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Abstract—In many synchronized MAC protocols for wire-
less sensor networks such as IEEE 802.15.4 in beacon-
enabled mode, periods where all the nodes are active
alternate with periods where all the nodes are inactive. This

approach is used in order to save the energy of nodes as
they are powered by small batteries. However, having all
nodes active simultaneously can yield to congestion, which
increases the packet loss rate and the delay. In this paper, we
propose a new MAC scheduling mechanism that distributes
the activities of nodes into several periods, thus reducing the
number of active nodes during each period. The scheduling
is based on the routing information provided by the network
layer. We propose an heuristic to compute this schedule, and
we derive a protocol with limited overhead. We compare
their performance with the performance of IEEE 802.15.4
where all nodes are active simultaneously, as well as with the
optimal solution computed using an integer linear program.
The simulation results show that our heuristic can greatly
improve both packet loss rate and delay in a large variety
of scenarios without increasing the energy consumption.

Index Terms—Wireless Sensor Networks, scheduling,
MAC protocols.

I. INTRODUCTION

Nowadays, wireless sensor networks (WSNs) are used

for many monitoring applications of industrial [1] or

environmental sites [2] [3]. These networks are composed

of small sensor nodes able to sense the environment and

able to inform a central node (called sink) about the

evolution of the monitored phenomenon. These nodes are

powered by batteries and communicate with each other

in order to form a multi-hop wireless network.

One of the challenges of protocols for WSNs is to re-

duce congestion. For instance, in a monitoring application

where all nodes of the network send periodic traffic to

a specific node of the network, called sink, congestion

may arise in the whole network due to the activity of

all nodes. This congestion causes an increase in the end-

to-end delay and packet loss. The effects of congestion

can be reduced by using efficient routing protocols and

robust medium access control protocols. In this paper, we

focus on a medium access control (MAC) schedule in

order to further reduce the congestion (and thus increase
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the network performance) without impacting the energy

consumption.

One of the main approaches used nowadays in order to

save energy is based on deactivating the radio module of

nodes periodically. In other words, the radio module of

nodes is active for a given period of time (called activity

period) and is inactive for another period of time (called

inactivity period). To do so, the nodes have to be synchro-

nized, which means that they have to share a common

time. In most cases, the activity periods of nodes overlap

completely: at a given time, either nodes are all active or

they are all inactive. An example of this approach is the

beacon-enabled mode of the IEEE 802.15.4 standard [4].

This standard defines the physical and the medium access

control layers in a wireless personal area network, and is

widely used to connect low-cost sensors and actuators.

However, this approach is not efficient when dealing

with relatively high traffic load (with respect to the duty

cycle) caused by traffic originating from many nodes.

Indeed, as the nodes are all active during the same period,

they all attempt to transmit during the same period,

which increases congestion in the network and produces

collisions. Thus, the packet loss rate and the end-to-end

delay are both high in such a scenario [5].

This paper aims to reduce the congestion in the network

(see [6] for a survey on congestion reduction for WSNs).

Our protocol activates groups of nodes at different pe-

riods. For instance, one half of the nodes could be

scheduled for activation first, and the other half later.

In this case, the congestion experienced by each half

of nodes would be low. However, this trivial scheduling

would not work in most cases, as it would be impossible

for nodes of the first half to communicate with nodes

of the other half. This paper tackles a variation of this

scheduling.

The remainder of this paper is organized as follows. In

Section II, we discuss the work related to our proposition.

In Section III, we describe in detail the problem, an op-

timal solution, our heuristic and our protocol. Simulation

results are presented in Section IV. Finally, Section V

concludes the paper.

II. STATE OF THE ART

Existing MAC protocols for WSNs can be classified

into synchronous and asynchronous protocols [7], [8].



In synchronous MAC protocols, nodes share a common

vision of time, obtained through synchronization. Then,

they exchange some information to coordinate the periods

of activity and inactivity (for instance, in order to reduce

the time spent in idle listening). In asynchronous MAC

protocols, nodes do not share a common vision of time.

To ensure that a sender and a receiver can communicate,

asynchronous MAC protocols use several techniques. For

instance, the sender can send a large preamble before

its data [9], and the receiver can wake up periodically

and determine whether a preamble is currently being

transmitted or not. Another approach is to send a beacon

frame when a node wakes up, such that each node that

receives this frame knows that it can communicate with

the sender of the beacon frame. Generally, asynchronous

MAC protocols yield to large end-to-end delays as a

sender and a receiver first have to meet before being able

to communicate.

In this paper, we focus on synchronous MAC proto-

cols as they compute smaller delays in general. Sub-

section II-A gives a brief discussion on some existing

synchronous MAC protocols not based on a schedule.

Subsection II-B describes synchronous, schedule-based

MAC protocols. In each subsection, we show the differ-

ence between these related works and our approach.

A. Synchronous MAC protocols without schedule

In the following, we describe existing synchronous

MAC protocols that are not based on a schedule.

1) ZigBee and IEEE 802.15.4 standards in beacon-

enabled mode: The IEEE 802.15.4 standard [4] defines

the physical layer and the medium access control sublayer

of a low-power wireless personal area network. It operates

in two modes: the beacon-enabled mode during which

periodic beacon frames are transmitted to synchronize

nodes according to a superframe structure, and the non

beacon-enabled mode.

In the non beacon-enabled mode, nodes are not syn-

chronized. When a reduced function device has data

to send, it wakes up and sends the data by using a

channel access mechanism called unslotted carrier sense

multiple access with collision avoidance (CSMA/CA).

The full function devices have to be active all the time,

as they ignore when reduced function devices will send

data. Thus, the non beacon-enabled mode is less energy

efficient than the beacon-enabled mode for full function

devices.

In the beacon-enabled mode, nodes are synchronized.

The activity cycle, called the superframe in the standard,

is delimited by two consecutive beacon frames, and is

composed of two periods: the active and the inactive

periods. The active period is divided into a mandatory

contention access period (CAP) and an optional con-

tention free period (CFP). The channel access mechanism

used during the CAP is called slotted CSMA/CA.

The ZigBee standard [10] defines the upper layers of a

network stack based on IEEE 802.15.4. It uses the ad-hoc

on demande distance vector (AODV) routing protocol [11]

and allows multi-hop communications (that are out of the

scope of IEEE 802.15.4).

In our approach, we modify the activation periods of

IEEE 802.15.4: rather than activating all nodes simulta-

neously, we activate them in groups. We rely on the same

synchronization mechanism as ZigBee/IEEE 802.15.4.

2) S-MAC (Sensor MAC) protocol: The main goal

of S-MAC [12] is to reduce the energy consumption,

while supporting scalability and avoiding collisions. More

specifically, S-MAC tries to reduce energy consumption

caused by idle listening, collisions, overhearing and con-

trol overhead. S-MAC consists of the following three

major components.

• Periodic listen and sleep: for low data rate, it is not

necessary to keep nodes listening all the time; using

S-MAC, nodes are able to switch to sleep mode.

• Collision and overhearing avoidance: S-MAC avoids

collisions by using RTS/CTS (request to send / clear

to send) control packets. S-MAC also tries to limit

overhearing by letting interfering nodes go to sleep

briefly after hearing an RTS or a CTS packet for

another destination.

• Message passing: S-MAC is able to fragment long

messages into small fragments, and transmit them in

burst.

While S-MAC saves energy by changing the medium

access mechanism and introducing RTS and CTS control

frames, the goal of our approach is to reduce congestion

by deactivating several nodes for extended periods of time

(and not only when an RTS or a CTS is overheard). S-

MAC (as well as other protocols that optimize the channel

access) can be used in addition to our approach in order to

further reduce the congestion during the activity periods

(of a limited number of nodes).

B. Synchronous MAC protocols with schedule

In the following, we describe existing synchronous

MAC protocols that are based on a schedule.

1) TAS-MAC (Traffic-Adaptive Synchronous MAC) pro-

tocol: TAS-MAC [13] is a high throughput, low delay

MAC protocol with low power consumption. It achieves

high throughput by using a TDMA mechanism with a

traffic-adaptive allocation mechanism. It reduces the end-

to-end delay by notifying all nodes on active routes

about the incoming traffic in advance. These nodes then

claim time slots for data transmission and can forward

packets through multiple hops in one activity cycle. The

intended traffic-adaptive feature is achieved by splitting

traffic notification and data transmission scheduling.

While TAS-MAC allocates time slots depending on the

traffic (which is supposed to be known in advance), our

approach does not make assumption about the traffic,

and it is evaluated with traffic produced by each node

(which is a worst-case scenario for TAS-MAC). Also,

our approach is not a pure TDMA approach (unlike

TAS-MAC), but can be used with CSMA/CA during the

activity period (which is the scenario we evaluated, as

described later in Subsection IV-A). Another difference



is that our approach is able to activate only a part of the

route from a source to the sink (even though this situation

degrades the performance of the network).

2) Schedule-based multi-channel MAC protocol:

In [14], the authors proposed a schedule-based multi-

channel MAC protocol for WSNs. Each receiving node

selects a time slot in order to be able to receive from a

given sender. The time slot selection is realized as follows.

A node avoids to select slots that are already selected by

others in its interference range. To minimize the conflicts

during the time slot selection, the authors proposed to

split the neighboring nodes into different groups, where

nodes of a group may only select the slots allocated to

this group. This protocol thus reduces congestion in the

neighborhood of nodes.

The main differences between this protocol and our

approach are the following. First, we aim to activate most

of the nodes on the path from source to sink in order to

reduce the end-to-end delay, while the authors of [14]

ensure that each node has a time slot with each neighbor

(which introduces a delay when the node has to wait

for this time slot). The additional delay experienced by

packets in their approach grows linearly with the number

of nodes in a given path, and their approach suffers from

large end-to-end delays. Second, our approach decor-

relates slot selection and channel access: our approach

can even benefit from the advantages of a CSMA/CA

mechanism (which is the scenario we adopted for our

simulations).

3) Crankshaft protocol: In [15], the authors proposed

the Crankshaft protocol. This protocol divides time into

superframes that contain two types of slots: unicast and

broadcast. Each superframe starts with all the unicast

slots, followed by the broadcast sots. During a broadcast

slot, all nodes are active in order to listen for an incoming

frame. A node having a broadcast frame to send contends

with all the nodes to send that frame. Each node listens for

one unicast slot (determined by its MAC address) during

every superframe. During the unicast slot, a neighbouring

node may send a frame to that node if it gains access to

the medium. Crankshaft is based on an acknowledgment

mechanism for unicast frames. If the sender does not re-

ceive an acknowledgment, the protocol tries to resend the

frame three times in subsequent superframes. However, in

order to reduce congestion caused by the retransmission,

the node only retries the transmission of a frame with a

probability of 70%.

The main difference of our approach compared to

Crankshaft is that we consider a global schedule during

which any medium access can be used, rather than allo-

cating slots to nodes. Our scheduling is also based on the

routes for the frames.

4) GinMAC protocol: GinMAC [16] is based on

TDMA three types of slots: basic slots, additional slots,

and unused slots. Each superframe contains a number of

basic slots computed such that each node can forward one

frame to the sink. The additional slots are used to improve

the transmission reliability. The unused slots are purely

used to reduce the duty cycle of nodes. These slots are

of a fixed size and used in an exclusive manner: a slot

used by one node cannot be re-used by other nodes in

the network. GinMAC does not scale for a network with

many nodes. GinMAC implements temporal and spatial

transmission diversity. Indeed, it is possible to duplicate

the basic schedule m times within the same GinMAC

frame. Nodes in the network are then able to join m+ 1
virtual topologies. During a frame transmission, node

sends a copy of the frame in each of the m+1 topologies.

The concurrent topologies are selected by respecting the

constraint that no links in common are used.

The main difference of our approach compared to

GinMAC is that once the network is deployed our ap-

proach uses the same topology in order to provide reliable

network performance. GinMAC on the other hand uses

several virtual topologies in order to deliver data to the

sink, which provides routing diversity.

5) DESYNC-TDMA: In [17], the authors introduces a

desynchronized procedure into the synchronized TDMA

schedule, and proposed DESYNC-TDMA, which can

achieve self-organization. This protocol is able to provide

high throughput and collision-free transmission under

high loads. DESYNC-TDMA provides fairness and pre-

dictable message latencies. It self-adjusts to accommodate

the new nodes or to recapture the unused slots.

However, DESYNC-TDMA also has some limitations

and may not be suitable for all types of traffic. The main

limitation is the time required to re-organize the slots

when a node joins or leaves the networks.

III. MAC SCHEDULING MECHANISM

Unlike most synchronized MAC protocols, where all

nodes are active simultaneously (such as ZigBee, see

schedule 1 of Figure 1), our proposal consists in schedul-

ing node activation periods so that some nodes are inactive

while others are active (see schedules 2 and 3 of Figure 1).

In this way, we aim at reducing the congestion caused

when too many nodes are active simultaneously, and thus

at reducing both packet loss rate and delay.

Our assumptions are the following. First, we assume

that all nodes are synchronized, and we do not take into

account the cost of the synchronization in our compar-

isons (as the synchronization cost is the same for all the

approaches we compare). Second, we assume that the

duty cycle of nodes is fixed: each node is active during

the same fraction of time, and thus each approach has

the same energy cost. Indeed, in WSNs, the energy spent

to transmit, to receive or to listen is similar, while the

energy spent when the radio module is inactive is orders

of magnitudes smaller than when the radio module is

active. Third, we assume that there is a sink that collects

data from all the nodes, which is always active. Fourth,

we assume that the routing protocol is known, and that

routes do not change frequently (see Subsection III-C for

a discussion on this aspect).

In Subsection III-A, we consider the simple case where

nodes are divided into two groups: when nodes of one
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Figure 1. Three schedules of nodes with a duty cycle of α = 0.4
(which represents 40% of the activity cycle). On schedule 1, representing
ZigBee standard, all nodes are active simultaneously. On schedule 2,
nodes are divided into two groups G1 and G2, but communication is
impossible between groups. On schedule 3, nodes are divided into three
groups G′

1, G′

2 and G′

3, and communication is possible between groups
during some periods.

group are active, the nodes of the other group are inactive

(see schedule 2 of Figure 1). With this approach, it is

not possible for nodes of one group to communicate with

nodes of the other group, which limits the possibilities

of the scheduling mechanism. In Subsection III-B, we

consider a more general case where nodes are divided into

three groups or more. At any time, either all nodes are in-

active, or all groups of nodes are active except one group

(see schedule 3 of Figure 1). With this approach, it is

possible for nodes of any group G′

i to communicate with

nodes of any other group G′

j , although not necessarily

immediately. In Subsection III-C, we describe a protocol

that implements this MAC scheduling mechanism.

A. Schedule for two groups

In this subsection, we divide nodes into two groups.

When the nodes of one group are active, the nodes of

the other group are inactive. Thus, it is not possible for

nodes of one group to communicate with nodes of the

other group. Consequently, to distribute nodes into these

two groups, it is essential to know all the communication

paths from nodes to the sink, which form a tree rooted

at the sink. The main task for our scheduling mechanism

is to distribute nodes into these two groups, such that (i)

all the descendants of a given child of the sink are in the

same group, and (ii) the number of nodes in each group

is similar. The first constraint ensures that any node can

send data to the corresponding child of the sink, and in

turn to the sink itself (as the sink is always active). The

second constraint aims at reducing the congestion within

each group.

Figure 2 shows an example of two groups G1 and G2

for a small topology, where the sink is node 0. When

nodes of G1 are active, all nodes of G2 are inactive, and

conversely. Note that the sink is always active. It can also

be noticed that the number of nodes in each group is the

same in this example.

However, distributing nodes into two groups with these

constraints is an NP-complete problem. Indeed, the par-

tition problem, which is known to be NP-complete [18]

can be reduced to our problem. Recall that the partition

problem aims at partitioning a set S into two subsets S1

and S2 such that the difference between the sum of the

0

1

2

3 4

5 6

G1 G2

Figure 2. An example of two groups on a topology.

elements of S1 and the sum of the elements of S2 is

minimized.

We decided to adapt a well-known greedy approach

from the partition problem to our problem of distributing

nodes evenly into two groups. The heuristic first com-

putes, for each child child of the sink, how many nodes

(denoted by size(child)) are in the subtree of child.

Then, the heuristic considers the values size(child) one

by one by decreasing order, and adds all the nodes of the

subtree of child to the group having the least number of

nodes. This simple heuristic gives a 4/3-approximation of

the optimal solution.

It can already be noticed that the computation of the

heuristic can be done locally (and quickly) at the sink,

provided that size(child) is known for each child child
of the sink. Computing size(child) for each node child
can be done by flooding the whole tree, which requires

sending only 2(n− 1) messages, n being the number of

nodes in the network.

B. Schedule for three groups (or more)

In this subsection, we divide nodes into three groups (or

more). Note that this case m ≥ 3 is structurally different

from the case m = 2. At any time, either all nodes are

inactive, or all groups of nodes are active except for one

group. This approach is shown on schedule 3 of Figure 1.

With this approach, a node of a group Gi can always

communicate with its next hop, even if this next hop is

in another group Gj , although the communication might

have to be delayed when nodes of Gj are inactive. Since

each group of nodes is active during m−1 periods (where

m ≥ 3 is the number of groups), the activity for each

period lasts for α · c/(m− 1) (c being the duration of the

activity cycle and α the duty cycle).

A path from a node to the sink is said to be broken k
times if there are k links (ui, vi) on this path such that

ui is not in the same group as vi. When a path is broken

because of a link (ui, vi), packets reaching ui might have

to wait for vi to become active, thus introducing additional

delay. The goal of our scheduling mechanism is thus to

reduce the number of broken paths. Notice that the sink,

being always active, is considered to be in all groups.



Figure 3 shows an example of three groups G′

1
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3
for a small topology. At a given time, either all groups

are inactive, or two (out of three) are active. For instance,

if groups G′

1
and G′

2
are active, all nodes of the the path

from node 2 to node 0 are active. However, when groups

G′
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are active, node 2 has to wait before sending

packets to node 1. Thus, the path from node 2 to node

0 is broken once. The number of nodes in each group is

the same in this example.
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Figure 3. An example of three groups on a topology.

1) Optimal solution: In this subsection, we model the

problem of distributing nodes into m ≥ 3 groups as an

integer linear program (ILP). This ILP takes as input a

set of nodes N , a sink sink ∈ N , an array father
representing for each node the next hop towards the sink

(with father[sink] = sink), the number of groups m,

and the minimum number of nodes per group min. The

objective of the ILP is to map each node to a group, while

breaking the minimum number of paths. Note that paths

that are broken k times are counted as k paths broken.

Our ILP uses an array of binary variables group[x, g]
which indicates whether node x is in group g or not,

an array of binary variables sameGroup[x, g] which

indicates whether x and father[x] are both in group g
or not, an array of binary variables brokenLink[x] which

indicates whether the link (x, father[x]) is broken or not,

and finally an array of binary integers brokenPath[x]
which indicates the number of times a path from x to

sink is broken.

The constraints of our ILP are given on Table I.

Constraint (1) states that each node x has to be in exactly

one group. Constraint (2) states that each group has a

minimum size. Constraints (3), (4), (5) and (6) are used

to model the fact that the link (x, father[x]) is broken or

not. The link is broken if x and father[x] are not in the

same group, that is group[x, g] and group[father[x], g]
are both equal to one, which requires several constraints

to be modeled using ILP (see [19] for a modeling of

the product of two binary variables). Constraint (7) states

that the path from a direct child of sink to sink cannot

be broken, as sink is always active (i.e., in all groups).

Finally, Constraint (8) states that for the other nodes x, the

path from x to sink is broken if the link (x, father[x]) is

broken, or if the path from father[x] to sink is broken.

The model could be improved by considering that each

link (x, father[x]) has a quality qx ∈ ]0; 1]. This quality

has an impact on the number of retransmissions required

by x so that father[x] receives the packet. Reducing

the congestion is thus related to reducing the number of

retransmissions, rather than distributing the nodes in each

group. The impact on this model would be the following:

(i) the meaning of brokenLink[x] and brokenPath[x]
would change to represent the number of expected trans-

missions (and retransmissions) to forward a packet from

x to the sink, (ii) the variable brokenLink[x] would

be weighted by a function of qx, qx being a constant

(fixed for each x) in the ILP, and (iii) the computation

of brokenPath[x] for x 6= sink and father[x] = sink
would also be weighted by a function of qx. Note that

the other computations of variable brokenPath[x] would

not change, as the number of retransmissions from x to

the sink would still be equal to the number of retrans-

missions on the link (x, father[x]) plus the number of

retransmissions from father(x) to the sink.

2) Heuristic solution: We now propose our heuristic,

described in Algorithm 1, that allows us to compute the

groups efficiently (although not optimally). Our heuristic

starts by distributing nodes to the m ≥ 3 groups using the

same greedy approach as the one used in Subsection III-A

(except that it is applied to m ≥ 3 groups instead of

2). Then, for each group that has less than the intended

minimum number of nodes, the heuristic requests nodes

to the largest subtree tmax such that (i) the root of tmax

is a child of the sink and (ii) the root of tmax is in the

largest group gmax.

The heuristic to request requested nodes from the

subtree of a group gbig rooted at a node r, is described

in Algorithm 2. If node r is a leaf and is still in gbig , it

can switch to the requesting group gsmall, resulting into

one node obtained from gbig . If node r is a leaf but is not

in gbig anymore, r has already been switched to another

group, and cannot switch again. If node r is a branching

node, all children of r are considered in a random order

(and the node r itself is considered at last). For each child

child of r, the number of requested nodes is proportional

to the size of the subtree of child, and also depends on

the remaining number of nodes that have to be obtained.

C. Protocol description

In this subsection, we derive a protocol from our

heuristic based on local information. The number of

groups m and the minimum size of each group min are

the two parameters of the protocol. The protocol uses

two rounds. In the first round, each node computes its

number of descendants on the routing tree. Once this

number is obtained, the protocol divides nodes into m



minimize
∑

x∈N
brokenPath[x]

such that ∀x ∈ N ,
∑

g∈[1;m]
group[x, g] = 1 (1)

∀g ∈ [1;m],
∑

x∈N
group[x, g] ≥ min (2)

∀x ∈ N , ∀g ∈ [1;m], sameGroup[x, g] ≤ group[x, g] (3)
∀x ∈ N , ∀g ∈ [1;m], sameGroup[x, g] ≤ group[father[x], g] (4)
∀x ∈ N , ∀g ∈ [1;m], sameGroup[x, g] ≥ group[x, g] + group[father[x], g]− 1 (5)

∀x ∈ N , x 6= sink, brokenLink[x] = 1−
∑

g∈[1;m]
sameGroup[x, g] (6)

∀x ∈ N , x = sink or father[x] = sink, brokenPath[x] = 0 (7)
∀x ∈ N , x 6= sink and father[x] 6= sink, brokenPath[x] = brokenLink[x] +
brokenPath[father[x]]

(8)

Table I
INTEGER LINEAR CONSTRAINTS FOR A SCHEDULE OF m ≥ 3 GROUPS.

Algorithm 1 Construction of a schedule of m ≥ 3 groups.

Require: t is the routing tree rooted at the sink, min is

the minimum size of a group

l← empty list

for each child child of the sink do

add subtree rooted at child to list l
end for each

sort list l in decreasing order of size of the subtrees

for each subtree tchild of l do

g ←group having the minimum number of nodes

add all nodes of subtree tchild into g
end for each

gmax ← group having the largest number of nodes

tmax ← largest subtree rooted at a child of the sink,

such that the root of tmax is in group gmax

for each group g do

if g has less than min nodes then

request enough nodes from tmax to reach min
nodes (see Algorithm 2)

end if

end for each

groups according to the greedy heuristic (described in

Subsection III-A for m = 2, and in the first part of

Algorithm 1 in Subsection III-B for m ≥ 3). In the second

round (required only when m ≥ 3), the sink sends a

request for nodes from groups having less than min nodes

to nodes of another group.

The first round is performed by having the sink send a

count-descendants message to each of its children.

When a branching node receives this message, it forwards

it to all of its children. When a leaf node receives this mes-

sage, it sends a count-descendants-reply mes-

sage with a value of one to its father. When a branching

node has received the count-descendants-reply

messages from all of its children, it sums up all the values,

and sends the total value (plus one for itself) to its father.

At the end of the first round, each node knows the number

of descendants for each of its children.

The second round is performed by following Algo-

rithm 2. Notice that in this algorithm, each node r uses

only local information, except for size(child) (which

is the number of descendants of child) that has been

computed in the first round. Each recursive call to the al-

Algorithm 2 Transfer of nodes from gbig to gsmall.

Require: requested is the number of requested nodes,

r is the root of the considered subtree, gsmall is the

group requesting nodes, gbig is the requested group

Returns the number of nodes obtained from gbig
if r is a leaf then

if r is in gbig then

r switches to gsmall

return 1

else

return 0

end if

else

sum← 0
for each each child child of r (in random order) do

x← requested ∗ size(child)/size(r)
request x nodes from subtree rooted at child
(recursively)

requested ← requested−number of nodes ob-

tained

sum← sum+number of nodes obtained

end for each

if requested > 0 and r is in gbig then

r switches to gsmall

return sum+ 1
else

return sum
end if

end if

gorithm is implemented by sending a request-nodes

message to the given child. Each return from a call is im-

plemented by sending a reply-with-nodes message

to the father of the node, with the number of nodes that

have switched to the new group.

It can be noticed that our protocol requires few mes-

sages per node, and only modifies the schedule of node

activations, rather than the channel access mechanism or

the routing protocol.

The assumption that routes are static (and, hence, that

the tree t is static too) can be weaken: if m ≥ 3, the

protocol is still able to operate if routes change, although

the overall network performance might decrease. When a

route changes, it is possible that a node u becomes in a



different group from its father v: in this case, the route

from u to the sink is broken, as well as the routes from

all the descendants of u to the sink. However, u can still

send data to its new father v, although it might have to

wait depending on the activation periods. Consequently,

we assume that the sink maintains the total number of

nodes affected by route changes that have occurred. When

this number exceeds a threshold, the protocol recomputes

new groups based on the new routing tree (which requires

the sink to restart the two rounds), and resets the counter

of nodes affected by route changes.

IV. SIMULATION RESULTS

In this section, we present our simulation settings and

we highlight the results obtained using our heuristic and

protocol described in Section III. We compare our results

to those obtained with ZigBee.

A. Simulation settings

Our simulation environment is NS-2. In our simu-

lations, we considered for simplicity reasons a set of

100 nodes distributed on a 10×10 grid, as shown on

Figure 4. Nodes are distant of 10 m from their neighbors

on the grid. The sink is node 99, which is at the top-

right corner of the grid. The propagation model we use

is the shadowing model with the following parameters:

the path loss exponent is set to 3, and the random

variable is a Gaussian variable with a mean of zero and

a standard deviation of 3. Nodes transmit with a power

of -5 dBm, and have a reception threshold of -85 dBm,

which is the minimum receiver sensitivity of the standard

IEEE 802.15.4. These settings follow the measurements

reported in [20]. Our simulator implements interferences,

collisions and capture effects. Each node has a queue of

50 packets.

The basic approach is ZigBee (with the default routing

protocol, which is AODV), and uses for the MAC layer

the IEEE 802.15.4 standard in beacon-enabled mode.

It is considered as our basic approach as it does not

provide any scheduling, and we used the same medium

access mechanism. The beacon interval (value BI of the

standard) is set to 6, which yields a cycle duration of about

one second (983 ms). For all approaches, we varied the

duty cycle α within {0.15, 0.25, 0.35}. The superframe

duration SD is computed as α.BI . There is no collision

free period in our scenario. The packet size is 30 bytes (at

the MAC layer, that is without the PHY overhead). Each

node (except the sink) is a source: all nodes produce one

data packet at every period (that is why we considered

packets with small payload). We varied the period of

packet generation from 1 s to 10 s, with each node starting

its packet generation at a random time within the first

period. Finally, each simulation lasts for 100 seconds, and

results are averaged over 100 repetitions.

Figure 4 shows the routing links between nodes as

parent-child relationships. Those links were generated by

AODV [11], and were fixed for the whole duration of

the simulation (so that the routing is static). Another

routing protocol, such as the hierarchical routing protocol

of ZigBee [10] or OLSR [21] could be used instead of the

tree depicted on Figure 4. However, we decided to keep

this tree as it shows a situation which is a worst-case for

our heuristic and protocol. Indeed, notice that child 88

of the sink has a subtree containing many nodes (there

are 88 nodes in the subtree). Using a tree that is more

balanced would simplify the construction of the schedule,

and improve our results.

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47 48 49

50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89

90 91 92 93 94 95 96 97 98 99

Figure 4. Example of a routing tree (obtained using AODV) over a grid
topology: lines represent parent-child relationships. This tree is used in
all our simulations.

In the following, we compare four protocols: ZigBee,

our heuristic with m = 2 groups, the solution obtained

using our ILP, and our heuristic with m = 3 groups. For

the ILP, the minimum group size is set to 10, and the

groups obtained from the ILP are integrated into NS-2.

For the heuristic with m = 3, the minimum group size is

also set to 10.

B. Packet loss

Figure 5 shows the performance of all the protocols

in terms of packet loss. We refer to the packet loss as

(ng − nr)/ng, where ng is the total number of packets

generated by the sources and nr is the total number of

packets received by the sink. Thus, the packet loss metric

takes into account both the losses due to collisions and

to channel access failures.

1) Heuristic with two groups: Figure 5(a) shows the

percentage of packet loss as a function of the period of

the packets generated per source. For instance, a value

of 5 on the x-axis means that every source generates one

packet every 5 seconds. For this period, the total number

of generated packets is 99 × 100/5 = 1980 packets (as

there are 99 sources and our simulation lasts for 100
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(a) Comparison between ZigBee and the heuristic for two groups.
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(b) Comparison between ZigBee and the ILP.
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(c) Comparison between ZigBee and the heuristic for three groups.

Figure 5. Performance of the protocols in terms of packet loss as a
function of the packet generation.

seconds). We can notice that the packet loss is large when

the period of generation is small, and decreases with the

number of generated packets, as expected. Indeed, when

the network is overloaded, collisions appear frequently

in the network, which yields to several congested areas.

Moreover, the packet loss decreases when the duty cycle

increases. This is due to the fact that when the duty

cycle increases, nodes are active for more time, and thus,

they can route more packets. Our heuristic shows better

performance compared to ZigBee: the gain is about 10%
for α = 0.15, about 9% for α = 0.25, and about 8%
for α = 0.35 (for a period of 1). This gain is due to the

fact that our heuristic splits nodes into two groups and

thus during a given period, only nodes of one of these

two groups are able to send and receive packets, which

decreases congestion in the network (including around

the sink). Notice that on the AODV tree we used for

simulations, all the nodes of the largest subtree are in the

first group and the remaining nodes are in the second. As

a result, group 1 contains 88 nodes and group 2 contains

11 nodes. The gain of our heuristic would be larger with

a tree having more balanced subtrees.

2) ILP with three groups: Figure 5(b) shows the per-

centage of packet loss as a function of the period of

packets generated per source. The gain the ILP achieves

compared to ZigBee, for a period of 1, is 20% for

α = 0.15, 15% for α = 0.25, and 10% for α = 0.35. For

a period of 10, the gain varies between 47% and 51%.

Note that 8% of the paths were broken by the ILP.

3) Heuristic with three groups: Figure 5(c) shows

the percentage of packet loss in terms of the period of

generated packets per source. The heuristic breaks 9%
of paths in average. The gain that our heuristic achieves

compared to ZigBee, for a period of 1, is 13% for

α = 0.15, 11% for α = 0.25, and 8% for α = 0.35. For a

period of 10, the gain varies between 42% and 50% for all

values of α. Thus, the maximum gain of the ILP solution

compared to our heuristic is about 37% for α = 0.15, 30%
for α = 0.25, and 20% for α = 0.35. The gain compared

to ZigBee is due to the fact that our heuristic produces a

schedule which is almost similar to the ILP schedule in

this scenario, and thus the network performance (packet

loss and end-to-end delay) is improved.

C. Delay

Figure 6 shows the performance of all the protocols in

terms of delay. We refer to the end-to-end delay as the

time duration experienced by a packet from its generation

at the source to its reception at the sink. The end-to-end

delay only takes into account the packets that are correctly

received by the sink. We chose to present the delay using

a logarithmic scale on the y-axis in order to show the

behavior of the two approaches, even for large periods.

1) Heuristic with two groups: Figure 6(a) illustrates

the average end-to-end delay as a function of the period

of the packets generated per source. We can notice that the

delay decreases with the period of generated packets: the

less packets, the less delay, as congestion increases the

CSMA/CA backoffs and the number of channel access

attempts, as well as the number of the packet in queue.

Furthermore, the figure shows the impact of the duty cycle

α on the delay. For a small value of α, the delay is more

important than for a large value. When comparing our

heuristic with ZigBee for a period of 1, the gain is 27%
for α = 0.15, 56% for α = 0.25, and 12% for α = 0.35.

For a period of 10, the gain varies between 2% and 3% for

all values of α. This variation in gain comes from several

phenomenons. For large α, the congestion of the network

is low, and thus the impact of our approach is reduced.

For small values of α, our approach benefits from less

congestion, but is penalized by having the delay computed

for more packets than ZigBee.
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(a) Comparison between ZigBee and the heuristic for two groups.
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(b) Comparison between ZigBee and the ILP.
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(c) Comparison between ZigBee and the heuristic for three groups.

Figure 6. Performance of the protocols in terms of delay as a function
of the packet generation.

2) ILP with three groups: Figure 6(b) shows the av-

erage end-to-end delay as a function of the period of

generated packets per source. For a period of 1 packet

generated per second and per source, the gain the ILP

achieves compared to ZigBee is 14% for α = 0.15, 69%
for α = 0.25, and 10% for α = 0.35. It can be noticed

that the results obtained by our heuristic for two groups

are better than the results obtained by the ILP for three

groups. This is due to the fact that no path is broken when

two groups are considered (if paths were broken with two

groups, some nodes would not be able to communicate

with their next hop), but 8% of the paths are broken for

m = 3. For a period of 10 (low traffic load), the gain

reaches 41% for α = 0.15, 91% for α = 0.25, and 94%
for α = 0.35. This shows that the approach has some

potential, as an optimal schedule can achieve good results.

These results, as well as those from Figure 5(b), con-

firm that it is generally better to activate nodes according

to a schedule, even if the packets on few paths might

suffer from a large delay when a node has to wait for

the activation of its next hop. Indeed, in our scenario, the

gain obtained by reducing the congestion outperforms the

loss in delay, as the number of broken paths is small.

3) Heuristic with three groups: Figure 6(c) shows the

average end-to-end delay as a function of the period of

generated packets per source. The behavior of the end-to-

end delay is almost the same as the one obtained by the

ILP schedule. The gain our heuristic achieves compared to

ZigBee varies between 11% and 18% for α = 0.15 (and

all the periods), between 35% and 89% for α = 0.25,

and between 5% and 90% for α = 0.35. The gain of

the ILP solution compared to our heuristic reaches 25%
for α = 0.15, 3% for α = 0.25, and 1% for α = 0.35.

These results show again that it is better to split nodes

into groups provided that few paths are broken. This

approach reduces congestion in network which improves

the network performance in terms of packet loss and end-

to-end delay without increasing the energy consumption

as nodes are always active for the same duration.

D. Other metrics

The energy required by our approach is similar as the

energy required by ZigBee. Indeed, as explained in Sec-

tion III, nodes are active during a percentage α of the time

in both cases. The only difference in energy consump-

tion comes from the number of activations/deactivations

of the radio module: our approach requires 2m acti-

vations/deactivations per cycle (with m the number of

groups), while ZigBee only requires 2 per cycle. However,

we consider that the energy consumption required to

activate/deactivate the radio module is negligible, as this

process is very fast in usual IEEE 802.15.4-compliant

components (as the CC2420 for instance [22]) compared

to the duration of the activity of the node per cycle.

The cost of our protocol in terms of number of broken

paths and control messages exchanged is presented on

Table II. The first column is the minimum number of

nodes intended per group. Note that in some conditions,

our protocol cannot find enough nodes to request from the

largest group, and thus it is possible that for some routing

trees, some groups have less than the intended minimum

size after the end of the second round of the protocol. This

behavior was not observed in our simulations, however.

We considered m = 3 groups and we varied the

minimum group size. We notice that for groups of 5

nodes minimum, there is no difference between both

solutions. The number of broken paths increases with

the minimum number of nodes that a group can contain

for both solutions: ILP and heuristic. This is due to the

fact that, by increasing the required number of nodes per

group, some nodes have to be requested from a larger

group and several nodes become in a different group than

their next hop. We notice also that the performance of our



heuristic stays close to the ILP performance in terms of

broken paths.

The last column shows the number of messages ex-

changed by each node during the computation of groups.

The number of control messages is low and increases

slowly with the minimum number of nodes per group.

The larger the groups, the more control messages are

exchanged to balance the groups. We also notice that for

all minimum group sizes, the number of control messages

per node is limited and thus the energy consumption of

our protocol is low.

Table II
OVERHEAD OBTAINED BY THE ILP AND BY OUR HEURISTIC.

Minimum group
size

Number of broken paths Number of
control messages
per node

(m = 3)
ILP heuristic

5 0 0 1.98
10 8 9 2.64
15 18 20 3.28
20 28 36 3.94

V. CONCLUSIONS

Generally, in synchronized protocols for WSNs such as

ZigBee, all nodes are active simultaneously. In this paper,

we study how to distribute nodes into groups, such that

nodes are activated depending on their group. We propose

an exact modeling of the problem based on integer linear

programming, as well as an heuristic that yields to results

close to the optimal. Then, we propose a protocol that

can implement this heuristic with a limited number of

control messages. We compare our propositions to ZigBee

and we show that our protocol can significantly reduce

congestion. Simulation results show that our solution

outperforms ZigBee in terms of packet loss rate and end-

to-end delay. For a period of 1 and all values of α, for

instance, the gain in packet loss varies between 8% and

12%, and the gain in end-to-end delay varies between 5%
and 35%, without changing the energy consumption.
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versité Blaise Pascal. She obtained her MSc
degree in networks and computer science from
the Lebanese University of Beirut, Lebanon, in
2006. Her research interests include wireless
communincations, sensor network, MAC and
routing protocols.



Alexandre Guitton is an assistant professor at
Clermont Université, Université Blaise Pascal,
France. He is doing his research at LIMOS-
CNRS. He received his PhD in 2005 and his
MSc in 2002 at University of Rennes I, in
the field of computer networks. He has been
working at Clermont Université since 2007.
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