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Abstract  

The tropical Atlantic Ocean exhibits several modes of interannual variability such as the 

equatorial (or Atlantic Niño) mode, and meridional (or Atlantic dipole) mode. Nonlinear 

principal component analysis (NLPCA) is applied on detrended monthly Sea Surface 

Temperature Anomaly (SSTA) data from the tropical Atlantic Ocean (30°W-20°E, 26°S-22° 

N) for the period 1950 to 2005. The objective is to compare the modes extracted through this 

statistical analysis to those previously extracted through the more simple principal component 

analysis (PCA). It is shown that the first mode of NLPCA explains 38% of the total variance 

of SST compared to 36% by the first PCA while the second mode of NLPCA explains 22% 

of the total variance of SST compared to 16% by the second PCA. The first two NLPCA 

modes explain marginally more of the total data variance than the first two PCA modes. Our 

analysis confirms results from previous studies and, in addition, shows that the Atlantic El 

Niño structure is spatially more stable than the Atlantic dipole structure. 

 

Keywords: PCA · NLPCA · SST · Tropical Ocean 

 

Introduction 

Thorough knowledge of our planet and its climatic variations increasingly becomes a major 

concern for humanity. Data collection techniques have witnessed significant progress over 

the past decades, especially with the use of satellites for the collection of global data. Given 

that the density of data increases over time, researchers have to work with more and more 

voluminous data whose analysis requires dedicated tools. 

Sophisticated techniques such as principal component analysis (PCA) have become 

indispensable in extracting essential information from voluminous data sets (Von Storch and 

Zwiers, 1999). The weakness of this conventional method is that only linear structures can be 

extracted from data. This limitation means that nonlinear structures are either missed or 

misinterpreted by these methods. Since the 1980s, models of neural networks have been 

developed and Kramer (1991) used them to extend PCA abilities to the extraction of 

nonlinear relationships in a dataset, which defines the nonlinear principal component analysis 
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(NLPCA). The introduction of these two techniques has been determinant in the advancement 

of environmental science. 

NLPCA  can be performed  by a variety  of methods,  e.g. the  neural  network (NN)  model  

using  multi-layer  perceptrons  (MLP)  (Hsieh,  2004, 2007, Kramer,  1991) or the  kernel  

PCA model  (Scholkopf  et  al., 1998). NLPCA belongs to the class of nonlinear 

dimensionality reduction techniques, which includes principal curves (Hastie et al., 1989), 

locally linear embedding (LLE; (Roweis et al., 2000)) and isomap (Tenenbaum et al., 2000). 

The latter is the more complex technique, it finds a nonlinear transformation that preserves 

geodesics distances between data points (Aho et al., 1983). Several extensions have since 

been developed to help with treating the largest datasets (Bachmann et al., 2006, De Silva et 

al., 2004). Here, we focus on NLPCA based on neural network (Hecht, 1995, Malthouse, 

1998). It has been successfully applied in the fields of atmospheric and oceanographic 

sciences (Hsieh, 2004, Monahan et al., 2003). 

The tropical Atlantic Ocean is characterised by a strong seasonal cycle (Li and Philander, 

1997, Xie and Carton, 2004), particularly in the Gulf of Guinea (GoG). Here, a zone of 

relatively cold sea surface temperature (SST) appears from June to September along and 

slightly south-east of the equator: the Atlantic Cold Tongue (ACT).  This is the primary 

seasonal signal of SST in the equatorial Atlantic Ocean (Merle et al., 1980, Xie and Carton, 

2004, Wauthy, 1983). This  Atlantic  signal  appears  almost  all years  in the  East Equatorial 

Atlantic  (EEA)  and positions  itself south  of the Equator with  a longitudinal extent to 

almost 20°W, centered and located a few degrees south of the Equator in the eastern part of 

the basin and slightly shifted equatorward (Caniaux et al., 2011). However, the detailed 

processes responsible for its variability are still the subject of considerable debate (e.g. 

Jouanno et al., 2011a, b)). 

The Atlantic Ocean has a strong impact on the West African climate, especially on 

precipitation. In particular, the ACT strongly affects the West African Monsoon (WAM) 

(Okumura and Xie, 2004, Thorncroft et al., 2011). Its seasonal appearance intensifies the 

southerly winds in the GoG, which pushes a zonal rainband from the northern coast of the 

GoG to the sahelian region farther inland. It strengthens  the  north-south  land-sea  

temperature contrast,  enhancing  the  monsoonal  flow that  leads  to  a further  decrease  in 

SST. Due to the effect of the ACT on the WAM that suggests potential rainfall predictability, 

the  problem  of understanding  the  inter-relationship  between the ACT  and the WAM  

remains at the center of many research endeavours (Hagos and Cook, 2008, Leonard and 

Matthew, 2014, Okumura and Xie, 2004). Caniaux et al. (2011) shows that there is 
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interannual variability in the ACT spatial pattern in GoG, which is not fully understood.  

Picaut  et  al. (1984) did a comparison between seasonal and interannual variability of SST in 

the tropical  Atlantic.  The result is that interannual changes in SST are largest in regions 

where the seasonal SST signal is large, including the ACT region, which suggests that the 

tropical Atlantic interannual variability is strongly linked to the seasonal cycle. However, 

while seasonal SST fluctuations are large, interannual variations in the Atlantic are modest in 

amplitude (Li and Philander, 1997). Within the last decades, two primary modes of 

interannual variability have been identified in the tropical Atlantic (e.g. Servain and Merle, 

1993, Xie et al., 1999)): the equatorial and meridional modes. 

The equatorial mode is responsible for SST variability in the GoG mainly, and is identified 

by abnormal changes in the equatorial thermocline slope resulting from zonal-wind 

anomalies in the western tropical Atlantic. This mode coincides with the seasonal 

development of the equatorial cold tongue. 

When the trade winds intensify in the western Atlantic, the equatorial thermocline slope 

increases and negative SST anomalies develop in the GoG, reinforcing the ACT; conversely, 

when trade winds weaken, the equatorial thermocline slope decreases and positive SST 

anomalies develop in the GoG (Servain and Amault, 1995). Indeed, a shallow thermocline in 

the GoG means that cool subsurface water is able to upwell to the surface and to create cold 

SST anomalies. This type of mechanism is found in Moore et al. (1978), Picaut (1983), and 

Katz (1997) and the relevant theory in Zebiak (1993) and Servain and Amault (1995). 

Many studies emphasize the similarity between the El Niño Southern Oscillation (ENSO) in 

the Pacific Ocean and this equatorial Atlantic mode, therefore also called Atlantic Niño 

(Delecluse et al., 1994, Horel et al., 1986, Xie and Carton, 2004). However, the Atlantic Niño 

is much weaker than its Pacific counterpart (Carton and Huang, 1994, Latif and Grötzner, 

2000, Servain et al., 2003, Zebiak, 1993). A relationship between the Atlantic Niño and 

Pacific variability has also been suggested by some studies (Carton and Huang, 1994, Servain 

and Merle, 1993). The meridional mode is characterized by a north- south inter-hemispheric 

gradient of SST anomaly that has no equivalent in the Pacific Ocean (Servain et al., 1999). It 

is most pronounced during the equatorial warm season from March to May (Clara et al., 

2010). Xie and Tanimoto (1998) demonstrated how wind forcing induces this mode. Many 

observational (Enfield et al., 1997) and modeling (Huang et al., 2002) studies have shown 

that the  ENSO influence  on the  tropical  Atlantic  is  strongest in the  North Tropical 

Atlantic, with Atlantic warming occurring 4-5 months after the mature phases of Pacific 

warm events (Xie and Carton, 2004). In particular, this means that the meridional mode, is 
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significantly influenced by ENSO (Czaja et al., 2002). A link between the equatorial mode 

and the meridional mode has also been suggested by Servain et al. (1999). A recent study 

(Richter et al., 2012) distinguishes two types of Atlantic Niño referred as canonical Atlantic 

Niño and non-canonical Atlantic Niño. While the canonical event follows the conventional 

ENSO mechanism, the non-canonical event involves southward temperature advection from 

the northern tropical Atlantic. This process could connect the meridional to the equatorial 

mode. Alternatively, the connection could involve a transmission of thermocline depth 

anomalies through equatorial waves (Foltz and McPhaden, 2010). At longer time scales, an 

observational study (Tokinaga et al., 2011) revealed robust changes in the equatorial Atlantic 

over the past six decades, most notably a locally enhanced SST warming in the GoG and a 

weakening of the ACT variability. Additional studies are necessary for understanding long 

term variations in the tropical Atlantic, especially in ACT, equatorial and meridional modes. 

The NLPCA technique has already proved useful in a climatic context. It has been applied  

on SST  to  study  climate  variations in the  tropical Pacific (e.g. Hsieh, 2001, Li et al., 2005). 

In particular, it has shown that the spatial variability associated with the ENSO phenomenon 

is non-linear (Hsieh, 2004, 2007).  The subsurface thermal structure of the Pacific Ocean was 

also studied using the NLPCA (Tang and Hsieh, 2003). Moreover, this method has been used 

for some atmospheric studies of sea level pressure and air temperature over Canada 

(Monahan, 2001). Also, in the South China Sea, Chen et al. (2010) applied NLPCA on SST 

and showed that this statistical method accounts for more variance of the total variables in 

comparison with linear PCA and brings a finer analysis of interannual variability. While PCA 

has been frequently used in the above studies of tropical Atlantic variability, NLPCA has 

never been applied in this region, to our knowledge. The internannual modulation of the ACT, 

which strongly affect African climate, might better be understood using the NLPCA. 

The aim of this work is to exhibit the main patterns of the variability of SST in the tropical 

Atlantic Ocean using NLPCA. This paper is an attempt, using an advanced method of PCA, 

to evaluate and describe the main modes of tropical Atlantic Ocean. We apply PCA and 

NLPCA on data from the tropical Atlantic SST. The paper is organized as follows: Section 2 

is a brief description of the PCA, NLPCA methods and SST data we use. The third part 

describes the results of these methods on the Atlantic SST. The last part concludes. 

 

2 Method and data 
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Linear methods of dimensionality reduction like PCA are useful tools for handling and 

interpreting high dimensional data. On the other hand, several nonlinear dimensionality 

reduction methods such as kernel PCA (kPCA), Isomap, local linear embedding (LLE) and 

NLPCA have been developed. Many of these nonlinear methods, including most of the 

differential geometry based methods and some of the neural network based methods, were 

originally developed in machine learning and machine vision communities for the purpose of 

extracting low-dimensional information from data sets applications; such as object 

identification and feature tracking. Both Isomap and NLPCA emanate from the PCA. Isomap 

is a geometrical/statistical method identified with (objective 1) cited in section 2.1 while 

NLPCA (discussed later) is a Neural network method identified with (objective 2) in the 

same paragraph. Isomap is the most straight way to use the geodesic distance for nonlinear 

projection. The goal of the Isomap (Tenenbaum et al., 2000) is to preserve the geodesics 

rather than the Euclidian distances. It has been broadly used in a large series of signal and 

image processing, pattern recognition and data analysis applications (Gámez et al., 2004). To 

apply NLPCA, an initial dimensionality reduction step is required to reduce the 

dimensionality of the inputs so that a neural network of reasonable size can be used. Unlike 

some other nonlinear dimensionality reduction methods, NLPCA cannot be used directly with 

observed or modelled SST data sets. This contrasts with methods such as Isomap , where 

gridded data sets can be handled without preprocessing. The key factor that distinguishes 

Isomap from NLPCA is that Isomap uses a distance function that approximates geodesic 

distances in the data, while the latter employs Euclidean distances in the data space. In this 

work we focus our attention on PCA and NLPCA. 

 

 

 

 

 

 

 

2.1 Principal component analysis 

 

PCA is the method which analyzes the variability of a single field (Rainfall, SST, etc). 

Commonly, it is used for two objectives: (1) Reducing the number of variables comprising a 

dataset while retaining the variability in the data and (2) identifying hidden patterns in the 

© 2016 Terrestrial, Atmospheric and Oceanic Sciences (TAO). All rights reserved. 6



 

data, and classifying them with little loss of information (representing the variables by a 

small number of components). In other words to extract features or recognize patterns from 

the dataset. In this paper, it is the latter which attracts our attention. Mathematically, the aim 

of PCA (Fukuoka, 1951, Lorenz, 1956) is to achieve a decomposition of a continuous space-

time field ),( tiY , where i  and t  denote respectively spatial position and time, as  

∑
=

=
l

k
kk tvitiY

1
)()(),( a                                         (1) 

where k  is the index which characterize the difference between modes and l  is the number 

of modes contained in the field, using an optimal set of basic function of space )(ika  and 

expansion function of time )(tvk . It finds the spatial patterns of variability, their time 

variation, and gives a measure of particular structure of each kv  pattern. To present the 

concept, we suppose that we have a gridded data set composed of a space-time field ),( tiY  in 

the form x , such as SST, at time t  and spatial position i . The observed field is then 

represented in the form: 

 

[ ]lxxxt ,.......,,)( 21=x                                       (2) 

 

where ix  is a time series containing s  observations. PCA is based on the analysis of the 

covariance matrix e.g. (Hannachi et al., 2007), which the variances are diagonal elements of 

the matrix and the covariance values are off diagonal terms. By dividing the covariance 

matrix by the variances the correlation matrix will be obtained which is the covariance matrix 

of the normalized variables. The eigenvalues and eigenvectors of the covariance matrix are 

then computed. Unlike the original data vectors, the eigenvectors are uncorrelated and 

orthogonal. The projection of the original data vectors onto the eigenvectors space yields the 

principal components. In general, fewer eigenvectors are required to sufficiently represent the 

data. In practice the PCA technique aims at finding a new set of variables that capture most of 

the observed variance from the data through linear combinations of the original variables. All 

the components ka  and kv  must be determined and one of the method is to find those 

components successively from the first ( )11 ,av  to the last ( )llv a, . Then PCA looks for v  

which is a linear combination of the ix  and an associated vector, with 

)(. tv xa=                        (3) 
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so that 2)()( tvt ax −  is minimized, and where ......  denotes a time mean. 

In other words the goal is to find 1v   and 1a   such that the last relation is 

minimized. 1v  is called the first  principal component (PC), a time  series, while 1a  is the first 

eigenvector of the data covariance matrix, also called an empirical orthogonal function, 

(EOF), that describes a spatial pattern. From the residual, vax − , subsequent modes can be 

calculated in the same fashion. These methods have been performed using NN and become 

nonlinear principal component analysis. 

 

2.2 Nonlinear principal component analysis 

 

The fundamental difference between NLPCA and PCA is that NLPCA allows a nonlinear 

mapping from x  to v  (denoted in this part by u  to make difference between NLPCA and 

PCA terms) whereas PCA allows only a linear mapping. A large number of specialized 

neural networks and learning algorithms have been proposed to perform principal component 

analysis (PCA) such as Isomap and NLPCA. There is no conclusive study that shows which 

approach is superior. The essential problem with nonlinear methods such as Isomap is that 

there exist few theoretical results underpinning the numerical algorithms. The network model 

has greater flexibility than the hierarchical model for handling complex spatial relationships.  

In Fig.1 the input column vector x    of length l  are mapped to the neurons in 

the hidden layer and the transfer function 1q  maps from x  to the first hidden layer (the 

encoding layer), represented by )( xh , a column vector of length m , with elements  

 

( )[ ]k
xxx

k qh )()(
1

)( bW x += ,                 (4) 

( )mk ....,,.........1= , with the sigmoid function  

tanh1 =q  

where )( xW  are weight matrices and )( xb  is  bias parameter vector. The dimensions of x  and 
)( xh are l  and m , respectively, where x  is the input column vector of length l , and m  is the 

number of hidden neurons in the encoding and decoding layers for u . The neurons u  are 

calculated from a linear combination of the hidden neurons )( xh . A second transfer function 

2q  maps the encoding layer to the bottleneck layer containing a single neuron, which 

represents the nonlinear principal component u , with  
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[ ])()()(
2

xxxqu b+⋅′= hW    (5) 

with identity function 2q . These mappings are standard feed forward NNs and are capable of 

representing any continuous function mappings from x  to u . 

 On the right side of Fig.1 the top NN (a standard feed forward NN) maps u  to 

x′  in two steps: 

      A transfer function 3q  maps from u  to the final hidden layer (the decoding layer) )(uh  , 

( )k
uuu uqh )( )()(

3
)( b+′= W ,               (6) 

with tanh3 =q  and ),.......,1( mk = ; followed by 4q   mapping from )(uh  to x′ , the output 

column vector of length l ,with 

 

( )i
uuu

i bqx )( )()()(
4 +=′ hW        (7) 

with identity function 4q . To any given accuracy, provided large enough l and m  are used to 

maximize by finding the optimal values of )( xW , )( xb , )( xW ′ and )( xb .  

The cost (Hsieh, 2001) function 
2

1 xx −= ′J             (8) 

is minimized by finding the optimal values of )(uW , )(ub , )(uW ′  and )(ub  . The mean square 

error (MSE) between the  output x′  and the  original data x  is thus minimized. Without loss 

of generality, we impose the constraint 0=u , hence 

)()()( xxxb hW ⋅′−=            (9) 

The total number of free (weight and bias) parameters used by the NLPCA is then 

lmlm ++ 42 . Furthermore, we adopt the normalization condition that 12 =u . This 

condition is approximately satisfied by modifying the cost function to 

( )222
1−+−= ′ uJ xx          (10) 

The choice of m , the number of hidden neurons in both the encoding and decoding layers, 

follows a general principle of parsimony. A larger m  increases the nonlinear modeling 

capability of the network, but could also lead to overfitted solutions. If 4q   is the identity 

function, and 1=m , then Equation (9) implies that all x′  are linearly related to a single 

hidden neuron, hence there can only be a linear  relation  between the  x′  variables.  For 

nonlinear solutions, we need to look at u . In effect, the linear relation (3) is now generalized 
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to )(xfu = , where f  can be any nonlinear function  represented by a feed forward NN 

mapping from the input layer to the bottleneck layer; and instead of 2)()( tvt ⋅− ax , 

2)(ug−x  is minimized, where g  is the general nonlinear function mapping from the 

bottleneck to the output layer. The residual, )(ug−x , can be input into the same network to 

extract the second NLPCA mode, and so on for the higher modes. 

That the classical PCA is indeed a linear version of this NLPCA can be readily seen by 

replacing all the transfer functions with the identity function, thereby removing the nonlinear 

modeling capability of the NLPCA (Hsieh, 2001). Then the forward map to u  involves only 

a linear combination of the original variables as in the PCA. A number of runs (mappings 

from u  to x′ ) used to find the solution with the smallest MSE. The  NLPCA  here  

generalizes easily to more than one hidden layer mappings, as two hidden layer mappings 

may outperform single hidden layer mappings in modeling complicated nonlinear functions. 

A reconstruction using a single PCA mode is a poor approximation to the input data and the 

greater freedom available to the NLPCA network allows it to produce a nonlinear fit which 

represent better the variability in the input data. 

 

2.3 Data 

 

We used monthly Atlantic sea surface temperature (SST) data, which is the reconstruction sea 

surface temperature (ERSST) data set (Smith et al., 2003) from the NOAA National Climatic 

Data Center. A climatologically annual cycle was calculated by averaging the data for each 

calendar month, and monthly SST anomalies (SSTAs) were defined relative to this annual 

cycle. This data set is a mixture of satellite and in situ data with a spatial resolution of 2° × 2° 

from 1950 to 2005. Because of the interest in the El Niño, dipole and cold tongue 

phenomenon in the Atlantic, an empirical orthogonal analysis was made of tropical Atlantic 

data between 26°S to 22°N and 30°W to 20°E. Thus there are (26 × 25) 650 spatial points, 

215 points of missing SST data on the continent, and (26 × 25-215) 435 spatial and (56×12) 

time existing points. The SSTA have long-term trends. In order to minimize the effect of 

these trends on the analysis, we have eliminated the linear trends from datasets at each spatial 

location using the least squares technique. Thus, detrending the monthly anomaly, our 

primary dataset was formed. 
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3. Tropical Atlantic Sea surface temperature 

 

Eigenvectors with the largest percentages are usually associated with physical processes. 

EOFs provide a series of eigenvectors, each of which contains a percentage of the temporal 

variability of the data. Figs. 2a and 2b show the first two modes of EOF and their 

corresponding principal components (PCs) (Figs. 3a and 3). The spatial patterns associated 

with two SST modes are shown in Fig.2 as homogeneous correlation maps EOF1 and EOF2. 

The two EOF modes together account for 52% of the total monthly SST variance. 

Individually, they explain 36% and 16% of the total variance of SST. The other components 

explain less than 14% of the total variance and will not be discussed further. The two modes 

differ in their spatial expressions. It should be noted that the sign of the EOF is arbitrary; 

however, the product of the EOF and the PC time series recovers the correct polarity of the 

mode in any given grid box and time. For SSTA data, we choose the nonlinear PCA model 

3=m  and 3931 parameters which greatly exceeds the number of time points. There are still 

far too many spatial variables (number of points in the selected space) for this dataset to be 

directly analyzed by the NLPCA. To reduce the number of input variables, the SSTA data is 

pre-filtered by PCA. The NLPCA method used here is identical to that used by Hsieh (2004). 

Monahan (2001) used same for the study of El Niño/La Niña. The difference is that the 

former used 3 PCs or 3D-approximation while the latter used 10 PCs or 10D-approximation 

as inputs to the NLPCA, and the results are similar, which means that the principal 

characteristics of the phenomenon (El Niño/La Niña) are contained within the first 3 PCA 

modes. This implies that a certain minimum number of PCs can be sufficient to capture a 

phenomenon. In our case, to select the number of PCs, we used the Guttman-Kaiser criterion; 

where only the modes with eigen values greater than the average eigen value were retained 

(Jackson, 1991, Landman and Tennant, 2000). In this study this criterion gives 20 PCs whose 

total variance is 99%. It is true that less than 20 can still also give the expected results based 

on the rule of thumb (North et al., 1982). Then the first 20 PCs are used as the input to the 

NLPCA network. Each input variable is normalized by subtracting its mean and then dividing 

by the standard deviation of the first PC (Hsieh, 2001). Scatter plots of the 3 leading principal 

component time series are shown by the solid blue dots in Fig.4. All four projections are 

shown because it is difficult to understand the structure of the NLPCA approximation from a 

single projection. This is particularly evident in Fig.4c, where the curve, viewed edge-on, 

appears to be self-intersecting, whereas, in fact, the other projections demonstrate that this is 

not the case. 
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3.1 Atlantic Cold Tongue 

 

EOF1 exhibits (Fig.2a) a high variance in coastal Angola, which extends from the coast to the 

west between 6°S and 2°N and EOF2 exhibits (Fig.2) large variances in two places: (1) at the 

Equator between 5°S and 2°N and (2) along the Gabon coast. EOF1 mode (Fig.2a) accounts 

for up to 36% of the total variance with the region of largest amplitude around the Angola 

coast. The signal decreases from East to West between 15°S and 2°N. The GoG is identified 

by abnormal changes in the equator and eastern part. The SSTA signature of the first mode is 

mainly confined to the eastern equatorial region. This first mode presents a structure for 

which the pattern is more closely confined to the eastern basin and spanning a range of 

latitudes (Zebiak, 1993) near the Angola coat. This spatial structure is characterized by a 

zonal pattern symmetric about the equator, with warm or cold SSTs appearing in the eastern 

equatorial basin to the south and north. The pattern of the first mode captures the zonal mode 

pattern in the tropical Atlantic (Carton and Huang, 1994, Handoh and Bigg, 2000, Huang and 

Shukla, 1997, Ruiz-Barradas et al., 2000, Zebiak, 1993). By multiplying EOF1 with its 

related PC, we observe some typical ACT cold years, such  as 1990, 1992, 1997, 2005 and 

warm years 1984, 1987 and 1998 (Caniaux et  al., 2011). At the end of 1964 and again in 

1967, there was a general cooling over most of the Atlantic and particularly strong in the east. 

Likewise, in 1966 there is much less warming in these same areas. The year of 1969 is 

revealed as being warmer as reported in a previous study (Servain and Legler, 1986). This 

mode mainly presents interannual variability in the tropical Atlantic.  In addition, the 

correlation coefficient between PC1 and Atlantic Niño SST index is 0.82. The Atlantic Niño 

SST index is defined as the area-averaged SSTA over 3°S-3°N, 20°W-0° (Zebiak, 1993). 

Hence, this picture resembles the equatorial mode. The first mode (Fig.4) of NLPCA explains 

38.6% of the variance of the given EOFs, i.e 38% of the total variance of SSTA compared to 

36% explained by the first PCA. The projection of NLPCA mode in the planes defined by 

pairing PC1, PC2, and PC3 are shown in red in Fig.4. The NLPCA mode 1 is slightly 

coincident with the projection onto PC1 indicated by the green line in the plots. Unlike the 

PCA, the NLPCA shows the nonlinear form in SSTA structure. The SSTA manifests itself as 

a Wave-shaped curve on the non linear graph of the first nonlinear mode between the 

minimum and maximum values of its principal component u . The non linearity of the 

sinuosity observed in Fig.4a is modest and the maximum of PC1 is less than the absolute 

value of the minimum of PC1. This insinuates that we have a very cold and very warm event 
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in the Atlantic region. It seems as if the two (ACT and Atlantic Niño) evolve together 

because their correlation coefficient is 0.94. Fig.5 is a plot of the normalized time series of 

nonlinear principal component (NLPC), which bears a strong resemblance to the ACT time 

series. This”ACT index” is obtained by computing the inter-annual mean of SSTA in the 

ACT zone (in the box from 5°S to 2°N and from the coast to 20°W during the ACT period 

(June-August) Caniaux et al. (2011)). Normalization is obtained by subtracting the mean and 

dividing by standard deviation. The correlation coefficient between the normalized ACT 

index, nonlinear principal component and linear principal component are respectively 0.85 

and 0.8.  

Fig.6 shows the reconstructed field of SST anomaly for some values of the first nonlinear 

component u . It is obtained by choosing a particular value of u  associated with each of 

twenty PCs and multiplied by the associated EOFs. Eight values of u  are chosen equitably 

from minimum to maximum. To display the sequences of ACT (which correspond to the 

value of u  as Fig.4a indicates) and only the eight equitable interval (Fig.6) values of u  are 

selected: −3.14,−0.98, −0.57, −0.25, 0.06, 0.31, 0.54, and 1.08. It observed that the spatial 

distribution varies with each selected value of u . This variation from the minimum (strong 

activity of Atlantic cold tongue) to maximum (low activity of Atlantic cold tongue) of the 

eight values of u  shows a contrast between the north-east and southwest of 5°S. Those 

patterns are repeated from a to h. We note in Fig.6 that the cold year of ACT is more intense 

than the warm one and ACT distribution is quasi-linear in space. This result is confirmed by 

the high correlation coefficient between NLPCA mode 1 and PCA1. As afore mentioned, 

Figs.6a and 6h exhibit strong and weak ACT, respectively. 

The differences in strong/weak ACT symmetry in Fig.6 can be compared with the results of 

composite analysis. The simplest approach is to compute the mean of NLPC. Warm and cold 

events are defined in each time series as events whose amplitudes are greater or less than the 

mean of NLPC; the warm and cold events have positive and negative signs, respectively. 

Thereafter, we compute the mean of each group; i.e. for the warm or cold years during the 

ACT period (JJA). This averaged period was used for the composites because JJA displays 

the period which the surface area at less than 25°C is greater than the empirical threshold 

surface area at 0.40 × 106 km2 (Caniaux et al., 2011). The mean for the strong ACT is 

represented by Fig.7.a and for the weak by Fig.7.b. The largest SSTA is located in the eastern 

part during average weak ACT events and centered in the same region during average strong 

ACT events. We may observe that the pattern of these two types of ACT is quasi symmetric. 
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3.2 Atlantic Niño 

 

Xie and Carton (2004) shows that Atlantic Niño is most pronounced in boreal summer 

coinciding with the seasonal development of the equatorial cold tongue. Fig.6a represents the 

coldest year and Fig.6h the year of the warmest ACT, which is not the warmest year but the 

year of weak ACT corresponding to Atlantic Niño. Then the weak ACT can be regarded as 

the conventional El Niño. Joke and Michael (2013) results show that the Atlantic Niño mode 

is more strongly damped than Pacific Niño. In this study, unlike in the Pacific Ocean where 

Hsieh (2004) shows that the Pacific El Niño is asymmetric, the spatial variability of this 

mode in the Atlantic Ocean is more linear than the El Niño/Southern Oscillation (ENSO). 

This is a new understanding between Atlantic Niño and Pacific Niño. 

The results presented in Fig.6.e, f and g characterized the non canonical Atlantic Niño with 

negative anomalies in the northern tropical Atlantic and Fig.6h characterized the canonical 

Atlantic Niño  with  positive anomalies in the northern tropical Atlantic. The first NLPCA 

mode successfully passes through the canonical El Niño states, non-canonical El Niño states 

and ACT states as u  varies continuously from its minimum value to its maximum value. 

Therefore, NLPCA is capable of simultaneously capturing many more pictures in the Atlantic 

Ocean. In addition, it gives a more accurate description of the El Niño states (Fig.6) than the 

first PCA mode (Fig.2a), which did not fully represent the canonical and non-canonical 

Atlantic Niño. With a linear approach, it is generally impossible to have simultaneous results. 

 

3.3 Atlantic dipole 

A north-south inter-hemispheric gradient of SST anomalies is observed in the second mode 

of PCA. The SSTAs show a remarkable meridional gradient, with significant positive 

anomalies spreading from the North African coast into the northwestern tropical Atlantic and 

significant negative anomalies in the south. There is, however, a local maximum in the 

tropics which has a sign, indicating that the two regions are quite strongly out of phase. PC2 

and Atlantic dipole SST index are well correlated (Fig.3) with correlation coefficient of 0.66. 

Then EOF2 displays an opposite phase between the North and South parts of 6°S. This 

picture is consistent with the Atlantic dipole (Servain et al., 1999). 

We now turn to NLPCA SST mode 2 results (Fig.8 and Fig.9), The NLPCA network 

architectures used for calculating NLPCA SST mode 2 are essentially the same as those of 

Hsieh (2001); three hidden layer neurons with all training and fitting parameters identical to 
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the configuration used for calculating NLPCA SST mode 1. The explained variance results 

show that the NLPCA mode 2 explains more variance as the second principal components. 

For the observational SST data, NLPCA SSTA mode 2 explains 22% of the total data 

variance, compared to 38% for NLPCA SST mode 1. The first two NLPCA modes between 

them explain marginally more of the total data variance than do the first two PCA modes. 

We therefore expect that the nonlinearity will be more pronounced in the Figs.9 in the 

reconstruction plots for NLPCA mode 2. The reconstruction is obtained as we did in the case 

of NLPCA mode 1. We also display the sequences of Atlantic dipole and only the eight equal 

interval values of the second NLPC mode are selected:  −2.71, −1.12, −0.80, −0.38, −0.059, 

−0.052, 0.37, and 0.70. This variation from the minimum (strong gradient) to maximum 

(weak gradient) of the eight values of the NLPC of the second NLPCA mode shows a 

contrast between the north-west and south-west. There is clear nonlinearity in the distribution 

from NLPCA SST mode 2. The main characteristic of the Atlantic dipole is captured, with 

the South Pole shifted towards the coast with different signs. The main pattern of variation 

between large negative and positive values of NLPCA mode 2 is a dipole; with each pole on 

either side of the equator with a different sign (Fig.8). This meridional mode (Fig.8) is 

exhibited in the second mode of NLPCA. Figs. 8b, 8c, 8d show the displacement of southern 

counterpart of the dipole, which confirms the asymmetry of the meridional mode. This shows 

that the variability of the second mode, which resembles the meridional mode one, can 

change from year to year. Regardless of Fig.8, there were interesting patterns that came out in 

the second NLPCA. There is some discrepancy between the Atlantic dipole structure. During 

the strong gradient (meridional gradient between the two lobes, Fig.8a) events the core of the 

southern lobe is centered around 15°W during the strong gradient and around 20°W during 

some weak events (Fig.8f). The Atlantic dipole in Fig.8a is similar to that in Fig.8f but the 

southern lobe is not located at the same place. The situation in the South lobe is unstable. We 

also observed that the south lobe is missing in Figs. 8b, c, d. This is not surpring because it is 

observed in some studies (Rajagopalane et al., 1998, Servain, 1991) that the Atlantic dipole 

exhibits decadal time scales. It is confirmed by Xie and Carton (2004) whose analysis 

showed that meridional dipole rarely occurs. Compared to Fig.8a, the southern lobe of Fig.8f 

is somewhat shifted to the east while the northern lobes have weaker anomaly. Fig.10 shows 

the time series of NLPC mode 2 and Atlantic dipole index with the correlation coefficient of 

0.9. When observing the Atlantic dipole structure, we may realise that the sequential 

evolution of the phenomenon from Fig.8a to Fig.8h is interrupted, implying that the 

phenomena is not observed each year which is not also suprising as results. However, we 
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may observe that the south counterpart of the dipole has a displacement. Thus the spatial 

variation of the meridional mode changes meaning that the phenomenon cannot happen in the 

same place every year. 

 

4. Discussion 

 

There are many possible schemes for rotation of PCA (RPCA); the varimax (Kaiser, 1958) 

being the most popular. Both RPCA and NLPCA take the PCs from PCA as inputs. There is 

an important difference between PCA and rotated  PCA methods;  as it is  generally 

impossible  to  have a simultaneous solution:  explaining  maximum global variance  of the  

data  and approaching pattern recognition. NLPCA can give both information, thus the 

nonlinearity in NLPCA unifies the PCA and rotated PCA approaches (Hsieh, 2001). In this 

paper, in terms of variance, the first rotated PCA explained 31% of the total variance (not 

shown), versus 36% by the first PCA mode. The first PCA exhibits a more accurate 

description of the ACT than the first RPCA mode. The combination of all two SST EOFs 

yields the major events in the tropical Atlantic. In this section it is known from SSTA that 

PCA points out the interannual principal mode in the Atlantic Ocean. NLPCA can give more 

information about this variability. 

It is observed that the NLPCA mode 1 better represents the inter-annual variability of ACT 

than linear PCA mode 1. Fig.6b corresponding to 0.75 min( u ) is similar to EOF1. So, 

NLPCA explains variances extracted by PCA and gives more information, which is not 

obvious by analysis with the PCA. Linear PCA method describes the evolution in time of a 

standing oscillation with fixed spatial structure and time varying amplitude. NLPCA is not so 

constrained, and therefore its power lies in characterizing more complex lower-dimensional 

structures (Monahan, 2001). The analysis of the two curves of (Fig.5) indicates that NLPCA 

can give more information about ACT. SSTA is stronger in ACT than other parts of Atlantic 

Ocean except in the Angola coast where it is strongest. This view appears to corroborate to 

the observations of Hirst and Hantenrath (1983) and of Rouault et al. (2003) that the 

variability in tropical southeast Atlantic SST is strongest in the Angola Benguela frontal 

current zone region near 15°S-20°S. 

Comparison of the eight sub-Figs of Fig.6 (Fig.6a-6h, respectively,) clearly show a similar 

pattern in the eastern part of the equatorial Atlantic. There are warm and cold SSTAs in this 

region, stretching further southwards along the coast of Central and South Africa. This is 

consistent with ACT development. There is no big spatial difference between a fully 
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developed strong and weak ACT.  Comparing the patterns shown in Fig.6 with that of the 

first EOF presented in Fig.2a, we observe that individual PCA modes represent only a single 

spatial pattern of the first mode of NLPCA with standing oscillations. Fig.6a is similar to 

Fig.2a, hence NLPCA mode 1 includes PCA mode 1. The strong and weak ACT states, 

(Fig.6.a), (Fig.6h), respectively, are confined to the eastern part of the equatorial Atlantic. 

One of these patterns can be captured by a conventional PCA analysis but does not capture 

the quasi symmetry presented by strong and weak ACTs. The spatial distribution is best 

described (Fig.6) by NLPCA than PCA, and the variance may be represented by these first 

NLPCA modes. The asymmetry of SSTA in the evolution of NLPCA mode 1 is modest; the 

canonical and non canonical Atlantic El Niño event is observed which cannot be pointed out 

by linear mode 1. 

It is not necessary to study RPCA since neither the PCA nor RPCA can represent the two 

states of ACT simultaneously. In contrast, the first NLPCA mode successfully passes through 

the strong and weak states as NLPC varies continuously from its minimum to maximum 

value. Therefore the rotated eigenvectors does not improve much on the unrotated 

eigenvectors for the study of ACT and Atlantic Niño. 

The quasi-symmetry determined by a composite analysis (Fig.7) shows just two steps of ACT.  

These two maps correspond to the SSTA patterns of an average warm and cold ACT event, 

respectively. Since composite analysis is based on composite means, there will be difference 

of the micro-spatial patterns of strong and weak ACT from that of the NLPCA analysis. The 

very weak spatial asymmetry between cold and warm events of ACT observed in NLPCA 

mode 1 is manifest in composite analysis. These two maps correspond to the SSTA patterns 

of an average weak and strong ACT, respectively. Fig.7a and Fig.7b, respectively, bears a 

strong resemblance to Fig.6h and Fig.6a; and are strongly similar to EOF1. This means that 

EOF1 exhibits strong ACT. It is more explicit in the first NLPCA mode 1, which shows both 

strong and weak ACTs. Note that, consistent with the maps corresponding to the 1D NLPCA 

approximation (Fig.6h), the largest SSTA tend to be located in the Angola coast during the 

average strong and weak ACT events. The spatial correlation between the two maps is −0.99. 

This confirms the quasi-symmetry between the warm and cold ACT events. 

Composite analysis can show only the states of the means of the weak and strong ACTs 

separately. But NLPCA shows different states of ACT; isolating different patterns and their 

associated amplitudes which may be missed by the means or averaging. The NLPCA, 

therefore, has the nice feature of capturing a range of variability between the symmetry of 

different ACT states, something that is difficult to obtain using index-based SST composites. 
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NLPCA improves on PCA by allowing low-dimensional approximations to have a structure 

other than that of simple standing oscillations. Both the NLPCA mode 1 and the composite 

analysis describe the symmetry between averages of warm and cold ACT events. However, 

NLPCA has the advantage of no a priori specification of a time series (e.g. periods) over 

which to composite, and provides a full 1D approximation to the data, in contrast to the 

absence of approximation in composite analysis. The latter can only give the mean state of 

ACT but PCA and NLPCA can approximate the real state. The fact that we observed that 

ACT is almost linear gives the impression that NLPCA is not necessary, but the 

implementation of only linear PCA hides this weak nonlinearity. The warm events (Atlantic 

Niños) are associated with reduced cold tongue development (Carton and Huang, 1994). 

A final comparison of the 1D NLPCA and 1D PCA approximations is given in Fig.11, which 

shows, respectively, maps of the pointwise correlation between the original SSTA data and 

the 1D PCA approximation, and of the pointwise correlation between SSTA and the 1D 

NLPCA approximation (Fig.11). The two  approximations  are  equally  well  correlated  with  

the  original data  over the  central band of the  Atlantic  Ocean, where  the  NLPCA  

correlations are somewhat higher than those of the PCA approximation, except in the 

Nothwest  part  of the  Ocean. In the East region and in the ACT area the 1D NLPCA 

approximation displays a greater fidelity to the original data, as determined by the pointwise 

correlation, than does the 1D PCA approximation. This demonstrates the better capacity of 

NLPCA in representing SST data than the PCA. We observe that NLPCA represents better 

ACT surface on the Angolan coast than the PCA. However strong correlation in Fig.11 

centered in the Nothwest part of the Ocean at around 20°W shows the ability of PCA to 

reproduce SSTA data in this region. Therefore, the NLPCA and PCA are complementary. 

These two statistical tools do not strongly represent globally SSTA data very close along the 

Guinea coast. As already mentioned above, in terms of explained variance, NLPCA mode 1 

is generally greater than PCA mode 1 however the difference is not as much as that between 

PCA mode 2 and NLPCA mode 2, which are very large and with the NLPCA mode 2 being 

greater than PC mode 2. 

The meridional mode (Figs.9) is more nonlinear than that of the ACT (Figs.6). We observe 

that the asymmetry of the variability of the meridional mode is more prononced (Fig.9a) than 

that of the ACT. 

It was pointed out by Houghton and Tourre (1992) and confirmed by Metha (1998) that the 

northern and southern hemispheres appear to act independently. Regarding the Southern lobe 

picture of Figs.8 compared to other analysis we see that NLPCA gives the additional 
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information that this lobe underwent an eastward displacement. Also the weak gradient 

between the two lobes is observed in the sequence map; this weakening of the meridional 

mode is consistent with previous works (Tokinaga et al., 2011). This means that the second 

NLPCA mode has fully captured the Atlantic dipole pattern, unlike PCA mode 2, which only 

captured part. Thereby yielding a more accurate description of the Atlantic dipole (Fig.8) 

than the second PCA mode (Fig.2b), which did not fully represent the displacement of the 

center of action located in the southern part. With a linear approach, it is generally impossible 

to have simultaneous results. And also what is quite interesting is that previous statistical and 

diagnostic studies seem not to be interested in the investigation of the stability of spatial 

variability of the Atlantic dipole structure. 

The weakness of the gradient between the North-West and south-West means that the 

Atlantic dipole is insignificant during some years. This result is  supported  by Tokinaga et  al. 

(2011); they  showed that  CMIP3  twentieh century  experiments  tend  to  feature  a 

weakening  meridional  SST  gradient. Fig.9 confirms the nonlinearity observed in the 

characteristic of spatial variability of the meridional mode. 

 

5. Conclusion 

We have investigated the application of linear PCA and nonlinear generalization of PCA, to 

tropical Atlantic SST. It was observed that a NLPCA mode 1 explains 38% of the total 

variance in the SST field, in contrast to 36% for the  first  PCA mode while  NLPCA  SST  

mode 2 explains  22% of the  total data  variance  compared to  16% by the  linear  PCA 

mode 2. PCA mode 1 also characterizes average ACT variability, but only as a standing 

oscillation, so it is unable to evaluate the weak asymmetry in spatial pattern between average 

warm and cold events manifested in the 1D NLPCA. Compared to PCA, NLPCA can better 

point out the ACT, Atlantic dipole, Canonical and non-canonical Atlantic Niño. NLPCA can 

better represent all the SST data than PCA. The Atlantic equatorial mode which is similar to 

El Niño/Southern Oscillation (ENSO) in the Pacific Ocean has been recognized and 

considering the Hsieh (2004) work, it is observed that it is less linear than the latter. The non 

linearity in spatial variation of ACT is modest in the Atlantic Ocean in contrast to the Pacific 

Ocean. 

The NLPC mode 2 described the Atlantic dipole variability. The explained variance results 

show that the NLPCA mode 2 explains more variance as the second principal components. 

The first two NLPCA modes between them explain marginally more of the total data variance 

than do the first two PCA modes. We observed that the Atlantic dipole is more asymmetric 
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than Atlantic Niño. We have shown that the NLPCA serve as a useful tool to investigate 

various aspects of the Atlantic phenomena. For example, differences between the weak and 

strong ACTs, between the Atlantic canonical and non-canonical Atlantic Niño, and some of 

different states. 

Overall, the mechanisms controlling the mean state of the tropical Atlantic are not fully 

understood. However, its mean state is important as an indicator for predicting future 

atmospheric circulation. Future analysis is needed to further explore the West African 

monsoon rainfall using NLPCA and the intended implications of SST for the spatio-temporal 

variability of precipitation over West Africa. 
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Fig. 1 The NN model for calculating nonlinear PCA. There are 3 ’hidden’ layers of variables 
or ’neurons’ (denoted by circles) sandwiched between the input layer x  on the left and the 
output layer x′  on the right. Next to the input layer is the encoding layer, followed by 
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the ’bottleneck’ layer (with a single neuron  for NLPCA), which is then followed by the 
decoding layer. , ,  and  are the transfer functions. 

 
 

Fig. 2 Empirical orthogonal function (EOF) of detrended monthly sea surface temperature 
(SST) Anomalies. a) EOF1 mode (left) and b) EOF2 mode (right) with their explained 
variance in parenthesis. The contour interval is 0.01. 

 

 
Fig. 3 The corresponding time coefficients in black, the Atlantic Niño index and Dipole index 
in red. Vertical lines in the time series correspond to January of the respective years, starting 
in January 1950 and ending in December 2005. 
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Fig. 4 Scatter plot of the sea surface temperature (SST) anomaly (SSTA) data (shown as blue 

dot) in the principal component (PC1, PC2, and PC3) plane. The first principal component 

analysis (PCA) eigenvector (green color) is oriented along the horizontal line. The first mode 

NLPCA approximation to the data is shown by the reds circles, which traced out a Wave-

shaped curve. 
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Fig. 5 Plot of NLPC1, the time series associated with SSTA NLPCA mode 1 (blue line), the 
normalized ACT index (black dashed line) and PC1 (red line). 
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Fig. 6  The  SST anomaly  pattern  (in °C)  of the  NLPCA as  the  minimum of NLPC   
between  June and August  for each year of the  first  NLPCA mode. Considering  just  the 
eight  minimum mentioned  above, the  anomaly  pattern  of the  first  NLPCA mode varies 
from (a) its minimum (strong  Atlantic cold tongue),  to (b)  three-quarter its minimum, to (c) 
half its minimum, to (d) quarter of its minimum, to (e) quarter its maximum, to (f ) half its  
maximum (non-canonical  Atlantic  Niño, to  (g)  three-quarter  its maximum  and (h)  its 
maximum  (weak Atlantic  cold  tongue).  Zero contours are white lines.  Positive contour is 
bold black line and negative contours are black. The contours in pink color are the coast. 
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Fig. 7  Composite  maps for  average (a)  cold  ACT  (upper)  and (b)  warm  ACT  (lower). 
Positive contours are black lines and negative contours are dashed black lines. 
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Fig. 8  The SST anomaly pattern (in °C) of the second NLPCA mode varies from (a) its 
minimum (strong  gradient  between  north  and South),  to  (b)  three-quarter  its  minimum, 
to (c) half its minimum, to (d)quarter of its minimum, to (e) quarter its maximum, to (f ) half 
its maximum, to (g) three-quarter its maximum and (h)  its maximum (weak gradient between 
north and South). Zero contours are white lines. Positives contours are black line and 
negative contours are dashed black line. The contours in pink color are the coast. 
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Fig. 9 Scatter plots of the sea surface temperature (SST) anomaly (SSTA) data (shown as 
blue dots) in the principal component (PC1, PC2, and PC3) plane. The dots show the residual 
data after the NLPCA mode 1 has been subtracted.  This  second mode NLPCA 
approximation  to  the  data  is  shown by  the  reds  circles,  which  trace  out  a Wave-shaped 
curve. (The  linear  solution  to  the  dataset  after  NLPCA mode 1 has been removed is  not 
the same as PCA mode 2, which is the linear solution to the dataset after PCA mode 1 has 
been removed.). 
 

 
Fig. 10 Plot of NLPC2, the time series associated with SSTA NLPCA mode 2 (green line), 
the normalized Atlantic Dipole index (black dashed line). 
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Fig. 11 Maps of pointwise correlation coefficients between observed SSTA (upper)and  (a)     
1D PCA approximation and (b) 1D NLPCA approximation (lower). 
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