J J Moreau 
  
Sorne numerical methods in multibody dynamics: application to granular materials

Keywords: Friction benveen beads: 0, 8 Restitution: 0, 7 Laierai and bollom boundaries Friction : 0, 8 Restit11tion : 0, 4

The unilaterality of non-pene1ration cons1rain1s, ù1e vclocily jumps which occur in case of collisions, ù1e irregularity of ilie law of dry friction are 'nonsmooù1' features of ù1e dynamical systems in vicw. Numcrical meiliods are presented, wich face nonsmooùrness wiiliout resorLing to mollifying approximation proccdurcs. A careful formulation of contact Iaws generates algoriilims which, at evcry step of ùie time-discretization, are ready to face possible collisions on ilie same footing as permanent contacts. These algoriùuns prove efficient enough to treat on microcomputers or small workstations ù1e dynamical motion of systems involving a few thousands of bodies.

Granular materials are modelled as collections of spherical beads. The concemed numerical technique has recently permitted to discover a mechanism underlying Ùle phenomenon of size-segregation in a granular material contained in a vertically shaken vesse!. This mechanism, which connects segregation wiù1 the convection currents induced by boundary friction, bas been exhibited independenùy by some experimenlalists. The numerical assessment of boundary forces, presented here, ù1rows some light on Ùle generation of boundary cun-ents. Displacements over 60 periods of box vibration (beads shown in their initial positions): Vertically shaken two-dimensional cell Width: 7.5 cm Freq11ency : 15 hertz Peak ro peak ampli111de : 0.3 cm (Maximal acceleration : 1.332 g) Beads (oxidized a/11111ini11111): N11111ber: 1650 in tJ1c cell Diameter: 0.15 cm

Introduction

Severa! computational techniques are currently used in the dynamics of collections of bodies, during the motion of which contacts; generally subject to friction, are susceptible to occur or to break.

The most popular ones, commonly called Distinct Element or Discrete Element Methods, derive from the pioneering work of P. A. Cundall [Cundall,197 l] [START_REF] Cundall | A discrcte numcrical modcl for gnmular asscmblics[END_REF] or are adapted from the procedures applied in numerical Molecular Dynamics. They consist in approximating the mechanical constraint of non inter-penetrability of each body. pair by some close-range steep repulsion law. In addition, on every time interval where two bodies are close enough to be viewed as contacting (numerically, they may appear to overlap a little), they are assumed to exert on each other some dissipative forces, depending on velocities in a smooth way which mimicks friction. Thereby, the evolution problem is approximately reduced to the integration of a system of second order differential equations, to which classical methods are applied. The steeper the approximate laws of interaction, the more realistic are the results, at the price of reducing the time-step length for the sake of numerical stability.

Alternatively, while approximating non inter-penetrability in the same way as above, one may mode! the inelasticity of possible collisions by assigning different repulsion coefficients to loading Laboratoire de Mécanique et Génie Civil, URA CNRS 1214, Université Montpellier II, and to unloading [Walton & Braun, 1986]. Fliction, on the other hand, may be handled by applying directly the law of Coulomb [Wallon,I993a,b).

Many significant simulations of motions have been obtained by some of these computation techniques, for systems of bodies which may either be full y deformable or treated as macroscopically rigid.

A different approach is presented in this lecture, characterized by the absence of smoothing approximation.

Precisely, the problems in view are nonsmooth in three respects: • The geometric effect of non inter-penetrability is expressed by a set of inequalities, instead of the equalities associated with traditional (bilateral) mechanical constraints. In other words, non inter penetrability is a unilateral constraint, which makes that, in the space of the configuration variables, the feasible set is a region Iimited by a collection of surfaces. The boundary of such a region is hable to present a great number of multi-dimensional singulalities, a situation similar to what is commonly met in problems arising from Operation Research. This is nonsmoothness in space. Furthermore, the physical realization of non inter-penetrability, like that of any mechanical constraint, rests on the action of 'forces of constraint' or 'reactions'. These forces vanish as soon as the concerned bodies separate out, while during contact no fonction is available to express them completely : ail what is known is that reactions belong to some configuration-dependent sets. In regard to such irregular relationships between forces and configurations, one may say that non-smoothness in force-Law goes with non-smoothness in space. • In the event of a collision, the fonction of time which represents the system velocity is expected to be discontinuous. This is nonsmoothness in time.

• If the friction considered at contact points is of the dry sort, for instance Coulomb's friction, it is governed by a relationship between the reaction force and the local relative velocity which makes another instance of nonsmoothness in force-law.

Motivated, in particular, by the needs of Operation Research and Economies, formai and computational developments _have taken place in recent decades, giving birth to a mathematical domain called 'Nonsmooth Analysis' (see e.g. [START_REF] Clarke | Optimization and Nonsnwoth Analysis[END_REF]][Hiriart-Um1ty & Lemarechal, 1993)). This includes 'Multivalued Analysis', i.e. the treatment of set-valued fonctions (see e.g. [START_REF] Aubin | Set-va/ued Analysis, Birkhlluser, Base![END_REF]). The application of such tools to mechanical topics has been systematized under the title of 'Nonsmooth Mechanics' [Moreau et al., 1988) [START_REF] Moreau | Topics in Nonsmoorh Mechanics[END_REF]. The approach presented in this lecture has been developed in this spirit.

We propose to cal! this approach the Contact Dynamics method.

Another numerical strategy, also avoiding the use of mollifying approximations in multibody dynamics, has recently been proposed [START_REF] Hogue | Efficient computer mudclling of ù1e motion of arbitrary grains, ln : Powders and grains[END_REF].

At the mathematical level, the study of nonsmooth dynamical problems (existence of solutions, possible cases of uniqueness, approximation procedures, etc.) is the subject of current research [START_REF] Monteiro Marques | Differenrial Inclusions in Nons111001h Mechanical Problems: Shocks and Dry Friction, BirkhHuser, I3asel[END_REF] [Paoli & Schatzman, 1993).

Outline and discussion

Let be chosen a division of the time-interval I, with origin l(), into (usually equal) subintervals. At every of these time-steps, the proposed algorithms will be ready to face collisions on the same footing as lasting contacts. This is equivalent to treating the latter as successions of mini-collisions. Significantly in [START_REF] Baraff | Coping with friction for non-penetrating rigid body simulations[END_REF], a paper with mechanical insight but aimcd at the produclion of artistic Computer Graphies animations, the same attitude is preconized on the basis of computational complexity assessements. This uniform treatment is made possible by imposing on the information available about the physical circumstances of contact to be stated under a standardized formalism ù1at we call a 'complete contact law' : see Sec. 5 below. This fonnalism takes care automatically of the non intcr-penctrability constraint and of the possibility of some contacts to break in the course of the motion, but leaves widely open the choice of phenomenological desc1iptions for f1iction and for collisions.

In the sort of applications we are to present at the end of this lecture, namely the dynamics of dry granular materials, the law of Coulomb is generally acccpted as a fairly good representation of friction.

More problematic is the modelling of collisional processes. By refening to rigid body collisions, one means that the involved bodies show sufficiently small deformation for being geometrically considered as rigid at the global observation scale [Stronge, 1990J[Brach, 1991J[Wang & Masan, 1992]. In most of the literature devoted to this subject, authors tend to analyse such a collision as a microscopie phenomenon !ocalized in the vicinity of the impact locus : at this scale, material defonnability is taken into account (using models of elastic, visco-elastic or elasto-plastic behaviour), as well as the evolution of the small contact zone in which stick and slip regions may be distinguished [START_REF] Maw | The rote of elastic tangential compliance in oblique impact[END_REF]. Situations to which such an analysis is relevant certainly exist but, in general, the consequences of collisions are not localized. For instance, material dissipation in the vicinity of the impact is not the only cause of the energy Joss observable at the macroscopic level. Even if the bodies are assumed perfectly elastic, energy conse1vation cannot be expected. In fact, disturbances are likely to propagate from the collision locus to the whole system and also, if the latter is linked with some external support, to the outside world. After contact recedes, a state of vibration should persist. At the macroscopic observation level, this does not contradict the rigidity assertion, but the energy involved in microscopie agitation may not be negligible. Also as a consequence of vibrations, a collision may, at the microscopie time-scale, split into several separate contact episodes: an exarnple of such a double bounce is calculated in. closed form in [Timoshenko, 1948, Chap. 12]. Fini te element computation of the collision of two èlas. tic bodies perfo1med in our laboratory has shown the same. This makes the outcome of a collision strongly depend on the shape of the concerned bodies.

Fortunately, the case of spherical objects, widely invoked in the simulation of granular materials, proves more tractable. A collision law involving three parameters, identified as the friction coefficient, the normal restitution coef ficient and the tangential restitution coefficient has been discussed [W, 1993a[START_REF] Lun | Computer simulation of simple shear llow of inclastic frictional spheres[END_REF] and experimentally founct•acceptable [START_REF] Foerster | Measurements of ù1c collision prnperties of small spheres[END_REF].

In view of this complexity, we choose to be content with a pragmatic description of collisions, whose validity has to be investigated, in each class of applications, by comparing the results of calculations with some calibrated expe1iments. It consists in assening that a complete contact law, of the same form as that which applies to standing contact, holds between the contact percussion and a certain formai local velocity. The latter is constructed by an averaging procedure involving the (known) local velocity before collision and the (unknown) local velocity after (see Sec. 6 below). In the case of spherical bodies, the resulting fo1mulas are found st1ictly equivalent to those produced by the above mentioned mode!, based on normal and tangential restitution coefficients, thus have the same domain of acceptability.

The efficiency of CD methods in the dynamics of granular materials mainly stems from th" at, once a time-discretization has been chosen, ail the collisions which are detected as occurring on a given time-step are treated together. This of course entails some trade-offs which have to be assessed. It seems immaterial that the ordering of the collisions, which mechanically should be successive, is only internai to the algorithm (it depends on the objects numbering; randomizing it in the course of computation has not been judged useful). In fact, the problems in view are physically undeterministic, since a slight change in the initial conditions is enough to produce, after a short lime, a completely different sequence of positions and collisions. A more critical observation is that each collision is treated as occuring only once between the involved bodies in the considered time-step. An accumulation of bounces, such as those of a ping-pong ball coming to rest, is thus viewed as a single collision as soon as the successive bounces are ail comprised in the time-step. This could result in underestimating the global energy Joss aiising from inelastic collisions. This source of error may be checked by repeating computation with the lime step reduced to half: if no change is found in the energy vs time curve, one may conclude that no harm was done.

Another delicate malter is that, in compact assemblies, the bodies involved in a collision may be parts of clusters of objects previously in contact. The propagation of impulses through such clusters raises questions of the same nature as sound in granulate materials.

Anyway, the ultimate criterium of the usefulness of a computation method consists in comparison with calibrated physical experiments. In [Clément et al., 1992][Duran et al., 1993J[Rajchenbach et al. 1993] a two-dimensional experimental set-up is described. A container is made of two parallel vertical glass plates and of lateral boundaries of various shapes (circular when spinning drum experiments are devised, rectangular for shaken boxes). Metallic spherical beads with uniform diameter, to which the space available between the glass plates bas been adjusted, are introduced. Also, when size-segregation is investigated, larger circular abjects with bead-inserts secming correct guiding by the glass plates are added. The high friction coefficients (say 0.8) needed in some experiments is provided by using oxidized aluminium beads or chemically corroded steel beads. Restitution is naturally higher with steel than with aluminium. The fairly large size of the beads (usually 1.5 mm in diameter) makes the effect of air negligible, as it has been tested by counter experiments performed in a void.

Visually, the concordance between these physical experiments and the animations displayed on the computer screen seems almost perfect. Due to the majority of abjects having the same diameter, cristal-like arrangements are generally formed whose dynamical behaviour involves some delicate features : dislocations, propagation of defects, etc .. very well reproduced by CD computations. One of these specific effects is the sporadic occurrence, in the upper corners of a vertically vibrated rectangular pack of beads, of dislocation vortices. Figure 1 shows how this is rendered on the computer.

Heaps at the surface of vibrated packs of beads are also reproduced by computation [M, 1993].

Such experiments involving the dynamics of very dense assemblies make severe tests for numerical models. Quantitative compa1ison is currently in progress.

Inertia of the concerned bodies plays an essential part in CD algorithms. This does not preclude the use of the method in computing the quasi-static evolutions of granular materials familiar in many situations of civil enginee1ing [START_REF] Yemmas | Simulation.1 • numériques des 111aréria11x granulaires[END_REF]. In that case, one is tempted to view the inertia terms as mere numerical mollifyers whose values might be adjusted for the sake of computation efficiency.

Actually, it proves safer to keep these terms with their true physical values. In fact, the experiments commonly made with assemblies of cylinders (Schneebeli materials) show that, however slow the evolution of the control parameters may be, the deformation of the pack takes place through local crises which essentially are dynamical processes [START_REF] Meftah | Evidence of local 'seisms' of microscopie and macroscopic stress fluctuations during ù1e defonnation of packings of grains[END_REF]. An example of evolution of this sort is shortly presented in [Jean,I 994], where the results of a CD method are compared with those obtained by Cundall's TRUBAL software. The applications of CD methods have not been limited to round granules. Simulations of buildings made of rectangular blocks assembled without mortar (the case of ancient Greek monuments) supported by quaking ground have been performed. A se1ies of drawings may be found in [START_REF] Jean | Unilaterality and dry friction in ù1c dynamics of rigid body collections[END_REF] showing the progressive damage and the partial collapse of a wall due to ground oscillation. In this case too, the validity of the_assumed contact Iaws has to be checked. Comparisons with the experiments described in [Ageno & S_ jnopoli, 1991] and [Raous, 1993] induce to make the normal and tangential restitution coefficients equaLto zero for problems of this sort. More elaborate contact laws remain to be designed, in order to describe masonry with mortar bonds. There is no algo1ithmic difficulty in making such laws depend on the motion history.

The use of CD methods in the numerical treatment, through fini te elements, of dynamic or quasi static problems involving deformable bodies is out the scope of this lecture [START_REF] Jean | Numerical methods for three-dimensional dynamical problcms[END_REF].

The dominant features of al! CD algorithms is that they are time-discretization schemes of the implicit type with regard to velocities.

Analytical setting

Let the configurations of the system members be parameuized, at least locally, through generalized coordinates, say q = (q 1 , q 2 , ... , q 11 ). As usual such a reduction to fini te freedom is assumed to result from (bilateral) ideal constraints, namely the strict rigidity of the system members and the possible action of internai or extemal frictionless linkages.

After constructing this parametrization, one takes into account the constraints of non irtter penetrability ; their geometric effect is assumed expressed by a finite set of inequalities

(3.1) f a (t, q) � 0, ae { 1, 2, ... , K),
where f 1 , f 2 , ... ,f 1C are given fonctions. Equality f a = 0 corresponds to the occurrence of a contact. Through the presence of ti n such an inequality, provision is made for the case where the inequality describes the confinement of a part of the system by some external boundaries with prescribed motion.

In ail the sequel, it will be assumed that each of the fonctions f a is C 1 , with of J oq * 0 at least in a neighbourhhood of the hypersurface f a = 0 of R n+I _ For every imagined motion t�(t) and for t such that the derivative q(t)e R n exists, the kinetic energy has an expression of degree 2 in q , say (3.2)

• 1 • i • j • i
'Eic (t, q, q) = 2 A i / t, q) q q + Bi(t, q) q + C(t, q), where A is a symmetric positive definite nxn-matrix, Be R n and Ce R. In the usual case of scleronomic (i.e. time-independent) parametrization, A is constant in t, while B and C vanish. As far as smooth, i.e. twice differentiable, motions are concerned, the system Dynamics is govemed by Lagrange's equations, here written as an equality in R n (3.3) A(t,q) q = F(t, q,q) + L r a .

The expression F comprises standard terms of Lagrange's equations and the covariant components, relative to the paramet1ization (q), of some applied forces supposed given as fonctions of time, position and velocity. The element r a of R n is made of the covariant components of the contact forces experienced by the system in case the contact f a = 0 holds. Their construction rests on the standard definition of the covariant components in R n of forces located in physical space, so this construction is connected as follows wit_ h the system kinematics.

First suppose that inequality f a � 0 expresses the mutual non inter-penetrability of some pair of members of the system, say '13 and '13', so that equality f a = 0 corresponds to these two bodies touching each other at some point of space denoted by M a . This we shall assume to be an isolated contact point, but other contacts, corresponding to different values of a, may also be in effect between the same bodies at the same instant. For every imagined motion t"""""?q(t) bringing the system • through the considered contact position for some value of t, the velocities 'V a and 'Va' of the respective particles of '13 and '13' passing at point M a let themselves be expressed as affine fonctions of the value u of the derivative q. The same is thus true for the relative velocity 'lla.='Va. 'V a.' of '13 with respect to '13' at this point, say

(3.4)
where G a. :R n """""?R 3 denotes a linear mapping, depending on t and q. No attention is paid al this stage to the imagined motion preserving contact or not. The Lerm 'W a.

e R 3 , a known fonction of t and q, vanishes in the usual case of a scleronomic parametlization.

Let 'l( a denote the contact force that body '13 experiences at point M a from body '13'; then '13' experiences from '13 the force -'l( a . Classically, the covariant componcnts of this pair of forces are expressed by (3.5) with G�: R 3 � R n denoting the u•anspose of G a (the convention of implicit summalion will never be applied to Greek indices).

Similar formulas hold if inequality f é O represents the confinement of a part '13 of the system by some extemal boundary with prescribed motion. Assume that equality f a = 0 corresponds to contact taking place at some point, here again denoted by M a . The relative velocity, at this point, of '13 with respect to the boundary has an expression of the form (3.4), where 'W a now takes into account the known velocity of the boundary, while r a in (3.5) equals the cova1iant components of the force 'l( a alone, acting on '13. Its counterpart-'l( a , exerted by '13 upon the boundary, is no more in this case a force experienced by ù1e system .. In both cases; the following relationship is found [M, 1988b] to hold hetween af a /aq and the n01mal unit vecteur n a at point M a to Ù1e two contacting bodies, directed toward '13

(3.6) :lÀ2:0 such that In ail the sequel, we shall assume that the mapping G a is surjective of R 11 to R 3 ; equivalently, its transpose G� is injective of R 3 to R n . Only some special positions of certain linkages may give rise to 'wedging' effects which break this assumption.

Nonsmooth formulation

Due to the bodies beeing treated as perfectly rigid, possible collisions appear as instantaneous processes. The velocity fonction t�u(t)=q(t) of the time interval I into R n is expected to be discontinuous at the corresponding instants. Of course, this is only a formai way of condensing the available information regarding a very b1jef episode, du1ing which u is differentiable and governed by the differential equations of regular Dynamics, but with 'very large' contact forces.

The natural mathematical seuing allowing for the fonction u to exhibit jumps consists in assuming that this fonction has locally boun.ded variation. from I into R n (notation : uE lbv(I, R 11 )), i.e. it has bounded variation on every compact subinterval of I. Classically, with every such u, an R 11 -valued measure on I is associated, called the differen.tial measure or Stieltjes measure of u and denoted in ùüs paper by du. The reader may refer to [M, 1988a] as an expository text on this subject (see also [Moreau & Valadier, !987][M, 1989) for some specific aspects).

On every subinterval where u possesses a continuous derivative, say u; , one has du=u(dt i.e. the measur� du admits u; as density fun.ction. relative to the Lebesgue measure dt of tl1is Lime interval (tl1is is more generally true if u is a locally absolutely con.tinuous function so Ù1at u; is an element of L L � / 1, dt; R n )).

Any uE lbv(l,R n ) possesses at every point• t of I a right-lim.it and a left-limit, respectively denoted by u + (t) and u-(t) (by convention the left-limit at tl1e initial instant t 0 is interpreted as u(t J This holds in particular for a= b , i.e. the integral of the measure du over the singleton { a} equals the jump of u at point a. Thus the point a carries an atom of the measure du if and only if the jump is nonzero.

The traditional theory of percussions rests on the integration of both members of the differential equation (3.3) over the 'very short' interval of a collision process. Since the term F remains bounded on the interval, its integral is negligible, as well as the change of the configuration fonction q. Ali what is left is this equality, valid at the instant t of the collision (4.2)

A(t,q) (u + (t)-u-(t)) = L P a. . a.
The terms p a. here equal the respective integrals, over the very short time interval, of the covariant components of the 'very large' contact forces. By definition, these integrals constitute the covariant components of the contact percussions.

The velocity fonction u constitutes the central unknown of the evolution problem, to which the configuration fonction t�q(t) is related through

(4.3) q(t) = q(t 0 ) + f L u(s) ds L O The differential equation (3.
3), valid on any interval of smooth motion, may then be written as (4.5) A(t, q) u ; = F(t, q, u) + L r a. . a.

Let us regard both members as the density functions, relative to the Lebesgue measure dt on the considered time interval, of some R n -valued measures. The equality of these measures (4.6) A(t, q) du= F(t, q, u) dt+ L dR a. a.

is equivalent to the differential equation (4.5) holding all over I. This may be called a measure dijferential equation. The terms dR a. = r a. dt in this writing constitute the contact impulsion measures. In such a smooth case they happen to admit density fonctions with regard to dt which properly express reaction forces. In contrast, for the collisional situation described in the foregoing, percussions contribute in the contact impulsion through vector measures which do not possess densities relative to dt. Contact percussions actually are atoms of the contact impulsion measures and the elements p a. of R n equal the densities of these atoms relative to o L , the Dirac measure at the point t of I. This is a general fact that, for a finite collection of R-valued or R 11 -valued measures on the interval I, such here are dt, du, dR a , there exists (non uniquely) a positive real measure, say dÂ., relative to which they possess respective density fonctions t;i, e L 1 �/I, dÂ.; R), u;i_ e L 1 � c (I, dÂ.; R n ), and R'fe L 1 �(I, dÂ.; R n ). An alternative writing of the measure differential equation (4.6) therefore is (4.7)

A(t, q) u;i_ (t) = F(t, q, u) t;i, (t) + L R f(t), a holding for every t in I (with the possible exception of a dÀ.-negligible subset : equivalently one may assign null values to the respective density functions on such a subset, so as to make (4.7) actually hold everywhere in 1).

The element R'{(t) of R 11 consists of the covariant components of a 3-dimensional vector of physical space, localized at the contact point M o: , say �{(t), and the same correspondence as in (3.5) holds, namely (4.8) REMARK 1. In (4.1) the function u appears only through its left-and right-limits : the value that it may take at some discontinuity point is immaterial there. The same is true for (4.3), since classically the set of Ùle discontinuity points of an lbv function is countable, hence negligible in the integration with respect to dt. So the values that one may assign to the velocity function at the exact instants of collisions bear at the present stage no dynamical significance. This latitude will be exploited in the forthcoming Sections.

REMARK 2. One may i_isk why the lreatment of such nonsmooth effects as collisions should rest only on measure differential equations, instead of more general evolution laws involving time dist1ibutions of higher order. Sorne justification of this peculiarity may be found in [M, 1989a] : the unilaterality of the non inter-penetrability constraint imposes on contact impulsions a sign condition. Now it is known that a signed dist1ibution is automatically of order zero, i.e. il equals a measure. Let us stress Ùlat ilie present formulation owes noiliing Lo a so-called prin.ciple of constrain.t, according to which "constraints shall be maintained by forces, so long as this is possible; otherwise, and only otherwise, by impulses".

The general form of a contact law

As already said, in CD methods, one starts with the choice of a subdivision of the investigated lime interval. Over each subinterval, persistent contacts are to be treated on the same footing as possible collisions. Also some previously effective contacts may get loose at some instant and, even in the case of smooth motions, this is known to be a nontiivial matter. The traditional approach to contact break consists in tentatively calcuiating the motion under the assumption that a.JI contacts present at a considered instant remain effective. If the calculation of contact forces in the course of such a motion yields, at a further instant, an unfeasible direction, one concludes that some contacts should break at this instant, so the continued motion has to be calculated differently. But contacts which break are not necessarily those for which unfeasible contact forces were just found (for the frictionless case, see [Delassus, l 9 l 7][M, 1963]).

In order Ùlat the algoiithms handle ail such circumstances correctly, one has to design carefully the contact laws, i.e. the admitted relationships between Ùle local velocilies and the corresponding contact forces -mare generally the densities of contact percussions with regard to a base measure dÀ.. For each contact assumed to correspond to a �ertain constraint fonction f, such a law bas the form (5.1) law(t, q, 'li, 9() = true.

For legibility, the index a specifying the concemed contact has been dropped and one simply writes '1( instead of 2(-f. Strictly speaking, the no1mal unit n and the mapping G:R 11 �R 3 make sense only if contact holds, i.e. if f(t, q)==O. For constructing nume1ical methods (as well as in the study of existence of solutions [START_REF] Monteiro Marques | Differenrial Inclusions in Nons111001h Mechanical Problems: Shocks and Dry Friction, BirkhHuser, I3asel[END_REF]), the definition of these two elements is assumed extended, in a smooth arbitrary way, to values of t and q laying in a neighborhood of the hypersurface f==O. One is looking for motions which, in addition to the dynamical equation (3.3), actually taken under its nonsmooth form (4.6), satisfy the geometrical conditions of non inter-penetrability (3.1).

Contact laws will be formalized in such a way that the y take care of that a/so.

Here is the key concept.

DEFINITION. A relation of the form (5.1) is said to be a complete contact law if it in volves the three following implications

(5.2) (5.3) (5.4) f(t, q) < 0 � '1(== 0, f(t,q)� O� n.'U�O. n. 'U > 0 � 'R.:-O.
Let us comment on the importance of (5.3). Put

(5.5) �t, q) == { { 'U E R 3 : n. 'U �o) R 3 if f(t,q) < 0, if f(t, q) � 0
called the set of the right-admissible values for the relative velocity of the two concerned bodies at the contact point M. The following is easily established [M, 1986b] Let I be a time-interval with origin t 0 and let a motion q:I�R 11 be defined through a locally integrable velocity function u:I�R 11 by relation (4.3). If 'U(t) == G(t, q) u(t) + 'W(t, q) be longs to '.K(t, q(t)) for almost every t and if inequality f(t, q(t)):c;O holds at the initial instant t 0 , then this inequality holds for every te I.

In other words, provided the initial position is correct, the non inter-penetrability condition f::;O is automatically taken care of by (5.3). Observe that this statement is sensitive Lo the ordering of time. In the symmeu•ic assertion involving, instead of the initial instant t 0 , the possible final point of I, one should replace '.K by -'.K, which may be viewed as the set of the left-admissible values of 'U.

The importance of (5.4) will only become apparent in the next Sections, devoted to the treatment of collisions and to numerical algorithms.

In order to demonstrate that ù1e concept of a complete contact law has more theoretical consistency than a mere programming LJick is called the ( outward) normal cane to C at point a. In the context of Convcx Analysis. it proves consistent to define Nc(a)=0 if aé C. For every ae C, Nc(a) con tains at lcast the zero of R 3 and reduces to ù1is single element whenever a is an interior point of C. The normal cone more generally makes sense when a pair of arbitrary linear spaccs is considered, with a bilinear pairing playing the role of the dot product of R 3 . That is a common situation in Mechanics, the two linear spaces then consisting of 'forces' and 'vclocitics'. paired through the bilinear form 'power'.

EXAMPLE l : Frictionless contact.

Let us denote by 9{{,'ll) the normal cone at point 'Ue R 3 to the convex set '}(!t, q) defined in (5.5). For f(t, q)�O. the latter is a closed half-space, so '.\!:( 'U)={ 0} if n. 'U>Ü and 9{{_ 'l1 )=0 if n. 'U<Ü. If 'U lies in the boundary of the half-space, 9{{,'U) consists of the half-line gcnerated by -n. For f(t, q)<Ü the set '!((t, q) equals the whole of R 3 , so '.\!:('ll)={O} for every 'U in this case. Consequently, in the writing

(5.7) -1{_ E 9{{_ ' ll)
a complete contact Iaw is fo1mulated. This relation implies in particular that, in case of proper contact, 1( helongs to the half-line generated by n : iliis is ilie traditional no friction assumption. Wilh a contact exhibiting dry friction, one associates the cane of Coulomb C, a convex cone of R 3 (with vertex at the origin) containing the vector n in its interior. In the traditional case, C is axissymmetric about n , but considering more general convex cones provides for the formulation of anisotropie friction.

Let T denote the orthogonal plane to n in R 3 . Every elements 'l1 and 1( of R 3 may uniquely be decomposed in the form 'll y E T, 1( = 2 q + � n,

�ER.

Let D 1 = { 2qE T: 2q + ne C} (the 'unit section' of C) and define in T ù1e real function 'TET-? cpj('I) = sup{'T.SE R: se-Di).

In the traditional case of isotropie f r iction wiili coefficient µ, one simply°has cp 1 ('I) = µ ll'TII. Put the convention C={O} if f<O. Using arguments of Convex Analysis, one establishes [De Saxcé, 1992] that ù1e relation between 'U and 1( consisting of the system of conditions (5.8) 'UE '1(, 1{. eC, with '!( defined as in (5.5), is a complete contact law which reduces to the law of Coulomb in the standard case. Furthermore, one may prove iliat for every pair ('Il, S)

Vo/e '1(, VseC so that (5.8) expresses that the real function (o/,5) � '!l.s + cp 1 ('vir-)S N , separately convex with regard to o/ and S, attains at the point (' l l ,?(J its minimal value relative to the product set 'JO(C and that this minimal value is zero. This is a special case of what De Saxcé calls the method of 'bipotentials', useful in the numerical treatment of va1ious dissipative laws.

Collisions

Let us corne back to the setting of Sec. 4. At the instant te of a collision, the velocity function t�u(t)E R n is expected to present a jump between well defined limits u -(te) and u + (te)• Concerning a contact of index a, active at this instant (this in particular may be the contact suddenly introduced by the collision) ajump is expected for the local velocity, as expressed by (3.4). It has been observed in Sec. 4 that the value that one might ascribe to u at the very instant te has no relevance to the equations of Dynamics. If a contact law of the form (5.1) has then to be invoked, what value of 'l 1 shall be used ? The choice of this value is part of the mode! adopted to describe the mechanical effect of the collision. The complexity of this effect has been stressed in Sec. 2 and we choose here a pragmatic approach, primarily aimed at making tJ1e algorithms work whatever are the circumstances met. Fortunately as already said, in the case of spherical bodies the resulting collision mode! coïncides with that which has been discussed by other authors and expe1imentally tested. The case of bodies of other shapes is still an object of research.

For every a a contact law of the form (5.1) is declared to hold between the contact impulsion sa and the local average velocity 'lia defined through its normal and tangential components as follows l + 't a l +'ta

Here P a and 't a are chosen constants with values in the interval [0,1). The meaning of P a is made clear by iliis observation Suppose that the contact law accepted for the considered contact is complete in the sense of Sec. 5. It readily results from condition (5.2) to (5.3) that, as far as S a does not vanish, one has n.' l l t = 0, i.e. in view of (6.1) (6.3) which mean that P a is identical to Newton's restitution coefficient in this case.

But for cases where several contacts are present in the system at time te , it is essential to observe that (6.3) is not secured anymore if the mathematical treatment yields sa= O. This is precisely what makes the above formulation able to handle in a logical way the problem, familiar in the earthquake engineering literature, of the rocking of a slender rectangular block suppo11ed by a fixed horizontal plane. For simplicity, assume the lower edge slightly concave, so that contact can only occur through the two lower corners. Let the left corner remain in contact for an episode where the black rotates to iliè right, until ilie Iight corner collides. If at this time Newton's assumption was applied to both contact points, no rocking could be found.

Similarly, if the admitted contact law involves a sufficient amount of dry friction for implying V� T = 0 in a certain situation, one finds (6.4)

In view of (6.3) and (6.4), Pa and 'ta may respectively be called the normal and tangential restitution coef ficients.

If the admitted contact law is the (complete) law of Coulomb, the friction coefficient µa has also to be included in the data relative to the considered contact. There is no algorithmic difficulty in making al! these coefficients depend on circumstances. In particular, they may be functions of 'lJô.

so that the restitution coefficients may depend on the strenght of the collision and that the collisional friction coefficient may be different from the static or dynamic friction coeflïcicnts used for lasting contacts.

One may convince onest:lf of the importance of the coefficient 'ta by applying the above formalism to the bounce of a ball against a plane and discussing the consequcnces of possible backspin.

An important issue is the energy balance of a collision. Authors [Stronge, 19901[Brach, I991](Wang & Mason, 1992] stress that, in collisions involving bodies deprived f r om the customary symmetry properties, a treatrnent based on Newton's restitution assumption may yield an increase in the system energy, even though the system is scleronomic. In general, the prevention of such an unphysical consequence when the above mode! is used, would require that the three coefficients satisfy certain inequalities. Let us only observe that, when the trick of using an average local velocity first appeared [M. 1988b], this was with Pa and 'ta assuming the single value PE ro. l] for ail contacts. The energy balance of a collision for a multicontact system may in this case be drawn from (4.2) in the form (6.5)

� --� = ! A ij (u 1-u 1 )(u j-u j )o-f v�. s a .
with 8 = 1--p/l +pE (0, 1] called the dissipation index. The first term on the right-hand side is sure to be nonnegative since the matrix A is positive definite. If the contact laws admitted to hold at the various contacts points are ail dissipative (such is the law of Coulomb), this equality entails a decrease of kinetic energy. Incidentally, equality (6.5) is only a special case of the expression of the dif.ferential measure of the fonction t-n ic in Nonsmooth Dynamics, obtained through the Dif.f erential Calculus of functions with locally bounded variation [M, 1988a](see also [START_REF] Moreau | A chain rule involving vector functions of bounded variation[END_REF]). REMARK 1. As early as [Lecomu, 1905] it has been recognized that, in the dynamics of systems involving dry friction, velocity jumps may occur even in the absence of collision. Such an event is due to paroxysms in the contact forces, similar to the locking effect commonly observed in the statics of the same systems. One may call them frictional catastrophes. They logically appear in the framework of Nonsmooth Dynamic, as demonstrated in [M, 1988b] (on this subject, see also [Wang & Mason, 1992] or for an account of early literature on unilateral constraints and frictional contact [Pérès, 19531). RE M ARK 2. If the contact law invoked in conjunction with the above averaging trick is the complete law of frictionless contact (5.7), the coefficient 't a becomes immaterial. If in addition Pa is made equal to zero, one obtains the 'standard inelastic shocks' introduced by [M, 1985), a paper which may be read as an introduction to the present treatment of collisions in multicontact systems.

A model algorithm

Algorithms based on the foregoing may affect di verse forms (see e.g. [START_REF] Jean | Numerical methods for three-dimensional dynamical problcms[END_REF][START_REF] Jean | Frictional contact in collections of rigid or deformable bodies : numerical simulation of geomaterial motions[END_REF]). Here is a typical set-up, which has in fact been used in computing the examples of Sec . 8.

Let [tl't F ), t F = t 1 + h, denote an interval of the time discretization. Starting with q I , ul' the approximate values of q and u at time tl' the objective is to calculate q F ' Up the approximate values at the end of this interval.

IDENTIFICATION OF CONTACTS

Introducing the middle time t M= t 1 + ! h and a test position qM = q 1 +i h u 1 , the set of the contacts to be treated as active is estimated as 'l.laT= --'l.laT + --'l.l aT • 1 +'ta l +'ta Possibly P a and 't a , the normal and tangential restitution coefficients assigned to the contact a, will be made dependent of the impact velocity 'l1a.• Here 'lFa. and 'l.ftx are estimated through (3.5) , with u F and u 1 playing the roles of u + and u-respectively, namely (7.5) 'l . l a = Ga u ! + 'Wa , � = Ga u F + 'Wa .

If the contact a takes place between a body of the system and some external boundary with prescribed motion, the term ' Wa equals the negative of the boundary velocity vector at the estimated contact point at lime t M while, for a contact occuITing between two members of the system, this term vanishes.

FINAL POSITION ITERATIVE PROCEDURE

The heaviest part of the computation consists of solving the system of conditions (7.1) to (7.5). Contact laws considered in the foregoing Sections were positive/y homogeneous with regard to velocities. This allows one to replace conditions (7.2) Lo ( 7 to be joined with (7.1). Here is a relaxation technique, amounting to treat a succession of single contact problems. Let an estimated solution ue}t i , Se� ti , � running through J, be obtained, wi th (7 .1) satisfied. One attempts to construct a corrected estimate, say u c � IT . s c g IT , by altering only S a , i.e. s c g IT = S c�t i for � ;t: a. The new estima te is ast r ained to satisfy (7. l), i.e. since the old cstimatc satislïes the same, (7.6) éoIT =u esti +A -I G * ( s a -s a . ) F F a COIT esu ' and to satisfy the law•of contact a under the form written above. By applying G a to bath members of (7.6) one gives to this contact law the following f o rm and H a = G a A-1 G: is a symmetric positive definite 3x3 matrix. Solving (7.7) with regard to the unknown Sc� IT is, in usual cases, easy. The above computation will then be iterated, with a ranging cyclically through J. The decision of stopping iterations may be taken on observing the magnitude of S c � IT -S e �t i and this turns out to be equivalent to checking the precision at which each pair 'l{,s a satisfies the corresponding contact law. Observe that, provided this precision check is made, the operator H a in (7 .7) may be replaced by any other mapping with zero Iimit at the origin : Ùlis may be used in tricks for accelerating convergence.

Clearly ,'tl1is algoriÙlm tolerates a certain amount of violation of the impenetrability constrain t s. By adjusting the step-length and the st9pping criterium, one may keep these errors arbitrarily small and prevent Ùleir accumulation.

The iterated calculation is very simple, but needs to be repeated many Limes in case of numerous contacts. Since equation (7 .1) is only preserved from one iteration to the next through the conservation condition (7.6), one should think of the possible accumulation of arithmetic errors. For safety, one ma� refresh u e }t i from time to time, by returning to (7.1) while keeping the constructed approximate values of S�: Ùlis proves useful oiily for motions involving Ùlousands of contacts.

Technically, let us also observe that in many usual applications, the nxn matrix Ais constant and diagonal. d a is a 3xn matrix, but only the elements corresponding to the two bodies involved in contact a are nonzero. So the treatment of large collections of bodies does not require the handling of large matrices.

The convergence of this algorithm has not been proved and not even the existence of a solution to the problem it addresses. Uniqueness certainly does not hold in general, since the mec• hanical problem of determining the reactions in a closely packed collection of 1igid bodies (for instance a wall made of rectangular blacks) is usually hyperstatic.

REMARK. At every time-step, the above algorithm is ready to face velocity jumps, would they result from collisions or arise as frictional catastrophes (Sec. 6). lt also manages correctly the possible breaking of contacts, automatically overcoming the difficulties recalled at the beginning of Sec. 5.

Size segregation in vertically shaken granular materials

When a vesse! containing grains of different sizes is vertically shaken, one commonly observes a progressive accumulation of larger grains at the top of the pack, even if they are denser than the rest. Similar segregation may also occur in other situations of granular dynamics : flow on a slope, rotating drum (deceptively intended to act as a mixer), etc. and is a nuisance in industrial processes such as the preparation of pharmaceuticals. This is commonly called the 'Brazil nut effect' [START_REF] Rosato | Why U1c Brazil nuts are on top: size scgrcgation of particulatc malter by shaking[END_REF].

The case of vertical shake, to which this lecture is restricted, has been the subject of a fairly large number of studies tending to explain the segregative effect on the basis of statistical mechanics [START_REF] Mehta | Vibrated powders : a microscopie approach[END_REF] or proposing explicit mechanisms at the scale of individual particles [Jullien et al., 1992][Duran et al., 1993). The same authors have also made use of computer simulations, but not of the properly dynamic sort. These simulations, based on geometry and random drawings (in so-called 'Monte Carlo methods'), are rather meant to test the consequences of tentative conceptions; they may be viewed as an aid to reasoning.

In real situations, several different and possibly antagonistic effects are liable to intervene, so that phenomena may depend qualitatively on the expe1imental parameters. Anyway, computer simulations performed by the CD method [M, 1993) strongly suggests that past physical expe1iments, intended to display size-segregation by shaking, produced no proof of any tendency of the larger abjects to migrate upwards relatively to the rest of the material. The created animations of two-or three dimensional granular motions show that, if such a tendency exists, it was anyway masked by an extremely apparent convection effect.

Figure 2 is extracted from a series of two-dimensional computations. The upper-left drawing shows the positions of grains at some reference instant. From the center of each, a line is drawn representing the grain displacement after exactly 16 shakes of the containing vesse!. An overall circulatory flow is very visible, in which the large abject takes part in the same way as its surroundings. Animations show it reach the agitated top region (the long straight lines appea1ing in this region are the net results of the ballistic flights that small abjects perform with only few collisions) then d1ift to one corner where it remains indefinitely. •A Jess vivid demonsu• ation is position and beads, in the positions shown on the upper left drawing, are freely falling down with little interna! agitation so the peripheral forces are practically zero. As the vesse! moves up, its bottom hits the lowest beads, generating a collision wave which considerably increases the mean internai pressure of the pack. It was found that the variations of the total normal reaction of the lateral boundary, plotted here, nearly reproduce those of this mean internai pressure. As the pack performs its flight loose from the vesse! bottom, its internai agitation is progressively damped by collisions so the mean internal pressure decreases.

The time variation of the vertical component of the total force exerted by the lateral boundary shows a negative average. The significant effect takes place between t=O.O 15 and t=0.030, approximately. During this episode, the granular material is very fluid and its contact with the lateral boundary displays an overall upward sliding. Peripheral beads therefore have their upward motion damped : their maximal altitude is found notably lower than that of the others and the latter corne to occupy the corresponding vacant space at the top. On the contrary, the downward motion undergoes no boundary damping, because the pack pressure has become nearly zero at this time. This repeated over many periods clearly results in an average downward boundary current.

The contrasty evolution of the vertical component which takes place between t=O and t= 0.01 should be ascribed to brutal events occurring when the descending beads hit the vesse! bottom. The peripheral beads, which return from a slightly lower flight than the others are found to hit the bottom first and form a relatively dense boundary layer, before the central ones hit the bottom in their turn. When initiating their compaction process, the latter appear to exert on the boundary beads some forces provoking the observed boundary reactions. Presumably, these events occurring in a compacted state of the pack do not influence the circulatory currents.

Circulatory currents in shaken granular materials have been, independently of segregation, intensively studied. The experiments of [START_REF] Laroche | Convective flow of granular masses under vertical vibrations[END_REF]] should be quoted, as well as the Molecular Dynamic simulations of [START_REF] Gallas | Convection cells in vibrating granular media[END_REF][START_REF] Gallas | Granuhu• media on a vihrating plate : a molecular dynamics simulation[END_REF] or the Distinct Element simulations of [Tamura et al., 1993]. Frequently, the mode of shaking leaves the vertical boundaries fixed, while the bottom of the container performs vertical vibrations with space-modulated amplitude. Such is the case in [Savage, 1988], a paper stressing the prudence needed when, starting from physical observations, one tries to infer the underlying mechanisms.

As a conclusion to the present lecture, let us say that the enormous advantage, offered by numerical simulations, of giving access to ail variables inside the system, also calls for extreme prudence. In fact there always remains the possiblity of failure or inaccuracy for some of the assumptions on which calculation is based. So ail occasions of checking the results of computation against well calibrated experiments should be seized.

Fig. 1 .

 1 Fig. 1. -Corner circulation in a vertically shaken box. (Numerical simulation for comparison wiù1 cxperiments of E. Clément, J. Duran & J. Rajchcnbach [Clément 1992])

  and the symmetric convention applies to the possible final point of 1). Typically, for every compact subinterval [a, b] of I, one has (4.1)

  , two usual examples are presented below. Let us first recall a standard definition of Convex Analysis. Let C denote a convex subset of R 3 and let ae C. The subset (5.6) Nc(a) == {xeR 3 : VyeC x.(y-a):c;O)

EXAMPLE 2 :

 2 De Saxcé's formulation of Coulomb's Law.

  + --'l l aT E .

  2 DISCRETIZA TION OF T I OE M EASURE DIFFERENllAL EQUATION ( 4.6) A(qM)(u F -u I ) = h F(tM'qM, u I ) + L o;(tM,qM)s�, � EJ where S�e R 3 denotes the impulsion at contact �-In sho1t CON T ACTLAWS (7.2) Va.el:where the average local velocity 'l.l� is defined according to Sec. l aN= --'l.l aN + --'l.

  .5) by V a EJ: law (p G u + G u +(l+p ) 'W 'C G u +G u +(1+-c )'W T ' f1') = t ru e, a a aN I aN F a aN ' a aT I aT F a a

  ons L+ G u e � Li+ H (S a -s a .) S a )=true a a a I• a COIT esu ' COIT ' where the expression 'U c � st , an element of R 3 , is defined through its normal and tangential components 'lfonsl _ aT -'ta G aT U I + ( l + 'C a ) 'W aT •

Fig

  Fig. 3. -Bcads in vertically shaken cylindrical vesse!.

Vcrtically vibrated vcsscl:

Freq11ency: 20 hertz Peak to peak a111pli111de: 2 . .5 mm(ma.r. acceleration : 2g) Two-dimcnsional circular objccts N11111/Jer: .500 Larger o/Jjecr : 0 5 mm Smaller o/Jjects: 0 unifnrmly distributcd bctwccn 0.7.5 and 1.5 mm Contact pmamctcrs : Friction coefjïcient : 0.8 el'erywhere Tangential restitution : 0 e1•eryivhere Normal restit11tio11 : 0.9 bctwccn cin:ular objects 0.6 with boundarics L& 1 : stroboscopie displaccmcnts ovcr 16 vibration pcriods (initial positions shown in grey).

BELOW : stroboscopic trajcctories of the large objcct and of an initially adjacent smallcr one ovcr 600 vibration periods.

The downward boun.dary currents appear too thin to recycle the large object. provided by the bottom drawings of Fig. 2, where the 'stroboscopie' trajectory of the large abject over 600 shakes may be compared with that of an initially adjacent smaller one.

The motor of the circulatory flow appears to be a boundary effect producing strong downward currents in thin boundary layers. Boundary currents are tao thin to recycle large abjects down, so size-segregation may be viewed as the result of a sort of filtration.

Repeated numerical experiments, with wider vesse! and the number of abject augmented proportionally, show the same boundary layers but naturally slower general circulation. The two upper corner vortices, already mentioned in Sec. 2, may be identified in ù1is set-up too and are able to take rather large abjects into limited incursions downwards. When collections of abjects with dispersed sizes are considered, the relative accumulation of the larger ones in the upper part of the vesse! manifests itself statistically.

Friction is essential in the generation of boundary currents. Computation performed in the same conditions as above, except that the fliction coefficient between beads and boundaiies is made equal to zero, yields no circulatory flow and the large abject does not move upwards.

Three-dimensional computation, involving sphe1ical beads in a square-based vesse!, has produced completely similar results.

Only one month before the distribulion of ù1e book [M, 1993], there appeared the paper [START_REF] Knight | Vibration-induced sizc scparation in granular media : the convection connection[END_REF] reaching the same conclusion on the basis of three-dimensional experiments : size segregation was found the result of friction induced downward boundary currents, too thin to take large abjects back down once these have been brought to the top by the central upward overall motion. The difficulty of observing internai cut T ents in the bead pack led these authors to consider, instead of an oscillatory motion of ù1e container, a succession of cycles, each of them consisting of a single vertical shake followed by a return of everyù1ing to rest. The simulation by CD computation of such an alternance of shakes and return to rest is of great interest and will be the abject of a future publication.

In this lecture, a regime of sinusoïdal vertical oscillation is considered, as in the 2D case.

Figure 3 has been created by computing the motion of 3630 spherical beads of uniform size contained in a vertically .shaken cylind1ical vesse!. The geometrical data are the same as in [K. et al.], namely a cylindrical vesse! with diameter 3.5 cm and beads with diameter 0.2 cm. The objective is only to investigate the generation of circulatory flows, so no larger abject has been introduced.

The upper-left drawing of Fig. 3 shows beads whose centers initially lie in a meridian slice of thickness equal to one ball diameter. Their displacements over 10 periods of shaking reveal a circulatory flow similar to that of Fig. 2.

The bottom of Fig. 3 shows the graphs, over a time interval equal to one period of the sinusoidal shake, say 0.04 s, of the two following quantities • upper curve : the total pressure exerted by the lateral boundary of the cylindrical vesse! upon the pack of beads, i.e. the sum of the normal components of the forces that this surface exerts on contacting beads, • lower curve : the sum of the vertical components of the same forces, taken as positive in the upward direction.

More precisely, the considered lime interval has been divided into 50, each of these subintervals corresponding to 40 �teps of the algorithm. At each point o• f division is plotted the average value of the concerned quantity over the 40 precedings steps. Of course, at every step of the algo1ithm, 'force' means the quotient of a computed impulse by the step duralion. At time 0, the vesse! is at its lowest