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THE INCOMPATIBILITY OPERATOR:

FROM RIEMANN’S INTRINSIC VIEW OF GEOMETRY

TO A NEW MODEL OF ELASTO-PLASTICITY

SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Abstract. The mathematical modelling in mechanics has a long-standing history as related to
geometry, since significant progresses have been achieved by the invention of new geometrical

tools. It also sometimes happens that the elucidation of practical issues leads to the invention
of new concepts, and possibly new paradigms in science, with impact far beyond. One such ex-

ample is the intrinsic view of Riemann in geometry with as consequence a radically new insight

of physics in the early 20th century. The rather recent intrinsic approaches in elasticity and
elasto-plasticity also share this philosophical attitude of looking from inside, or in geometrical

language, ”in a manifold”. Of course, this vision requires smoothness, and is thus incomplete

from an analyst standpoint, but its first aim is to put in the spot light the concepts of metric,
curvature and torsion which are addressed in the first part of this paper. In a second step, these

concepts are given a precise functional meaning and their properties are studied systematically.

Further, a model of elasto-plasticity is designed carrying this intrinsic spirit. The main mathe-
matical object in this approach is the incompatibility operator, a linearized version of Riemann’s

curvature tensor. So far, this route not only has lead the authors to a new model with a solid

functional foundation and proof of existence results, but also to a framework with a minimal
amount of ad-hoc assumptions, and complying with both the basic principles of thermodynamics,

and invariance principles of physics. The questions arising from this novel approach are com-
plex and intriguing, but we believe that the model is now sufficiently well posed to be studied

simultaneously as a problem of mathematics and of mechanics. Most of the research programme

remains to be done, and this survey paper is written to present our model, with a particular care
to put this approach into a historical perspective.

1. On the origin of curvature in science and the birth of intrinsic views

The axiomatization of geometry can be assigned to Euclid of Alexandria (circa 300 B.C.) with
his famous treatize The elements gathering the knowledge of the time in planar and solid geometry.
In particular he identified five regular (in the sense that their faces are only one type of polygons)
and convex polyhedra, the so-called platonic solids. Slightly later, Archimedes of Syracuse (circa
250 B.C.) extended this classification to eighteen solids, the semi-regular (whose faces are chosen
among two sorts of polygons), convex polyhedra. For each of these solids holds the famous Euler’s
(1707-1783) formula 2 = χ = V − E + F (number of vertices plus number of faces minus number
of edges of a convex polyhedra) [24]. In the age of discovery arose the problem of navigation with
planar representations of the earth. The very notion of meridian and parallel line, the germ of the
modern notion of geodesic, can be assigned to the Portuguese mathematician Pedro Nunes around
1530 in two treatises1. One century later, the Belgian mathematician and cartographer Gérard
Mercator proposed a conformal (i.e., angle-preserving) planisphere by cylindrical projection of the
globe. This is precisely the birth of the co-existence of the intrinsic representation (as the map is,
with its intrinsic metric–Mercator’s did preserve the shapes for instance but not the areas) versus
the embedding view (the map can be embedded in the Euclidean space, yielding the terrestrial
globe, from which it was indeed projected).

2010 Mathematics Subject Classification. 35J48,35J58,49S05,49K20,74C05,74G99,74A05,74A15, 80A17.
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1”Tratado em Defensão da carta de marear” (1539) and ”Tratado sobre certas dúvidas da navegação” (1547).

1



2 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

Figure 1. The birth of ”Intrinsic versus Embeddings” approaches. Left: a Mer-
cator’s projection map. Right: the embedding of Mercator’s planisphere (an in-
trinsic manifold) into the terrestrial globe (©Encyclopedia britanica, 1994).

It is seldom said (unrelated to cartography) that Descartes (1596-1650) was probably the first
in his posthumous text De solidorum elementis [19] to introduce the notion of curvature, when
dealing with the aforementioned platonic solids, with the notion of curvature of a vertex defined
as the differences between 2π and the sum of all internal angles. It is also believed that his de-
ductions immediately lead to Euler’s formula. Furthermore his result “sum of the curvatures=4π”
is precisely the discrete version of later Gauss-Bonnet’s formula, where the notion of scalar curva-
ture of a surface is introduced. Gauss (1777-1855) famous Theorema Egregium [28] further says
that the scalar curvature is an intrinsic notion in the sense that it can be computed only by local
measurements of distances independently of the ambient space in which the surface is embedded.

The generalization to higher dimensions of Gauss’ work for surfaces was initiated by one of his
students, Bernhard Riemann in 1854 [59]. Riemann was the first to introduce the notion of differen-
tiable manifold and of a quadratic form (the so-called Riemannian metric) in order to compute the
length of a generalized notion of curve. Moreover, in a system of geodesic coordinates this metric
can be written at the first order by the length element, and at higher order by a complicated term
generalizing the Gauss curvature, due the manifold curvature which is called today the Riemann
curvature tensor. In some sense, Gauss’ point of view of a geometry of embeddings (he was also
concerned with the embedding in the Euclidean space of non-Euclidean – such as hyperbolic –
geometries) was somehow bypassed with Riemann’s new standpoint of forgetting embeddings for
a while, and thinking instead of surfaces intrinsically, with the notion of manifold. It should also
be stressed that Riemann’s intrinsic approach is the essence of Einstein-Poincaré’s new paradigms
of physics in the early 20th century.

After Riemann (and Weyl [78]), Whitney was first in 1936 [68,79] to provide a complete formula-
tion of the notion of manifold. His famous result is the following: any m-dimensional differentiable
manifold can be embedded in the 2m-dimensional Euclidean space. By embedding it is intended
an injective immersion (i.e. allowing no self-intersection), which itself is a differentiable function
between manifolds where the domain manifold has full rank (i.e., has as many independent tangent
vectors as its dimension). Later, the Nash-Kuiper embedding theorems of 1954/55 [45, 56] states
that any m-dimensional Riemannian manifold (M, g) can be C1-isometrically embedded in an Eu-
clidean space of dimension 2m. The importance of this theorem in the history of Mathematics is
unvaluable, since it in particular reconciles (Gauss’) embeddings- with (Riemann’s) intrinsic views.

With this survey, we would like to emphasize the potential of intrinsic approaches in the math-
ematical modelling of elasto-plastic solids. In particular we begin by identifying the deformation
of our body with a metric g and emphasize the role of curvature and torsion in the presence of
line-like defects, ultimately leading to plastic effects at the macroscale. Precisely, the notion of
incompatibility is at the heart of a new paradigm to describe inelastic effects, since incompatibility
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is indeed a linearized version of Riemannian curvature, as we will see. The starting point of the
theory is to accept that, in the spirit of Riemann, we should attack the modelling problem of
elasto-plasticity with an instrinsic approach, that is geometric in nature. Indeed, incompatibility
is a physical notion related to non-smooth, in a certain sense singular deformations in the following
acception: quoting Cartan [12]2, “the Riemannian space is for us an ensemble of small pieces of
Euclidean space, lying however to a certain degree amorphously”, while about crystals where dis-
location form, Kondo [41] suggests that “the defective crystal is, by contrast [with respect to the
above by him given definition of perfect crystal], an aggregation of an immense number of small
pieces of perfect crystals (i.e. small pieces of the defective crystal brought to their natural state
in which the atoms are arranged on the regular positions of the perfect crystal) that cannot be
connected with one other so as to form a finite lump of perfect crystals as an organic unity”. In the
sequel, we develop these ideas, and in particular we set up a precise mathematical understanding
of these concepts.

2. Curvature in nonlinear elasticity

Consider now the domain manifold as an open subset Ω of R3, and consider a given metric tensor
gij . The question raised is the following: under which conditions is (Ω, g) flat, that is, there exists

an isometric immersion Θ : Ω → Ω̂ := Θ(Ω) ⊂ R3? (Note that manifold and embedding spaces
have here the same dimension, as opposed to Whitney-Nash theorems). To answer this question,
let us first assume that such an immersion exists. Then, by definition, it exists a local frame
{g
i
}1≤i≤3 with g

i
:= ∂iΘ such that gij := g

i
· g
j
. Then the following theorem holds: necessarily,

the Riemann curvature tensor Riemg associated to gij vanishes in Ω. Of particular interest is
the reciprocal statement: given an open, connected and simply connected set Ω and an arbitrary
metric C := gij , if Riemg = 0, then there exists Θ ∈ C3(Ω;R3) such that C = (∇Θ)T∇Θ, i.e.,
gij = ∂iΘ · ∂jΘ. Proof of these theorems and their variants can be found in [14].

In elasticity Ω is the reference body, Ω̂ is its deformation, F := DΘ = ∇Θ is the associated
deformation tensor, and C the right Cauchy-Green tensor. As a matter of fact, a restatement
of this theorem reads: given a reference body Ω and an intrinsic measure C of its deformation
(in elasticity C is known to account for local stretch and rotations, [66]), when does it exist a
tensor F such that C = FTF also satisfying Curl F = 0? Indeed, it is well known (Helmholtz-
Weyl-de Rahm decompositon-type results, also known, in the sense of distributions, as Poincaré’s
Lemma [14], [42]) that

Curl F = 0 ⇔ F = Dφ for some φ, (2.1)

with Curl and D intended in the sense of distributions. Therefore we can write that given Ω open
connected and simply connected, and provided a symmetric, positive definite tensor C one has:

∃F : Curl F = 0, C = FTF ⇔ RiemC = 0. (2.2)

In the presence of line-like defects such as dislocations [37], we are typically faced to the following
issue: we have an elastic body Ω with a dislocation loop L and we assume that we have the means
for determining at any point of Ω \ L the stretch and rotation, in other words we are given a
metric tensor C. It turns out that we are only able to construct such a deformation F as in (2.1)
and (2.2) in Ω \ ΠL where ΠL is a surface containing L and dividing Ω into two subdomains Ω+

and Ω− [60]. Let SL ⊂ ΠL be the surface enclosed by the loops, i.e. ∂SL = L. Indeed, above
and below ΠL there exists φ+ and φ−, respectively, such that C = FTF with F = Dφ± in Ω±.
However, it turns out that on SL there is constant jump that we denote by b, the Burgers vector
of L. Specifically, φ := Id + u exists globally in Ω by means of a function of bounded variation
u, i.e. whose distributional derivative satisfies Du = ∇u + b ⊗ νSLdH2

bSL
where νSL is the unit

normal to SL. Therefore, in Ω \ L one may define the deformation tensor as F = I +∇u (= Dφ±

in Ω \ SL) such that C = (I + ∇u)T (I + ∇u). However in L this representation fails, and hence

2This was in essence Riemann’s definition of a manifold: each point is in a neigborhood ressembling a distorted

Euclidean space.



4 SAMUEL AMSTUTZ AND NICOLAS VAN GOETHEM

the aforementioned approach holds piecewise. Nonetheless, something can be said at L, namely
by use of Stokes theorem [60], one finds

−Curl F = −Curl ∇u = ΛTL := b⊗ τLdH1
bL, (2.3)

where ΛL is called the dislocation density. This reasoning can be generalized for L a countable
union of rectifiable dislocations. This leads us to the following conclusion: the dislocations prevent
the deformation to be Euclidean and indeed no global embedding exists. We refer to [80] for a
recent contribution to the topic.

The mathematical nature of the displacement field has been clarified in [61]: given the set
of dislocations L, an integral current (i.e., the generalization of a closed Lipschitz loop) and a
deformation tensor F satisfying (2.3), there exists u ∈W 1,p(Ω,T3)∩ SBV (Ω,R3)∩ C∞(Ω \ L,T3)
such that the following holds in the sense of distributions:

Div ∇u = ∆u = Div F and − Curl ∇u = b⊗ τLdH1
bL = −Curl F. (2.4)

The crucial point to note is that the displacement field can be seen in various ways: either as a
multi-valued (i.e., in the three-dimensional distorted flat torus T3 for a normalized Burgers vector,
meaning that each component ui is identified with ui + 2πZ) Sobolev vector field (note that (2.3)
imposes that 1 ≤ p < 2), or as a special function of bounded variation, whereby it exhibits a jump
on a surface SL which is not unique (it must be a Lipschitz surface with L as boundary). Moreover
away from L the displacement is smooth, however multivalued. We can write

Dislocation in nonlinear elastic bodies⇒ Curl F 6= 0 and ∃u ∈ T3 s.t. F = ∇u. (2.5)

3. Incompatibility in linearized elasticity and path integral formulae

Linearized elasticity is obtained by neglecting the quadratic terms in C = (I +∇u)T (I +∇u),
that is, we consider a metric g(u) defined as gij = δij+2eij(u) where e(u) = ∇Su := 1

2 (∇Tu+∇u).
Let us consider Rieme the associated Riemann curvature tensor. It was proved in [48, Proposition
3.11] that

(Rieme)ijkl = εijmεkln( inc e)mn + h.o.t., (3.1)

where inc is the symbol standing for the incompatibility operator, writing in Cartesian coordinates
as

inc e := Curl CurlT e. (3.2)

In the above, ε is the Levi-Civita symbol, and the Curl of a tensor is calculated row-wise, hence
for a symmetric tensor inc takes the Curl column-wise then row-wise. The equation inc e = 0 is
equivalent to the Saint-Venant compatibility conditions recalled and discussed thereafter. Pioneer
contributions linking compatibility conditions and the Riemann curvature tensor can be found
in [29,63]. We also define the Frank tensor as

F(e) := CurlT e. (3.3)

Let us recall now the problem of reconstructing a displacement from a given symmetric tensor3.
In linearized elasticity, if all the functions involved are smooth enough, the displacement field u
turns out to be completely defined in terms of the linearized strain tensor e by an explicit recursive
integral formula. Let e ∈ C∞(Ω,M3) be a symmetric tensor field in Ω. Let us fix x0, x ∈ Ω, and
let γ ∈ C1([0, 1],Ω) be a curve in Ω such that γ(0) = x0 and γ(1) = x. We define the following
quantities:

wi(x; γ) := wi(x0) +

∫
γ

εipn∂pemn(y)dym, ui(x; γ) := ui(x0) +

∫
γ

(eil(y)− εilkwk(y)) dyl. (3.4)

3The history of this construction roots in the end of the 19th century. We have identified by chronological
order the following relevant contributions: Kirchhoff in 1876 [39], Beltrami in 1886 [9], Volterra in 1887 [74] (see
also [75,76]), Love in 1892 [47], Michell in 1899 [50], Cesàro in 1906 [13] and the Cosserat brothers in 1909 [16]. The
first rigourous proof must be assigned to Beltrami. According to Love, though, the bulk compatibility conditions

should be credited to Barré de Saint-Venant in 1864.
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Note that Fim = εipn∂pemn, thence the name Frank tensor, since its integral on a closed curve γ
making one loop around the dislocation L provides the jump of the rotation vector w, classically
known as the Frank tensor. The quantities w(x) and u(x) defined in (3.4) do a-priori depend on the
choice of the path from x0 to x. In such a case the quantities w and u define two C∞ functions on
Ω that will be called the multi-valued rotation and displacement vectors associated to the strain e,
respectively (see [73] for the exact meaning of multivaluedness in this context). However, if one has
inc e = 0 then u and w are single-valued fields, i.e., are unambiguously defined. Thus, in particular

in (3.4), one can use the notation

∫
γ

=

∫ x

x0

to mean that the integral is path independent. In

order to prove this fact, we compute the jump of w and u between two arbitrary curves with
the same endpoints, namely γ and γ̃, and observe that this quantity is zero if the incompatibility
tensor vanishes. These are exactly the well-known Saint-Venant compatibility relations [14]. The
rotation and displacement jumps at x are defined as

[[wi]] = wi(x; γ)− wi(x; γ̃), [[ui]] = ui(x; γ)− ui(x; γ̃), (3.5)

respectively, and hence depend on the chosen closed path γ − γ̃ at x. Let Ω ⊆ R3 be a simply-
connected domain, let x0 ∈ Ω be prescribed, and let w, u ∈ C∞(Ω,R3) be the functions defined in
(3.4). Then the following formulae hold:

[[wi]] =

∫
S

(inc e(y))imdSm(y), [[ui]] =

∫
S

(ym − xm)εimk(inc e(y))qkdSq(y), (3.6)

for all x ∈ Ω, and where S is a surface enclosed by the the closed path γ − γ̃. In particular,

inc e = 0 ⇒ [[wi]] = [[ui]] = 0 for every x and S .

Thus, given the tensors e and F(e) = CurlT e, and as a consequence of inc e = 0, the vector
fields w and u are univoquely defined in (3.4). We refer to [48, Proposition 2.2, Corollary 2.4] for a
proof. Moreover, the following classical quantities can be introduced: (i) eij := 1

2 (∂jui + ∂iuj) is
the linearized strain tensor (i.e., the linear part of Green St-Venant tensor Cij = eij + ∂iuk∂kui);
(ii) ωij := 1

2 (∂jui − ∂iuj) is said rotation tensor, with wi := 1
2εijkωkj the rotation vector.

Therefore, the linearized counterpart of (2.5) reads by (3.6),

inc e 6= 0⇒ ∃u,w multiple-valued fields, s.t. e = ∇Su. (3.7)

In particular, this happens if, given a dislocation loop L, γ − γ̃ is a curve making one or more
loops around L. The multiplicity is precisely the number of loops made, while the jump of u is the
Burgers vector b (and of w, the Frank tensor Ω).

4. The legacy of Ekkehard Kröner: the geometry of a crystal with dislocations

Given the dislocation density ΛL we have seen that there exists a map ϕ ∈ W 1,p(Ω,T3), 1 ≤
p < 2 such that −Curl ∇ϕ = ΛTL with Div ∇ϕ = 0 in Ω, and (∇ϕ)N = 0 on ∂Ω. The first equality
stems directly from the Stokes theorem and from the property [[ϕ]] = b on any enclosing surface
SL [61]. In the same spirit [71], one can find a displacement field u ∈ W 1,p(Ω,T3), 1 ≤ p < 2
satisfying −Div (A∇Su) = f and −Curl ∇u = ΛTL in Ω, (A∇Su)N = g on ∂Ω and satisfying
[[u]] = b and [[A∇Su]] = 0 on Ω ∩ SL. Moreover, it is deduced in [71] that the following expression
holds in the sense of distributions:

inc e(u) = inc ∇Su = Curl

(
ΛL −

I
2

trΛL

)
in Ω. (4.1)

This establishes at the mesoscopic scale the famous macroscopic Kröner formula relating elastic
strain incompatibility and dislocation density.
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4.1. The geometric approach at the macroscale. At the mesoscale we have seen that the
dislocation density reads ΛL = τ ⊗ bdH1

bL and represents the quantity of Burgers vector per unit

area (as the density measure dH1
bL has the dimension of an inverse area). Let S be a small surface

in Ω with unit normal n and define the cylinder Vε = {x + tn, x ∈ S,−ε ≤ t ≤ ε}. Consider a
family L of N parallel mesoscopic dislocations with Burgers vector b and orientation τ = n. One
has

1

2ε

∫
Vε

ΛTLndV = Nb.

This corresponds to the definition of dislocation density as used by practitioners and lead Kröner
[43] to define the macroscopic Burgers vector of a surface S ⊂ Ω as

B(S) :=

∫
S

ΛT dS, (4.2)

a macroscopic quantity related to the number of dislocation lines crossing S, with dS the area
element unit normal vector, and where Λ is the assumed smooth macroscopic dislocation density.
Moreover, one defines the contortion tensor4 as κ = Λ− I

2 trΛ. Recalling (3.1), there is a direct link
between intrinsic curvature and dislocation density, since the macroscopic expression of Kröner’s
formula [43] reads

inc ε = Curl κ. (4.3)

Further, at the macroscale we are given a smooth linearized strain ε, and consider the elastic
metric

gij := δij + εij . (4.4)

So far, we have introduced a metric and an intrinsic curvature related to the presence of dislocations.
Yet an important notion is missing: that of connection. The connection in geometry is a notion that
permits a comparison between the local geometry at one point and the local geometry at another
point. It is thus related to the differentiation of tensor fields and indeed it is well-known [20]
that a ”good notion” of gradient on a manifold is induced by the choice of the connection Γ (also
known as the Christoffel symbols). Denoting this gradient by ∇Γ, one can introduce the notion
of parallel transport along a curve: it is said that a vector v is parallely transported along γ(t) if
γ̇ ·∇Γv = 0. It is said that a connection is compatible with the metric if ∇Γg = 0: in this case two
vector fields v, w parallely transported along a curve have the property that their scalar product
g(v, w) is constant. Further, in case of compatible symmetric connections, and in this case only,
the Christoffel symbols write as (see [20, Theorem 29.3.2])

Γkij =
1

2
gkl(∂iglj + ∂jgil + ∂lgij).

This connection is termed Riemannian or Levi-Civita after the name of the Italian mathematician
Tullio Levi-Civita (1873-1943). As a matter of fact, a manifold is said Riemannian if it is endowed
with both a Riemannian metric and a Riemannian connection (see, e.g., [26]) and, for us, a non-
Riemannian manifold means that the connection need not be symmetric and compatible. Note
that this latter expression of Γkij is the unique symmetric connection compatible with the metric
g := I+ε and is that considered to obtain (3.1) from the Riemann curvature tensor Riemε associated
to it. In the sequel this metric connection will be denoted 5 by ΓB .

Now, for non-Riemannian connections, the crucial notion is that of connection’s torsion, defined
as the tensor T writing component-wise as

T kij = Γk[ij] :=
1

2
(Γkij − Γkji). (4.5)

4This object has a geometrical meaning in non-Riemannian manifolds, see e.g. [62], that we will not detail here.
5Subscript B stands for the Bravais crystal, cf. [69].
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4.2. Parallel displacement and curvature. The role of parallel displacement in a perfect crys-
tal is emphasized by Kröner as he says [44]: “when a lattice vector is parallely displaced using
ΓB along itself, say 1000 times, then its start and goal are separated by 1000 atomic spacings, as
measured by g. Because the result of the measurement by parallel displacement and by counting
lattice steps is the same, we say that the space is metric with respect to the connection [ΓB ].”
Let us translate Kröner’s words in formulae. Consider a closed loop C = {γ(t) : t ∈ [0, 1]},
with γ̇(t) the unit tangent vector. Let us transport a lattice vector e along C. In the absence
of defects one has an Euclidean connection and hence e is parallely transported along C, i.e.
∇;Ce = γ̇∇e = γ̇k∂ke = 0. Assume now the presence of dislocations along C. We know that the
manifold has some curvature and consider in a first step the Levi-Civita connection Γ = ΓB asso-
ciated to g. To transport the contravariant vector e we need to compute its covariant derivative
along C, namely (∇;Ce)

i := γ̇k(∂ke
i + Γijke

j) (cf. [20, Eq. (24)]). Therefore the instantaneous
deviation of e due to dislocations is given by

(∇;Ce)
i = Γijke

j γ̇k. (4.6)

In linearized elasticity it is assumed gkl = δkl + 2εkl and thus lowering and raising the indices can
be considered indifferently, to the first order. So, from Γk;ji := gklΓ

l
ji, the deviation of ei in a

time interval dt writes as Γi;jkejdxk + h.o.t., with dxk := γ̇kdt. Let us compute the total amount
of deviation on a closed loop C up to the first order, that is, we calculate

∫
C

Γi;jkdxk that by

Stokes theorem rewrites as
∫
SC
εmqk∂qΓi;jkdSm, with SC a surface enclosed by C. The covariant

derivative of Γi;jk reads (cf. [20, Eq. (32)])

∇qΓi;jk = ∂qΓi;jk − (Γi;pkΓp;jq + Γi;pqΓp;jk)− Γi;jpΓp;kq. (4.7)

By the symmetry in q and k of the term inside the parenthesis and of the last term, this yields in
the absence of torsion

εmqk∂qΓi;jk = εmqk∇qΓi;jk. (4.8)

Now, let {ai} denote an orthonormal basis, and recall that Γijk = (∇kaj)i (cf. [20, Eq. (33)]).

Thus, by a property of the Riemann curvature tensor (or a definition, see [20, Theorem 30.1.1])),
one has∫

C

ΓBi;jkdxk =

∫
SC

εmqk∇q(∇kaj)idSm + h.o.t. =

∫
SC

1

2
εmqk

(
RiemB

g

)
i;pkq

(aj)pdSm + h.o.t.

=

∫
SC

1

2
εmqk

(
RiemB

g

)
i;jkq

dSm + h.o.t..

By virtue of (3.1)-(3.3) this yields

−2

∫
C

ΓBi;jkdxk = εijp

∫
SC

( inc ε)pmdSm + h.o.t. = εijp

∫
SC

εmql∂q (F(ε))pl dSm + h.o.t., (4.9)

that is, by (3.4),

−2

∫
C

ΓBi;jkdxk = εijp

∫
C

(F(ε))pl dxl + h.o.t. = εijp[[wp]](SC) + h.o.t..

Therefore we see that at the first order, the total deviation of ei around C depends on the rotation
jump on the surface, since ∫

C

∇keidxk =
1

2
εiklΩk(SC)el + h.o.t.,
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where we have introduced the Frank tensor Ωk := [[wk]]. So far we have established the following:

Point view of the external observer:

• g Riemannian metric, ΓB Riemannian connection ⇒ (Ω, g,ΓB) Riemannian crystal manifold.

•Property: ∇Λ 6= 0⇒ Riemg 6= 0, T = 0 and

∫
C

∇e · dL =
1

2
Ω(SC)× e+ h.o.t..

•Non-homogeneous dislocation density⇒
•Crystal manifold with curvature but no torsion ⇒ Anholonomy given by rotation jump.

Here the term ”holonomy”6 of a connection refers to the extent to which parallel transport around
closed loops achieves, or fails, to preserve the geometrical data being transported: for instance
under metric connection, the orthogonality of two parallely transported vector fields is preserved.

In this first perspective, of the so-called external observer, the absence of isometric embedding
in R3 is translated into the nonvanishing Riemann curvature tensor associated with the Levi-Civita
metric connection of g. Though, one can see that something is missing in this formalism, since a
homogeneous (constant) density of dislocations yields a crystal manifold with vanishing curvature,
that is, a flat manifold. Moreover a pure dislocation (i.e, with vanishing jump of the rotation
tensor) would permit parallel transport of lattice vectors, in contradiction with the nature of the
dislocations which is responsible for atomic jumps. Instead, we would like to find a geometry that
is specific for crystals with dislocations. This will be achieved by means of a new, non-metric
connection. This new perspective requires from the standpoint of physics the introduction of the
so-called internal observer.

4.3. The non-Riemannian crystal manifold. To emphasize the perspective of the internal
observer we define the following geometrical objects:

DISLOCATION TORSION: Ti;kj := εkjqΛqi (4.10)

CONNECTION CONTORTION: ∆Γk;ij := −Tj;ik − Ti;jk + Tk;ji (4.11)

NON SYMMETRIC CONNECTION: Γk;ij := ΓBk;ij + ∆Γk;ij . (4.12)

It is easily seen that Γ is a connection, since ΓB is a connection and ∆Γ is a tensor (by the
transformation property of a connection, cf. [20, Eq. (22)]). Moreover the symmetric part of Γ
namely Γk;(ij) is a connection and it can be proved [69, Theorem 5.2] that Γk;[ij] = Tk;ij .

Therefore, denoting the symmetric part of the connection by Γ◦k;ij = ΓBk;ij + ∆Γk;(ij) we have,
by the above calculations,∫

C

Γ◦i;jkejdxk =

∫
SC

1

2
εmqk (Riem◦(ε))i;jkq ejdSm + h.o.t..

Let us now compute the remaining term, namely∫
C

Γi;[jk]e
jdxk =

∫
C

Ti;jkejdxk =

∫
C

ΛpidSp,

where we have introduced the surface element dSp = εpjkejdxk. The deviation of the second term
is just simply the integral on C of the macrosopic Burgers vector Bi(dS), that is∫

C

Γi;[jk]e
jdxk =

∫
C

(n · τ)Bi(dS),

with dSp = npdS.
Thus we see that provided the metric and the connection of the internal observer, the lattice

vector has not returned to its original position: the first source of deviation is the Riemannian
curvature, whereas the second is the connection torsion.

6The holonomy group is defined as the set of linear transformations arising from parallel transport along closed

loops.
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The non-vanishing property of the torsion has a geometric meaning: there does not exist a
global system of coordinates in the dislocated crystal (i.e., no global immersion as introduced
above). Moreover this completed connection is more appropriate to represent dislocations in single
crystals.

4.4. Internal and external observers. These are physical concepts related to fictitious thought
experiments. The external observer is only able to make experiments from the outside, namely it
measures fiber elongations and/or rotations and hence it measures a deformation ε that provides
the geometer with a metric g. For the external observer the utmost geometrical quantity available
is the Riemannian curvature as derived from the metric connection ΓB . On the contrary, the
internal observer is unable to extract such piece of matter being inside it, but in turn it can
count atomic steps before and after deformation and hence can measure a density of dislocations.
Thus torsion is available to the internal observer although curvature is not. It is only a combined
view that provides a complete geometrical picture of the dislocated crystal, thence described as a
non-Riemannian manifold, summarized as follows:

Combined views of the internal and external observers:

• g Riemannian metric, Γ non-Riemannian connection ⇒ (Ω, g,Γ) non-Riemannian manifold.

•Property:
(
Λ 6= 0⇒ T 6= 0

)
and

(
∇Λ 6= 0⇒ RiemΓ 6= 0

)
.

•Non-homogeneous dislocation density ⇒ crystal manifold with curvature and torsion.

•Homogeneous dislocation density ⇒ crystal manifold with torsion.

•Anholonomy by displacement and rotation jumps:∫
C

∇keidxk =

∫
C

(n · τ)Bi(dS) + εiklΩk(SC)el + · · · .

We note that if one restricts to the first order then it holds true that
∫
C
∇keidxk =

∫
SC

1
2εmqk

(RiemΓ(ε))i;jkq ejdSm with RiemΓ the Riemann curvature of the connection Γ defined as a sum

with ΓB in such a way that RiemΓ = RiemB + · · · with the remaining terms related to ∆Γ. Note
also that it is solely RiemB that yields the term Ω(SC)× e.

As we see, Kröner’s macroscopic framework allows us to come back to the language of geometry,
by stressing that the crystal geometry and the physical laws governing defects are inseparable,
as is the case in the Einstein’s general theory of relativity. We entirely agree with Noll when he
writes [57] that “the geometry [must be] the natural outcome, not the first assumption, of the
theory”7. Many geometrical tools and mathematical theory required for a rigorous description of
the dislocated crystal geometry can be found in the landmark papers by Noll [57] and Wang [77],
while also pointing out a recent book on continuum mechanics in this spirit [23]. We emphasize
that ∆Γk;[ji] was also introduced by Noll [57] and called the crystal inhomogeneity tensor.

4.5. Inelastic effects and notion of eigenstrain. The geometric description of a dislocated
body has been made so far for static dislocations, that is, at the macroscale for a constant in time
dislocation density tensor. We have seen that spatial variation of Λ and hence of the contortion
tensor κ induces a non vanishing Curl κ thence a nonzero elastic strain incompatibility inc ε. A
further notion introduced by Kröner is the eigenstrain ε̄ satisfying inc ε̄ = − inc ε. Physically it
represents the additional strain to recover compatibility, since inc (ε̄+ε) = 0 implies the existence
of a vector field u such that e(u) = ε̄ + ε as related to the so-called Beltrami decomposition of
symmetric tensor fields and Saint-Venant conditions [48]. Plasticity is the macroscopic behaviour
of a body whose dislocation density tensor varies in time, since dislocation motion is the physical
cause of plasticity. The last sections of this survey will be dedicated to the description of a novel
model of elasto-plastic bodies based on ε and inc ε, hence the model variables are (ε, κ), two

7As in the Continuous Distribution of Dislocation (CDD) theory of Bilby et al. [10].
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intrinsic and objective tensors, in an extended sense to be defined later. Before, we intend to recall
the intrinsic approach to linearized elasticity.

5. A geometric conception of linearized elasticity: the intrinsic approach

5.1. Gauss vs. Riemann in linearized elasticity. In the conventional mathematical treatment
of linearized elasticity, the basic model variable is the displacement field u : Ω→ R3, with respect
to which elastic problems are stated and solved. Further, the linearized strain is introduced in a
second step as the symmetric gradient of the displacement field, ε = e(u) := ∇Su. However, in
many computations and experiments, the strain is most naturally the ”observable” field, thence
becoming the main model variable. In this spirit, the stress might also be considered as a root
variable, in the sense that it is a field that is observable, measurable and controllable: by a possibly
fictitious thought experiment, the stress is obviously measurable by extracting from the elastic body
a small enough volume element and then measuring the Newtonian forces exerted on its facets.
Moreover, given the stress tensor, the strain is well defined as soon as a constitutive law is provided,
here a linear homogeneous, isothermal and isotropic law: the strain-stress constitutive law reads
ε = Cσ, with C the compliance tensor, i.e., fourth-rank (inverse) tensor of elasticity.

However, today most elasticity problems are treated using the displacement as basic model
variable, from which the strain is defined by the kinematic relation ε = ∇Su, thence the stress
by a constitutive law. This approach presumably comes from the study of elliptic boundary-value
problems, where the elasticity system is most often presented as a vector-valued extension of elliptic
equations in divergence form. Moreover, weak and variational formulations are most easily derived
by means of the displacement, and show a convenient and elegant way of solving problems in
elasticity.

There are nonetheless profound theoretical reasons to refrain from taking the displacement as
main model variable. For instance, its possible multi-valuedness, which is not to avoid from a
physical standpoint, since multi-valuedness may have a meaning, but which must be addressed
in an adequate manner in an appropriate mathematical formalism (see above). Another example
is the reference configuration, from which the displacement is defined and which by definition is
arbitrary: although natural in finite elasticity, it becomes somehow artificial in linearized elas-
ticity, since Eulerian and Lagrangian representations coincide. Moreover, in elasto-plasticity or
for elastic bodies with defects, the stress and defect-free reference configurations might not exist
(simultaneously). Hence, to remedy this issue, it is often appealed to ”intermediate” reference
configurations, from which plastic and elastic deformations are defined, but whose physical as well
as mathematical meaning are far from clear. In fact, what is a plastic distortion (i.e., the ”plastic”
part of the displacement gradient) as long as no constitutive law exist for the rotations (i.e., the
skew-symmetric part of the gradient)? Not to mention some models which introduce plastic and
elastic displacements, whose physical and mathematical meanings are extremely vague. Further,
we should also mention the fact that any rigorous model should in principle be proven independent
of the choice the reference configuration. Lastly, in the presence of crystal defects like dislocations
the very notion of displacement or velocity is not clearly defined at any scale. For instance, at the
atomic scale, bonds can move while atoms remain fixed.

5.2. Ciarlet’s intrinsic approach to linearized elasticity. As we have seen, it may happen
that because of defects or other incompatibilities, the very notion of a displacement field does
not make sense as a conventional single-valued field. Instead, one would like to state the linear-
elastic problem in terms of the strain ε, which need not a-priori be taken as a symmetric gradient.
For these reasons, the intrinsic approach in linearized elasticity by Ph. Ciarlet and C. Mardare
[15] constitutes a major breakthrough in mathematical elasticity, which was able to reconcile in
an elegant manner the two aforementioned approaches. In their presentation, the strain is the
main model variable in terms of which strong as well as variational formulations are sought. The
displacement only appears in a second step if the Riemannian curvature tensor associated to the
elastic metric vanishes (see above). In the approach of Ciarlet and Mardare, a differential geometry
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setting is chosen (see above), where the boundary under analysis is defined by means of smooth
enough immersions, from which the curvilinear basis, the metric, the symmetric connection and
the curvature tensors are derived. It should be emphasized that such derived curvilinear bases
are indeed defined in the body itself as well as on its boundary, but are not mutually orthogonal,
and have no particular physical meaning. The main difficulty is the treatment of the boundary
conditions, since a condition such as u|Γ0

= 0 for some Γ0 ⊂ ∂Ω is not easily translated to a
boundary condition on the deformation tensor.

Let ε be a compatible strain tensor, i.e., by Saint-Venant theorem (see below), there exists a
displacement field u such that ε = e(u) = ∇Su. Let εT be the tangential strain (i.e. the projection
of e perpendicularly to the normal to the boundary) ∂Ω. Let γ] := εT |∂Ω be the linearized change-

of-metric and ρ] the linearized change-of-curvature tensors as introduced by Ciarlet-Mardare in [15].
Let Γ ⊂ ∂Ω and let R(Γ) be the set of rigid motions (i.e., roto-translations) on Γ. Their main
theorem states the following:

Theorem 5.1 (Ciarlet-Mardare [15, Theorem 6.1]). Let u ∈ H1(Ω). Let either

(i) u|Γ = 0

(ii) γ̄](e) = ρ̄](e) = 0
(iii) u|Γ ∈ R(Γ).

One has (i)⇒ (ii)⇒ (iii), where γ̄] and ρ̄] are suitable extensions of γ] and ρ].

To give a more physical understanding of the linearized change-of-curvature tensor, we need
to anticipate the specific trace operators T0 and T1 that have been introduced in [4]. They have
been obtained through a Green-like formula (see below Theorem 8.3 for details) where T and η
are smooth enough symmetric tensors,∫

Ω

T · inc ηdx =

∫
Ω

inc T · ηdx+

∫
∂Ω

T1(T ) · η dS(x) +

∫
∂Ω

T0(T ) · ∂Nη dS(x).

It has been proved in [3, Lemma 2.11] that that

(i)⇒ (ii)′ εT = T0(ε) = 0 and T1(ε) = 0 on Γ,

and that, for Γ = ∂Ω (see [3, Proposition 2.19]),

(ii)′ ⇒ (iii).

Note that the rigid displacement is set to zero as soon as the normal components of ε, i.e., ε− εT
vanish. The link with the Frank tensor is the following:

ε = 0 on Γ⇒
(

CurlT ε×N = 0⇔ T1(ε) = 0 on Γ
)
,

with N the outer normal to ∂Ω. In this case either conditions inc ε = 0 in Ω together with
ε = CurlT ε ×N = 0 or ε = T1(ε) = 0 on Γ implies that ε = ∇Sv with v = 0 on Γ (since in this
case ρ̄](ε) = 0 [70]). Thus, the intrinsic elasticity system writes in strong form as

−div
(
C−1ε

)
= f in Ω

inc ε = 0 in Ω
T0(ε) = T1(ε) = 0 on Γ(

C−1ε
)
N = g on ∂Ω \ Γ

,

where the traces are intended in a weak sense, and with f and g the volume and surface loads,
respectively. The corresponding intrinsic variational formulation reads

inf
inc e=0

T0(e)=T1(e)=0 on Γ

∫
Ω

(
1

2
C−1e−K

)
· edx,

where K is a tensor of external forces satisfying{
−div K = f in Ω
KN = g on ∂Ω \ Γ

.
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6. The classical route to plasticity

After the pioneer works by Coulomb (1773), the theory of plasticity finds its roots in the mid 19th
and early 20th centuries by experimentalists (Tresca, 1864) and engineers/mathematicians/physicists
(e.g., Saint-Venant8, 1870, Von Mises, 1913, Prandtl, 1924), and was later developed by Drucker
(1947) and Hill (1950). Importants works were achieved by Taylor and Orowan (1934) putting the
spot light on the link between plasticity and dislocation motion.

6.1. The mathematical approaches: two perspectives. The mathematical literature starts
with Hodge and Prager around 1950 who were first to understand plasticity in modern mathemati-
cal terms, proposing a variational formulation in terms of the stress rate and based on the principle
of virtual power, while in parallel Greenberg [30] proposed a variational formulation in terms of
the velocities. Thus we see that historically the two approaches of strain vs. displacement-based
elasto-plasticity models have already coexisted since the beginning. This is a key aspect of our
approach, which is an intrinsic model, i.e., considering the elastic strain as basic model variable,
in the sense of the geometers mentioned above, of Prager, and recently (notably after decades of
displacement-based approach) of Ciarlet and coauthors [14,15]. The philosophical standpoint can
be recast in view of the aformentioned history as follows:

Riemann’s view Gauss’ view
Intrinsic models Embeddings models

No reference configuration Reference configurations
Strain/strain rate-based approaches Displacement/velocity-based approaches.

(6.1)

Let us now describe the main ingredients of the conventional, historical approach, which, we
recall, has proven so far in complete agreement with the observations. It is hence an excellent
model for all practical purposes. In the general framework of thermodynamics, one postulates the
existence of a dissipation potential which provides the evolution laws for plastic deformation (the
so-called flow rules) and possible other internal variables. This part of the theory is strongly linked
with convex analysis and thus was fostered in the 60ies by the remarkable works by Rockafellar and
Moreau [54]. In the end of the 70ies and in the 80ies, Strang and Temam [67] and their collaborators
introduced a new functional space to describe plasticity, the space of bounded deformations, whose
main feature is to allow the strain to have a regular part and a measure part, thus well-suited to
modeling discontinuous phenomena, such as plastic slip on part of the boundary, or shear band
formation in perfect plasticity. This theory yielded on the one hand a first rigorous mathematical
formulation (i.e., with proofs of existence, etc., see the excellent textbook by Han and Reddy [34]),
and on the other hand gave rise to performent numerical schemes. Summarizing, the conventional
approach to elasto-plasticity is based on

(i) the velocities (or the displacement field) as first model variable,
(ii) a postulated decomposition in elastic and plastic parts of the total compatible strain,

where each part is assumed to model distinct sub-scale phenomena (elastic deformation
means variation in inter-atomic distance, whereas plastic deformation is a macroscopic
manifestation of the modification of inter-atomic bonds, where dislocations play a role),

(iii) separate constitutive laws for the elastic and plastic strains,
(iv) a convex elastic domain (whose boundary is the so-called yield surface), which is a sufficient

condition in order to satisfy the 2nd principle of thermodynamics and further permit the
use of convex calculus.

First existence results for linear elasticity/perfect plasticity were provided around 1980 by Johnson
[38], Suquet [65], by means of visco-plastic approximations (see also Anzelotti, Giaquinta, Luckhaus
[6, 7], Hardt and Kinderlehrer [35]). About 20 years later, a quasi-static evolutionary variational
formulation was sucessfully proposed by Mielke and coauthors (Mainik, Roub́ıc̆ek, Stefanelli, etc.
[51, 52]) in the early 2000s, based on a balance between dissipative and potential restoring forces.

8A name that we have encountered already above an which is also related to the incompatibility operator, see
below.
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Slightly later a series of refinements were provided by Dal Maso’s school [17], and also by other
authors (such as, e.g., Ortiz, Francfort [18], De Simone, Neff [25]), some of them grounding their
approach on the energy dissipation principle and De Giorgi’s theory of minimizing movements.
In the 80ies and 90ies, computational plasticity has been developed, based on strain incremental
schemes, see for instance the classical textbooks of Hughes and Simo [64] and Han and Reddy [34].

6.2. Conventional (0th-order) elasto-plasticity models. Conventional models of small strain
elasto-plasticity start with the following postulate. It is assumed that εe = A−1σ is the elastic
strain, with A the isotropic elasticity tensor and σ the Cauchy stress tensor. Then, the eigen-
strain is called plastic strain, ε̄ = εp, and there exists a vector field u called the displacement field,
satisfying

e(u) = εe + εp. (6.2)

Whereas at time t, the elastic strain εe(t) obeys the elasticity system

−div (Aεe(t)) = f(t) in Ω, (Aεe(t))N = g(t) on ΓN , (6.3)

the plastic strain satisfies other laws, called the flow rules. These are based on another series of
postulates. Before recalling these rules, it is important to have in mind three facts regarding (6.2).

(i) The partition is local, i.e., ε(x) = εe(x) + εp(x) for any x ∈ Ω and is purely of physical
nature, that is, there is not any sort of mathematical structure behind it.

(ii) The geometric meaning of ε as an intrinsic metric has been lost, since each part has its
own definition, given by solving some equations, whereas the total deformation is defined
by their sum.

(iii) By (6.2), it is conventionally postulated that the total deformation is compatible, that is,
that there exists a displacement field u such that ε = ∇Su = e(u). This statement is
not justified by any mathematical argument and the adoption of this hypothesis is made
for simplicity. Indeed it automatically implies that the incompatibilities of elastic and
plastic parts mutually compensate, without the need to let the flow rules comply with this
property.

As for the plastic part, following Moreau [54] it is assumed that:

• There exists a compact and convex subset K of symmetric 3 × 3-matrices such that the
condition σ ∈ K is always satisfied. The yield surface is represented by the boundary ∂K.
Moreover, in the general context of plasticity with hardening, the elastic domain K(t) at
time t depends on σ(t), to account for the back-stress tensor, and we write K(t) to mean
K (σ(t)).

• Let IK be the indicator function of K, i.e. IK(η) = 0 if η ∈ K and IK(η) = +∞ if η /∈ K.
Then the so-called associated flow rule (a special case commonly used) can be written as{
σ(t) ∈ int K(t) ⇒ ε̇p(t) = 0
σ(t) ∈ ∂K(t) ⇒ ε̇p(t) ∈ ∂IK(t)(σ(t)) ⇔ (η − σ(t)) · ε̇p(t) ≤ 0,∀η ∈ K(t).

(6.4)

Here ∂IK(t) is the normal cone NK(σ(t)) and σ(t) ∈ int K(t) ⇔ NK(σ(t)) = {0}. This formalism
is to be compared with the model of Hill and Rice [36,58], which is summarized as follows:

• Introduce the dissipation potential D(ε̇p) := sup{η · ε̇p|η ∈ K(t)}, that is the support
function of K(t). Convex calculus entails

D(ε̇p) = σ(t) · ε̇p ⇔ σ(t) ∈ ∂D(ε̇p). (6.5)

• It is easily proven that the two formalisms are equivalent [34]:

(6.4)⇔ (6.5).

Note that the ⇐ implication shows that Hill and Rice formalism does not require the notion of
elastic domain and yield surface, which are obtained as consequences. However they postulate the
existence of a potential D that is convex, positively homogeneous and lower semicontinuous. Thus
we see that in both cases the model is strongly based on convex analysis.
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7. Gradient elasto-plasticity for continua with dislocations:
towards an incompatibility-driven model

7.1. The size effect. Zeroth-order models as described in Section 6 may not be sufficient with a
view to several technological applications. For instance, it is essential for micro-electronics devices
(such as silicon wafers for semiconductor production [55]) to accurately identify the mechanical
properties of micro-structured materials, since there exist important strength differences that result
from modification of the material micro-structural characteristics with changing size (where in
general smaller sizes correlate with stronger responses). Indeed, the mechanical properties of
micro-structured materials (e.g., yield strength, strain-hardening rate) with small-scale structures
are extremely size-sensitive, and the increase in strength with decreasing scale can be related
to increasing the strain gradients. For instance, industrial silicon is produced by the growth of
a crystal seed, which by definition incorporates all material sizes and various types of micro-
structures (individual point-defects, voids, dislocations, volumic clusters, dislocations): present
in the small-size material, they will grow together with the crystal and form defect structures of
various sizes [55,72]. Further, serious issues prevent the use of classical (local) theories of plasticity
and fracture (see [27] or [2]), since classical continuum mechanics cannot accurately capture size
effects and highly localized deformations. On the other hand, atomistic simulations are out of
reach in terms of computational cost, and therefore are restricted to small samples. In order to
address the size effect problem, the so-called gradient plasticity models have gained an increasing
interest in the scientific and technological communities.

7.2. Gradient models. The success of gradient theories stems from the incorporation of a micro-
structural length scale parameter. Indeed, it is a general feature that gradient-theories do not
assume stress as function of the sole history of strain at a point x, rather they take into account
possible interactions with other material points in its neighbourhood. For example, the internal
state variable that is responsible for isotropic hardening in classical plasticity theory is the effective
plastic strain p, that, in a non-local media can be replaced by a weighted average p̄(x) =

∫
V
p(x+

ξ)h(ξ)dx, where x is the point of interest, ξ is the size of the localized plastic zone, and h(ξ) is
a weighting function. Then p̄(x) can be approximated in terms of p(x), L∇p(x) and L2∇2p(x),
for a certain characteristic length L (see [1]). The physical basis of the gradient plasticity theory
rests on theoretical developments of geometrically necessary dislocations (GNDs), see Daya Reddy,
Gurtin and Neff works for instance [8, 22, 32, 33]. For instance, the micro-mechanical modeling of
the inelastic material behavior of metallic single crystals is based on the fact that resistance to
glide is due to random trapping of mobile dislocations, “statistically stored” dislocations (SSDs),
and acting as obstacles to further dislocation motion (see [1]). On the other hand, the GND
are related to the elastic strain incompatibility and are responsible for the observed macroscopic
plastic behaviour, as stated by the famous Kröner’s relation [43] “ inc ε = Curl κ” with κ related
to dislocation density. In the last two decades, another class of gradient theories was introduced,
assuming higher-order gradients of the plastic strain field, as proposed in our model. These theories
are a particular case of the generalized continua, such as continua with micro-structure, which were
inspired by the pioneering work of the Cosserat brothers9 [16].

7.3. Our approach: a gradient model based on the strain incompatibility. We believe
that the intrinsic point of view together with continuum-and gradient-based theories as proposed
by our approach (see Sections 8 and 9) are needed to bridge the gap between classical continuum
and micro-mechanical theories. The main feature of our model is that we focus on dislocation
micro-structure in single crystals with a novel continuum model making an explicit link between
plasticity and dislocations, and based on a novel model paradigm. As we will explain, the model
we propose is of gradient type, involving the curl and the incompatibility of the strain. Further,

9Indeed, the Cosserat (or micro-polar) continuum enhances the kinematic description of deformation by an

additional field of local rotations.
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the deformation tensor is seen as a metric in the aforementioned geometric sense. In particular we
do not distinguish between elastic or plastic deformations.

The novel approach we propose has been introduced and discussed in [5]. In our model, neither
of the three above postulates are considered. Our paradigm is radically different and our approach
is based on the following rationales.

(1) Strain rate is prefered to strain and is given the following, primordial definition. Identify
three fibers at x, denoted by a1, a2, a3, which at time t are oriented along the axes of a
Cartesian coordinate system and of unit lengths. Then the deformation rate is defined at
x as (see, e.g., [21, 66])

dij(t) =
1

2

(
∂

∂t
(ai · aj)

)
t

. (7.1)

Having fixed an initial time t0 = 0, the time integral of the objective tensor d, called the

strain or deformation tensor reads ε(t) =
∫ t

0
d(s)ds. Note that (7.1) holds for infinitesimal

as well as for finite strains and hence one is not forced to specify the quantitative nature
of the deformations before they take place.

(2) This strain defined in this fashion is neither elastic nor plastic, it simply has a compatible
and an incompatible part, that are given by a structure theorem called Beltrami decom-
position [48]:

ε = ∇Su+ E0. (7.2)

As opposed to elastic-plastic splittings this decomposition is unique once boundary con-
ditions for u are prescribed. Moreover, while ε is an objective field (in a general sense
discussed in section 9, neither ∇Su nor E0 are objective. Therefore the model will be
constructed upon ε and its derivatives.

(3) The governing equations should generalize classical linear elasticity in the sense that it
must take into account the possible strain incompatibility. The idea behind is that the
model should explicitely account for the physical cause of plasticity: the presence and
motion of dislocations as microstructural perturbations.

As detailed below, the key point upon which our model relies is the fact that strain incompat-
ibility is directly related to the density of dislocations by (4.3). Moreover, our model involves a
new tangent material coefficient `, with the dimension of a force, representing the resistance of
matter against incompatibility. In general, this scalar is space- and time-dependent, and evolves
with the course of (at first quasi-static) deformation. If ` depends on space only, we proved in [3]
that our model is a special case of the classical Mindlin gradient elasticity [53], whereas for a
time-dependent `, it gives rise to a drastically new approach and a novel nonlinear plasticity model
in direct relation with dislocation motion.

A difficult modelling problem that we have not yet achieved is to find an appropriate evolution
equation for the incompatibility modulus `. In principle it should be derived based on dislocation
mechanics as a function of temperature, strain, strain rate, and a set of measurable micro-structural
physical parameters. Further, due to the existence of plastic strain gradient terms, higher-order
boundary conditions are required on both external (free surfaces) and internal boundary (interfaces)
regions where plastic deformation occurs. Also, these higher-order boundary conditions, which are
motivated from the physical understanding of the dislocation mechanics, may vary with the course
of plastic deformation. It is a further principle of our approach that boundary conditions should
be naturally integrated in the functional framework of our equations. Hence internal transmission
conditions are only byproducts of weak formulations.

7.4. Link with classical elasto-plasticity models. Recall that classical linearized elasto-plasticity
models are based on the a priori decomposition εtot = εe + εp, where the total strain εtot is com-
patible ( inc εtot = 0), the elastic strain εe is derived from the Cauchy stress by Hooke’s law, and
the plastic strain εp obeys flow rules. We now compare this decomposition with the Beltrami
decomposition ε = ∇Su+ ε0. Since inc εtot = inc ∇Su = 0, there exists a vector field w (see [48])
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Figure 2. The Beltrami decomposition (A → A′ → B) vs the standard elas-
tic/plastic decomposition (A′′ → A→ B)

such that εtot = ∇Su−∇Sw and we can write

εtot = ∇Su−∇Sw = −
(
ε0 +∇Sw

)
+
(
∇Su+ ε0

)
.

We then recognize ∇Su+ ε0 as the strain ε. The correspondence with the Beltrami decomposition
ε = ∇Su+ ε0 can be made upon setting εe = ε, εp = −(ε0 +∇Sw).

The interpretation is the following (see Fig. 2): for us, ε represents the deformation from a
reference state, say state A to a neighbour state B of the same material. It can be viewed as
the composition of the incompatible deformation ε0 from state A to an intermediate state A′, and
the compatible deformation ∇Su from A′ to B. In the classical approach, another configuration
A′′ serves as reference configuration. The total deformation εtot from A′′ to B is the sum of the
plastic deformation εp = −(ε0 +∇Sw) from A′′ to A and the elastic deformation εe = ε from A
to B. Therefore, plastic effects play somehow the role of configurational forces [31] that account
for the change of reference configuration. Of course, choosing w = 0 (thus A′′ = A′) would be
a choice of simplicity, but in that case εp would be identified with −ε0, hence it would not be
trace-free as assumed in some standard flow rules. We emphasize the arbirariness of A”, whereas
A’ is uniquely determined from Beltrami decomposition. However, a significant difference between
the kinematical frameworks of the two approaches is that εp is usually supposed trace-free whereas
ε0 is divergence-free. For us, incompressibility could be realized by an enrichment of the model,
with possible additional variables and equations, but it is not prescribed a priori in the general
setting.

8. The incompatibility operator: functional framework

We have seen so far that the notion of incompatibility is a crucial ingredient in the modeling
of dislocated crystals and therefore in the understanding of the plastic behavior of solids. From
the mathematical point of view, inc is a second order differential operator that acts on (usually
symmetric) tensor fields. We address in this section the analysis of this operator in the frame-
work of Sobolev spaces. The Beltrami10 decomposition asserts that any symmetric tensor field can

10Eugenio Beltrami (1835-1900) is an Italian physicist and mathematician known in particular for his works on
elasticity–stating the equilibrium equations of a body in terms of the stress in place of the strain [9]– but also in

non-Euclidean geometries in the wake of Gauss and Riemann. He was indeed a friend of Riemann whom he met at
Pisa university where he had a chair. Moreover, his chair of mathematical physics in Rome was later transmitted to
Volterra in 1900. Vito Volterra (1860-1940) is presumably the first who gave a correct definition of dislocations and
disclinations in [75]. It is thus not mere coincidence that the name of Beltrami will take a crucial place in our survey
on incompatibility and dislocations. Neither that the second author of this survey started his study of dislocations

with a book found in the main Scuola Normale library in Pisa in 2000 [40].
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be split into a divergence-free part and an incompatibility-free part. It appears therefore natu-
ral to study the incompatibility operator in divergence-free spaces. As orthogonal complements,
incompatibility-free spaces will also be discussed.

Let Ω be a regular (C∞) bounded domain of R3. We denote by ∂Ω its boundary and by N its
outward unit normal. Moreover S3 denotes the set of symmetric 3-matrices.

8.1. Divergence-free lifting, Green formula and applications. We begin with the divergence-
free lifting of traces of symmetric tensor fields. Set

H̃3/2(∂Ω,S3) =

{
E ∈ H3/2(∂Ω,S3) :

∫
∂Ω

ENdS(x) = 0

}
.

Theorem 8.1 (Divergence-free lifting [4]). Let E ∈ H̃3/2(∂Ω,S3) and G ∈ H1/2(∂Ω,S3). There
exists E ∈ H2(Ω,S3) such that  E = E on ∂Ω,

(∂NE)T = GT on ∂Ω,
div E = 0 in Ω,

where the subscript T stands for the tangential part. In addition, such a lifting can be obtained
through a linear continuous operator

L∂Ω : (E,G) ∈ H̃3/2(∂Ω,S3)×H1/2(∂Ω,S3) 7→ E ∈ H2(Ω,S3).

Define the subset of C∞(∂Ω,S3)

G = {V �N,V ∈ R3},
with the notation U � V := (U ⊗ V + V ⊗ U)/2.

Lemma 8.2 (Dual trace space [4]). Every E ∈ H−3/2(∂Ω,S3)/G admits a unique representative

Ẽ such that ∫
∂Ω

ẼNdS(x) = 0. (8.1)

Moreover, the dual space of H̃3/2(∂Ω,S3) is canonically identified with H−3/2(∂Ω,S3)/G.

We define the spaces of symmetric tensor fields

Hdiv(Ω,S3) := {E ∈ L2(Ω,S3) : div E ∈ L2(Ω,R3)},
H inc(Ω,S3) :=

{
E ∈ L2(Ω,S3) : inc E ∈ L2(Ω,S3)

}
,

endowed with the norms defined by ‖E‖2Hdiv = ‖E‖2L2 +‖ div E‖2L2 , ‖E‖2Hinc = ‖E‖2L2 +‖ inc E‖2L2 ,
respectively.

Recall that the Green formula for the divergence allows to define, for any T ∈ Hdiv(Ω,S3), its
normal trace TN ∈ H−1/2(∂Ω,R3) by∫

∂Ω

(TN) · ϕdS(x) :=

∫
Ω

(
div T · ϕ̃+ T · ∇Sϕ̃

)
dx ∀ϕ ∈ H1/2(∂Ω,R3),

with ϕ̃ ∈ H1(Ω,R3) an arbitrary lifting of ϕ. For the incompatibility operator one has the following
counterpart.

Lemma 8.3 (Green formula for the incompatibility [4]). Suppose that T ∈ C2(Ω,S3) and η ∈
H2(Ω,S3). Then∫

Ω

T · inc ηdx =

∫
Ω

inc T · ηdx+

∫
∂Ω

T1(T ) · η dS(x) +

∫
∂Ω

T0(T ) · ∂Nη dS(x) (8.2)

with the trace operators defined as

T0(T ) := (T ×N)
T ×N, (8.3)

T1(T ) :=
(

Curl (T ×N)T
)S

+ ((∂N + k)T ×N)
t ×N +

(
CurlT T ×N

)S
, (8.4)
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where k is twice the mean curvature of ∂Ω and TS = (T + TT )/2. In addition, it holds∫
∂Ω

T1(T )NdS(x) = 0. (8.5)

Note that (T ×N)
T×N is made of permutations of the tangential components of T . Alternative

expressions of T1(T ) are derived in [4]. Therefore, we can define the traces T0(T ) ∈ H−1/2(∂Ω,S3)
and T1(T ) ∈ H−3/2(∂Ω,S3)/G for every T ∈ H inc(Ω,S3) by

〈T0(T ), ϕ0〉 =

∫
Ω

T · inc η0dx−
∫

Ω

inc T · η0dx, ∀ϕ0 ∈ H1/2(∂Ω,S3),

〈T1(T ), ϕ1〉 =

∫
Ω

T · inc η1dx−
∫

Ω

inc T · η1dx, ∀ϕ1 ∈ H̃3/2(∂Ω,S3),

with η0 = L∂Ω(0, ϕ0) and η1 = L∂Ω(ϕ1, 0) (recall that L∂Ω is the lifting operator defined in
Theorem 8.1). In addition, by Lemma 8.2, T1(T ) admits a unique representative satisfying (8.5).
By linearity of L∂Ω, this extends formula (8.2) to any functions T ∈ H inc(Ω,S3) and η ∈ H2(Ω,S3).

From the two Green formulas recalled above one immediately infers that:

• inc ∇Sv = 0 in the sense of distributions for all v ∈ H1(Ω,R3);
• div inc E = 0 in the sense of distributions for all E ∈ H inc(Ω,S3).

In particular, if E ∈ H inc(Ω,S3), then inc EN is defined in H−1/2(∂Ω,R3) by∫
∂Ω

inc EN · ϕdx =

∫
Ω

inc E · ∇Sϕdx ∀ϕ ∈ H1(Ω,R3).

Let Γ be a smooth subset of ∂Ω and set

H inc
0 (Ω,S3) = the closure of D(Ω,S3) in H inc(Ω,S3).

Further properties of the trace operators are given below.

Proposition 8.4 (Trace properties [3]). (1) Let v ∈ H1(Ω,R3) be such that v = r on Γ in the
sense of traces, with r a rigid displacement field. Then T0(∇Sv) = T1(∇Sv) = 0 on Γ.

(2) We have the characterization

H inc
0 (Ω,S3) =

{
E ∈ H inc(Ω,S3) : T0(E) = T1(E) = 0 on ∂Ω

}
.

(3) If E ∈ H inc
0 (Ω,S3) then inc EN = 0 on ∂Ω.

8.2. Saint-Venant compatibility conditions and Beltrami decomposition. We state the
following two results in the setting of Lp spaces for generality, although we will be concerned with
p = 2 only.

Theorem 8.5 (Saint-Venant compatibility conditions [48]). Assume that Ω is simply-connected.
Let p ∈ (1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then,

inc E = 0 in W−2,p(Ω,S3)⇐⇒ E = ∇Sv

for some v ∈W 1,p(Ω,R3). Moreover, u is unique up to rigid displacements.

Theorem 8.6 (Beltrami decomposition [48]). Assume that Ω is simply-connected. Let p ∈ (1,+∞)
be a real number and let E ∈ Lp(Ω,S3). Then, for any v0 ∈ W 1/p,p(∂Ω), there exists a unique
v ∈ W 1,p(Ω,R3) with v = v0 on ∂Ω and a unique F ∈ Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3),
inc F ∈ Lp(Ω,S3), div F = 0 and FN = 0 on ∂Ω such that

E = ∇Sv + inc F. (8.6)

A variant of Saint-Venant’s compatibility conditions in the presence of boundary conditions is
the following.
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Proposition 8.7 (Saint-Venant with boundary condition [3]). Assume that Ω is simply-connected.
If E ∈ L2(Ω,S3) satisfies {

inc E = 0 in Ω,
T0(E) = T1(E) = 0 on ∂Ω

(8.7)

then there exists v ∈ H1
0 (Ω,R3) such that ∇Sv = E. Moreover, the map E ∈ L2(Ω,S3) 7→ v ∈

H1
0 (Ω,R3) is linear and continuous.

We assume from now on that Ω is simply-connected.

8.3. Orthogonal decompositions. For Γ being a smooth subset of ∂Ω, we define the sets

V =
{
E ∈ L2(Ω,S3) : inc E = 0

}
,

V0
Γ = {E ∈ V : T0(E) = T1(E) = 0 on Γ} ,
V00

Γ =
{
∇Sv : v ∈ H1(Ω), v = 0 on Γ

}
,

W =
{
E ∈ L2(Ω,S3) : div E = 0

}
,

W0
Γ = {E ∈ W : EN = 0 on Γ} .

From what precedes we infer the following relations:

V = V0
∅ = V00

∅ V00
Γ ⊂ V0

Γ, V00
∂Ω = V0

∂Ω.

A refinement of the Beltrami decomposition is obtained as follows.

Theorem 8.8 (Orthogonal decomposition of L2(Ω,S3) [3]). Assume that ∂Ω admits the partition
∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅. We have the orthogonal decomposition

L2(Ω,S3) = V00
Γ1
⊕W0

Γ2
.

Related to this decomposition, the following lemma will be useful.

Lemma 8.9 (Boundary orthogonality relation [3]). If K ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

then∫
Γ2

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) = 0.

We now define the spaces with further differentiability properties

Z = {E ∈ H inc(Ω,S3) : div E = 0 in Ω, EN = 0 on ∂Ω},
Z0 = {E ∈ Z : inc EN = 0 on ∂Ω},
F = {E ∈ H inc(Ω,S3) : inc EN = 0 on ∂Ω}.

A straightforward consequence of Theorem 8.8 is the following.

Proposition 8.10. We have the orthogonal decompositions

H inc(Ω,S3) = Z ⊕ V, F = Z0 ⊕ V.

8.4. Boundary value problems for the incompatibility. If E ∈ H inc(Ω,S3) is split into
E = Ei + Ec, Ei ∈ Z, Ec ∈ V, then inc E = inc Ei. Thus, a Poincaré inequality for the
incompatibility is naturally sought in Z or one of its subspaces. In fact, the following holds.

Proposition 8.11 (First Poincaré inequality [3]). There exists C > 0 such that, for all E ∈ Z,

‖E‖H1 ≤ C‖ inc E‖L2 .

As a straightforward consequence, given K ∈ L2(Ω,S3) and B a symmetric uniformly positive
definite fourth order tensor field, we infer by the Lax-Milgram theorem the existence of a unique
E ∈ Z such that ∫

Ω

B inc E · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ Z. (8.8)
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The same result holds if Z0 is substituted for Z. If div K = 0 in Ω, KN = 0 on ∂Ω and E ∈ Z
solves (8.8), then Proposition 8.10 shows that (8.8) holds actually for any Ê in H inc(Ω,S3). This
yields the strong form 

inc (B inc E) = K in Ω
div E = 0 in Ω
EN = 0 on ∂Ω

T0(B inc E) = T1(B inc E) = 0 on ∂Ω.

Dirichlet-type boundary conditions can be considered through the space

H0 = {E ∈ H2(Ω,S3) : div E = 0 in Ω, E = (∂NE ×N)T ×N = 0 on ∂Ω}.
Observe from the Green formula that the boundary conditions in H0 are dual to the trace operators
T1 and T0. We have the following Poincaré inequality:

Proposition 8.12 (Second Poincaré inequality [4]). There exists C > 0 such that, for all E ∈ H0,

‖E‖H2 ≤ C‖ inc E‖L2 .

Obviously, given K ∈ L2(Ω,S3) and B a symmetric uniformly positive definite fourth order
tensor field, there is a unique E ∈ H0 such that∫

Ω

B inc E · inc Êdx =

∫
Ω

K · Êdx ∀Ê ∈ H0. (8.9)

Nonhomogeneous boundary conditions can also be prescribed, using Theorem 8.1. In order to
identify the strong form of (8.9), we first note that, if E ∈ H0 solves (8.9), then there exists a
Lagrange multiplier (see e.g. [11]) p ∈ L2(Ω,R3) such that∫

Ω

B inc E · inc Êdx−
∫

Ω

p · div Êdx =

∫
Ω

K · Êdx

for all Ê ∈ H2(Ω,S3) with Ê = (∂N Ê ×N)T ×N = 0 on ∂Ω. Therefore the strong form reads inc (B inc E) +∇Sp = K in Ω
div E = 0 in Ω

E = (∂NE ×N)T ×N = 0 = 0 on ∂Ω.

9. Towards an intrinsic approach to linearized elasto-plasticity

9.1. Objectivity and principle of virtual powers. Consider a macroscopic solid represented
by the domain Ω and subject to external loading. We place ourselves in a linearized setting, that
is, our aim is to descibe the deformation of the solid between two close configurations (see Fig.
2), when the load admits a small increment. The evolution of this tangent modeling between
increments will be discussed later, but an integrated nonlinear approach is currently out of our
scope.

We will use the principle of virtual powers to describe the internal efforts acting within the
solid and derive balance equations. In this framework, efforts are represented by powers, rather
than forces. Two types of efforts are treated separately: the external efforts (the load acts on the
matter) and the internal efforts (the matter acts on itself). The corresponding powers are linear
functionals that act on kinematical descriptors also called test or virtual fields. This is why we
speak of virtual powers. The choice of these kinematical descriptors is of paramount importance.

A kinematical field is said objective if it is independent of the observer. The classical mathe-
matical definition is the following: it is a scalar, vector, or tensor field that obeys the standard
rules of transformation for such quantities through a roto-translation of the frame with arbitrary
speed. In this setting, it is well-known that the velocity is not objective, whereas its symmetric
gradient is. Nonetheless, we have seen that in the presence of defects the notion of velocity is not
always well-defined. More general kinematical concepts are the geometric data of the solid seen
as a Riemannian manifold. For us, only these fields (or their time rates) will be considered as
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objective. Hence, objective kinematical descriptors will be built upon the metric g. Typically, we
will consider the strain E := g − I and its rate Ė.

In our model we assume that the internal virtual power is a continuous linear functional on
L2(Ω,S3), the set of virtual strain rates. By Riesz representation, there exists a generalized force
field Σ ∈ L2(Ω,S3) such that

P(i)(Ê) =

∫
Ω

Σ · Êdx ∀Ê ∈ L2(Ω,S3). (9.1)

Unlike its internal counterpart, the virtual external power is a linear functional against kine-
matical fields which may be non-objective (see, e.g., [49]). Typically, the velocity is considered in
order to represent standard forces. However, in our framework, the velocity is only a byproduct of
the strain rate, defined by orthogonal projection onto an appropriate function space. Therefore,
it is natural to assume that the virtual external power is a linear functional on the set of virtual
strain rates and we write

P(e)(Ê) =

∫
Ω

K · Êdx ∀Ê ∈ L2(Ω,S3), (9.2)

for some K ∈ L2(Ω,S3). The interpretation of K will be discussed in section 9.4. In the absence of
inertial effects, the principle of virtual powers reads

P(i)(Ê) = P(e)(Ê), (9.3)

for all Ê satisfying admissible kinematical constraints.

9.2. Constitutive law. We assume that the generalized force Σ is a function of the local geometric
data of the solid. This relation is called constitutive law. In our linearized framework, we assume
that Σ(x) is expressed as a linear function of the pair composed of E(x), the strain at point x, and
inc E(x), the linearized Riemannian curvature. Therefore we can write

Σ(x) = AE(x) + B inc E(x),

for some fourth-order tensors A and B.
In classical elasticity one has inc E = 0, so that A is recognized as the Hooke tensor of the

material. We place ourselves in the isotropic case where the standard expression

A = λI2 ⊗ I2 + 2µI4

holds, with (λ, µ) the Lamé coefficients.
Tensor B is a new object. An assumption of consistency with linear elasticity will reduce

its expression. First, let us emphasize that classical compatible elasticity corresponds to B ’large’:
indeed, the term B inc E represents the resistance of the matter against incompatible deformations.
Second, the equations of linear elasticity are derived from the principle of virtual powers considering
compatible test fields Ê = ∇S v̂. Thus, we want that following property be fulfilled: if B is
homogeneous, then ∫

Ω

B inc E · Êdx = 0 ∀Ê = ∇S v̂, v̂ ∈ D(Ω,R3).

From the Green formula, it turns out that B = `I4, where ` is a scalar coefficient which we call
incompatibility modulus, is a sufficient condition. Eventually, we arrive at the constitutive law

Σ = AE + ` inc E. (9.4)

Different derivations of (9.4), based on Mindlin’s theory of gradient elasticity [53], are given in
[5, 46].
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9.3. Equilibrium equations. Plugging (9.1), (9.2) and (9.4) into (9.3) entails that∫
Ω

(AE + ` inc E) · Êdx =

∫
Ω

K · Êdx, (9.5)

for all admissible Ê. In the following, we will not consider any kinematical constraint, whereby
(9.5) reduces to

AE + ` inc E = K. (9.6)

9.4. Interpretation of the external power and kinematical framework. Assume that ∂Ω =
Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, and take Ê ∈ L2(Ω,S3). In view of Theorem 8.8, we have the unique

decomposition Ê = ∇S v̂ + inc F̂ with ∇S v̂ ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

. The Green formula yields

P(e)(Ê) =

∫
Ω

K · Êdx = −
∫

Ω

div K · v̂dx+

∫
Γ2

KN · v̂dS(x) +

∫
Ω

inc K · F̂ dx

+

∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x). (9.7)

Therefore, f := −div K is identified with a body force, and g := KN is identified with a surface
load on Γ2. Now, if K ∈ V00

Γ1
the last two integrals of (9.7) vanish by virtue of Lemma 8.9. Then

(9.7) rewrites as the classical expression of the external power in linear elasticity∫
Ω

K · Êdx =

∫
Ω

f · v̂dx+

∫
Γ2

g · v̂dS(x). (9.8)

To sum up, given f ∈ L2(Ω,R3) and g ∈ H−1/2(Γ2,R3), the standard external power is obtained
after solving  −div ∇Sw = f in Ω,

w = 0 on Γ1,
∇SwN = g on Γ2,

(9.9)

and setting K = ∇Sw ∈ L2(Ω,S3).

9.5. Existence results and elastic limit. The main result of this section is the following.

Theorem 9.1 (Well-posedness [3]). Assume Ω is simply connected. Let K ∈ L2(Ω,S3). Let C be
the Poincaré constant of Proposition 8.11. If A is uniformly positive definite and |`| > C|A| a.e.,
then there exists one and only one E ∈ F such that

AE + ` inc E = K. (9.10)

Moreover we have the a priori estimate

‖ inc E‖L2 ≤ ‖`−1A‖L∞

1− C‖`−1A‖L∞
‖A−1K‖L2 . (9.11)

The essential boundary condition inc EN = 0 (no incompatibility flux) appears naturally in
the proof, through integrations by parts. It models the fact that the outside of Ω has a purely
elastic behavior, however future work should go further into this point. Inequality (9.11) shows
that inc E tends to 0 as |`| → +∞. The following result is more precise.

Theorem 9.2 (Elastic limit [3]). Assume that A, K are fixed, ` is constant, E` ∈ F , AE` +
` inc E` = K in Ω. There exists a unique E∞ ∈ V such that∫

Ω

AE∞ · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V. (9.12)

Moreover ‖E` − E∞‖L2 → 0 when |`| → +∞.

Theorem 9.2 shows that the standard linear elasticity problem with Neumann boundary condi-
tion is retrieved as a limit case when |`| → +∞.

From our derivations so far, the question of the sign of ` has not been fixed. The example of
the bar in traction shown below suggests that ` be negative to obtain realistic solutions.
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9.6. Example: bar in traction. We present a variant of an example treated in [3]. Consider
the domain Ω = R2 × (−h, h), for a given h > 0. Although the existence theory has been carried
out for bounded domains, the semi-infinite case will allow analytical calculations through ordinary
differential equations. We assume a uniform vertical traction on the planes {z = ±h}. In view of
(9.7)-(9.9) we obtain

K =

0 0 0
0 0 0
0 0 1

 .

We search for a strain field of form

E =

ϕ 0 0
0 ϕ 0
0 0 ψ

 ,

where ϕ,ψ are functions of the z variable. One has

AE =

2(λ+ µ)ϕ+ λψ 0 0
0 2(λ+ µ)ϕ+ λψ 0
0 0 2λϕ+ (λ+ 2µ)ψ

 , inc E =

ϕ′′ 0 0
0 ϕ′′ 0
0 0 0

 ,

whereby AE + ` inc E = K if and only if{
2(λ+ µ)ϕ+ λψ + `ϕ′′ = 0
2λϕ+ (λ+ 2µ)ψ = 1.

(9.13)

Substitution leads to

ψ =
1

λ+ 2µ
(1− 2λϕ), (9.14)

2µ(3λ+ 2µ)ϕ+ `(λ+ 2µ)ϕ′′ = −λ.
Due to the unboundedness of Ω the above equation has no unique solution. Therefore we prescribe
ϕ(±h) = 0. This entails

ϕ(z) =



−λ
2µ(3λ+ 2µ)

(
1−

cos ωz√
`

cos ωh√
`

)
if ` > 0,

−λ
2µ(3λ+ 2µ)

1−
cosh ωz√

|`|

cosh ωh√
|`|

 if ` < 0,

with ω =

√
2µ(3λ+ 2µ)

λ+ 2µ
.

The external work is obtained as

W =

∫ h

−h
ψ(z)dz,

with ψ given by (9.14), i.e.,

W =


2h

λ+ 2µ

[
1 +

λ2

µ(3λ+ 2µ)

(
1−
√
`

ωh
tan

ωh√
`

)]
if ` > 0,

2h

λ+ 2µ

[
1 +

λ2

µ(3λ+ 2µ)

(
1−

√
|`|
ωh

tanh
ωh√
|`|

)]
if ` < 0.

In the numerical outputs that follow we have used the data Y = 10, ν = 1/3 for the Young modulus
and the Poisson ratio of the material, respectively, and h = 1. Figure 3 displays the work W in
function of `. Clearly, choosing ` > 0 is unphysical, since incompatible deformations produce less
work that in the purely elastic case (` → ∞). In contrast, choosing ` < 0 is consistent with our
expectation from the energetic point of view.

Figure 4 shows the functions ϕ and ψ for some negative values of `. For `→ −∞, the classical
elastic solution is retrieved.

Figure 5 shows the same functions calculated with ` variable in space, namely ` = −1 in the
interval [−0.1, 0.1] and ` = −1000 elsewhere. Although the domain is unbounded, the horizontal
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Figure 3. External work as a function of ` for ` > 0 (left) and ` < 0 (right)

Figure 4. Planar (left) and vertical (right) deformations for ` = −10 (blue),
` = −100 (red), ` = −1000 (yellow).

Figure 5. Planar (left) and vertical (right) deformations for ` variable in space.

compression suggests that the model is able to predict necking phenomena. Let us stress once more
that we have restricted ourselves to linearized equations. How to deal with finite deformations is
briefly discussed thereafter.

9.7. Incremental formulation of hardening problems. An incremental formulation consists
in introducing a continuous family of loads, here denoted by (Kt), parameterized by a fictitious time
t, starting from K0 = 0 and reaching the target value KT = K at final time T . The interval [0, T ] is
split into subintervals [tk, tk+1], and within each subinterval one solves the tangent problem (9.10).
Here A and ` are tangent moduli, and E is the strain increment. Nonlinear phenomena occur when
these moduli vary between two increments. In the first increment, for small load, the behavior is
usually elastic: |`| is taken very large, one can even solve the standard elasticity equations. At some
point, according to some yield stress criterion, nonlinearity and irreversibility appear: |`| should be
locally decreased. As stipulated by the Second Principle of Thermodynamics, this modification of
the incompatibility modulus must be associated with a dissipation of free energy. The procedure
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is repeated in the following increments. Of course, in case of elastic unloading, ` should be again
taken everywhere ”infinite”.

The process of update of ` (and also A) is obviously not completely determined. The point is to
represent the complex hardening phenomenon. This will be investigated in future works. At least
to comply with the Second Principle a sensitivity analysis of the free energy with respect to local
perturbations of ` may be carried out. It has been done in [5] for the model (9.10) reduced to its
principle part, i.e. (8.8). The full model is under scrutiny.
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