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When attempting to build mesoscale geometric models of woven reinforcements in composites based on X-ray microtomography data, we frequently run into ambiguous situations due to noise, particularly in contact zones between fiber tows, resulting in inadmissible cross-sectional shapes. We propose here a custom-built shape-manifold approach based on kernel PCA, k-means classification and Diffuse Approximation to identify, "repair" such badly segmented shapes in the feature space and finally recover admissible shapes in the original space.

Introduction

In the field of aeronautics, and increasingly in the automobile sector, composites with woven reinforcements are the material of choice for high-performance applications. 3D volume imaging techniques such as X-ray microtomography provide detailed information on the geometry of the material at micro and meso 5 scales. Geometrical reconstruction based on microtomographic scans gives us an opportunity to create realistic numerical models suitable for finite element simulation of the manufacturing processes involved or for identifying the mechanical properties of the material by homogenization.

However, several challenges emerge while creating such geometric reconstructions. Firstly, the microtomographic scans need to be segmented, i.e., the elements corresponding to particular fiber tows composing the woven architecture

Preprint submitted to Comptes-rendus de l'Académie des Sciences: MécaniqueApril 12, 2018 . must be identified, e.g., by determining the contours of the tow cross-sections on consecutive 2D slices of the scan. This process may be performed manually [START_REF] Vanaerschot | Stochastic characterisation methodology for 3-D textiles based on micro-tomography[END_REF], by analyzing directional gradients [START_REF] Straumit | Quantification of the internal structure and automatic generation of voxel models of textile composites from Xray computed tomography data[END_REF] or using learning algorithms [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF]. The manual approach is clearly impractical, since a single scan is composed of thousands of slices that would each require individual treatment. On the other hand, automated segmentation may yield a possibly oversimplified geometry as in the case of gradients, or mostly well-segmented, detailed contours with a certain percentage of outliers, as is the case of the learning algorithm approach [START_REF] Kanungo | An efficient k-means clustering algorithm: analysis and implementation[END_REF].

In this paper, we propose tackling the issue of outlier fiber tow contours that are incorrectly segmented by using a learning strategy [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF]. We begin by projecting the level-set contour snapshots of individual contours on to the feature space using kernel-PCA [START_REF] Gonzalez | kPCA-Based Parametric Solutions Within the PGD Framework[END_REF], followed by classification using a k-means algorithm. The clusters of outliers are then identified based on an ad hoc criterion (e.g. failure to preserve the volume of individual fibers) and are then removed from the snapshot base which is once again decomposed using kernel-PCA. The shape manifold(s) of the admissible contours is/are then described by using Diffuse Approximation in the feature space. A "repaired" outlier is then hypothesized as the closest point on the manifold of admissible shapes and is obtained in the form of a set of diffuse weights with respect to neighboring admissible shapes. Finally, these weights allow us to solve the preimage problem, i.e. finding the actual shape of the "repaired" fiber tow section in the original observation space.

Contour representation in feature space

Consider a series of contours Γ (i) , i = 1, . . . , N t of a fiber tow cross-section obtained by structure segmentation using learning algorithms of N t subsequent 2D slices of a tomogram. A sample contour is shown in (Fig. 1).

The number of individual fibers in a fiber tow is considered constant and post-processing of the image gives us the first information as to whether a given section may be considered as a regular one (Fig. 2), exhibiting an admissible variability due to the measurement error (which can be further taken into account for example, by introducing the "nugget effect" in kriging approximation [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF]) or it must be classified as an outlier (Fig. 3) requiring special treatment like the one presented in the present work.

Each contour, regular or outlier, simply or multiply connected, may be represented as the zero level set of a level set function φ [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF] defined within the whole image slice such that φ > 0, if inside the curve, φ < 0, if outside the curve.

(

as illustrated in (Fig. 4). The signed distance function meets the requirements for φ and has been chosen in the present work since it may be efficiently computed from the discrete contour representation. The Eulerian representation of the fiber tow is then given in the form of a set S of N t snapshots s (i) of φ evolving within a fixed N x × N y grid (Fig. 4)

s (i) ∈ R D , i = 1, . . . , N t , D = N x × N y (2)
considered centered and normalized without loss of generality. 

Kernel PCA

The feature space F equipped with the dot product defined by the kernel function k(., .) is introduced by the mapping

ϕ : R D → F (3)
yielding the set of snapshot images Φ = [ϕ(s (1) ), . . . , ϕ(s (Nt) )] which is subjected to re-centering in F by means of the matrix H

H = I - 1 N t 11 T , 1 =    1 . . . 1    (4) yielding 
Φ = ΦH. ( 5 
)
The kernel PCA basis V = [v 1 , . . . , v Nt ] in F is given by eigenvectors of

CV = V Λ c (6) with covariance matrix C C = Φ Φ T . (7) 
This problem being intractable due to the dimensions of F we consider the smaller eigenproblem Φ T Φ of dimension

N t × N t H T KH = U Λ (8) with K = Φ T Φ, K ij = k(s (i) , s (j) ). ( 9 
)
Eigenvalues Λ of 8 are equal to first m non-zero eigenvalues Λ c and decrease 50 rapidly, such that a low number of modes is sufficient to get an approximation of the snapshots to a required precision. A typical evolution of the Frobenius norm of the snapshot matrix reconstruction error is shown in (Fig. 5). By performing Singular Value Decomposition of Φ, it may be shown that the desired basis vectors V are given by The coordinates of s in F are then obtained by projecting ϕ(s) on

V = ΦU Λ -1 . ( 10 
)
V A = [s (i) , . . . , s (Nt) ] T V = KV Λ -1 (11) 
with

A =    α (1)T . . . α (Nt)T    , α (i) =     α (i) 1 . . . α (i) Nt     , i = 1, . . . , N t (12) 
and require (as was the case for the computation of V ) only the evaluations of kernel function k(., .), in other words, not requiring the use or even knowledge of the explicit form of the mapping ϕ(.) during the entire process.

Clustering

K-means clustering [START_REF] Kanungo | An efficient k-means clustering algorithm: analysis and implementation[END_REF] is performed in F , based on the

L 2 norm distance dist(ϕ(s (i) ), ϕ(s (j) )) = (ϕ(s (i) ) -ϕ(s (j) )) T (ϕ(s (i) ) -ϕ(s (j) )) = k(s (i) , s (i) ) + k(s (j) , s (j) ) -2k(s (i) , s (j) ). ( 13 
)
computed again by using the kernel k(., .) alone. Fig. 6), obtained for a complete set of N t = 1200 consecutive contours of a fiber tow and a linear kernel k(x, y) = x T y, reveals two well-separated clusters, A and B. By inspection, we observe that cluster B contains a small number of outlier cross sections and may consequently be labeled as "inadmissible" while the cluster A (corresponding to the majority of regular cross sections) may be labeled as "admissible". The labeling operation may be further automated, using a variety of criteria such as the preservation of the number of individual fibers in a tow as per the manufacturer's specifications, by prescribing limits on the fiber tow cross section area/perimeter or simply the size of the clusters. 

Diffuse manifold learning

Our approach differs from the reduced basis PCA [START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF][START_REF] Raghavan | A bi-level meta-modeling approach for structural optimization using modified pod bases and diffuse approximation[END_REF] and kernel PCA [START_REF] Schölkopf | Nonlinear Component Analysis as a Kernel Eigenvalue Problem[END_REF] approaches, where model reduction is accomplished by retaining basis vectors 70 v 1 , . . . , v d corresponding to the first few eigenvalues of 8, sorted in decreasing order. Instead of truncating the basis, we postulate that the set of admissible shapes belonging to cluster A in (Fig. 6) may be approximated by a smooth manifold with intrinsic dimensionality d, embedded in R D , with d << D

M(α) = 0. ( 14 
)
NOTE: High order modes are still discarded, but merely in order to filter 75 out noise rather than as part of the model reduction.

We observe [START_REF] Xia | Numerical material representation using proper orthogonal decomposition and diffuse approximation[END_REF], that the shape manifold, given above in an implicit form, may be approximated in a parametric manner in terms of the consecutive projection coefficients

α 2 = α 2 (α 1 ), α 3 = α 3 (α 1 , α 2 ), ... α k = α k (α 1 , . . . , α k-1 ), k = 2, . . . , N t ( 15 
)
by applying Diffuse Approximation in recurrent fashion with the coefficients a obtained by minimization according to the weighted moving least squares criterion [START_REF] Nayroles | Generalizing the finite element method: Diffuse approximation and diffuse elements[END_REF] J(a(α)) = 1 2

α k = p T (α 1 , . . . , α k-1 )a(α 1 , . . . , α k-1 ), k = 2, . . . , N t (16) 
αi∈V (α) w(α (i) , α)(P T (α (i) )a -α (i) k ) 2 (17) 
where the neighborhood V (α) is determined by the weighting function and the radius of influence R (i) associated with a point α i . In the present work, for numerical convenience, Gaussian weighting

w(α (i) , α) = exp(-||α (i) -α||/2R (i) ), (18) 
even if non-zero over the entire domain, is computed for the nearest neighbors chosen according to the criterion given in [START_REF] Breitkopf | Explicit form and efficient computation of MLS shape functions and their derivatives[END_REF]. Fig. 7 shows the resulting approximation of the manifold hypersurface M A obtained for the non-centered (Fig. 7a) and centered (Fig. 7b) snapshots of the cluster A (admissible shapes in Fig. 6) in the α-subspace determined by the first three coordinates (α

(i) 1 , α (i) 2 , α (i)
3 ). The projection of the outlier cluster B is also indicated. It can be observed that although outlier detection is not heavily influenced by snapshot centering, the manifold approximation is more accurate after centering.

Outlier repair

For an outlier snapshot s (i) , we consider the hypothesis that a plausible "repaired" reconstruction will correspond to the closest point on M A in the feature space

α = Argmin(dist(M A , α (i) )). ( 19 
)
This problem is solved by using the manifold walking predictor-corrector algorithm introduced by [START_REF] Raghavan | Towards simultaneous reduction of both input and output spaces for interactive simulation-based structural design[END_REF] and results in a feasible solution α in F associated with the set of weights w(α (i) , α ), α i ∈ V (α ).

In order to achieve the process of snapshot repair we need to solve the preimage problem [START_REF] Schölkopf | Nonlinear Component Analysis as a Kernel Eigenvalue Problem[END_REF] which consists of snapshot reconstruction in the original space. This is done by applying the weights w(α (i) , α ) to the level set function snapshots in the observation space

s = α i ∈V (α ) w(α (i) , α )s (i) (20) 
.

The final reconstructed meso-structure, composed of zero-value level sets of successive cross sections of the fiber tow, is shown in Fig. 8.

The proposed approach is then integrated into the process of dual kriging reconstruction of the Representative Volume Element (RVE) of the woven composite material reinforcement [START_REF] Madra | Image-based model reconstruction and meshing of woven reinforcements in composites[END_REF].

Summary and perspectives

We have proposed here a first attempt to "repair" incorrectly segmented images of woven reinforcements in composites. The approach, based on the Diffuse manifold learning technique, may be further enhanced by taking into account the position of the outliers along the axis of the tow. This may be implemented in the neighbor search for Diffuse Approximation, potentially yielding a faster algorithm and better smoothing. We have tested our approach on data for a single tow. However, in presence of multiple tows, the contact between neighboring tows must also be taken into account. Additional work is also needed to optimize the kernel function choice and for tuning the hyperparameters.

Notably, and from a hierarchical standpoint, the current work is the first and only (at this point) effort to perform manifold learning in PCA coefficient space by projecting an experimental target (i.e. poorly segmented) tow contour on to a basis calculated using purely experimental tow contour snapshots, previous efforts having focused on the first (numerical target and numerical snapshots as in [START_REF] Raghavan | Implicit constraint handling for shape optimisation with pod-morphing[END_REF]) and second (experimental target but numerical snapshots [START_REF] Meng | An objective meta-modeling approach for indentation-based material characterization[END_REF]) levels. By using numerical snapshots, we would have avoided the noise so as to more easily discover the intrinsic dimensionality, but this would have defeated the purpose of the geometry learning undertaken in the first place. From a numerical standpoint, the main originality of the approach in the paper is the combination of the kPCA with the Diffuse Approximation for the first time ever. The obvious extension of this work is by assuming Gaussian noise and kriging to describe the data, to supplement the Diffuse approximation used in this work. Another effort is underway to improve data preprocessing, such as contour centering and re-orientation, which may introduce additional modes, especially for larger-scale reconstructions.

Figure 1 :

 1 Figure 1: 2D slice of an X-ray microtomogram with indicated contour Γ of the segmented fiber tow, grayscale values correspond to the value of X-ray attenuation coefficient µ; a plausible fiber tow contour is indicated by the black line.

Figure 2 :

 2 Figure 2: Segmentation result, grayscale values correspond to the probability of tow detection. Properly identified, regular fiber tow section in red.

Figure 3 :

 3 Figure 3: Incorrectly detected, outlier fiber tow contour (red line), note the segmentation error zone at U = 260, V = 0.

Figure 4 :

 4 Figure 4: An example of a level set snapshot s of a regular tow contour with φ = 0 in black.

Figure 5 :

 5 Figure 5: Evolution of Frobenius norm of snapshot matrix reconstruction error ε =

Figure 6 :

 6 Figure 6: Points corresponding to Nt = 1200 snapshots cast into the reduced feature space. Two clusters of points are indicated: A (blue dots) corresponding to correct segmentation; B (red dots) representing badly segmented outliers.

  (a) Non-centered snapshots (b) Centered snapshots

Figure 7 :

 7 Figure 7: Points corresponding to (a) non-centered, (b) centered snapshots cast into feature space determined from the set of correctly segmented snapshots S . A diffuse manifold fitted to the points is also shown.

Figure 8 :

 8 Figure 8: The reconstructed, corrected fiber tow geometry.