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Pascal Senior Member, IEEE

Abstract

We develop in this paper a new adaptive LR filter for MIMO-STAP application based on a

tensorial modelling of the data. This filter is based on an extension of the HOSVD (which is also

one possible extension of SVD to the tensor case), called AU-HOSVD, which allows to consider

the combinations of dimensions. This property is necessary to keep the advantages of the STAP and

the MIMO characteristics of the data. We show that the choice of a good partition (as well as the

tensorial modelling) is not heuristic but have to follow several features. Thanks to the derivation of

the theoretical formulation of multimode ranks for all partitions, the tensorial LR filters are easy to

compute. Results on simulated data show the good performance of the AU-HOSVD LR filters in

terms of secondary data and clutter notch.

Index Terms

Orthogonal Tensor Decomposition, MIMO, STAP, Low Rank Clutter, Radar

I. INTRODUCTION

Space Time Adaptive Processing (STAP) is a technique used in airborne radar to detect moving

target embedded in an interference background such as jamming or strong clutter [1], [2]. While

conventional radars are capable of detecting targets both in the fast-time domain related to target

range and in the slow-time domain related to target velocity, STAP uses an additional domain (space)

Frédéric Brigui is with NTU-Temasek Lab., email: frederic.brigui@gmail.com.

Maxime Boizard is with SATIE-ENS Cachan, email: maxime.boizard@satie.ens-cachan.fr.

Guillaume Ginolhac is with LISTIC - Université Savoie Mont-Blanc, email: guillaume.ginolhac@univ-smb.fr.

Frederic Pascal is with LSS - CentraleSupelec, email:frederic.pascal@supelec.fr.

The work of F. Pascal has been partially supported by the DGA grant Nř 2013.60.0011.00.470.75.01.
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related to the target angular localization. The consequence is a two-dimensional adaptive filtering

technique which uses jointly temporal and spatial dimensions to cancel interference and to improve

target detection. STAP has been firstly developed for conventional phased array (or SIMO for Single-

Input Multiple-Output) with spatial dimension corresponding to receive array and temporal dimension

corresponding to pulses. Recently, more complex radar systems have emerged with MIMO radars [3],

[4]. Compared to conventional phased array, MIMO radar offers additional degrees of freedom by

considering multiple transmitters and multiple receivers. Several MIMO configurations have been

proposed in the literature but we focus in this study on the coherent and colocated MIMO [5]. In this

configuration, transmit antennas emit orthogonal waveforms. Moreover the transmit and the receive

arrays are closely located to ensure that the received signal from any scatterer is coherent between the

pairs of transmit and receive elements. Thereby, higher spatial resolution can be achieved. STAP has

been naturally extended to coherent MIMO radar [6], [7]. Compared to SIMO STAP, the increased

angular resolution allows narrower clutter suppression for MIMO radar.

In side-looking STAP (as considered in this paper), the ground clutter is shown to have a Low

Rank (LR) structure for both SIMO and MIMO radars. The LR structure of the clutter can be

exploited to derive STAP methods to effectively suppress clutter [8], [9]. For fully adaptive STAP,

the filter is derived by inverting the full-dimension clutter covariance matrix (CCM). To achieve

good performances, the estimation of the CCM requires a number of independent and identically

distributed (i.i.d) secondary data equal to two times of the dimension of the data, which is practically

not possible. Instead of inverting the CCM, LR STAP methods are based on the use of the projector

on the LR clutter subspace to remove the clutter contribution. LR STAP methods allow then to

reduce the number of secondary data to achieve the same performance as the fully adaptive STAP

[8], [9], [10], [11] (i.e. 2r where r is the clutter rank which is usually greatly lower than the data

dimension). The estimation of the clutter subspace projector is done by using the SVD (Singular

Value Decomposition) of the Sample Covariance Matrix (SCM) which is built from secondary data.

The reduction of the secondary support for LR STAP filter clearly depends on the rank of the CCM.

In turn, the CCM rank depends on the studied physical phenomenon, on the radar configuration and on

the way the data are arranged. Since the physical phenomenon and the radar configuration are fixed,

we propose in this study to focus on the data arrangement to further exploit the LR property of the

clutter. As for most STAP methods, LR filters are vectorial techniques. The specific multidimensional

features of MIMO data are then not fully exploited. MIMO data vectorial representation can be seen

as a unique and limited way to structure data. Another way to arrange multidimensional data is to

order them by using tensor which are multidimensional arrays. Tensors preserve data structure in

the sense that the ordering is not fixed. Multilinear algebra [12], [13] provides a good framework to

exploit multidimensional data represented by tensors. However, generalizing matrix-based algorithms
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to the multilinear algebra framework is not a trivial task. Specifically LR filters are based on the

SVD in linear algebra. But there is no single multilinear extension of the SVD, with exactly the same

properties as the SVD. Depending on which properties are preserved, several extensions of the SVD

have been introduced. However, two main decompositions exist: CANDECOMP/PARAFAC (CP) [14],

which conserves the rank properties of SVD and the identifiability properties, and the Higher Order

Singular Value Decomposition (HOSVD) [13] derived from the Tucker decomposition [15], which

keeps the orthogonality properties. To derive LR filters, orthogonal properties are needed and fir that,

the family of HOSVD decompositions are used in this paper. The basic HOSVD is based on the classic

tensor unfolding. This unfolding transforms a tensor into a matrix in order to highlight each dimension

separately. HOSVD is thus shown to be inefficient to design LR-filters for multidimensional STAP

systems because the LR structure is contained into the combination of time and space dimension.

In order to exploit the structure of multidimensional STAP data, [16], [17] proposed a new set

of orthogonal decompositions, the Alternative Unfolding HOSVD (AU-HOSVD). A tensor can be

represented by different unfoldings according to the considered partitioning and each unfolding is a

set of partitions. The AU-HOSVD can be seen as a generalization of the HOSVD for any unfolding

of a tensor. In this way, the classic tensor unfolding associated to HOSVD is seen as a particular

multidimensional representation in which each partition is formed by one of the dimensions of the

tensor. In the same way, the vectorial representation associated to the SVD is a particular unfolding

for which only one single partition is considered. These two data configurations are extreme cases

in which the elements are either combined over all dimensions or separated for each dimension.

However many sets of partitions lie in between these two extremes.

Based on the AU-HOSVD framework, we propose to develop tensorial LR STAP filters for MIMO-

STAP radars. LR STAP filters based on AU-HOSVD have already been considered for polarimetric

STAP in [16], [17] and showed good results in terms of reduction of the number of secondary data.

Nevertheless, we showed in these previous papers that AU-HOSVD leads to several tensorial LR

filters which are not all interesting for the considered application. The choice of the correct LR filters

is a difficult task. In this paper, we propose to derive tensorial LR STAP filters for MIMO-STAP by

giving a solid framework to select the correct tensorial LR filters. This framework is based on the

clutter characteristics described by the clutter covariance tensor (CCT) [18]. We rely on 3 features

of the CCT to build our selection framework:

• F1: Space-Time (ST) combination because STAP processing is based on the combination of

space and time dimensions.

• F2: Virtual Antenna (VA) because in coherent MIMO, resolution is improved through the

combination of the transmit and receive arrays that creates a virtual antenna.
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• F3: LR property of the clutter covariance tensor (CCT) since it is essential to derive efficient

LR filters. It is important to have the smallest multimode ranks (ranks of all possible unfoldings

of the CCT for a corresponding partition) in particular with respect of the total size of the data.

The two first features have been used to justify the AU-HOSVD using instead of the HOSVD.

Moreover, they will be useful to select the correct combination of dimensions. The third one will be

used to propose a 4-th order tensor to model the MIMO-STAP data. By nature MIMO-STAP data

are multidimensional, with at least 3 dimensions, spatial transmit and receive and Doppler. But, since

the number of pulses is often large which leads to high CCT multimode ranks, arranging the data in

sets of sub-pulses will allow to fulfil feature F3. We will notice that this derivation is inspired by the

pre-Doppler approaches developed for STAP [19], [20]. Finally, we give the theoretical formulation

of the CCT ranks for the different possible unfoldings of the tensor model. Indeed, CCT multimode

ranks which are composed of the ranks of each partition for a given unfolding, are required to derived

tensorial LR STAP filters. In vectorial case the rank of the CCM is given by Brennan’s rule [21]

for SIMO and Generalized Brennan’s rule [6] for MIMO but these rules do not apply to others data

configurations. Based on the following studies of rank derivation [22][23], we derive rank formula

for all the possible data configuration associated to the multiple LR filters based on the AU-HOSVD.

The performances of the LR filter for the MIMO-STAP data are first evaluated on simulated data

with orthogonal waveforms. Finally a simulation with realistic waveforms will be tested and shows

the robustness of the proposed approach.

The paper is organized as follows. Section II gives the mathematical background of the tensor

decompositions, especially of the AU-HOSVD. We present in Section III the tensorial LR STAP

filters for MIMO-STAP based the AU-HOSVD with the tensor model and the corresponding partitions.

Finally in Section IV we evaluate the performances of the proposed tensorial LR STAP filters for

MIMO-STAP. Section V is dedicated to simulation with real MIMO waveforms.

The following convention is adopted: a denotes a vector, A denotes a matrix and A denotes a

tensor. AT denotes the transpose operator, A∗ the conjugate and AH the transpose conjugate. IN

is the identity matrix of size N × N . CN (a,R) is a complex Gaussian vector of mean a and of

covariance matrix R. The expectation is denoted by E[.] and the Frobenius norm by ‖.‖.

II. ALTERNATIVE UNFOLDING HIGHER ORDER SINGULAR DECOMPOSITION (AU-HOSVD)

In this section, we present a brief overview of the HOSVD and the new decomposition, the AU-

HOSVD. More details on the AU-HOSVD and its application to polarimetric STAP can be found in

[16], [17].

Let H, B ∈ CI1×...×IP , be two P th order tensors and hi1,...,ip , bi1,...,ip their elements.
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A. Classical Tools of Multilinear Algebra

Unfoldings: In this paper, three existing unfoldings are used; for a general definition of tensor

unfolding, we refer the reader to [12].

• vector: vec transforms a tensor H into a vector, vec(H) ∈ CI1I2...IP . We denote vec−1, the

inverse operator.

• matrix: this operator transforms the tensor H into a matrix [H]p ∈ CIp×I1...Ip−1Ip+1...IP , p =

1 . . . P . For example, [H]1 ∈ CI1×I2...IP . This transformation allows to enhance simple infor-

mation (i.e. information contained in one dimension of the tensor).

• square matrix: this operator transforms the square tensor R ∈ CI1×I2...×IP×I1×I2...×IP into a

square matrix, SqMat(R) ∈ CI1...IP×I1...IP . SqMat−1 is the inverse operator.

The inverse operators always exists. However, the way the tensor is unfolded must be known.

Products:

• The scalar product <H,B > of two tensors is defined as:

<H,B > =
∑
i1

∑
i2

. . .
∑
iP

b∗i1i2...iPhi1i2...iP

= vec(B)Hvec(H). (1)

It is the natural extension of the classical scalar product.

• Let E ∈ CJn×In be a matrix, the n-mode product between E and a tensor H is defined as:

G = H×n E ∈ CI1×...×Jn×...×IP

⇐⇒ (G)i1...jn...iP =
∑

in
hi1...in...iP ejnin

⇐⇒ [G]n = E[H]n (2)

• The outer product between H and B, E = H ◦B ∈ CI1×...×IP×I1×...×IP is defined as:

ei1...iP i1...iP = hi1...iP .bi1...iP (3)

Rank definition: There are two concepts to define the rank of a tensor:

• the tensor rank, which is defined as the minimum number of rank-1 tensors necessary to obtain

the considered tensor. This rank is impossible to compute in general cases and it will not be

used in the sequel.

• the p-ranks which are defined as the ranks of the unfolding of the tensor, rp = rank([H]p).
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B. Higher Order Singular Value Decomposition

The Higher Order Singular Value Decomposition (HOSVD) is particular case of Tucker decomposi-

tion [15] with orthogonality properties. HOSVD decomposes a tensor H ∈ CI1×...×IP as follows [13]:

H = K×1 U(1) . . .×P U(P ), (4)

where ∀n, U(n) ∈ CIn×In is an orthonormal matrix and K ∈ CI1×...×IP is the core tensor, which

satisfies the all-orthogonality conditions [13]. The matrix U(n) is given by the Singular Value De-

composition of the n-dimension unfolding tensor, [H]n = U(n)Σ(n)V(n)H .

Remark: Let H ∈ CI1×I2...×IP×I1×I2...×IP be a 2P th order Hermitian tensor, i.e hi1,...,ip,j1,...,jp =

h∗j1,...,jp,i1,...,ip . The HOSVD of H is written as [18]:

H = K×1 U(1) . . .×P U(P ) ×P+1 U(1)∗ . . .×2P U(P )∗. (5)

The first two conditions F1 and F2 require to build algorithms with combined dimensions. By

using classical unfolding, one can notice that the HOSVD only considers the simple information.

However, in STAP and in order to remove properly the clutter and to detect slow-moving targets, the

combination of the spatial and temporal dimensions is needed even in a tensorial approach [16], [17].

Therefore, the HOSVD is useless for STAP or MIMO-STAP applications to derive LR filters. In order

to use some combinations of dimensions and to respect the features F1 and F2, it is appropriate to use

another orthogonal decomposition called the AU-HOSVD [16], [17], that generalizes the HOSVD.

First, let us define new operators involved in the AU-HOSVD definition.

C. Extension of multilinear algebra tools

Notation of indices: In order to consider correlated information, we introduce a new notation for

the indices of a tensor. We consider H ∈ CI1×...×IP , a P th order tensor. We denote A = {1, . . . , P}

the set of the dimensions and A1, . . . ,AQ, Q subsets of A which define a partition of A. In other

words, A1, . . . ,AQ satisfy the following conditions:

• A1 ∪ . . . ∪ AQ = A

• They are pairwise disjoint, i.e. ∀i 6= j,Ai ∩ Aj = ∅.

Moreover CI1...IP is denoted CIA . For example, when A1 = {1, 2} and A2 = {3, 4}, CIA1
×IA2 means

CI1I2×I3I4 .

A generalization of unfolding in matrices: In order to build our new decomposition, we need

a generalized unfolding, adapted from [12]. This operator allows to unfold a tensor into a matrix

whose dimensions could be any combination Aq of the tensor dimensions. It is denoted as [.]Aq
and

it transforms H into a matrix [H]Aq
∈ CIAq×IA\Aq .

June 30, 2016 DRAFT
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A new unfolding in tensors: We denote as Reshape the operator which transforms a tensor H

into another tensor Reshape(H,A1, . . . ,AQ) ∈ CIA1
×...×IAQ and Reshape−1 the inverse operator.

A new tensor product: The n-mode product allows to multiply a tensor with a matrix along

1 dimension. We propose to extend the n-mode product to multiply a tensor with a matrix along

several dimensions, combined in Aq. Let D ∈ CIAq×IAq be a square matrix. This new product, called

multimode product is defined as:

B = H×Aq
D ⇐⇒ [B]Aq

= D[H]Aq
, (6)

Multimode ranks: For a given partition A1, . . . ,AQ, the multimode ranks rA1
, . . . , rAQ

are defined

as the ranks of the unfoldings of the tensor, rAq
= rank([H]Aq

).

D. Alternative Unfolding HOSVD

Definition: Let H ∈ CI1×...×IP and A1 . . .AQ a partition of A. Then H may be decomposed

as follows:

H = KA1/.../AQ
×A1

U(A1) . . .×AQ
U(AQ), (7)

where:

• ∀q ∈ [1, Q], U(Aq) ∈ CAq×Aq is unitary and is computed from the SVD of the Aq-dimension

unfolding [H]Aq
.

• KA1/.../AQ
∈ CI1×...×IP is the core tensor. It has the same properties as the HOSVD core tensor.

Notice that there are several ways to decompose a tensor with the AU-HOSVD. Each choice of

the A1, . . . ,AQ gives a different decomposition. For a P th order tensor the number of different

AU-HOSVD is given by the Bell number, BP :

B1 = 1

BP+1 =

P∑
k=1

(
P

k

)
Bk

Remark: Let H ∈ CI1×I2...×IP×I1×I2...×IP be a 2P th order Hermitian tensor. We consider 2Q

subsets of {I1, . . . , IP , I1, . . . , IP } such as:

• A1, . . . ,AQ and AQ+1, . . . ,A2Q are two partitions of {I1, . . . , IP }

• ∀q ∈ [1, Q], Aq = Aq+Q

Under these conditions, the AU-HOSVD of H is written:

H = KA1/.../A2Q
×A1

U(A1) . . .×AQ
U(AQ) ×AQ+1

U(A1)∗ . . .×A2Q
U(AQ)∗.
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Extension of the orthogonal projector: As discussed in the introduction, the main motivation for

introducing the AU-HOSVD is to extract the combined information when processing the low-rank

decomposition. Let H, Hc, H0 be three P th order tensors such that:

H = Hc +H0, (8)

where Hc is a (rA1
, . . . , rAQ

) low rank tensor1 (rAq
= rank([Hc]Aq

)). Then H0 is approximated by:

H0 ≈H×A1
U

(A1)
0 U

(A1)H
0 . . .×AQ

U
(AQ)
0 U

(AQ)H
0 (9)

where U
(A1)
0 , . . . , U

(AQ)
0 minimize the following criterion:

(U
(A1)
0 , . . . ,U

(AQ)
0 ) = argmin||H0 − H ×A1

U
(A1)
0 U

(A1)H
0 . . . ×AQ

U
(AQ)
0 U

(AQ)H
0 ||2. (10)

In this paper we use a truncation of U(Aq) for U
(Aq)
0 , i.e. U

(Aq)
0 = [u

(Aq)
rAq+1 . . .u

(Aq)
Aq

]. This solution is

not optimal in the sense of least squares. However like for HOSVD, it is a correct approximation(see

[18], [24]) in most cases. Moreover it is easy to implement. That is why iterative algorithms will not

be used in this paper2.

III. MIMO-STAP BASED ON THE AU-HOSVD

A. Tensorial Signal Model

1) MIMO Radar Configuration: We consider a MIMO radar with M transmit antennas spaced by

de and N receive antennas spaced by dr. We assume that the radar system is in the coherent and

colocated MIMO configuration [4], [25], [5], i.e. the transmit and the receive arrays are closely located

to ensure that the received signal is coherent between the pairs of transmit and receive elements (Fig.

1). We also consider L pulses with a pulse repetition interval Tr. The wavelength of transmit signals

is denoted by λ0 and the speed of the airborne platform by va. The radar is in a side-looking (SL)

configuration. We assume that the M waveforms are ideally orthogonal and can then be perfectly

disentangle at each receiver3. In addition of the cell under test (CUT), we assume that K observations

are available. We assume that the CUT and the K observation cells are independent and identically

distributed.

1This definition of rank is directly extended from the definition of p-ranks.
2The partition of the tensor does not guarantee that each subset is low rank. In such case, the result of the AU-HOSVD

is the same as for vectorial approach using SVD. Nevertheless, most of the possible partitions of the tensor give low-rank

subsets.
3This assumption is made to develop the different filters. We will evaluate the proposed filters on realistic simulated

MIMO data in Section V.
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2) Choice of the Tensor Model: Before the choice of the tensor model, we investigate the possible

performance reached by the tensorial LR filters. A common way to evaluate the performances of an

adaptive filter, is the Signal to Interference plus Noise Ratio (SINR) loss:

ρ =
SINRout
SINRmax

, (11)

where SINRout is the SINR at the output of the adaptive STAP filter and SINRmax the SINR

at the output of the optimal filter [1]. One way to study ρ is to theoretically derive its distribution

like in [10] for Gaussian noise or in [26] for non Gaussian noise. These derivations are based on a

perturbation analysis of the projector onto the clutter subspace. For the vectorial LR STAP filter, the

expectation of the theoretical SINR loss is given by [10]:

E[ρ] = 1− r

K
, (12)

where r is the clutter rank. A 3dB loss is then reached for K = 2r. This allows to conclude that the

value of rank r is really important to reach the best SINR loss performance. Even if the theoretical

SINR loss is not known for the tensorial LR filters, it seems that it depends on the multimode ranks

(defined in the subsection II-C). Therefore, this analysis allows to understand the feature F3 which

states that the clutter subspace has to be low-rank.

The most general model is to consider a tensor of order MNL for the data (which generates a

covariance tensor of order MNL×MNL). Studying the MNL-th order data tensor or the MNL×

MNL-th order CCT is thus equivalent. Nevertheless, since MNL could be large, it is interesting

to add a degree of liberty in order to respect the third condition of LR structure for the clutter

contribution. In MIMO-STAP, the spatial parameters M and N are often small whereas the number

of pulses L can be important. Therefore, we propose to segment the pulses dimension into small

subsets of size L1 (L1 < L) with a number of subsets equal to L2 (L2 = L/L1). This operation

is possible in MIMO-STAP thanks to an interesting property of the clutter: it is stationary over the

overall CPI 4. Note that this property for a stationary clutter has been used to design pre-Doppler

approaches for STAP in [2], [20] in order to reduce the computational complexity and to reduce the

number of secondary data. Pre-Doppler adaptive STAP weights are computed for a reduced sub-pulse

sets and then filtering is performed coherently using outputs from all the subsets. The size of the

sub-pulse set is usually 2 or 3 which allows both STAP processing and clutter stationary property.

To conclude, we propose to model the MIMO-STAP received data as a 4-th order tensor X ∈

CN×M×L1×L2 .

4Other clutter properties can be used to derive different models. For example, the clutter in SL configuration is known

to be low correlated in angle and Doppler [27], [28].
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3) Model of the received data: The received signal model of a target of the CUT located at the

spatial and Doppler frequencies (fs, fd), can be then written as follows:

X = αS(fs, fd) + C+N

Xk = Ck +Nk k ∈ [1,K],
(13)

where X, Xk ∈ CN×M×L1×L2 are the received signal tensors. S(fs, fd) ∈ CN×M×L1×L2 is the

steering tensor and is derived as follows:

S(fs, fd) = aRx(fs) ◦ aTx(fs) ◦ aL1
(fd) ◦ aL2

(fd), (14)

where,

• aRx(fs) = [1 exp(j2πfs) . . . exp(j2π(N−1)fs)]T and aTx(fs) = [1 exp(j2πγfs) . . . exp(j2πγ(M−

1)fs)]
T are respectively the receive and the transmit spatial steering vectors.

• aL1
(fd) = [1 exp(j2πfdTr) . . . exp(j2π(L1−1)fdTr)]T and aL2

(fd) = [1 exp(j2πfdL1Tr) . . . exp(j2π(L2−

1)fdL1Tr)]
T are the Doppler steering vectors.

The steering vector for the vectorial case [6] can be derived by the kronecker product of these

vectors and by setting L1 = L or L2 = L. The white noise vec(N) and the clutter noise vec(C)

follows respectively the distributions CN (0, σ2I) and CN (0,Rc). Let us denote by R = R + σ2I

the total covariance matrix. From the covariance matrix R, we can define the covariance tensor

R ∈ CN×M×L1×L2×N×M×L1×L2 :

R = SqMat−1(R) (15)

B. Tensorial LR-STAP MIMO Filters

1) STAP Filter: The partition in this configuration is A = N,M,L1, L2. Let A1, . . . ,AQ be a

partition of A = N,M,L1, L2. At this moment, we do not consider a specific partition and the choice

will be discussed in the next subsection.

For the given partition, the optimal tensor filter, which maximizes the SINR output is given by:

Wopt = vec−1(SqMat(R)−1vec(S)). (16)

It is shown in [16], [17] that the filter Wopt is equivalent to the optimal vectorial filter. Therefore,

the tensor modelling is here unnecessary.
On the other hand, it has been shown [16], [17] that the LR tensor filter based on AU-HOSVD for

a given partition A1, . . . ,AQ can bring better results than the LR vectorial one. Its expression depends
on the steering tensor and the LR approximation of the covariance tensor for the given partition (see
Eq. (8)):

Wlr(A1,...,AP ) = S×A1 U
(A1)
0 U

(A1)H
0 . . .×AP U

(AP )
0 U

(AP )H
0 (17)
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where U
(Al)
0 ’s are given by the LR approximation of the AU-HOSVD of R. In particular, we recall that

U
(Ap)
0 = [u

(Ap)
rAp+1 . . .u

(Ap)
Ap

] where rAp
is the multimode rank for the unfolding Ap. The demonstration

of its derivation has been shown in [16]. The output of the filter is given by:

y = | <WA1,...,AP
,X > | (18)

As the tensor covariance is unknown, it has to be estimated from the secondary data Xk in order

to obtain the Sample Covariance Tensor R̂ [18]:

R̂ =
1

K

K∑
k=1

Xk ◦X∗k (19)

The AU-HOSVD and the LR approximation of R̂ allow to obtain the matrices Û
(A1)
0 , . . . , Û

(AP )
0 . By

plugging these matrices in Eq. (17) at the places of the matrices U
(A1)
0 , . . . ,U

(AP )
0 , we obtain the

tensorial adaptive LR filter Ŵlr(A1,...,AP ). We notice that it depends on the choice of the partition and

the evaluation of the corresponding multimode ranks.

This choice could be helped by the evaluation of the adaptive filter performance. We then investigate

the SINR loss for the tensorial case. In the case of Ŵlr(A1,...,AP ) (denoted Ŵlr in the equation for

more clarity), the SINR loss expression is:

ρ =
|(vec(Ŵlr)

Hvec(S))|2

vec(Ŵlr)HSqMat(R)vec(Ŵlr)vec(S)HSqMat(R)−1vec(S)
(20)

As stated at the beginning of the current section, it could be really interesting to theoretically derive

the SINR loss in particular for the partition choice. In [29], thanks to perturbation analysis, it has

been proposed a theoretical study of a Tensor MUSIC algorithm built from the HOSVD but the

problem is easier than for the SINR loss. Indeed, the SINR loss is a quantity more complicated than

the MUSIC criterion and the AU-HOSVD is also more complex than the HOSVD. Nevertheless, by

inspecting the results of the SINR loss for vectorial LR filters of Eq. (12), we guess that the SINR

loss of tensorial LR filters will depend on the multimode ranks of the clutter contribution. Since these

ranks could be different for each partition, their study is required for a correct choice of the partition.

Moreover, in the next subsection, it will be shown that the multimode ranks for all partitions could

be evaluated theoretically which will be helpful for the choice of the partition and especially for the

computation of the tensorial LR filter of Eq. (17).

2) Partitions: A representation of the tensor model and some of its corresponding partitions are

represented in Figure 2.

The different choices of partition for the tensor model are also presented in table I. The two first

partitions, vector and HOSVD, can be seen as particular case of the AU-HOSVD.

To limit the number of studied filters, only the most interesting ones will be considered. As stated

on previous subsection III-A, only filters which combine both features F1 and F2 (ST and VA) are
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Partition Filters Methods Unfolding features

A1 = {1, 2, 3, 4} Ŵlr(1,2,3,4) = ŵLR Vector ST,VA

A1 = {1}, A2 = {2}, A3 = {3}, A4 = {4} Ŵlr(1/2/3/4) HOSVD Rx / Tx / Pulse Tr / Pulse T ′r

A1 = {1}, A2 = {2, 3, 4} Ŵlr(1/2,3,4) AU-HOSVD Rx / ST

A1 = {2}, A2 = {1, 3, 4} Ŵlr(2/1,3,4) AU-HOSVD Tx / ST

A1 = {3}, A2 = {1, 2, 4} Ŵlr(3/1,2,4) AU-HOSVD Pulse Tr / ST, VA

A1 = {4}, A2 = {1, 2, 3} Ŵlr(4/1,2,3) AU-HOSVD Pulse T ′r / ST, VA

A1 = {1, 2}, A2 = {3, 4} Ŵlr(1,2/3,4) AU-HOSVD VA / Pulse Tr ,Pulse T ′r

A1 = {1, 3}, A2 = {2, 4} Ŵlr(1,3/2,4) AU-HOSVD ST / ST

A1 = {1, 4}, A2 = {2, 3} Ŵlr(1,4/2,3) AU-HOSVD ST / ST

A1 = {1, 2}, A2 = {3}, A3 = {4} Ŵlr(1,2/3/4) AU-HOSVD VA / Pulse Tr / Pulse T ′r

A1 = {1, 3}, A2 = {2}, A3 = {4} Ŵlr(1,3/2/4) AU-HOSVD ST / Tx / Pulse T ′r

A1 = {1, 4}, A2 = {2}, A3 = {3} Ŵlr(1,4/2/3) AU-HOSVD ST / Tx / Pulse Tr

A1 = {2, 3}, A2 = {1}, A3 = {4} Ŵlr(2,3/1/4) AU-HOSVD ST / Rx / Pulse T ′r

A1 = {2, 4}, A2 = {1}, A3 = {3} Ŵlr(2,4/1/3) AU-HOSVD ST / Tx / Pulse Tr

A1 = {3, 4}, A2 = {1}, A3 = {2} Ŵlr(3,4/1/2) AU-HOSVD Pulse Tr ,Pulse T ′r / Rx / Tx

TABLE I

DESCRIPTION OF THE LR FILTERS PROVIDED BY AU-HOSVD FOR THE TENSORIAL MODEL OF MIMO-STAP. THE

MOST INTERESTING LR FILTERS ARE HIGHLIGHTED IN YELLOW.

interesting for MIMO-STAP. By inspecting table I, we conclude that two partitions possess both these

features:

• Partition (A1 = {4}, A2 = {1, 2, 3}). Transmit and receive spatial dimensions and reduced

Doppler dimension are combined. Each subset of pulses are treated separately. A2 = {1, 2, 3}

corresponds to a MIMO radar with a reduced number of pulses, then the corresponding multimode

ranks are computed (the details are in Appendix B):

r1,2,3 = N + γ(M − 1) + β(L1 − 1)

r4 = L1β(L2 − 1) + 1
(21)

• Partition A1 = {3}, A2 = {1, 2, 4}. Transmit and receive spatial dimensions and pulse subsets

with higher Tr are combined. The reduced pulse dimension is treated separately. A2 = {1, 2, 4}

corresponds to a MIMO radar with reduced number of pulses spaced by T ′r = L1Tr. The

multimode ranks are derived as follows (the details are in Appendix B):

r1,2,4 = N + γ(M − 1) + L1β(L2 − 1)

r3 = β(L1 − 1) + 1
(22)

The main drawback with this partition is the increase of the pulse repetition interval T ′r which
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leads to the reduction of the non-ambiguous Doppler domain for clutter suppression. Another

way to see it is to consider the increase of the parameter β′ = L1β which introduces ambiguity

in Doppler [2][19].

Naturally, it seems that the first partition is the most interesting. But, it remains important to study

the multimode ranks r1,2,3, r4, r1,2,4 and r3 as a function of the different parameters M , N , L1 and

L2 = L/L1. We notice that the choice of L1 will affect the rank values. This study is important to

respect the feature F3.

IV. NUMERICAL RESULTS

A. Configuration

We consider a colocated MIMO radar (and then coherent) with M = 4 transmitters, N = 4 receivers

and L = 64 pulses. The MIMO radar is in side-looking configuration. We simulate a ground clutter

using Ward model [19] with β = 1. We assume that the waveforms are ideally orthogonal and can

then be perfectly disentangle at each receiver. At last, we consider MIMO sparse configuration with

dr = λ0/2 and de = Ndr. Sparse MIMO allows the generation of the longest virtual antenna array

[7] and thus gives higher angular resolution compared to SIMO.

B. Ranks

Figure 3 presents the vectorial and the multimode ranks (r1,2,3, r4, r1,2,4 and r3) of the clutter

contribution as a function of L1. First, we notice that the multimode ranks have smaller values than

the vectorial one. We could expect in this case better results of tensorial adaptive LR filters.

For the partition (A1 = {4}, A2 = {1, 2, 3}), we notice that a small value of L1 seems to be

promising to have two low multimode ranks. On the contrary a small value of L1 for the partition

(A1 = {3}, A2 = {1, 2, 4}) leads to a high multimode rank r3. A mean value of L1 for this last

partition will be more suitable in order to have low multimode ranks.

C. MIMO-STAP Performances

We present in this section the SINR loss of the LR tensorial filter. Since, it is really difficult to

estimate theoretically the SINR loss distribution of Eq. (20), we decide to evaluate it by means of a

Monte Carlo simulation with 1000 trials. First, we study the SINR losses of different MIMO-STAP

filters as of the normalized Doppler frequency. The number of secondary data is set to K = 158

which is equal to twice the rank r = 79 of the clutter in the vectorial case. The tensorial LR filters

will be compared to the vectorial LR filter and the Pre-Doppler algorithm. In this last algorithm, the

size of the sub-pulse Ksub is set to 2 as generally proposed in the literature [19].
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We present in Figure 4, the SINR losses of the tensorial LR filter with the first partition {1, 2, 3/4},

the vectorial LR filter and the Pre-Doppler as function of the normalized Doppler frequency. The

number of reduced pulses L1 is set to three values 8, 16, 32. Since K = 2r, we have the well-known

3dB loss for the LR vectorial case [10]. As expected for high Doppler frequencies, the Pre-Doppler

algorithm gives better results than the vectorial LR filter. The tensorial LR filters allows better SINR

losses with values around −1dB compared to the LR vectorial one. Compared to Pre-Doppler, the

MIMO angular resolution is preserved for the LR tensorial filters. The LR tensorial filters almost

give slight different results for different values of L1. For L1 = 8, we achieve around 0.5dB SINR

loss with a slightly wider clutter notch compared to the cases of L1 = 16 and L1 = 32. For L1 = 32,

the SINR loss is around −1dB with a clutter notch as narrow as for LR vectorial one. For the case

L1 = 16, LR tensorial filter gives results in between the two others LR tensorial filters. For large

Doppler, this analysis of the SINR loss agrees with the one of the multimode ranks in the previous

subsection.

We present now in Figure 5 the SINR losses as function of the normalized Doppler frequency

for the partition {1, 2, 4/3}. We evaluate two values of L1. When the pulse repetition interval is

increased by L1 = 2 i.e. the non-ambiguous Doppler is reduced by 2 compared to the vectorial case,

then L2 = 32. In the same way for L2 = 16, the non-ambiguous is further reduced by L1 = 4. The

results clearly illustrate the reduction of the non-ambiguous Doppler domain. Thus, we achieve SINR

losses of −2dB for L1 = 2 and −1dB for L1 = 4. This last result is similar to the analysis of the

rank of the previous subsection where a small value L1 is less suitable than a large value. But with

this partition, the choice of L1 also affects the number of ambiguities. In this case, a large value of

L1 is not advised. Therefore, a compromise between small SINR loss and ambiguities has to be done

with this partition.

Figure 6 shows the convergence of the SINR loss in terms of the number of secondary data. The

speed is set to v = −7m/s to evaluate the MIMO-STAP performance for a target close to the clutter

ridge. We only present the results for the LR tensorial filters associated to the best partitions: we

naturally choose the LR filter {1, 2, 3/4} with L1 = 16 (good compromise between the notch clutter

and the SINR loss). We clearly see that the tensorial adaptive LR filter built from the AU-HOSVD

greatly outperforms the two vectorial STAP approaches. The minimal SINR loss is achieved with a

very fast convergence.

V. NUMERICAL RESULTS ON A REALISTIC CONFIGURATION

A. Configuration

The radar configuration is the same as in the previous section. We consider a MIMO radar in

sparse configuration. We simulate a ground clutter with Gaussian distribution and a CNR = 40dB.
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The target is a slow target located at v = 5m/s and at an angle φ = 0◦ i.e. near the clutter. Moreover

the target range is R = 3.75km.

The MIMO waveforms are slow-time coded waveforms, specifically DDMA (Doppler Division

Multiple Access) waveforms [30][31]. This waveform consists in a coding sequence applied on

pulses and a common waveform in fast-time. The common waveform in fast-time is a LFM (Linear

Frequency Modulation) chirp with a central frequency f0 = 450MHz, a bandwidth B = 4MHz and

a duration tp = 10−4s. The DDMA coding generates transmit signals in different Doppler domains.

Thus DDMA waveforms are orthogonal in their respective Doppler domain. The drawbacks of the

DDMA waveforms are the limitation of the non-ambiguous Doppler domain and the ambiguities

due to the response of the clutter in the reduced non-ambiguous Doppler domain. Nevertheless, as

the coding is performed in slow-time, the MIMO data are still i.i.d. in range which allows to use

conventional STAP approach.

Figure 7 shows the range/Doppler map of the simulated scene. Since the radar MIMO emits DDMA

waveforms, the clutter response is repeated in the Doppler space. Another way to see it is to say that

the non-ambiguous Doppler is reduced from [−50 50]m/s to M times less, i.e. [−12.5 12.5]m/s. The

target is not visible because its SNR is way below the CNR.

We present in Figure 8 the angle/Doppler map at the target range. The clutter has a response

consisting in diagonal ridges in the angle/Doppler space. The main ridge is the direct response of the

clutter whereas the others ridges are due to DDMA waveform ambiguities.

B. STAP filtering results

We perform STAP filtering on the simulated data at the target range. We use 2r = 158 secondary

data, free of target response and target sidelobes. Figure 9 shows the angle/Doppler map after LR

vectorial filtering. The clutter is reduced and the target and its ambiguous responses are clearly

visible. This result illustrates the exploitation of the LR property of the clutter to suppress it since

only 158 secondary are used compared to the fully adaptive STAP which requires 2MNL = 2048

secondary data. We present in Figure 10 the angle/Doppler map after the proposed tensorial adaptive

LR filter using the partition {1, 2, 3/4} with L1 = 16. We clearly see the improvement of the clutter

reduction compared to the LR filter. Moreover, the clutter notch resolution is preserved which allows

the detection of the slow target.

VI. CONCLUSION

We have developed in this paper a new adaptive LR filter for MIMO-STAP application based on

a tensorial modelling of the data. This filter is based on an extension of the HOSVD (which is also

one possible extension of SVD to the tensor case), called AU-HOSVD, which allows to consider the

June 30, 2016 DRAFT



SUBMISSION TO IEEE TRANS. ON AES, 2014 16

combinations of dimensions. This property is necessary to keep the advantages of the STAP and the

MIMO characteristics of the data. Since the tensorial LR filter depends on a partition of the data,

we showed that the choice of the good partition (as well as the tensorial modelling) had to follow 3

rules:

• Space-Time (ST) combination: STAP processing is based on the combination of space and time

dimensions.

• Virtual Antenna (VA): in coherent MIMO, resolution is improved through the combination of

the transmit and receive arrays that creates a virtual antenna.

• Low Rank: LR property of the clutter covariance tensor is essential to derive efficient LR filter.

It is important to have the ranks the smallest in particular with respect of the total size of the

data.

With these features, we noticed that only two partitions (and so two LR filters) had been suitable

for MIMO-STAP. We also derived the theoretical formulation of multimode ranks for all partitions

which is necessary to compute LR methods. Results on simulated data show the good performance of

the AU-HOSVD LR filters in terms of secondary data and clutter notch. Finally results on simulated

using slow-time coded waveforms show the robustness of the approach for practical configuration.

In future work, the SINR loss distribution will be theoretically investigated based on the work

of [26][29].

APPENDIX

A. Clutter rank derivation

Clutter rank derivation have been proposed by Brennnan in [21] for phased array in ULA and

sidelooking configuration and for λ0/2 spaced elements. Its extension to MIMO radar in same

configuration for perfectly orthogonal waveforms has been proposed in [6]. We propose here the

derivation of the clutter ranks corresponding to the different partitions. The ranks are derived using

general formulation proposed by [22], [23].

The elements of the clutter response can be written as:

yn,m,l =

Nc∑
i=0

αie
j2πfs,i(n+γm+βl) (23)

where Nc is the number of clutter patches, fs,i is the spatial frequency for the i-th clutter patch and αi

is the amplitude of the i-th clutter patch. As we assume that dr = λ0/2, we have −0.5 < fs,i < 0.5.

The vector of the clutter response y ∈ CNML×1 can be written as:

y =

Nc∑
i=0

αici (24)
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where ci = ej2πfs,in+γm+βl. The clutter covariance matrix is then written as:

Rc =

Nc∑
i=0

E[αiα
∗
i ]cic

H
i . (25)

Using Eq. (25) we conclude than rank(Rc) = span(C) with C = (c1 c2 . . . cNc
). The elements of

the clutter response ci can be rewritten by using a space-time sampling as follows:

ci,p = ej2πfs,ixp (26)

where 0 ≤ p < NML is the space-time sampling index number and xp = n + γm + βl. The span

of C is then the number of distinct values taken by xp. The elements xp can be written as:

xp = k1h1 + k2h2 (27)

where k1 = 1, h1 = n + γm, k2 = β and h2 = l. It is shown in [22] that the rank of the clutter

covariance matrix is derived as:

r =

{
H1H2 for H1 ≤ k2 or H2 ≤ k1
H1k1 +H2k2 − k1k2

(28)

where H1 and H2 are the total numbers of elements for the respective dimensions of the data and

k1 and k2 are the parameters associated to the spatial frequency fs. The complete demonstration

of Eq. (28) can be found in [22]. First equation corresponds to the full rank case. Second equation

corresponds to the deficient rank case. Rank formulation given by Eq. (28) has been developed for

SIMO radar by considering 2 dimensions. This formulation can also be used for MIMO radar with

more than 2 dimensions.

B. Ranks for the partitions of the tensor model

• Partition A = {1, 2, 3, 4}. This case corresponds to the vectorial case. Then its corresponding

rank is given by:

r1,2,3 =

{ (
N + γ(M − 1)

)
L

for N + γ(M − 1) ≤ β or L ≤ 1

N + γ(M − 1) + β(L− 1)

(29)

The condition N + γ(M − 1) ≤ β is rarely obtained and L ≤ 1 does not make sense for pulse

radar. It is that why that he Generalized Brennan’s rule [6] only considers the second formulation

for the deficient rank.

• Partitions A1 = {1}, A2 = {2}, A3 = {3}, A4 = {4}. In this case, each partition contains only

one single dimension. Eq. (28) reduces in this case as:

r =

{
H1 for H1 = 1 or 1 ≤ k1
k1(H1 − 1) + 1

(30)
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We obtain then the following ranks:

r1 = N,

(31)

r2 =

{
M for M = 1 or 1 ≤ γ

γ(M − 1) + 1,
(32)

r3 =

{
L1 for L1 = 1 or 1 ≤ β

β(L1 − 1) + 1
(33)

and,

r4 =

{
L2 for L2 = 1 or 1 ≤ β′

β′(L2 − 1) + 1
(34)

with β′ = 2vaTrL1/dr = L1β.

• Partition A = {2, 3, 4}.

r2,3,4 =

{
ML for M ≤ β or L ≤ γ

γM + βL− βγ
(35)

• Partition A = {1, 3, 4}.

r1,3,4 =

{
NL for N ≤ β or L ≤ 1

N + β(L− 1)
(36)

In the rank deficient case, we find the Brennan’s rule [21].

• Partition A = {1, 2, 4}. In that case we consider a MIMO system with a few pulse with a

increased PRI T
′

r = L1Tr.

r1,2,4 =

{ (
N + γ(M − 1)

)
L2

for
(
N + γ(M − 1)

)
≤ L1β or L2 = 1

N + γ(M − 1) + L1β(L2 − 1)

(37)

This is the Generalized Brennan’s rule for β′ = L1β and for number of pulses L2.

• Partition A = {1, 2, 3}.

r1,2,3 =

{ (
N + γ(M − 1)

)
L1

for
(
N + γ(M − 1)

)
≤ β or L1 = 1

N + γ(M − 1) + β(L1 − 1)

(38)

It is the Generalized Brennan’s rule for a number of pulses L1.

• Partition A = {1, 2}. In this case, using Eq. (28) the rank r1,2 is given by:

r1,2 =

{
NM for N ≤ γ or M ≤ 1

N + γ(M − 1)
(39)
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r1,2 can also be seen as the number of phase centers of the MIMO virtual antenna [32].

• Partition A = {1, 3}. This partition associates the N receivers with the L1 reduced pulses. The

rank is derived as:

r1,3 =

{
NL1 for N ≤ β or L1 ≤ 1

N + β(L1 − 1)
(40)

• Partition A = {1, 4}. This partition associates the N receivers with the L2 pulses spaced by

T ′r. The rank is given as:

r1,3 =

{
NL2 for N ≤ β or L2 ≤ 1

N + β′(L2 − 1)
(41)

• Partition A = {2, 3}. This partition associates the M transmitters with the L1 pulses. The rank

is given as:

r2,3 =

{
ML1 for M ≤ β or L1 ≤ γ

γM + βL1 − βγ
(42)

• Partition A = {2, 4}. This partition associates the M transmitters with the L2 pulses spaced by

T ′r. The rank is derived as:

r2,4 =

{
ML2 for M ≤ β or L2 ≤ γ

γM + βL2 − β′γ
(43)

• Partition A = {3, 4}. In this partition we consider all the pulses. Then the rank is equal to:

r3,4 =

{
L for β ≥ 1 or L2 ≤ β

β(L− 1) + 1
(44)
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Fig. 1. MIMO radar in coherent configuration.

Fig. 2. Tensor model and its corresponding last partitions.

Fig. 3. Vectorial and multimode ranks (r1,2,3, r4, r1,2,4 and r3) of the clutter contribution as a function of L1.
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Fig. 4. SINR Losses versus Doppler frequency. Tensorial LR filter built with Partition {1, 2, 3/4}. K = 158. SINR Losses

evaluated through 1000 trials.

Fig. 5. SINR Losses versus Doppler frequency. Tensorial LR filter built with Partition {1, 2, 4/3}. K = 158. SINR Losses

evaluated through 1000 trials.

Fig. 6. SINR Losses versus the number of secondary data (K). Tensorial LR filter built with Partition {1, 2, 3/4} with

L1 = 16. Slow target (fs = 0,v = −7m.s−1). SINR Losses evaluated through 1000 trials.
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Fig. 7. Range/Doppler map of simulated scene.

Fig. 8. Angle/Doppler map at the target range of simulated scene.

Fig. 9. Angle/Doppler map at the target range after LR vectorial filtering. K = 158.
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Fig. 10. Angle/Doppler map at the target range after tensorial LR filter built with the partition {1, 2, 3/4} with L1 = 16.

K = 158.
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