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Although many works have been devoted to the order-disorder transition in carbon-supersaturated α-Fe, all
seem to have overlooked the temperature hysteresis phenomenon occurring around the critical temperature. It is
shown, from a mean-field model based on the elasticity theory of point defects, that the origin of the temperature
hysteresis is thermodynamic. As a consequence, both the critical temperature and carbon concentration for
the order-disorder transition can be defined upon heating and cooling. The results obtained were successfully
compared to molecular dynamics simulations, and are evidence that the transition is of first order and that linear
elasticity is the predominant source of the thermodynamics of the Fe-C solid solutions.
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I. INTRODUCTION

In 1926, Fink and Campbell were the first to show that
quenched carbon steels contain a phase with a tetragonal
crystal structure [1]. The lattice of this so-called α′-martensite
phase is tetragonally distorted, in contrast to the equilib-
rium body-centered-cubic (bcc) structure α-Fe. The structure
formed acquires the body-centered-tetragonal (bct) structure,
with a corresponding c/a axial ratio, c being the long axis of
the elongated cube and a being its short axis.

Tetragonality is a direct consequence of carbon ordering
onto one of the three possible subsets of octahedral sites
of the bcc structure. The occurrence of the ordered phase
was explained by two different mechanisms at least. The
displacive transformation character of the face-centered-cubic
(fcc) austenite to α′-martensite, and the associated Bain’s
deformation, impose that the octahedral interstitial sites of the
parent fcc lattice transform into the interstitial sites of only one
of the three octahedral sublattices of the bcc (or bct) structure.
In that case, the tetragonal distortion is the product of the
reconstruction process itself. This ordering can also be viewed
as a self-induced preferential distribution of solute atoms
in one of the three types of tetragonal interstitial positions.
This approach, based on thermodynamic considerations (the
ordered phase being more stable than the disordered one) is
commonly referred to as Zener ordering, and is mainly driven
by elastic interactions between carbon atoms [2]. Based on
this idea, Khachaturyan studied carbon atoms ordering using a
mean-field approximation [3]. A few years later, he proposed
a more fundamental approach based on static concentration
waves and microscopic elastic theory [4]. These models, and
others [5–8], enable us to define the critical temperature Tc of
carbon ordering as

Tc = 0.361
λ0

kB

uC, (1)

*philippe.maugis@im2np.fr

where uC is the u-fraction of carbon (ratio C/Fe), kB

is Boltzmann’s constant, and λ0 is the strain interaction
parameter.

Numerous theoretical studies based on different approaches
were devoted to determining the value of λ0. However, no clear
consensus emerges since the calculated values of λ0 ranged
from a lower limit of 2.73 eV/atom [4] to an upper limit of
10.7 eV/atom [3]. This leads to much uncertainty regarding
the calculated critical carbon concentration above which
the tetragonal phase is stable at room temperature (ranging
between 0.33 and 2.56 at. %). Regarding the experimental
results, the determination of the critical temperature as a
function of carbon content is constrained by many physical
phenomena, such as carbon segregation on martensite defects
at low temperature and carbide precipitation at temperatures
higher than 100 °C. Furthermore, the lattice parameters at
room temperature and thus the tetragonality induced by carbon
ordering onto one of the three possible octahedral sublattices
are very difficult to measure even by advanced techniques
[9,10]. Finally, there are few available experimental values
of the critical carbon concentration of the cubic to tetragonal
transition at room temperature. The existing ones range from
0.93 at. % [11,12] to 2.8 at. % [13].

The literature survey thus shows that the mechanisms
of both martensite formation and order-disorder transition
require further exploration although two recent works based on
molecular dynamic calculations and density functional theory
provide two main clarifications [6,14]. First, the mechanism
of ordering would depend on both cooling rate and carbon
content. Indeed, for concentrations above xCmax = 3.8 at. %,
a Bain-type transformation from fcc austenite to the ordered
martensite takes places [6]. For concentrations below xCmax,
a diffusion-based transformation is proposed [14]. The dis-
ordered phase has to be ordered by atomic diffusion during
the quench of fcc austenite. This diffusive regime would
be limited by the cooling rate that must be slow enough,
and by critical temperature and concentration (respectively,
273 K and 1.03 at. %) below which no martensite formation
is expected due to the slow diffusivity of carbon atoms.
Second, a hysteresis in ordering of carbon on heating and
cooling was very recently highlighted and was attributed to
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kinetic effects [14]. Indeed, upon cooling from a disordered
structure, it was suggested that a carbon atom makes several
atomic jumps to order, while the process of disordering upon
heating could be accomplished simply by one single atomic
jump.

It is in this context that our work is undertaken. A mean-field
model, based on the elasticity theory of point defects, is
developed. From the Gibbs energy function of disordered α-Fe
and partially ordered α′-Fe, the temperature hysteresis of the
order-disorder transition is highlighted. The results obtained,
successfully compared with those obtained by Sinclair et al.
[14] using molecular dynamic simulations, give some clari-
fications regarding the origin of the temperature hysteresis,
the order of the transition, and the elastic contribution to the
thermodynamics of Fe-C alloys.

II. MODEL

Martensite and ferrite phases are both represented by three
octahedral sublattices for carbon atoms in a bct-Fe host
lattice. In this view, ferrite is the bcc disordered state of
martensite, where the three sublattices are equally and ran-
domly occupied by carbon atoms. Accordingly, the chemical
formula of martensite in the compound formalism [15] is
Fe(C,Va)1(C,Va)1(C,Va)1. The three octahedral sublattices are
labeled 1, 2, and 3. The u-fractions of carbon on the octahedral
sublattices are, respectively, u1, u2, and u3. For instance, ui is
the number of carbon atoms on sublattice i, per iron atom of the
crystal. The total u-fraction of carbon is uC = u1 + u2 + u3

and the molar fraction is xC = uC/(1 + uC).
The expression of the Gibbs energy G of the alloy as

a function of the u-fractions is needed in order to express
the equilibrium state as the minimum of G. In view of the
discussion presented in the next section of the paper, it is
useful to recall here the premises and hypotheses underlying
the mean-field approach. Following Zener [2], the enthalpy
H of the crystal is mostly of elastic origin, resulting from
the interactions of the elastic fields created by each carbon
atom. The enthalpy has two contributions: the self-energy of
the strained lattice and the carbon-strain interaction energy.
Density-functional theory (DFT) calculations show that the
elasticity coefficients of Fe-C martensite are almost composi-
tion independent up to high carbon concentrations (11 at. %)
[16], and that the lattice parameters are linear functions of the
carbon content [17]. These findings justify the use of the linear
elasticity theory of point defects in the context of this paper.

Let us define Eint as the interaction energy of a carbon
atom with a local deformation field εd . εd is the deformation
relative to pure, undeformed bcc Fe. The deformation field
may be created by point defects (vacancies, solute atoms),

TABLE I. Elastic dipole constants [Eq. (2)] and expansion
concentration coefficients [Eq. (3)] from the literature.

Pa (eV ) Pc (eV ) δa δc

Cheng et al. [20] −0.094 0.85
Clouet et al. [19] 3.40 8.03 −0.088 0.56
Chentouf et al. [17] 8.03 15.04 −0.025 0.84

by structural defects (dislocations, grain boundaries), or by
internal and applied stresses. Eint is the opposite of the carbon–
defect binding energy Eb. According to [18,19], Eint = −P :
εd , where P is the elastic dipole tensor. For a carbon atom
in an octahedral site of type 3, the elastic dipole recalls the
tetragonal symmetry of the corresponding interstitial sites; it
is written as

P (3) =
⎛
⎝Pa 0 0

0 Pa 0
0 0 Pc

⎞
⎠. (2)

Equivalent definitions stand for P (1) and P (2) by index
permutation. In the absence of external stresses, the elastic
deformation εd is produced solely by the set of carbon
atoms in the crystal. In the mean-field approximation, it
is the sum of the deformations induced by each individual
carbon atom, independently of their positions. For instance,
the carbon atoms sitting on the type-3 sites contribute to the
total deformation by ε(3) = δ(3)u3 with

δ(3) =
⎛
⎝δa 0 0

0 δa 0
0 0 δc

⎞
⎠. (3)

The trace of tensor δ is site independent, and is related to
the carbon-induced volume expansion. The lattice expansion
concentration coefficients δa and δc are related to Vegard’s
law and can be measured from experimental data [20,21],
computed by molecular dynamics [19], or computed ab initio
[17] (see Table I). The agreement of DFT values [17] with
experiment is very good for δc. Although the relative error
for δa is large, the absolute error (0.07) is in the range of the
uncertainty of the method. These values will be used in this
section for study of the ordering behavior. The data of Clouet
et al. [19] were computed from the same potential as in the
molecular dynamics (MD) simulations of Sinclair et al. [14].
They will be used in the discussion for comparison of our
model against molecular dynamics.

The total deformation induced by the set of carbon atoms
is the sum of contributions of each sublattice:

εd =
⎛
⎝(u2 + u3)δa + u1δc 0 0

0 (u1 + u3)δa + u2δc 0
0 0 (u1 + u2)δa + u3δc

⎞
⎠. (4)

The total interaction energy per iron atom is the sum of
contributions of each sublattice i: Hint = ∑

i uiP
(i) : εd . At

mechanical equilibrium, the unconstrained lattice will adopt
a state of strain such as to minimize the total elastic energy
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TABLE II. Strain interaction parameters defined in Eqs. (6) and
(9). Energies are in eV.

ha hc hX hη

Clouet et al. [19] 0.449 1.95 0.949 1.00
Chentouf et al. [17] 3.09 6.21 4.13 2.08

of the system. According to Bacon [18], this occurs when the
enthalpy verifies H = 1

2Hint. Hence the enthalpy per iron atom
is written, as a function of the ui’s,

H ({ui}) = −hc

∑
i

(ui)
2 − 2ha

∑
i<j

uiuj , (5)

where two strain interaction parameters have been introduced
(see Table II):

ha = 1
2 (Paδa + Paδc + Pcδa)

hc = 1
2 (2Paδa + Pcδc). (6)

The quadratic form of the enthalpy as function of com-
position uC in Eq. (5) arises from the interaction of the
strain field, linear in uC, with the population of carbon atoms
of concentration uC. Assuming that over each interstitial
sublattice the carbon atoms are randomly distributed, we
incorporate the regular configurational entropy. The Gibbs
energy function is then written as

G({ui}) = −hc

∑
i

(ui)
2 − 2ha

∑
i<j

uiuj

+ kBT
∑

i

[ui lnui + (1 − ui)ln(1 − ui)]. (7)

Restricting our study to tetragonal martensite of type 3, we
set u1 = u2 in the following. To study the order-disorder tran-
sition between ferrite and tetragonal martensite, two order pa-
rameters X = uC/3 (conservative) and η = (u3 − u1 or 2)/uC

(nonconservative) are classically introduced. X is the average
occupation factor of the octahedral sites, while η stands for the
long-range ordering between sublattice 3 and sublattices 1 and
2. For ferrite, u1 = u2 = u3 and hence η = 0. For fully ordered
martensite, u1 = u2 = 0 and u3 = uC, and hence η = 1. The
intermediate cases (0 < η < 1) represent martensitic crystal
structures of prolate tetragonal lattice (c/a > 1). Negative
values of η, −0.5 < η < 0, represent oblate tetragonal lattices
(c/a < 1). The latter case of oblate tetragonality is often
overlooked by authors but will prove to be meaningful in the
next section. Using the above-defined order parameters, the
enthalpy of ordering is written as

H (X,η) − H (X,0) = −9hηX
2η2, (8)

with the alternate strain interaction parameters

hX = 1
3 (hc + 2ha) = 1

6 tr(P )tr(δ) + 1
6 (Pa − Pc)(δa − δc)

hη = 2
3 (hc − ha) = 2

3 (Pa − Pc)(δa − δc). (9)

The enthalpy of ordering is of the form −3λ0X
2η2, where

λ0 = 3hη is the ordering energy coefficient. Various values
of λ0 can be found in the literature (Table III). For a given
composition X, the ordering transition will occur at a critical
temperature Tc. At that temperature, the corresponding order
parameter of the ordered phase is noted ηc. As long as ηc is
not zero, the order-disorder transition is of first order.

The Gibbs energy of ordering is a function of X and η:

G(X,η) − G(X,0)

= −9hηX
2η2

+ kBT

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2X(1 − η) ln[X(1 − η)]

+2[1 − X(1 − η)] ln[1 − X(1 − η)]

+X(1 + 2η) ln[X(1 + 2η)]

+[1 − X(1 + 2η)] ln[1 − X(1 + 2η)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (10)

In the limit of dilute alloy (X � 1), the entropy of the
vacancies on the octahedral sites can be neglected. Under this
approximation only, the Gibbs energy of ordering exhibits a
parabolic dependency on composition X, for any given order
parameter η:

G(X,η) − G(X,0) ≈ −9hηX
2η2

+ kBT X

[
2(1 − η) ln(1 − η)

+(1 + 2η) ln(1 + 2η)

]
. (11)

The derivatives of G relative to η will be of use in the
following sections:

∂G

∂η
= −18hηX

2η + 2kBT Xln

[
1 + 2η

1 − η

1 − X(1 − η)

1 − X(1 + 2η)

]
.

(12)

and

∂2G

∂η2
= −18hηX

2 + 2kBT X

[
1

1 − η
+ 2

1 + 2η

+ X

1 − X(1 − η)
+ 2X

1 − X(1 + 2η)

]
. (13)

Since we are interested in supersaturated ferrite up to
concentrations of uC = 0.125 and more, we will keep the
full analytic expressions of the thermodynamic functions, as
expressed by the above equations rather than the dilute approx-
imation. This will allow studying the influence of composition
on the order-disorder transition. For rough approximations,

TABLE III. Ordering energy coefficient λ0, in eV, from literature data.

Khachaturyan and Shatalov [3] Udyansky et al. [6] Ruban [22] Clouet et al. [19] Chentouf et al. [17]

2.73 10.77 9.5 3.00 6.24
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however, the limiting case of dilute solid solutions is reported
below. A first-order development in the vicinity of X = 0
yields the simplified expression

∂G

∂η
≈ −18hηX

2η + 2kBT Xln

[
1 + 2η

1 − η

]
. (14)

Compared to the nondilute case, the above expression has
lost the composition-ordering coupling terms included in the
logarithmic part of Eq. (12). In the following section, the
importance of these coupling terms on the critical phenomena
will be highlighted.

The functional form of the Gibbs energy of ordering
[Eq. (11)] allows for a classical analysis of the order-disorder
transition according to Soffa and Laughlin’s [23] approach.
For given X and T, the possible equilibrium order parameters
correspond to the extrema of the Gibbs energy of ordering
G(X,η) − G(X,0). The relation ∂G/∂η = 0 thus defines the
equilibrium relation T (X,η). From Eq. (12), one can check
that η = 0 is always an equilibrium value, while the other
equilibrium values lie along the η − T curve of the implicit
equation,

T (X,η) = 3hη

kB

3Xη

ln
[ 1+2η

1−η

1−X(1−η)
1−X(1+2η)

] . (15)

The critical temperature for ordering Tc is the temperature
above which the disordered state (η = 0) is more stable than
the ordered state (− 1

2 < η < 1). This occurs when G(X,η) =
G(X,0). In the dilute approximation, T(X,η) is a linear function
of X, and equilibrium is described by the master curve of the
equation

T (X,η)

Tc

≈ 4ln2

3

3η

ln
[ 1+2η

1−η

] , (16)

where Tc is a linear function of concentration:

Tc ≈ 3

4ln2

3hη

kB

X. (17)

The constant X0 = 4ln2
3 in the above formula is a factor close

to 1, which is sometimes omitted in the literature (e.g., [24]).
The ordering curve is represented in Fig. 1 as a solid

line. At low temperatures, ordering tends to its maximum
with η = 1. When temperature increases, the degree of order
decreases down to the critical value ηc at T = Tc. In the dilute
approximation, ηc = 0.5, this state of ordering corresponds to
sublattice 3 being two-thirds full of carbon compared to the
fully ordered state. Above Tc, the stable state is full disorder
(η = 0). The equilibrium equation (14) reveals additional
features, such as the metastable branch (dashed line in Fig. 1)
that goes down to η = −0.5 at low temperature. This branch
accounts for the possibility of metastable stress-free oblate
martensite. The maximum temperature on this metastable
branch occurs at coordinates T+ = 1.010Tc and η+ = 0.377.
The metastable branch intersects the η = 0 axis at temperature
T− = 0.924Tc. At that temperature, the corresponding order
parameter on the stable branch is η− = 0.716. The temper-
atures T− and T+ are related to singularities in the Gibbs
energy of ordering (see Fig. 2, top). Actually, at T = T−
the derivatives relative to η verify G′(0) = G′′(0) = 0, and at
T = T+,G′(η+) = G′′(η+) = 0. Thus, temperatures T−, Tc,

FIG. 1. Ordering curve: order parameter as a function of the re-
duced temperature. For each temperature T < T+, stable, metastable,
and unstable equilibria exist. Upon fast heating (cooling) the system
will follow the downward (upward) arrow.

and T+ define intervals of metastability for the ordered and
disordered phases:

(1) T < T−: order is stable, disorder is unstable;
(2) T− < T < Tc: order is stable, disorder is metastable;
(3) Tc < T < T+: order is metastable, disorder is stable;
(4) T+ < T : order is unstable, disorder is stable.
As a consequence, in the temperature range of T− to T+, two

equilibria are possible: one stable and the other metastable.
This fact is the origin of the temperature hysteresis effect.
Indeed, upon sufficiently fast heating, the system will stick
to its metastable ordered state, up to the temperature of T+
where the energetic barrier vanishes, and the crystal disorders.
A similar behavior will be observed upon fast cooling for the
metastable disordered phase, down to temperature T− where
the crystal will order without energetic barrier.

In the general case of nondilute alloys, the set of equations
(10), (12), and (13) must be solved numerically; the critical
temperatures, and the corresponding order parameters, become
complex functions of composition. However, the above-
mentioned hysteresis behavior persists.

The transition temperatures Tc, T−, and T+ are drawn
in Fig. 3 as functions of carbon concentration, using the
parameters of Chentouf et al. [19] (Table I) and according to
the equations given in the Appendix. At room temperature (300
K), the critical carbon concentration is xC = 1.14 at. % (0.25
wt %), which is in the range of the experimental data (0.93–2.8
at. %). At carbon concentration of 11.1 at. % corresponding to
the Fe8C compound, Tc = 3000 K and the amplitude of the
hysteresis is T+ − T− = 246 K.

III. DISCUSSION

A. Comparison with molecular dynamics

The theoretical development described in the previous
section allows for a reinterpretation of the molecular dynamics
(MD) simulations published by Sinclair et al. [14], in term
of hysteresis behavior. The authors used molecular dynamics
to study the order-disorder transitions in the Fe-C system.
They used Becquart’s EAM potential [25], which aims at
reproducing most properties of low-carbon Fe-C alloys, and
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FIG. 2. Top: Gibbs energies of ordering (in meV/Fe atom) as a function of the order parameter for X = 0.0147 at different temperature
ranges (enlargements). Bottom: corresponding probability densities for nC = 250 carbon atoms (line).

in particular the diffusion mechanism of interstitial carbon.
The simulation box of MD simulations contains nC = 250
carbon atoms distributed on the octahedral sites of a crystal of
nFe = 2000 iron atoms, resulting in the carbon concentration of
uC = 0.125 (i.e., xC = 0.111). One of the interesting results
of this work is the graph of the carbon occupancies Fi as
function of temperature (Fig. 4 in [14]). This graph is reported
here in Fig. 4, where the original Fi have been translated
into order parameter η via the relation η = F3 − (F1 + F2)/2.

FIG. 3. Critical temperatures Tc (black), T− (blue), and T+ (red)
as functions of carbon atomic fraction xC. Upon fast heating (cooling)
the order-disorder transition starts at temperature T+ (T−).

The ordering curve calculated by the mean-field (MF) model
is added in Fig. 4. To allow for quantitative comparison, we
have used the parameters corresponding to the potential of the
MD simulations, i.e., those determined by Clouet et al. [19]
(Table I).

On the graph, the temperature T scans the range of 0.4–1.1
times the critical temperature. Two sets of points have been
retrieved from the MD simulations: The red points correspond
to the stage of heating (at 100 K/ns) from the fully ordered
low-temperature state, whereas the blue points correspond to
cooling (–80 K/ns) from the fully disordered high-temperature

FIG. 4. Ordering curve. Molecular dynamics upon heating (red
dots) and cooling (blue dots) compared to mean-field model (lines).

214104-5
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state. Due to the high heating and cooling rates, the system
is expected not to be fully at equilibrium during the whole
cycle. Consequently, the curves related to heating and cooling
stages do not superimpose exactly, except in two ranges of
temperature: 0.65−0.92Tc and 0.97−1.03Tc. For temperatures
lower than 0.65Tc, the points at heating are stuck to η = 1
corresponding to full order. This is probably due to the low
diffusivity of carbon in the fully ordered state (see [26]).
On the other hand, values in the range 0.92−0.97Tc differ
significantly: The curve related to heating stays far above the
curve related to cooling. Note that the red points follow the
stable curve when T increases, while the blue points drop along
the T = T− vertical line towards the metastable state η = 0.
Blue and red points merge around T = Tc up to the maximum
calculated temperature. On the whole, as long as a stable or
metastable equilibrium is reached, the MD points are in very
good agreement with the MF curves. Carbon diffusion is thus
fast enough for carbon atoms to keep up with the cooling and
heating rates, down to the temperature of 0.65Tc.

The behavior of the system simulated by MD is typical
of a hysteresis cycle and can be understood by referring to
the ordering curves (Fig. 1) and to the Gibbs energy curves
(Fig. 2). During cooling, the system is in the stable state η = 0
down to T = Tc [Figs. 2(d)–2(g)]. Under Tc, the stable state
turns to order, but the system remains stuck in the metastable
well of the Gibbs energy around η = 0 [Fig. 2(c)]. It gets out
of the well towards the ordered state only when temperature
T− is reached [Figs. 2(a) and 2(b)]. Upon heating, the system
stays in the ordered state almost until the temperature Tc. In
large systems, it would probably stay in that state up to the
temperature of T+ when it would get out of the energy well.
However, as will be discussed later, thermal fluctuations play a
major role in the limited-size system under investigation, and
allow the system to get out of its energy well some tens of
degrees before the critical point.

From this analysis, we conclude that the MD simulations
validate the mean-field model and the hysteresis scheme. This
proves that linear elasticity is the predominant source of the
thermodynamics of Fe-C alloys, at least as far as ordering
is concerned. To be complete, it should be mentioned that
the critical temperature determined from the MD simulations
is about 1.1 times its theoretical mean-field value (1650 K
vs 1499 K). We can thus assess that homogeneous elasticity
explains 90% of the ordering phenomenon. The remaining
10% probably pertains to thermal expansion effects and short-
range carbon-carbon interaction.

B. Order of the transition

A quick look at Fig. 4 may suggest that the transition
between order and disorder is somehow continuous, and that
the transition is thus of second order rather than of first order.
This is contradictory with the mean-field model that predicts
a first-order transition at any composition, up to uC = 1.5
(Fig. 5).

Besides, our analysis reveals that the apparent continuity
of the order parameter in MD simulation is the sole effect
of thermal fluctuations affecting the limited-size system used
to investigate the transition. Indeed, fluctuations of order
parameter can be evaluated in the framework of our mean-field

FIG. 5. Order parameters ηc (black), η− (blue), and η+ (red) as a
function of carbon concentration. Beyond uC = 1.5, ηc drops to zero
and the order-disorder transition becomes of second order.

model. In this purpose, let us recall first that large fluctuations
of parameter η may arise in situations where the energy barrier
between two equilibrium states is low. This happens in two
well-documented situations: (i) in the vicinity of a critical
point, and (ii) when the Gibbs energy undergoes a change
of curvature: G′′(η) = 0 leads to the squared fluctuation
(�η)2 ≈ 2kBT /G′′(η), to tend to infinity. In our system, case
(i) pertains to the temperature region of T � Tc, where the
energy barrier order ↔ disorder is close to 0.02 meV/Fe-at.
[see Fig. 2(d)]. Case (ii) corresponds to T � T− around
η = 0, where the energy barrier disorder → order tends to
zero [Fig. 2(b)], and to T � T+ around η+ = 0.377 where
the energy barrier order → disorder tends to zero [Fig. 2(f)].
These simple considerations suggest that fluctuations of η will
be maximum around temperatures T−, Tc, and T+, i.e., in the
whole transition region.

A more refined calculation of the fluctuations can be
conducted using statistical physics. The probability density
of a configuration of order parameter η is

dp(η)

dη
= 1

Z
exp

[
−G(η)

kBT

]
, (18)

where Z is the partition function,

Z =
∫ 1

−1/2
exp

[
−G(η)

kBT

]
dη. (19)

The amplitude of the fluctuations is determined by the
spreading of the function dp/dη. The fluctuations are larger
for small systems because the total Gibbs energy of the system
is proportional to the number of iron atoms: G(η) = nFeG(η).
Applying Eqs. (18) and (19) to our system, the densities of
probability were calculated from the Gibbs energy function of
Eq. (10). They are presented in Fig. 2, bottom. It is apparent
that the equilibrium fluctuations are limited at low temperature,
and large at T > T−. In the temperature range [T−,T+], the
metastable equilibrium states have nonvanishing probability
of existence. Note that the oblate structures (η < 0), also
visible in Fig. 4, exist at equilibrium as a result of the thermal
fluctuations. The fluctuations calculated by the MF model
along the stable path (Fig. 6) are very similar to the ones
in MD simulations (Fig. 4), which justifies our approach.
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FIG. 6. Stable ordering curve. Mean-field calculations: without
dispersion (lines) and with dispersion corresponding to nC = 250
carbon atoms (green points).

Our conclusion is that the transition observed by molecular
dynamics is indeed of first order, even if apparently blurred by
the thermal fluctuations.

An apparent paradox remains in the mean-field model:
A first-order transition is expected to be accompanied by a
discontinuity of the system volume, which is indeed visible
in the work of Sinclair et al. (Fig. 6 in [14]). However,
the elasticity theory predicts zero volume change during
the transition. In fact, the interstitial carbon atoms induce a
dilatation of the crystal:

V = 2VFe[1 + 3Xtr(δ)]. (20)

From this equation, the cell volume V appears to be
independent of the order parameter η. This simply results from
the fact that the insertion volume VC of one carbon atom does
not depend on the type of site (1, 2, or 3) it occupies:

VC = (2δa + δc)VFe = 8.95 Å
3
. (21)

The paradox of zero volume change for a first-order
transition is only apparent since, in a deformable system, it
is not the volume change that is prescribed to have a finite
value by formal thermodynamics, but the change of at least one
of the strain components εij of the system [27]. Three strain
components are indeed discontinuous across the order-disorder
transition, accompanying the cubic to tetragonal change of
symmetry of the unit cell. It just happens here that the linear
combination

∑
εii is null, leading to �V = 0, at least to the

first order. We conclude that the volume change observed
in MD simulations probably arises from the short-range
carbon-carbon interactions.

IV. SUMMARY

A mean-field model based on the elasticity theory of point
defects was developed. From the Gibbs energy function of
disordered α-Fe and partially ordered α′-Fe, the temperature
hysteresis of the order-disorder transition was evidenced. Its
origin is shown to be thermodynamic. The major consequence
of this hysteresis is the downward shift in temperature of the
disorder to order transition during cooling of supersaturated
α-Fe. For the composition of xC = 11.1 at. % corresponding to
compound Fe8C, the shift rises to about 250 K. These findings
are quantitatively confirmed by molecular dynamics simula-
tions. Furthermore, we assess that the order-disorder transition
is of first order, although the transition viewed by molecular
dynamics is apparently continuous, and the volume variation
associated to the transition is predicted to be null. Unambigu-
ously, this work also shows that elasticity is the predominant
source of the thermodynamics of the Fe-C solid solutions.
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APPENDIX: BEYOND THE DILUTE APPROXIMATION

Beyond the approximation of the dilute solid solution, tem-
peratures Tc, T−, and T+ are no longer linear functions of com-
position. It results that the shape of the ordering curve is only
approximately given by the master curve of Fig. 1. A second-
order approximation of Tc and T+, with a maximum relative
error of 0.1% in the range of X from 0 up to 0.0147 is written as

Tc ≈ 3hη

kB

X

0.924

(
1 − X

0.924

)
, (A1)

and

T+ ≈ 3hη

kB

X

0.915

(
1 − X

0.915

)
, (A2)

with the constant 4
3 ln2 ≈ 0.924. Besides, the exact value of

T− is

T− = 3hη

kB

X(1 − X). (A3)

This last function is not to be mistaken with the critical
temperature Tc.
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