Y )π(H) dH = ψλ(eX)ψλ(eY ) =

∫
K

ψλ(eX k eY ) dk.

Although we provide a more direct proof, the preceding remark was instrumental in obtaining the next result.

Proposition 2.7. The following formula holds:

(2.12) pt(X,Y ) = C

∫
a

e−|λ|
2t ψi λ(X)ψ−i λ(Y )π(λ)2 dλ

where C > 0.

Proof. We show that the right hand side of equation (2.12) satisfies the definition of the heat kernel. For a test
function f , consider

u(X, t) = C

∫
a

∫
a

e−|λ|
2t ψi λ(X)ψ−i λ(Y )K π(λ)2 dλ f(Y )π(Y )2 dY

where K π(λ)2 dλ is Plancherel measure.
The fact that ∆W u(X, t) = ∂

∂t u(X, t) follows easily from the fact that ∆W ψi λ(X) = −|λ|2 ψi λ(X) and
∂
∂t e
−|λ|2t = e−|λ|

2t. Now, using Fubini’s theorem,

u(X, t) = C K

∫
a

e−|λ|
2t

[∫
a

ψ−i λ(Y ) f(Y )π(Y )2 dY

]
ψi λ(X)π(λ)2 dλ

= C K

∫
a

e−|λ|
2t f̃(λ)ψi λ(X)π(λ)2 dλ

which tends to f(X) as t→∞ by the dominated convergence theorem. �

Remark 2.8. In the above reasoning, the constant C depends on the normalization of the various measures (refer
to [16, Theorem 7.5]). In order to be consistent with our previous formulas for pt, we need

C =
(−1)γ 4γ

|W |2 2d πd π(ρ)2
.

To see this, it suffices to let Y = 0 in (2.12), integrate with respect to λ and compare the result with (2.10).

Formula (2.12), after necessary adaptations, is true in the whole generality of Riemannian symmetric spaces
(the proof is essentially the same as for Proposition 2.7):

Proposition 2.9. The following formula holds

(2.13) pt(X,Y ) = C

∫
a∗
e−(|λ|2+|ρ|2) t φi λ(X)φ−i λ(Y )

dλ

|c(λ)|2
.

Remark 2.10. The heat kernel estimates on symmetric spaces ([1] and references therein) are based on the inverse
spherical Fourier transform formula

ht(X) = C

∫
a

e−(|λ|2+|ρ|2) t φi λ(X)
dλ

|c(λ)|2
,

which is a special case of (2.13) when Y = 0. Thus one may hope that estimates of pt(X,Y ) can be deduced from
(2.13).



INTEGRAL KERNELS ON COMPLEX SYMMETRIC SPACES AND FOR THE DYSON BROWNIAN MOTION 7

3. Curved symmetric spaces X = G/K with G complex

The alternating sum formulas given in Section 2.2 have analogs in the curved complex case, considered in this
section. To underline the difference with the flat case, we denote the spherical and potential analysis objects on X
with a tilde (̃ ). The kernels in this section are with respect to the invariant measure δ(Y ) dY where

δ(Y ) =
∏
α>0

sinh2 α(Y ).

The following method of construction of kernels is similar to the one presented in Section 2.2.

(1) Exploit the formula for the Laplace-Beltrami operator on X ([16, Chap. II, Theorem 5.37]):

∆̃W f = δ−1/2 (∆Rd

− |ρ|2)(δ1/2 f)

(2) Apply the W -invariance.

In this way, the Euclidean kernel K
∆Rd−|ρ|2(X,Y ) (heat, potential, Poisson, . . . ) for the operator ∆Rd − |ρ|2 is

transformed into the kernels K̃ for G/K:

(3.1) K̃(X,Y ) =
1

δ1/2(X) δ1/2(Y )

∑
w∈W

ε(w)K
∆Rd−|ρ|2(X,w · Y ).

3.1. The heat kernel.

Proposition 3.1. The following formula holds for the heat kernel of symmetric spaces of non-Euclidean type with
G complex

p̃t(X,Y ) =
e−|ρ|

2t

|W | (4π t)d/2 δ1/2(X) δ1/2(Y )

∑
w∈W

ε(w) e−
|X−w·Y |2

4 t .(3.2)

Proof. Let pt(X,Y ) be the Euclidean heat kernel. Then the heat kernel for ∆Rd − |ρ|2 is

e−|ρ|
2tpt(X,Y ).

We apply the construction (3.1) to the kernel e−|ρ|
2t pt(X,Y ). �

For the root systems of type A, we obtain the following determinantal formula for the heat kernel on X.

Corollary 3.2. Consider the complex curved symmetric space X with the root system Σ = Ad. Let gt(u, v) =
1√
4π t

e−|u−v|
2/4t be the 1-dimensional classical heat kernel. The heat kernel on M is given by

p̃t(X,Y ) =
e−|ρ|

2t

|W | δ1/2(X) δ1/2(Y )
det (gt(xi, yj)) .(3.3)

Proof. Formula (3.3) follows from Proposition 3.1 and the definition of determinant. �

Proposition 3.3. Relation between heat kernels in the flat and curved cases. We have

p̃t(X,Y ) = e−|ρ|
2t π(X)π(Y )

δ1/2(X) δ1/2(Y )
pWt (X,Y ).(3.4)

Proof. We compare the formulas (3.2) and (2.2). �

Proposition 3.4. Relation between heat kernel and spherical functions in the curved case. Let X be
a curved symmetric space of complex type. Let φλ denote a spherical function on X. The following formula holds

(3.5) p̃t(X,Y ) =
2γ−d

|W |πd/2 π(ρ)
t−

d
2−γ e

−|X|2−|Y |2
4t φX

(
Y

2t

)
f(t, x, y)

where the correction factor f(t, x, y) equals

f(t, x, y) =
π(X) tγ δ1/2

(
Y
2t

)
δ1/2(X) δ1/2(Y )

.
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Proof. We use formulas (2.9), (3.4) and the formula relating spherical functions in the flat and curved cases (refer
to [12, 16]). �

The density h̃t(X) = p̃t(X, 0) is well known (refer to [9]). We can deduce it from formula (3.5), taking the limit
as Y → 0

h̃t(X) = p̃t(X, 0) =
2−d

|W |π(ρ)πd/2
t−

d
2−γe

−|X|2
4t

π(X)

δ1/2(X)
.

The passage from h̃t(X) to p̃t(X,Y ) is well known at the group level:

p̃t(g, h) = h̃t(h
−1g),

which is equivalent to

p̃t(X,Y ) =

∫
K

h̃t(e
−Y k−1 eX) dk

and to

p̃t(X,Y ) =

∫
a

h̃t(H) k(H,−Y,X) δ(H) dH,(3.6)

where the last formula contains the product formula kernel k which is defined by∫
a

φλ(eH) k(H,X, Y ) δ(H) dH = φλ(eX)φλ(eY ) =

∫
K

φλ(eX k eY ) dk.

3.2. Other kernels. In order to express the potential kernel Ñ(X,Y ) by the formula (3.1), we need to know the

Newton kernel of the Schrödinger operator ∆Rd − |ρ|2, i.e. the |ρ|2-potential (|ρ|2-resolvent) of ∆Rd

This can be
computed, and the answer contains the Bessel function of third type Kn/2 (refer to [1])

For the Poisson kernel, we need to know the Poisson kernel for the Schrödinger operator ∆Rd − |ρ|2. This result
does not seem to be known, despite the fact that the analytic and stochastic theory of Schrödinger operator is very
well developed [3].

4. Asymptotic behavior of the kernels

To simplify the notation, we will write f
Y0∼ g if limX→Y0

f(X)
g(X) = 1.

The main results of this Section are Theorems 4.9 and 4.11 which give asymptotics of the Poisson and Newton
kernels of the flat symmetric complex space M . In their proofs, we need some knowledge of Dunkl analysis on Rd.

Consider Rd with a root system Σ. The basic information on the Dunkl analysis in this context can be found
in [23]. Denote the Dunkl Laplacian by ∆k and the intertwining operator by Vk.

Recall now the formula of Dunkl ([5, 6]) for the Dunkl-Poisson kernel of the unit centered open ball B = B(0, 1).

(4.1) Pk(X,Y ) =
22 γ (d/2)γ
π(ρ) |W |wd

Vk

[
1− |X|2

(1− 2〈X, ·〉+ |X|2)γ+d/2

]
(Y ), X ∈ B, Y ∈ ∂B, γ =

1

2

∑
α∈R

kα.

The complex flat symmetric spaces M correspond to the formula (4.1) in the W -invariant case and with kα = 1.
Then γ = |Σ+| expresses the number of positive roots.

A formula for the Dunkl-Newton kernel Nk(X,Y ), analogous to (4.1), was proven in [8].

4.1. Poisson kernel of the flat symmetric complex space. The following technical results will prove useful
further on.

Lemma 4.1. ∂(π) |X|−d = 2γ
∏γ−1
k=0 (−d/2− k)π(X) |X|−d−2 γ and ∂(π) log |X| = (−2)γ−1 (γ− 1)!π(X) |X|−2 γ .

Proof. We see easily that |X|d+2 γ ∂(π) |X|−d is a skew polynomial of degree at most γ. It must therefore be a
constant multiple of π(X). The rest follows easily. A similar reasoning applies for the computation of ∂(π) log |X|.

�

Proposition 4.2. Let A(X,Y ) = 1
π(X)π(Y )

∑
w∈W

ε(w)
|X−w·Y |d . Then A(0, Y ) =

22 γ (d/2)γ
π(ρ) |Y |−d−2 γ .
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Proof. Note first that ∂(π)X |X − Y |−d = 2γ
∏γ−1
k=0 (−d/2 − k)π(X − Y ) |X − Y |−d−2 γ . Consider B(X,Y ) =

π(X)A(X,Y ) = 1
π(Y )

∑
w∈W ε(w) |X − w · Y |−d. We apply the differential operator π(∂)|X=0 to B. We find

∂(π)(π)A(0, Y ) = 2γ
γ−1∏
k=0

(−d/2− k)
1

π(Y )

∑
w∈W

ε(w)π(X − w · Y ) |X − w · Y |−d−2 γ

∣∣∣∣∣
X=0

= (−1)γ 2γ
γ−1∏
k=0

(−d/2− k) |W | |Y |−d−2 γ

Finally,

A(0, Y ) =
(−1)γ 2γ

∏γ−1
k=0 (−d/2− k) |W |
∂(π)(π)

|Y |−d−2 γ =
(−1)γ 2γ

∏γ−1
k=0 (−d/2− k) |W |

π(ρ) |W |/2γ
|Y |−d−2 γ

=
22 γ (d/2)γ

π(ρ)
|Y |−d−2 γ .

�

Corollary 4.3. For X 6∈W · Y ,

PW (0, Y ) =
22 γ (d/2)γ

π(ρ)

NW (0, Y ) =
−22 γ−1 (γ − 1)!

4π π(ρ)
|Y |−2 γ if d = 2

NW (0, Y ) =
22 γ ((d− 2)/2)γ
|W | (d− 2)wd π(ρ)

|Y |2−d−2 γ if d ≥ 3

Proposition 4.4. The Poisson kernel of the unit ball on the flat symmetric complex space M is given by

PW (X,Y ) =
22 γ (d/2)γ
π(ρ) |W |wd

A∗
(

1− |X|2

(1− 2 〈X, ·〉+ |X|2)γ+d/2

)
(Y ),(4.2)

where A∗ denotes the dual Abel transform on M .

Recall that the dual of the Abel transform can be defined by the equation

A∗(f)(X) =

∫
K

f(πa( Ad(k)X)) dk

where, as before, πa is the orthogonal projection from p to a with respect to the Killing form. Note in particular
that A∗(eλ(·))(X) = ψλ(X). Note also (see [16, Ch. IV, Theorem 10.11]) that unless C(X) reduces to {X}, there
exists a density K(H,X) such that

A∗(f)(X) =

∫
C(X)

f(H)K(H,X) dH.

Proof of Proposition 4.4. It should be noted that for f Weyl-invariant, A(f) = Vk(f) (refer to [23]). Since the
argument of A∗ in (4.2) is not Weyl-invariant, some proof is needed. Let K(Z, Y ) be the kernel of the Abel
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transform. Using (4.1), we have

PW (X,Y ) =

∑
w,w0∈W P (w ·X,w0 · Y )

|W |2

=
22 γ (d/2)γ
π(ρ) |W |3 wd

∑
w,w0∈W

∫
C(w0·Y )

1− |w ·X|2

(1− 2 〈w ·X,Z〉+ |w ·X|2)γ+d/2
dµw0·Y (Z)

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈w ·X,Z〉+ |X|2)γ+d/2
dµY (w−1

0 · Z)

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

Weyl-invariant︷ ︸︸ ︷∑
w,w0∈W

1

(1− 2 〈w ·X,w0 · Z〉+ |X|2)γ+d/2
dµY (Z)

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈w ·X,w0 · Z〉+ |X|2)γ+d/2
K(Z, Y ) dZ

=
22 γ (d/2)γ
π(ρ) |W |3 wd

, (1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈X,w−1w0 · Z〉+ |X|2)γ+d/2
K(Z, Y ) dZ

=
22 γ (d/2)γ
π(ρ) |W |3 wd

(1− |X|2)

∫
C(Y )

∑
w,w0∈W

1

(1− 2 〈X,Z〉+ |X|2)γ+d/2
K(w−1

0 wZ, Y ) dZ

=
22 γ (d/2)γ
π(ρ) |W |wd

(1− |X|2)

∫
C(Y )

1

(1− 2 〈X,Z〉+ |X|2)γ+d/2
K(Z, Y ) dZ.

Note that Corollary 4.3 explains the origin of our normalizing constant which is different from what is found in
[5, 6] (note that Vk(1) = 1). �

Corollary 4.5. The Newton kernel of the flat symmetric complex space M is given by

NW (X,Y ) =
22 γ ((d− 2)/2)γ
|W | (d− 2)wd π(ρ)

A∗
(

(|Y |2 − 2 〈X, ·〉+ |X|2)(2−d−2 γ)/2
)

(Y ).

Proof. We apply the same computations as for the Poisson kernel to formula [8, (6.1)] (the constant has been
adjusted to follow our conventions as per Corollary 4.3). �

We now start to study the asymptotic behavior of the Poisson kernel PW (X,Y ). Let us introduce some notations.
We define

R(X,Y ) =
∑
w∈W

ε(w)

|X − w · Y |d
and T (X,Y ) =

R(X,Y )

π(X)π(Y )

and therefore,

PW (X,Y ) =
1− |X|2

|W |wd
T (X,Y ).

The function R(X,Y ) is defined for X,Y ∈ a such that X 6∈W · Y = {w · Y | w ∈W}. We will denote this domain
by

D := {(X,Y ) ∈ a2| X 6∈W · Y }
The function T (X,Y ) is, for now, defined for non-singular X, Y ∈ a such that X 6∈WY . We will see in Proposition
4.8 that the function T (X,Y ) extends by continuity to an analytic function on the domain D.

Studying the properties of PW (X,Y ) is equivalent to studying the properties of T (X,Y ) and R(X,Y ). We will
give some of them in Proposition 4.8. We start by introducing two auxiliary results.

Lemma 4.6. Assume a1, . . . , an are not all 0 and let U be an open set. Let q be an analytic function on U which

is 0 whenever
∑d
k=1 a xk = 0. Then q(X) =

(∑d
k=1 a xk

)
r(X) where r is a analytic function on U .
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Proof. Using a change of variable, we can assume that a1 = 1 and ai = 0 for i > 1. It is also enough to show that
for every X0 = (b1, . . . , bn) ∈ U , there exists ε > 0 such that the result holds in the ball B(X0, ε). If X0 6= 0, then
pick ε > 0 small enough so that (x1, . . . , xd) ∈ U implies x1 6= 0. Then we can pick r(X) = q(X)/x1.

Suppose now that b1 = 0. We then have q(x1, . . . , xd) = x1

r(X)︷ ︸︸ ︷∫ 1

0

∂

∂x1
(t x1, x2, . . . , xn) dt for (x1, . . . , xn) ∈

B(X0, r) ⊂ U . �

Proposition 4.7. Let p(X) =
∏d
i=1 〈αi, X〉 where no αi’s is a multiple of another αj and let U be an open set.

If q is an analytic function on U which is 0 whenever αi(X) = 0 for some i then q(X) = p(X) r(X) where r is an
analytic function on U .

Proof. We use induction on n. Lemma 4.6 shows that the result is true for n = 1. Assume it is true for n − 1,
n ≥ 2 and write q(X) =

∏n−1
i=1 〈αi, X〉 r(X). Since q(X) = 0 when 〈αn, X〉 = 0, we conclude that r(X) = 0 on the

set {X|〈αn, X〉 = 0 and 〈αi, X〉 6= 0, i < n}. By continuity, we deduce that r(X) = 0 when 〈αn, X〉 = 0 and, using
Lemma 4.6 once more, we can conclude. �

Proposition 4.8.

(1) (Symmetry in X and Y ) R(X,Y ) = R(Y,X) and T (X,Y ) = T (Y,X).
(2) (Skew-symmetry) R(w0X,Y ) = ε(w0)R(X,Y ) and R(X,w0Y ) = ε(w0)R(X,Y ).
(3) (Nullity of R on singular arguments) R(X,Y ) is zero whenever at least one of X or Y is singular.
(4) (analytic factorization of R, analytic extension of T to D.) There exists a function f analytic on D such

that R(X,Y ) = π(X)π(Y )f(X,Y ) on D. Equivalently, the function T extends to an analytic function on
D.

(5) (Non-nullity of T and PW ) When X ∈ B and Y ∈ ∂B then T (X,Y ) > 0 and PW (X,Y ) > 0.

Proof. The proof of (1) and (2) is straightforward.

(3) Suppose α(Y ) = Y . We use Property 2 and ε(σα) = −1 where σα is the reflection with respect to the
hyperplane {α = 0}. Since R(X,Y )/π(Y ) is analytic, the statement follows.

(4) This follows from Proposition 4.7.
(5) This follows from Proposition 4.4. The dual Abel integral transform of a strictly positive function is strictly

positive.

�

Theorem 4.9. Let Y0 ∈ ∂B, Σ′ = {α ∈ Σ| α(Y0) = 0} and Σ′+ = Σ′ ∩ Σ+. Then

(4.3) PW (X,Y0)
Y0∼ 22 γ′ (d/2)γ′

|W ′|wd π′(ρ′) (π′′(Y0))2

1− |X|2

|X − Y0|2γ′+d

where γ′ = |Σ′+| is the number of positive roots annihilating Y0, W ′ = {w ∈W |w · Y = Y }, π′(Y ) =
∏
α∈Σ′+

〈α, Y 〉
and π′′(Y ) =

∏
α∈Σ+\Σ′+

〈α, Y 〉.

Proof. In this proof, we consider X ∈ V = B(Y0, ε) with ε > 0 fixed and chosen in such a way that

α(V̄ ) ⊂ (0,∞) for α ∈ Σ+ \ Σ′+ and wV ∩ V = ∅ for every w ∈W \W ′.
Using Theorem 2.1, we have

PW (X,Y ) =
1

|W |wd
1− |X|2

π(X)π(Y )

∑
w∈W

ε(w)

|X − w · Y |d
.

We consider X ∈ V \ {Y0} and we deal with

T (X,Y0)=
|W |wd

1− |X|2
PW (X,Y0) =

1

π(X)π(Y0)

∑
w∈W

ε(w)

|X − w · Y0|d
=

R(X,Y0)

π(X)π(Y0)
.(4.4)

By Proposition 4.8 applied to the root systems Σ and Σ′, all the expressions in (4.4) are well defined forX ∈ V \{Y0},
if needed in the limit sense.
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We decompose the sum
∑
w∈W into two terms, the first being the sum over the subgroup W ′ = {w ∈W |w ·Y0 =

Y0} which is the Weyl group of the root subsystem Σ′. We obtain

T (X,Y0) =

∑
w∈W ε(w)|X − w · Y0|−d

π(X)π(Y0)
=

∑
w∈W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
+

∑
w∈W\W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
.

By Proposition 4.8, all the expressions in the last formula are well defined for X ∈ V \ {Y0}, if needed in the limit
sense. Denote

T1(X,Y0) =

∑
w∈W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
and T2(X,Y0) =

∑
w∈W\W ′ ε(w)|X − w · Y0|−d

π(X)π(Y0)
.

Let π′(X) =
∏
α∈Σ′+

α(X) and π′′(X) =
∏
α∈Σ+\Σ′+

α(X). Observe that by Theorem 2.1,

π′′(X)π′′(Y0)T1(X,Y0) =

∑
w∈W ′ ε(w)|X − w · Y0|−d

π′(X)π′(Y0)
=
|W ′|wd
1− |X|2

(PW )Σ′(X,Y0)

where PW
′
(X,Y ) is the Poisson kernel for the flat symmetric space (Rd,Σ′) corresponding to the complex root

system Σ′. The convex envelope C ′(Y0) = conv(W ′ Y0) = {Y0}, so by Proposition 4.4 and the properties of A∗,

1

1− |X|2
PW

′
(X,Y0) =

22 γ′ (d/2)γ′

π(ρ′) |W ′|wd

∫
C(Y0)

1

(1− 2 〈X,Z〉+ |X|2)γ′+d/2
δ{Y0}(dZ)

=
22 γ′ (d/2)γ′

π(ρ′) |W ′|wd
1

|X − Y0|2γ′+d
(4.5)

where X ∈ B ∩ V .
We now prove that the function X 7→ T2(X,Y0) is bounded on V , which, together with (4.5), will conclude the

proof. We denote by

N(X,Y ) =
∑

w∈W\W ′
ε(w)|X − w · Y |−d

the numerator of T2. Observe that N(X,Y ) is an analytic function on V × V . The function

T2(X,Y ) =

∑
w∈W\W ′ ε(w)|X − w · Y |−d

π(X)π(Y )

is well defined and analytic for (X,Y ) ∈ V ×V \D with D = {(X,Y ) ∈ a×a : X = Y }, since T (X,Y ) and T1(X,Y )
have these properties by Proposition 4.8 and T2 = T − T1.

This implies that if X ′ ∈ V or Y ′ ∈ V are singular (i.e. α(X ′) = 0 or α(Y ′) = 0 for some α ∈ Σ′+) and
X ′ 6= Y ′ then the numerator N(X ′, Y ′) = 0 since otherwise the limit N(X,Y )/π(X)π(Y ) could not exist when
(X,Y )→ (X ′, Y ′).

We deduce that if X ′ ∈ V or Y ′ ∈ V and α(X ′) = 0 or α(Y ′) = 0 for some α ∈ Σ′+) then N(X ′, Y ′) = 0. This
is also true for X ′ = Y ′ since such points are limits when t tends to 1 of (tX ′, Y ′) with singular tX ′ 6= Y ′ and
N(tX ′, Y ′) converges to N(X ′, Y ′).

By Proposition 4.7, there exists a function F (X,Y ) analytic on V × V such that

N(X,Y ) = π′(X)π′(Y )F (X,Y ), X, Y ∈ V

and, finally,

T2(X,Y ) =
F (X,Y )

π′′(X)π′′(Y )
, X, Y ∈ V

(we have minX∈V̄ π′′(X) > 0 since π′′(V̄ ) ⊂ (0,∞)). In particular, the function X 7→ T2(X,Y0) is bounded on
V . �

Remark 4.10. For the asymptotic properties of PW , besides the alternating sum formula, the approach via the
Dunkl formula (4.1) and dual Abel transform, i.e. the Proposition 4.2 is needed. We use it to compute the leading
term T1(X,Y ) in T (X,Y ).
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4.2. Asymptotic behavior of the Newton kernel on flat complex symmetric spaces. Using the same
approach as in the proof of Theorem 4.9 together with Corollary 4.5, we conclude that

Theorem 4.11. Let Y0 ∈ a+. If d = 2 and α, β are the simple roots then

NW (X, 0) =
−22 γ−1 (γ − 1)!

4π π(ρ)
|X|−2 γ (case Y0 = 0),

NW (X,Y0)
Y0∼ −2γ−1 (γ − 1)! |W |

4π π′′(Y0)2 〈α, α〉
|X − Y0|−2 where Y0 6= 0, α(Y0) = 0 and β(Y0) 6= 0.

If d ≥ 3

(4.6) NW (X,Y0)
Y0∼ 22 γ′ ((d− 2)/2)γ′

|W ′| (2− d)wd π(ρ′) (π′′(Y0))2

1

|X − Y0|2γ′+d−2

where γ′ = |Σ′+| is the number of positive roots annihilating Y0, W ′ = {w ∈ W |w · Y = Y } and π′′(Y ) =∏
α∈Σ+\Σ′+

〈α, Y 〉.

5. Asymptotic behavior of spherical functions on flat complex symmetric spaces

In this section we consider spherical functions on M , satisfying the formula

(5.1) ψλ(Y ) =
π(ρ)

2γπ(λ)π(Y )

∑
w∈W

ε(w)e〈λ,w·Y 〉, λ ∈ aC, Y ∈ aR.

Note that our notation is different from that of Helgason (in his notation the function given by (5.1) is denoted
ψ−i λ).

The following technical lemma will prove useful later in this section.

Lemma 5.1. Suppose G1 and G2 are subgroups of the finite group G. Then |G1G2| |G1 ∩G2| = |G1| |G2|.

Proof. The group G1 × G2 acts on the set G1G2 ⊂ G via g1, g2)(g) = g1 g g
−1
2 . Clearly the action is transitive.

The stabilizer of e ∈ G1G2 (e being the identity) is easily seen to be isomorphic to G1 ∩G2. The orbit-stabilizer
theorem ([24, Theorem 5.8]) implies then that |G1G2| |G1 ∩G2| = |G1| |G2|. �

We introduce here some notation. If X ∈ a, we denote by Σ+
X the positive root system Σ+

X = {α ∈ Σ+ : α(X) =

0} and by WX the Weyl group generated by the symmetries sα with sα ∈ Σ+
X (consequently, WX = {w ∈W : w·X =

X}). We also write πX(Y ) =
∏
α∈Σ+

X
α(Y ) and cX = ∂(πX)(πX) (this derivative is constant on a).

For X ∈ a we define the polynomial π′X(Y ) by π(Y ) = πX(Y )π′X(Y ). Denote

W (λ0, Y0) = {w ∈W : 〈λ0, w · Y0〉 = 〈λ0, Y0〉}.

Remark 5.2. We conjecture that the property W (λ0, Y0) = Wλ0
WY0

is valid for all root systems. In Appendix A,
we provide a series of proofs that cover all cases except for the exceptional root systems of type E. We also point
out that if one of λ0 or Y0 is regular then this property is also verified, see [14].

Denote the Weyl subgroup Wλ0,Y0
= Wλ0

∩ WY0
= {w ∈ W : w · λ0 = λ0 and w · Y = Y }. The group

Wλ0,Y0 corresponds to the root system Σ+
λ0,Y0

= Σ+
λ0
∩ Σ+

Y0
. We write π0(Y ) = πλ0,Y0(Y ) =

∏
α∈Σ+

λ0,Y0

α(Y )

and cλ0,Y0
= ∂(πλ0,Y0

)(πλ0,Y0
). Denote by M the set of positive roots that are neither in Σ+

λ0
nor in Σ+

Y0
, i.e.

M = Σ+ \ (Σ+
λ0
∪ Σ+

Y0
). We also write πM(X) =

∏
α∈M α(X).

Proposition 5.3.

(i) If w ∈WY then πY (w ·X) = ε(w)πY (X).
(ii) If w ∈WY then πY (∂)[f(w · Y )] = ε(w)(πY (∂)f)(w · Y ).

Proof. The property (i) is well known [15]. The property (ii) is straightforward for f(X) = e〈Z,X〉 and extends by
linear density. �
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Proposition 5.4. Let λ0, Y0 be singular. The asymptotics of ψλ0
(t Y0) when t → ∞ are given by the following

formula:

(5.2) ψλ0(t Y0) ∼ C(λ0, Y0)t|Σ
+
Y0
|−|Σ+| ∑

w∈W (λ0,Y0)

ε(w)πY0(∂Y )
(
πλ0(w · Y )e〈λ0,w·Y 〉

) ∣∣
Y=t Y0

where C(λ0, Y0) = (cλ0
cY0

π′λ0
(λ0)π′Y0

(Y0))−1.
When W (λ0, Y0) = Wλ0

WY0
, the last formula simplifies to

(5.3) ψλ0
(t Y0) ∼ C1(λ0, Y0)t|Σ

+
Y0
|−|Σ+|πY0

(∂Y )
(
πλ0

(Y )e〈λ0,Y 〉
) ∣∣

Y=t Y0

where C1(λ0, Y0) = C(λ0, Y0)|Wλ0
| |WY0

|/|Wλ0,Y0
|.

Proof. We start with the alternating sum formula for the spherical function ψλ, written in the following way

(5.4) π(λ)π(Y )ψλ(Y ) =
∑
w∈W

ε(w)e〈λ,w·Y 〉

We write π(λ) = πλ0(λ)π′λ0
(λ) and π(Y ) = πY0(Y )π′Y0

(Y ). We apply the operator L = πY0(∂Y )πλ0(∂λ) to both

sides of (5.4). Using the fact that πλ0
(∂λ) e〈λ,w·Y 〉 = πλ0

(w · Y )e〈λ,w·Y 〉, we obtain

cλ0 cY0 π
′
λ0

(λ0)π′Y0
(t Y0)ψλ0(t Y0) =

∑
w∈W

ε(w)πY0(∂Y )
(
πλ0(w · Y ) e〈λ0,w·Y 〉

) ∣∣
Y=t Y0

.

In order to get the exact asymptotics of ψλ0(t Y0), we only need to deal with w ∈W such that 〈λ0, w ·Y0〉 = 〈λ0, Y0〉.
This gives the asymptotics (5.2).

We now assume that W (λ0, Y0) = Wλ0
WY0

. The asymptotics (5.2) simplify, since by Proposition 5.3, we obtain
for w = w1 w2 with w1 ∈Wλ0

and w2 ∈WY0

πY0(∂Y )
(
πλ0(w · Y ) e〈λ0,w·Y 〉

)
= ε(w1)πY0(∂Y )

(
πλ0(w2Y ) e〈λ0,w2Y 〉

)
= ε(w1) ε(w2)πY0(∂Y )

(
πλ0(Y ) e〈λ0,Y 〉

)
= ε(w)πY0(∂Y )

(
πλ0(Y ) e〈λ0,Y 〉

)
.

Using Lemma 5.1, we have |Wλ0
WY0
| = |Wλ0

||WY0
|/|Wλ0,Y0

|.. We obtain the formula (5.3). �

Theorem 5.5. Let λ0, Y0 be singular. Assume that W (λ0, Y0) = Wλ0 WY0 . Then the asymptotics of ψλ0(t Y0)
when t→∞ are given by the following formula:

(5.5) ψλ0(t Y0) ∼ D(λ0, Y0) t−m et 〈λ0,Y0〉

where m is the number of positive roots that are neither in Σ+
λ0

nor in Σ+
Y0

i.e.

m = cardM = |Σ|+ − (|Σ+
λ0
|+ |Σ+

Y0
| − |Σ+

λ0
∩ Σ+

Y0
|)

and

D(λ0, Y0) =
cλ0,Y0

cλ0
cY0

|Wλ0 | |WY0 |
|WY0

∩Wλ0
|

1

πM(λ0)πM(Y0)
.

Remark 5.6. When Y0 is regular, the method of proof used in Theorem 4.9 for the asymptotics of the Poisson
kernel could have been used here. When both λ0 and Y0 are singular, that approach fails to apply.

Proof. Using Leibniz formula, we have

πY0
(∂Y )

(
πλ0

(Y ) e〈λ0,Y 〉
) ∣∣

Y=t Y0

= π0(∂Y )
∏

α∈Σ+
Y0
\Σ+

λ0

∂Y (Aα)
(
πλ0

(Y )e〈λ0,Y 〉
) ∣∣

Y=t Y0

= π0(∂Y )

 ∏
α∈Σ+

Y0
\Σ+

λ0

〈λ0, α〉πλ0(Y ) e〈λ0,Y 〉 + P (Y ) e〈λ0,Y 〉

∣∣Y=t Y0
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The number of factors in each term P (Y ) of the form 〈η, Y 〉 where η is a root, is strictly less than the number
of factors in πλ0

i.e. less than |Σ+
λ0
|.

In the expression in the last line, all derivatives involving the term e〈λ0,Y 〉 give 0 since β(λ0) = 0 for β ∈ Σ+
Y0
∩Σ+

λ0
.

In the derivatives of πλ0
(Y ), any term that contains 〈β, Y 〉 with β ∈ Σ+

Y0
∩Σ+

λ0
will be zero when Y is replaced

by t Y0. Thus, for a non-zero result, the operator π0(∂Y ) must be applied to π0(Y ), what gives cλ0,Y0
> 0. We

obtain

πY0
(∂Y )

(
πλ0

(Y ) e〈λ0,Y 〉
) ∣∣

Y=t Y0

=
∏

α∈Σ+
Y0
\Σ+

λ0

〈λ0, α〉
∏

γ∈Σ+
λ0
\Σ+

Y0

〈γ, t Y0〉 cλ0,Y0
et 〈λ0,Y0〉 + π0(∂Y )P (t Y0)et〈λ0,Y0〉

= cλ0,Y0
t|Σ

+
λ0
|−|Σ+

λ0
∩Σ+

Y0
| ∏
α∈Σ+

Y0
\Σ+

λ0

〈λ0, α〉
∏

γ∈Σ+
λ0
\Σ+

Y0

〈γ, Y0〉 et 〈λ0,Y0〉 + negligible terms.

We labeled as “negligible terms” the terms with the derivatives involving P (Y ). They have the number of factors
of the form 〈η, t Y0〉 strictly less then |Σ+

λ0
| − |Σ+

λ0,Y0
|, so strictly less than the term

∏
γ∈Σ+

λ0
\Σ+

Y0

〈γ, t Y0〉. The rest

follows from the definition of C(λ0, Y0). �

Remark 5.7. We can give a more explicit expression for the constant D, using the formula

∂(π)π =
|W |π(ρ)

2γ
,

where ρ = 1
2

∑
α∈Σ+ mαα =

∑
α∈Σ+ α and γ = |Σ+| is the number of positive roots.

For X ∈ a, denote pX = πX(ρX). Analogously, we define pX1,X2
for the root system annihilating both elements

X1, X2 ∈ a. We have

D(λ0, Y0) =
2γλ0,Y0−γλ0−γY0

πM(λ0)πM(Y0)

pλ0,Y0

pλ0
pY0

,

and therefore

lim
t→∞

ψλ0
(t Y0)

t−m et〈λ0,Y0〉
=

2γλ0,Y0−γλ0−γY0

πM(λ0)πM(Y0)

pλ0,Y0

pλ0 pY0

The following corollary may be found in [14]. Our method is simpler and proves the stronger result given in
Theorem 5.5.

Corollary 5.8. (Helgason-Johnson theorem in the flat complex case) The spherical function ψλ is bounded
on a if and only if λ ∈ i a.

Proof. If λ is purely imaginary then ψλ is bounded by one by equation (1.1). The rest follows from Theorem
5.5. �

Remark 5.9. The reader will want to compare Theorem 5.5 with those of [21, 25] taking into account the rela-
tionship between the spherical functions in the flat case and those in the curved case for the complex Lie groups.
In these cases, Theorem 5.5 strengthens the estimates of [21, 25] providing the exact asymptotics. We conjecture
that asymptotics with appropriate constants and not only estimates hold in the results of Narayanana, Pasquale
and Pusti [21] and Schapira [25].

6. Kernels of the Dyson Brownian motion

6.1. Definition and transition density of the Dyson Brownian motion. When a probabilist looks at formula
(1.3), he or she sees in it the generator of the Doob h-transform (refer to [22]) of the Brownian Motion on Rd

with the excessive function h(X) = π(X). For the root system Ad on Rd, the operator ∆W is the generator of the

Dyson Brownian Motion on Rd ([4]), i.e. the d Brownian independent particles B
(1)
t , . . . , B

(d)
t conditioned not to

collide. More generally, for any root system Σ, on Rd the construction of a Dyson Brownian Motion as a Brownian
Motion conditioned not to touch the walls of the positive Weyl chamber, can be done ([10]).
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Let us recall basic facts about the Doob h-transform and the Dyson Brownian Motion. Let Σ be a root system
on Rd and π(X) =

∏
α>0 〈α,X〉. It is known that π is ∆Rd -harmonic on Rd ([10]), so in particular π is excessive.

Definition 6.1. Let Σ be a root system on Rd and π(X) =
∏
α>0 〈α,X〉. The Dyson Brownian Motion DΣ

t on

the positive Weyl chamber a+ is defined as the h-Doob transform of the Brownian Motion on Rd, with h = π, i.e.
its transition density is equal to

(6.1) pD
t (X,Y ) =

π(Y )

π(X)
pkilled
t (X,Y ),

where pkilled
t (X,Y ) is the transition density of the Brownian Motion killed at the first strictly positive time of

touching ∂a+.

The infinitesimal generator of DΣ
t is given by the formula([22])

∆W f = π−1∆Rd

(πf)

which coincides with formula (1.3). The only difference with the symmetric flat complex case is that no invariant
measure π2(Y ) dY appears for the integral kernels in the Dyson Brownian Motion case. Consequently, we obtain

Corollary 6.2. The transition density and the heat kernel of the Dyson Brownian Motion DΣ
t on Rd is given by

the formula

pD
t (X,Y ) =

π(Y )

|W |π(X)

∑
w∈W

ε(w)ht(X − w · Y ),

where pt(X,Y ) = ht(X − Y ) = 1
(4π t)d/2

e−
|X−Y |2

4 t is the Euclidean heat kernel on Rd.

In the case Σ = Ap we have

pD
t (X,Y ) =

π(Y )

|W |π(X)
det (gt(xi, yj)) ,

where gt(u, v) = 1√
4πt

e−|u−v|
2/4t is the 1-dimensional classical heat kernel.

Proof. We use Theorem 2.1(1) and Corollary 2.2. �

Comparing the formulas from Corollary 6.2 with formula (6.1), we obtain the following formulas for the heat
kernel of the Brownian Motion killed at the first strictly positive time of touching a wall of the positive Weyl
chamber.

Corollary 6.3. The transition density for the Brownian Motion killed when exiting the positive Weyl chamber is
given by the formula

(6.2) pkilled
t (X,Y ) =

1

|W |
∑
w∈W

ε(w)ht(X − w · Y ).

In the case Σ = Ap we have

pkilled
t (X,Y ) =

1

|W |
det (gt(xi, yj)) ,(6.3)

Remark 6.4. Karlin and McGregor [18] showed formula (6.3) by different methods. In [10], formulas for pkilled
t (X,Y )

for the root systems Bn and Dn are proven. Our method of alternating sums provides a simple proof of formula
(6.2) valid for any root system Σ.
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6.2. Poisson and Newton kernels for the Dyson Brownian Motion. The alternating sum formulas for the
integral Poisson and Newton kernels PD and ND of the Dyson Brownian Motion DΣ

t can be easily deduced from
their counterparts (see Theorem 2.1) for the flat symmetric complex spaces M , just by multiplying PW and NW

by π(Y )2.
Similarly, Theorems 4.9 and 4.11 imply asymptotics for the Poisson and Newton kernels for the Dyson Brownian

Motion. For completeness and for their applications in the potential theory of the process DΣ
t , we state these

results here.

Corollary 6.5.

PD(X,Y ) =
(1− |X|2)π(Y )

|W |wd π(X)

∑
w∈W

ε(w)

|X − w · Y |d

ND(X,Y ) =
π(Y )

4π π(X)

∑
w∈W

ε(w) ln |X − w · Y | when d = 2,

ND(X,Y ) =
π(Y )

|W | (2− d)wd π(X)

∑
w∈W

ε(w)

|X − w · Y |d−2
when d ≥ 3.

Corollary 6.6. Let Y ∈ a+ Σ′ = {α ∈ Σ| α(Y0) = 0}, Σ′+ = Σ′ ∩ Σ+, γ′ = |Σ′+|, W ′ = {w ∈ W |w · Y = Y } and
π′(X) =

∏
α∈Σ′+

〈α,X〉.

(i) Let Y0 ∈ ∂B. Then

PD(X,Y0)
Y0∼ 22 γ′ (d/2)γ′ π

′(X)2

|W |wd π′(ρ′)
1− |X|2

|X − Y0|2γ′+d
.

(ii) If d = 2, α, β are simple roots, α(Y0) = 0, β(Y0) 6= 0, then ND(X,Y0)
Y0∼ −2γ−1 (γ−1)! |W |π′(X)2

4π 〈α,α〉 |X − Y0|−2.

(iii) If d ≥ 3, then ND(X,Y0)
Y0∼ 22 γ′ ((d−2)/2)γ′π

′(X)2

|W ′| (2−d)wd π(ρ′)
1

|X−Y0|2γ′+d−2 .

Appendix A. The Killing-max property

The aim of this appendix is to find precise conditions on w ∈W under which

(A.1) 〈λ,w · Y 〉 = 〈λ, Y 〉.

Definition A.1. Let Wλ = {w ∈W : w · λ = λ} (similarly for WY ). We will say that the property Killing-max is
satisfied if (A.1) is verified if and only if w ∈WλWY .

Remark A.2. It is clear that the condition w ∈ WλWY is sufficient. Property Killing-max is also satisfied
whenever at least one of λ or Y is regular (refer to [14]). We observe also that this property only depends on the
action of the Weyl group on the Cartan subalgebra a. Given that 〈λ,w ·Y 〉 = 〈w−1λ, Y 〉, this problem is symmetric
in λ and Y .

In Table 2, we describe the action of the Weyl group on the Cartan subalgebra in the case of the noncompact
and complex simple Lie algebras. Note that in the case of (f4(−26), so(9)), which is not in the table, the Killing-max
property is trivially true since the rank of the space is 1.

A.1. Type An (sl(n+ 1,F)).

Lemma A.3 (“max principle” for permutations). Let λ, Y ∈ Rn with their entries in decreasing order and let
w ∈ Sn be a permutation. Suppose that the block of λ1 in λ has length j0 ≥ 1 and that the block of Y1 in Y has
length i0 ≥ 1. If minw−1({1, . . . , i0}) > j0 then 〈λ,w · Y 〉 < 〈λ, Y 〉.

Remark A.4. The lemma states that if 〈λ,w · Y 〉 = 〈λ, Y 〉 then the permutation w is such that “maxY meets
maxλ”, i.e. there exists k ≤ j0 such that (w · Y )k = y1.
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Symmetric space Description of X ∈ a+ Action of w ∈ W ,
the Weyl group

Underlying
root system

SL(n,F)/SU(n,F),
F = R, C, H, n ≥ 2,
F = O, n = 3 (i.e. E6/F4)

X = diag[x1, . . . , xn],∑n
i=1 xi = 0,

x1 > · · · > xn

w ∈ Sn permutes
the entries xi

An−1

SO(p, q)/SO(p)×SO(q), 1 ≤ p < q,
SU(p, q)/SU(p)× SU(q) and
Sp(p, q)/Sp(p)× Sp(q), 1 ≤ p ≤ q,

X =

 0 DX 0
DX 0 0
0 0 0

,

DX = diag[x1, . . . , xp],
x1 > · · · > xp > 0

w permutes the xi’s
and changes any
number of signs

Bn

SO(p, p)/SO(p)× SO(p), p ≥ 2

X =

[
0 DX
DX 0

]
,

DX = diag[x1, . . . , xp],
x1 > · · · > xp−1 > |xp|

w permutes the
xi’s and changes
any even number
of signs

Dn

SO∗(2n)/U(n), n ≥ 3
X =

[
0n×n EX
−EX 0n×n

]
,

EX =
∑[n/2]
k=1 xk F2 k,2 k+1,

x1 > · · · > xn/2 > 0

w permutes the xi’s
and changes any
number of signs

Bn

Sp(n,R)/U(n) and
Sp(n,C)/Sp(n), n ≥ 1

[
0 iDX

−iDX 0

]
,

DX = diag[x1, . . . , xp],
x1 > · · · > xp−1 > xp > 0

w permutes the xi’s
and changes any
number of signs

Cn

SO(2n,C)/SO(2n), n ≥ 3 X = i
∑n
k=1 xk F2 k−1,2 k,

x1 > · · · > xp−1 > |xp|
w permutes the
xi’s and changes
any even number
of signs

Dn

SO(2n+ 1,C)/SO(2n+ 1), n ≥ 2 X = i
∑n
k=1 xk F2 k−1,2 k,

x1 > · · · > xp−1 > xp > 0
w permutes the xi’s
and changes any
number of signs

Bn

FC
4 /F4, (f4(4), sp(3) + su(2)) X = [x1, x2, x3, x4],

x2 > x3 > x4 > 0, x1 >
x2 + x3 + x4

Refer to [2] F4

GC
2 /G2, (g2(2), su(3) + su(2)) X = diag[x1, x2, x1 −

x2, 0, x2 − x1,−x2,−x1],
x1 > x2 > x1/2

Refer to [20] G2

Table 2. Action of the Weyl group (except for E6, E7 and E8)

Proof. Without loss of generality, we may assume that λ 6= λ1 1n and Y 6= y1 1n. Let i = minw−1({1, . . . , i0}). By
assumption, the first y1 appears in w · Y at the i-th position with i > j0. Let w(1) = k, i.e. w · Y begins with yk.
We have yk < y1 and λi < λ1. Consider w0 = (1i )w; we then have

〈λ,w0 · Y 〉 − 〈λ,w · Y 〉 = (λ1 − λi) (y1 − yk) > 0.

By the standard property of the Weyl group, 〈λ,w0 · Y 〉 ≤ 〈λ, Y 〉. Hence, 〈λ,w · Y 〉 < 〈λ, Y 〉. �

Corollary A.5. Property Killing-max is verified in the case of the root system An.

Proof. We use the same notation as in Lemma A.3 and in its proof. Suppose 〈λ, Y 〉 = 〈λ,w ·Y 〉. We use induction
on n. The result is clear for n = 1. Then by the lemma, there exists i ≤ j0 such that w(i) ≤ i0. We apply the
induction hypothesis to λ = (λ2, . . . , λn) and to Y = (y2, . . . , yn) the result follows.

Let λ′ = (λ2, . . . , λn), Y ′ = (y2, . . . , yn) and note that [yw(1), ̂. . . , yw(i), . . . , yw(n)] is a permutation of Y ′ (say

w′ · Y ′). We have 〈λ,w · Y 〉 = λi y1 +
∑n
i=2 yw′(i) where w′ is a permutation of {2, . . . , n}. We then have
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〈λ′, Y ′〉 = 〈λ,w′ · Y ′〉. By the induction hypothesis w′ = wλ′ wY ′ ∈ Wλ′WY ′ . We extend wλ′ and wY ′ to
wλ ∈ Wλ and wY ∈ WY by having them fix 1 in both cases. With the permutation w0 = (1 i) ∈ Wλ, we have
w = (1 i)wλ wY ∈WλWY . �

A.2. Type Bn (so(2n+ 1,C)) and Cn (sp(n,C)).

Proposition A.6. Property Killing-max is verified in the case of the root systems Bn and Cn.

Proof. Recall that Bn is the root system of so(2n+ 1,C). The positive Weyl chamber is defined by the condition

λ1 > λ2 > · · · > λn > 0

The Weyl group is W = Sn o {±1}n; its elements are called “signed permutations”. It is straightforward to see
that the sign changes in w · Y strictly diminish 〈λ, Y 〉 unless if negative terms in w · Y are in front of λi = 0.

More precisely, if w·Y has strictly negative terms in positions where λi > 0, then 〈λ,w·Y 〉 < 〈λ,w0w·Y 〉 ≤ 〈λ, Y 〉
where w0 changes the negative signs in w · Y into positive ones.

Thus, if (A.1) holds, all negative terms in w·Y are in front of λi = 0. Then w0 ∈Wλ and 〈λ,w·Y 〉 = 〈λ,w0 w·Y 〉.
All the terms of w0w · Y are non-negative and the result for an applies.

To conclude, it suffices to recall that Cn is the root system for sp(n,C). We have W (Cn) = W (Bn), the only
difference is in the relative length of roots ([7, p. 227]). �

A.3. Type Dn (so(2n,C)). Suppose that λ, Y ∈ a+ are singular. The Weyl group W is composed by permutations
and the sign changes by pairs, i.e. of two terms simultaneously. The positive Weyl chamber a+ is given by the
condition

λ1 > λ2 > . . . > λn−1 > |λn|.

Lemma A.7 (The “max principle” for W (Dn)). Let λ, Y ∈ a+. Suppose that the block of λ1 in λ has length
1 ≤ j0 < n. Suppose also that min{k : (w ·Y )k = y1} > j0 or that {k : (w ·Y )k = y1} = ∅. Then 〈λ,w ·Y 〉 < 〈λ, Y 〉.

Proof. Suppose λ and Y are as in the statement of the lemma. If y1 appears in w · Y then 〈λ,w · Y 〉 < 〈λ, Y 〉 by
Lemma A.3 so we can assume that only −y1 appears.

Using the standard property of the Weyl group over an, 〈λ,w · Y 〉 ≤ 〈λ,w0 w · Y 〉 where w0 ∈ Sn re-orders the
entries of w · Y in decreasing order. The last entry of w0 w · Y has to be −y1.

We first assume n = 2, or n ≥ 3 and j0 ≤ n−2. As yn ≥ −yi for all i < n, we can suppose that the (n−1)-entry
is −yi. Using the element w1 of the Weyl group which changes signs and permutes the last two entries, we have
〈λ,w1 w0 w · Y 〉 − 〈λ,w0 w · Y 〉 = (λn−1 + λn) (y1 + yi) ≥ 0. It is easy to check that the last inequality is strict if
n = 2. Finally, by another application of Lemma A.3, 〈λ,w1 w0 w · Y 〉 < 〈λ, Y 〉 and the result follows.

We next handle the case j0 ≥ n− 1, with n ≥ 3. Let λ = (a, . . . , a, b) with b ∈ (−a, a]. and n ≥ 3. We will show
that ∆ = 〈λ, Y 〉 − 〈λ,w0 w · Y 〉 > 0. If −yn appears in w0w · Y , we have, using

∑
i6=1,n a yi ≥

∑
i6=1,n a (±yi),

∆ = 〈λ, Y 〉 − 〈λ,w0w · Y 〉 ≥ a y1 + b yn − [a (−yn) + b (−y1)] = (a+ b)(y1 + yn) > 0

where we used the hypothesis b 6= −a and the fact that y1 + yn > 0 (otherwise −yn = y1 appears in w0w · Y ). If
−yn does not appear in w0w ·Y , another −yk appears among the n− 1 first entries of σw ·Y . This time, we obtain
∆ ≥ (a+ b) y1 + a (yk − yn) + a yk + b yn > 0, where we used y1 > 0 (as Y 6= 0), the hypothesis a+ b > 0, and the
inequalities yk ≥ yn, a yk ≥ |b yn|. �

Lemma A.8. Suppose λ = a (1, . . . , 1), a > 0 and Y ∈ a+. Then (A.1) is satisfied if and only if w ∈WλWY .

Proof. Note that 〈λ, Y 〉 = (n− 1) a b x+ a b x = na b x. The only way that 〈λ,w · Y 〉 = na b x is if w · Y = Y i.e.
w ∈WY = Wλ. �

Proposition A.9. Property Killing-max is verified in the case of the root system Dn.

Proof. We proceed by induction on n ≥ 2. Given Lemma A.8, if both λ and Y ∈ R (1, 1 . . . , 1,−1) then there is
nothing to prove. Given the symmetry of the problem, if λ ∈ R (1, 1 . . . , 1,−1) and Y 6∈ R (1, 1 . . . , 1,−1), we can
switch their roles and suppose that λ /∈ R (1, 1 . . . , 1,−1).

The base case n = 2, in which, by Lemma A.8, we can assume that λ = (λ1, λ2) 6∈ R(1,−1), is clear by
inspection.
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Assume the result true for n−1. As explained above, we may assume that λ 6∈ R(1, . . . , 1,−1). By Lemma A.7,
the equality (A.1) implies that “maxλ meets maxY ”. As in the case An, it follows that there exist permutations

σ ∈ Wλ and γ ∈ WY such that (σwγ · Y )1 = y1. We consider λ̃1 = (λ2, λ3, . . . , λn), Ỹ1 = (Y2, . . . , Yn) and
w̃1 = σwγ|ã where ã = {(x2, . . . , xn)| X = (xi)i≥1 ∈ a} and we use the induction hypothesis or Lemma A.8
depending on the situation. �

A.4. Type F4. We use Helgason [15] and some simple facts about the Weyl group W = W (F4) from [2]. We
consider the simple roots α1 = e2−e3, α2 = e3−e4, α3 = e4 and α4 = (e1−e2−e3−e4)/2 and the corresponding
reflections sαi = si. It follows that a+ = {(x1, x2, x3, x4) : x1 > x2 + x3 + x4, x2 > x3 > x4 > 0}.

Denote α12 = e1 − e2 and s12 = sα12
. Note that α12 = α2 + 2α3 +α4 is a positive root. It is easy to check that

(A.2) s3 s4 s12 = s2 s3 s4

by inspection or using [2, Table 1] on the basis (ei).

Let X = (x1, x2, x3, x4) with x1 ≥ x2 ≥ x3 ≥ x4 ≥ 0, i.e. X ∈ a+(B4). We define WB4

X ⊂ W (B4) as the
subgroup generated by a subset of the symmetries s ∈ {s12, s1, s2, s3} such that s(X) = X.

Lemma A.10. Let λ ∈ a+(B4). Then WB4

λ ⊂Wλ.

Proof. Clear from the definition of WB4

λ . �

Let α, β, γ denote the three sets of roots of F4 defined in [2, p. 85], with α = (±ei)
4
i=1. Let δ, η ∈ {α, β, γ} and

Wδη = {w ∈ W : w(δ) = η}. By [2], we have W = Wαα ∪Wαβ ∪Wαγ . In order to describe the action of w ∈ W ,

we define wα0 = id, wβ0 = s3 s4 and wγ0 = s4. Then, by [2, Table 1], we have wδ0(α) = δ with δ ∈ {α, β, γ}.
The following result is proven in [2]. Recall that W (B4) is the group of signed permutations of 4 elements.

Lemma A.11. Let δ ∈ {α, β, γ} and w ∈ Wαδ. There exists σ ∈ W (B4) such that if Y =
∑4
i=1 yi ei, then

w · Y =
∑4
i=1 yσ(i) w

δ
0(ei). Equivalently, (wδ0)−1 w is a signed permutation with respect to the basis (ei).

Proposition A.12. Property Killing-max is verified in the case of the root system F4.

Proof. Suppose that λ =
∑4
i=1 λi ei, Y =

∑4
i=1 yi ei ∈ a+(F4) are singular. Our objective is to solve the equation

(A.1). We will assume from now on that (A.1) holds. We consider three cases w ∈Wαδ, where δ = α, β, γ.
If w ∈ Wαα, we note that a+(F4) ⊂ a+(B4). Lemma A.11, Proposition A.6 and Lemma A.10 imply that

w ∈WB4

λ WB4

Y ⊂WλWY .

In the case w ∈Wαβ , we use w0 = wβ0 = s3 s4. If λ =
∑4
i=1 λi ei ∈ a+(F4) then λ′ = w−1

0 · λ =
∑4
i=1 λ

′
i ei with

λ′1 ≥ λ′2 ≥ λ′3 ≥ λ′4 ≥ 0 since

(A.3) λ′ =
1

2
[(λ1 + λ2 + λ3 − λ4) e1 + (λ1 + λ2 − λ3 + λ4) e2 + (λ1 − λ2 + λ3 + λ4) e3 + (λ1 − λ2 − λ3 − λ4) e4].

Using (A.1), Lemma A.11 and the standard property of the Killing form for B4, we have

〈λ, Y 〉 = 〈λ,w · Y 〉 = 〈w−1
0 · λ,w−1

0 w · Y 〉 ≤ 〈w−1
0 · λ, Y 〉 = 〈λ,w0 · Y 〉 ≤ 〈λ, Y 〉.

This means that 〈λ′, w−1
0 w · Y 〉 = 〈λ′, Y 〉 and therefore that w ∈ w0W

B4

λ′ W
B4

Y by Proposition A.6.
We reason similarly if w ∈Wαγ , with w0 = wγ0 = s4 and

λ′ = s4(λ) =
1

2
[(λ1 + λ2 + λ3 + λ4) e1 + (λ1 + λ2 − λ3 − λ4) e2 + (λ1 − λ2 + λ3 − λ4) e3 + (λ1 − λ2 − λ3 + λ4) e4].

It therefore follows that w ∈ w0W
B4

λ′ W
B4

Y with λ′ = w−1
0 · λ.

It is important to note that a feature of both cases w ∈ Wαβ and w ∈ Wαγ implies that the respective w0

satisfy 〈λ, Y 〉 = 〈λ,w0 · Y 〉. It follows that these cases do not occur if α4 6∈ Σλ ∪ ΣY . Indeed, using the formula

si(X) = X − 2 αi(X)
‖αi‖2 αi, we have for wβ0 = s3 s4 and for wγ0 = s4,

〈λ, Y 〉 − 〈λ, s3 s4 Y 〉 = 2α4(λ)α4(Y ) + 2α3(λ)α3(Y ) + 2α3(λ)α4(Y )(A.4)

〈λ, Y 〉 − 〈λ, s4 Y 〉 = 2α4(λ)α4(Y )

Thus 〈λ, Y 〉 6= 〈λ,w0 · Y 〉 if α4 6∈ Σλ ∪ΣY and w ∈Wαβ or w ∈Wαγ . We showed above that in the case w ∈Wαα,
formula (A.1) implies that w ∈WλWY . The Proposition is thus proven for α4 6∈ Σλ ∪ ΣY .
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It remains to treat the cases α4 ∈ Σλ or α4 ∈ ΣY . By symmetry of the problem (A.1), it is sufficient to treat
the case α4 ∈ Σλ, for any singular Y . We assume henceforth that α4 ∈ Σλ.

We showed above that in the case w ∈Wαα, formula (A.1) implies that w ∈WλWY .
If w ∈ Wαγ , we have w0 = wγ0 = s4 and therefore λ′ = s4 · λ = λ since α4 ∈ Σλ. Since s4 ∈ Wλ, we have

w ∈ s4W
B4

λ′ W
B4

Y = s4W
B4

λ WB4

Y ⊂WλWY .

Suppose that w ∈Wαβ and recall that w0 = wβ0 = s3 s4. By (A.4), we have the following two cases:
(A) α3(λ) = 0 or (B) α3(λ) 6= 0, α3(Y ) = 0 and α4(Y ) = 0.

In the case (A), we have w−1
0 · λ = λ i.e. λ′ = λ and s3 s4 ∈ Wλ. Therefore, we have w ∈ s3 s4W

B4

λ′ W
B4

Y =

s3 s4W
B4

λ WB4

Y ⊂WλWY .
In the case (B), we compute using (A.3), λ′ = (λ2 + λ3, λ2 + λ4, λ3 + λ4, 0), where λ4 > 0. We will be using s3

defined by s3(x1, x2, x3, x4) = (x1, x2, x3,−x4). Note that s3 · Y = Y since y4 = α3(Y ) = 0, and that s3 commutes
with s1 and s12. We consider the following mutually exclusive cases (B1)–(B4):

(B1) Σλ = {α4}: in that case, WB4

λ′ = {id, s3} and w ∈ s3 s4W
B4

λ′ W
B4

Y ⊂WY .

(B2) Σλ = {α1, α4}, i.e. λ2 = λ3 > λ4 > 0: in that case, WB4

λ′ = {id, s1, s3, s1 s3 = s3 s1} × {id, s3}. Since s1

commutes with s3 and s4, we have w ∈ {id, s1} s3 s4 {id, s3}WB4

Y ⊂WλWY .

(B3) Σλ = {α2, α4}, i.e. λ3 = λ4 > 0: in that case, WB4

λ′ = {id, s12, s12} × {id, s3}. Using (A.2), we find that

w ∈ s3 s4{id, s12} × {id, s3}WB4

Y ⊂WλWY .

(B4) Σλ = {α1, α2, α4}, i.e. λ2 = λ3 = λ4 > 0: in that case, WB4

λ′ = {id, s12, s1, s12s1, s1s12, s1s12s1} × {id, s3}.
Similarly as in (B2) and (B3), we verify that s3 s4W

B4

λ′ ⊂WλWY . For example, s3 s4(s1s12s1) = s1 s3 s4s12s1 =

s1 s2 s3 s4 s1 = s1 s2 s1 s3 s4 ∈WλWY . Thus (A.1) implies that w ∈ s3 s4W
B4

λ′ W
B4

Y ⊂WλWY . �

A.5. Type G2. The Cartan space is given by a(G2) = {HA,B = (A,B,A−B, 0, B −A,−B,−A) | A,B ∈ R} and
two simple positive roots are α(HA,B) = A−B and β(HA,B) = B− (A−B) = 2B−A. Consequently, the positive
Weyl chamber is given by a+ = {HA,B | A > B > A−B > 0}.

Note that it is sufficient to work on the space a = {hA,B = (A,B,A − B) : A,B ∈ R} which is isomorphic to
a(G2). We will work on this space a from now on. Observe also that the Weyl group W is generated by sα which
interchanges the first two entries and changes the sign of the third and sβ = (2, 3), so it is included in S3o{1,−1}3.
This inclusion is strict: the group W has 12 elements and S3 o {1,−1}3 has 6× 23 = 48 elements.

Proposition A.13. Property Killing-max is verified in the case of the root system G2.

Proof. Given that the root system is of rank 2, we only need to consider three cases of singular λ and Y :

(C1) α(λ) = α(Y ) = 0: We have λ = (l, l, 0), Y = (y, y, 0), l, y > 0 and 〈λ,w · Y 〉 = 〈λ, Y 〉 = 2 l y. It follows
that 0 in Y cannot change position in w · Y and no y can become −y, so w · Y = Y and w ∈WY .

(C2) α(λ) = β(Y ) = 0: We have λ = (l, l, 0), Y = (2 y, y, y), l, y > 0 and 〈λ,w · Y 〉 = 〈λ, Y 〉 = 3 l y. Then no
minus sign is possible in the first two terms of w ·Y and 2 y cannot go to the third position. Consequently,
using the fact that (hA,B)3 = (hA,B)1 − (hA,B)2, we find that w · Y = (2 y, y, y) = Y (so w ∈ WY ) or
w · Y = (y, 2 y,−y) = sαY , which implies that sαw ∈WY and w ∈ sαWY ⊂WλWY .

(C3) β(λ) = β(Y ) = 0: We have λ = (2 l, l, l), Y = (2 y, y, y), l, y > 0. Then 2 y must remain in the first position
in w · Y and no sign change can happen, thus w · Y = Y and w ∈WY .

�
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