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AN EXPRESSION OF CLASSICAL DYNAMICS

J. J. MOREAU
Laboratoire de Mécanique Générale des Milieux Continus,
Unité Associée au C.NRS. 1214,
Université des Sciences et Techniques du Languedoc,
MONTPELLIER, France.

Abstract.the proposed formulation extends the Euler variable approach,
classical in Continuum Mechanics, up to make it valid for such singular
systems as, for instance, a single mass-point. The key concept is the
kinetic tensor measure of the investigated material, relative to some
winaow in time-space. This is first developed in the framework of Galilean
time-space. In that case, the fundamental equation involves the four-
-dimensional vector distribution d7vergence of the kinetic tensor measure.
It is shown, in particular, how the initial conditions of an evolution
problem or the confinement of the investigated system by a given boundary,
possibly with shocks, may be described through adequate terms in the
fundamental equation. In order to develop similar procedures in the Rieman-
nian manifold setting of Analytical Dynamics, one introduces the diffe-
rential operator equi/ibrium, acting on the doubly contravariant symmetric
tensor measures of the manifold. This operator receives a variational
interpretation, in terms of the Zransport by test rlows . Thereby, the
connection of the proposed formulation of Dynamics with Hamilton's
principle is explained.
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1. Introduction
Studies devoted to the existence or the regularitg of solutions to pro-

blems arising from Physics, in particular from Mechanics, commonly begin
with stating what actually will be meant by a solution. Except in some
theoretical chapters of Physics, the generally accepted conceptual back-
ground does not generate mathematical problems in a form allowing for the
application of the current methods of Functional Analysis to the investi-
gation of solutions. This is the price one has to pay for conducting physical
inspection in a language which involves only some familiar mathematical
concepts, such as C' functions, functions with jumps on smooth surfaces,
etc...

In our views, this state of affairs cannot be expected to change
rapidly. Bridging the gap between Functional Analysis and the principles on
which the respective chapters of Physics are founded would surely need a
lot of technicalities, with dissuasive effect on the majority of the public.
And meanwhile, the progresses of Functional Analysis would be liable to
reveal alternative approaches, with more promising prospect.

Generally, axiomatic improvement looks like the ever unfinished job
of cleaning after the action. As long as a scientific domain is alive, the
investigation of facts in its active fringe is never entirely conducted
through the logical application of previously stated “principles’, but
involves inductive thinking. Only afterwards are the principles adjusted, so
as to permit the deductive arrangement of the findings. This is true, even in
such a domain as Mechanics, the theoretization of which has begun early.
The treatment of aahesion [3] or that of continuous media with mcre-
structure (see, eg. [1]), among other current examples, illustrate this
observation.

No attempt is made in this paper at systematically constructing an

updated axiomatic of Classical Mechanics. This would be a specialist’'s work
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and a heavy task, for the number of axioms needed to make a complete
system 1s greater than it seems at first glance. There only will be
displayed certain chains of mathematical properties which, some day, could
play a significant role in such a construction. In the meantime, the
formulation we propose is more modestly expected to reduce the distance
between the statement of some mechanical problems and their

mathematical study.

The elementary example of a continuous medium with c! velocity
field is used in Sec.2 to introduce the main concepts. It is shown how the
balance of mass and the balance of momentum of the investigated material
may be condensed into a four-dimensional equation. This introduces a
doubly contravariant symmetric tensor measure, called the Amnetic tensor
measure, relative to a chosen part of time-space called a w/ndow . The
latter is the geometric container of the mechanical information that one
intends to treat. It does not necessarily involve the same material partic-
les at every instant . The fundamental equation, which is asserted to govern
Dynamics, puts forward the a/vergence of the kinetic tensor measure, a
differential operator understood in the sense of Schwartz's Distributions.

Galilean invariance is an essential feature of Classical Mechanics. In
order to make sure that the proposed formulation meets this requirement,
we choose, in Sec.3, to expose It in the coordinate-free setting of the
Galilean time-space 6.

Sec.4 -explains how this formalism applies, in particular, to the
dynamics of a single particle. The time-dependent efforts acting on it are
represented by a vector distribution of order <1 on G. In the most
significant cases, this order actually equals zero, i.e. the said distribution
is a four-dimensional (Radon) measure. Then it is found that the velocity
vector of the particle is a function of time w/th Jocally bounaed variation
and the motion is governed by a /measure airrerential equation [16][18).
This includes as a special case the traditional treatment of shocks through

the concept of percussion.



It is also the example of a single particle which is used, in Sec.5, 10
demonstrate how the choice of an adequate window allows one to describe
the snitial conditions of an evolution problem by means of terms in the
fundamental equation. Depending on the decision made, of including or not
the initial instant t, in the investigation, it is either the limit of the
velocity vector on the left or on the right of t, which has to be considered
as "initial velocity”.

In Sec.6 is formalized the confinement of the particle by a boun-
oary, a typical example of wn//ateral constraint . Here again, the concept of
window proves essential.

One of the reasons for having focused attention on the case of a single
particle is that the traditional Analytical Dynamics formally reduces
arbitrary systems to moving points in Riemannian manifolds. The extension
of the preceding formalism to this case calls for discussing /lensor
measures or tensor distrivutions in such a manifold and for comparing
different generalizations of the aivergence operator, which, in the Galilean
setting, used to play the central part. This is the object of Sec. 7, where the
equilibrium operator 1s introduced. By definition, the latter equals the
negative transpose of the deformation, a standard differential operator in
Continuum Mechanics.

This is used in Sec. 8, where a mechanical system of finite freedom is
considered, with a Riemannian manifold Q as its set of possible configu-
rations. It is found that, by applying, in the product manifold RxQ, the
equilibrium | operator to the corresponding kinetic tensor measure, and
equalling the result to the covector measure on RxQ which represents the
efforts acting on the system, one recovers the Lagrange equations. An
advantage of this procedure is that, similarly to what has been observed in
Sec.4, it keeps meaningful in some significant nonsmooth motions, then
leading to measure differential equations. Such is the case for motions
involving collisions with a boundary. Thereby, the setting previously
adopted by the author in developing numerical methods for the dynamics of



systems presenting unilateral contacts (possibly with dry friction) [17]
receives a theoretical foundation.

The rest of the paper is aimed at connecting the proposed formulation
of Dynamics with the variational principle orf Hamilton This is achieved
through the fransport method, formerly used by the author on various pur-
poses [10][13][15]. In this method, variations are imparted to the inves-
tigated objects by having them carried along a certain class of /ows . In
particular, the equilibrium operator, acting on the doubly contravariant
tensor measures of the concerned manifold, receives in that way a varia-
tional meaning. The advantage of such a procedure over the traditional
calculus of variations is that it requires less smoothness of the inves-
tigated objects. The form this gives to Hamilton's principle is still valid for
motions with non differentiable velocity function. The latter is only
assumed to have locally bounded variation, allowing, in particular for the
presence of shocks.

2. A heuristic example.
Let us first consider a continuous medium whose motion, relative to

some orthonormal inertial axes Ox'x?x>, 15 smooth enough for the three
components u' of the velocity field and the density p to be ' functions of
the time variable and of the X' coordinates. Let us denote by x? the time
variable and agree, for all the sequel, that &reet indices will take their
values in {0,1,2,3}, while Za¢/n ones will take theirs in {1,2,3]}.

It is known that the three equations of momenturn balance and the
equation of mass conservation may be combined, so as to be condensed into
the equivalent four-dimensional writing
(2.1) (puu®) =™

Here, . denotes the partial derivation with respect to x®and, by convention,

B
W= 1. For >0, the expression f* represents the component of rank o of the
three-dimensional vo/ume density or efrort. In common cases, this vector

field equals the volume density of external effort, plus the divergence of



the Cauchy stress tensor field. Besides, f"so, unless & supely of extra-
neous material is imagined, at the rate of 0 unit of mass per unit of
timexvolume (in that case, the velocity of the supplied material must also
be given, inducing a contribution in 1,12, %),

2

Let us denote by X the Euclidean linear space where x! ,x3 are

orthonormal coordinates; then ><0,><1,><2,><3 may be seen as orthonormal
coordinates in the product space RxX, itself equipped in the standard way
with a Euclidean metric. One may interpret the left-hand side of (2.1) as
expressing the four components, indexed by «, of the vector field
divergence of the tensor field in RxX with components pu"‘u["

If the motion is not smooth enough for the partial derivatives to exist
in the elementary sense, there is no doubt that the dynamics of the
considered material is correctly expressed by understanding these deriva-
tives "in the sense of Schwartz's Distributions in RxX". This actually is an
abuse of language, since never a function equals a distribution. What in fact
constitutes a distribution in the sense of L. Schwartz, is the measure
possessing the considered function as oknsity, relative to Lebesgue's
measure. Of course, the function has to be locally integrable with respect
to the latter.

As an example, in a situation familiar to Fluid Mechanists, one may
check that the Distribution formalism, applied to (2.1), readily yieids the
balance equations of mass and momentum across a snock wave in an invis-
cid fluid [10].

Generéllg, we propose to formulate in the following way the dynamics
of some matter present in a subset W of the timexspace RxX. The notation
W here is chosen as a reminder of winoow, a denomination we shall later
explain in more detail.

First, a nonnegative real measure in RxX, concentrated on W, called
the presence measure of the said matter, has to be defined. Let us denote
it by & . The formulation in view makes sense provided the ve/ocity

components W (with u’=1, by convention) are elements of L2 (RxX,8; R).



we shall aamit that, as rar as motions or this sort are concerned,
he qnamics or the considered matter I1s gaverned by
(2.2) (o) = F*

On the left-hand side are the components of the four-dimensional
vector distribution divergence of the symmetric tensor measure C, with
components c@=y*y®e. In other words, C possesses as density, relative to
! (RxX,8 ;(RxX)® (RxX)). We propose to call C

B, the tensor function u®uel,

the Ametic measure of the considered matter.

For this equality of distributions to hold, the right-hand members F*
«€{0,1,2,3}, have to be elements of D'( RxX,R), i.e. to be the components of
a vector distribution F on RxX, with order <1. This vector distribution
conveys all the information needed about the internal and external efforts
that the considered matter experiences and about the possible /oss or
collection of materia/ (for instance through the boundary of W: we shall
come back to this in Secs. 6 and 7). Actually, the special case where F
happens to be a daistribution or order zero, 1.e. a (Radon) measure, will
prove the most significant.

REMARK 2.1. In our introductory example, the presence measure admitted
the real function p as density, relative to the Lebesgue measure of RxX. It
is clear from this example that the approach of Dynamics we are developing
extends what, in Continuum Mechanics, is commonly called the treatment of
aproblem in £uler variab/es. In such a treatment, the description of motion
is primarilg‘done through the velocity vector of the matter, at every point
of the concerned region of timexspace. Whether the vector field with
components (1,u’,u2,u3) possesses integral lines in RxX, defining the motion
of individual particles, becomes a secondary question. This is a realistic
attitude, since the velocity vector is nothing but an average value, refer-
ring to the underlying agitation of microscopic objects. In reality, conti-
nuous media (principally those which are qualified as fluids) evolve with a
certain amount of /niradifrusion, so the individuation of particles can only



emerge as an approximate concept. The Euler variable treatment proves also
well adapted to calculating the avergge r/ow of a microscopically hetero-
geneous fluid (e.g. a flow with suspended small objects or involving multi-
phasic micro-structure). In contrast, most models of deformable so/ids
require the individuation of particles.

Anyway, it is rather unexpected to use the Euler variable approach in
formulating also the dynamics of a single mass-point, as we shall do in
Sec.4

REMARK 2.2 The Dynamics of mixtures suggests to generalize the
preceding formulation, up to accept as C a symmetric tensor measure
which no more equals a "tensor square”. We mean that, when C is repre-
sented in the form C’pp, where y is a nonnegative real measure and
C’UEL,’OC(Rxx,u;(leX)®S(IRxX)), the value Ci(E), E€RxX, would not neces-
sarily have, for y-almost every E, the form v(E)®v(E), with v denoting a
vector field. Similar remark applies to Stochastic Dynamics : in order Lo
take into account the data uncertainty, one may be led to treat, instead of a
single motion, some probabilized collection of them. Then C is replaced by
some probabilized average of the corresponding tensor measures ; this in
general is not a tensor square. Another source of interest of this collective
approach to dynamical problems could be to disregard some singular
solutions, by considering them as “non generic”.

Even so, it seems to us that the nonnegativity or the quadratic
rorm with matrix C'U"‘g(ﬁ), which trivially holds in the foregoing, has to be
placed among the principles of Dynamics. An argument in favor of this
postulate may be found in [15], an introduction to the general use of
the 7ransport Method . In this method, whose application to the present
situation is described in Sec.10 below, the possibly nonsmooth solutions to
some field equations are characterized as yielding zero variation rate for a
certain functional in a certain type of alteration processes. The above
nonnegativity then arises from the study of the second varation rate and,

roughly speaking, may be interpreted as a "stability” requirement.



The nonnegativity postulate also has the merit of protecting one from
the temptation of accepting as C some tensor distribution with order h>0.
In fact, if C®eDMRxX, R), with C*®=C®* are the components of a tensor
distribution, the nonnegativity assertion becomes <C*?, P Pp>20, holding
for every eD"(RxX, RxX). This property may be shown [15] to require h=0.

REMARK 2.3 The definition of a Euclidean metric in RxX, the time-space,
rests on the choice of time and length units. A unit-free construction would
be possible, at the price of more complicated notations. We shall in the
sequel go on assuming that the physical units are fixed.

3.The Galilean setting.

Galilean invariance is a dominant feature of Classical Dynamics.
Basically, it consists in saying that, given some /nertial reference frame
(i.e. a frame in which the familiar momentum equation holds; this is also
called a Galilean frame), any other frame whose motion, relative to it, 1s a
rectilinear and uniform translation is inertial too. The underlying trivial
fact is that, if a moving point possesses an acceleration with regard to the
former frame, then the same vector is also the acceleration of this point
with regard to the latter.

Rather than asking for "invariance” under some class of operations,
we shall in this paper adopt the synthet/c approach. This consists in
describing first some geometrical structure, providing the framework in
which all subsequent assertions are to be formulated. Then, automatically,
these assertions will be “invariant under the automorphism group of the
considered structure”. {n other words, instead of checking that a statement
is “frame-indifferent”, we prefer to exhibit a formulation of it in a
“frame-free” language.

Considering an a77/ne space G, we shall denote by G’ the linear space
of the corresponding wectors (this is consistent with the notations used,
about manifolds, in further sections: G’ in fact equals the tangent space to
G at any point). For a differentiable function f:G— R, the gradient VT, e



the tangent linear map G—R, at a point is an element of the dual G'"of G
The duality bilinear form will be denoted by a dot and the corresponding

orthogonality by *

DEFINITION 3.1. 4 Galilean time-space ( or Galilean event space) /s @
four-aimensional arrine space, say G, specialized by the rixation or the
rollowing objects:

1° A non-constant arrine runction D.G—-R, ca//ed date.

2° A Euclidean metric in the subspace E=(VD) or &'

The elements or € are calleg spatial vectors.

The trick of using the Euclidean structure of E, in order to identify
this linear space with its dual E*, will no¢ be applied for the moment.

DEFINITION 3.2. 4 moving point /s g manping, say T, of a real interval
T (called an interval of time) fo G, verirying
(3.1) VieT . D(m(t))=t.

1T IS airrerentiable at some v, the derivative U= ), an element

orf G, Is called the absolute velocity ar the maving point at instant t .

From (3.1), it results that
(3.2) u.vbD=1.
/7 T Is an altine mapping, so that u 7s constant with regard o 1,

the moving point is sald to have an inertial motion.

DEFINITION 3.3. A Cartesian coordinate system of G, say 0x%%'x*x®,

15 called Galilean or inertial i/

(3.3) DO)=0
ana ir its base vectors iy, iy lipy 1€ 6" $at/sry
(3.4 1oy VD=1  and 1) VD =14,). VD= (. VD =0.

This, in particular, implies that im, im, '(3) belong to E. One says
that the axes Ox', OxZ 0x° have spat/a/directions.
Instead of conditions (3.4), one may equivalently introduce the base of



G™ agjoint 10 {1, iy i) i) and assert that, relatively to this base, the
covector VD has components 1,0,0,0.

Under these conditions, for any point & of G with coordinates
xo, X! ,xg, x3, one has D(E) = x°

As soon as a coordinate system of this sort has been chosen, every
moving point may be described by giving the four coordinates m*(t) of mi(t),

3

with T0(t) =t. If, in particular, the functions n‘, nz, m° are constant, the

moving point is said Zixed in the spatial rrame Ox'x?x>, or to be a part/-

cle attached to this rrame. Then the motion of this point is inertial, with
absolute velocity equal to i, Such is the aspect that the concept of an
mertial rererence rrame  takes on in the present formalization
Practically, x! %2, x> are interpreted as Cartesian coordinates in some
three-dimensional affine space X, whose points are identified with the
particles attached to the frame. One says that X is an mertial rererence
space.

Qbserve that the fuclidgean melric of E and the possible ortho-
normality or Ay, Vo \zy W/th regard to it play no part in what preceaes.
They will only become significant in Remarks 3.6 and 3.7 below.

when a reference space X has been specified as above, every £€G lets
itself univocally be represented in the form (x°,x), with x°=D(E)R and
x€X. For a moving point 1, it proves expedient to use the writing
(3.5) (t) =(t, p(t)), with p(t)ex
If u=mi(t) exists, the difference u,=u- i o) Defongs to E. By definition, this
is the velocity of the moving point relative to the rererence space X
Clearly, the space of the vectors of X may be identified with E , so this

relative velocity 1s found equal to the derfvative p(t).

We now are going to show that the formulation of Classical Dynamics
proposed in Sec.2 makes sense in the setting of Galllean time-space.

A winadow is a subset W of G. With the matter present in it, the £/ne-

tic tensor measure is associated. Its construction starts with the defi-



nition of the gresence measure of the said matter, a nonnegative real
measure, say 8, concentrated on W. Afterwards, the absolule velocity
r7eld is introduced as an element, say u, of L‘QOC(G,B;G’), satisfying (3.2)
6-a.e. Then, the kinetic tensor measure is, by definition, the element
C=uud of D'%G,6'®,6").

The classical discussion of covariance and contravariance, when
partial derivation with respect to Cartesian coordinates in an arbitrary
affine space is involved, entails that the distributions C“e‘ﬁeﬂ"(G,IR)
equal the components of an element of D"(G,G'), i.e. a (contravariant)
vector distribution of G, independent of the Cartesian coordinate system in
use. This is the a@rvergence of C, in the sense of the aatural connection or
the affine space G. This distribution may also be constructed without
reference to any coordinate frame, as the functional assigning to every
q)Ei)’(G,lR) an element of & as follows:

(3.6) 9~ -CT,99>=-|u V) db.

Then, the rormulation proposed in Sec.2 now may be translaled into
the rrame-rree writing
(3.7) divC=F.

It must be kept in mind that, in spite of the investigation being

restricted to the subset W, aistributions here and the ditrerential opera-
tor div are understood in the sense of the whole space G.

The distribution FeD"(G,G’) on the right-hand side will, in practice,
equal a sum of terms conveying various pieces of information about the
physical effects that the matter investigated in the window W experiences.
The following remarks play a significant role in discussing these terms.

The contracted multiplication of C by the constant covector field VD
yields a vector measure on G, concentrated in W,
C.VD=(VD.u)ub=ub.
The aivergence of this vector measure is an element of I)"(G,IR), namely
the functional
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S URZOLE
(observe that this definition of the divergence of a vector measure does not
rely on any connection in the underlying space ; it more generally makes
sense in the framework of differential manifolds, with vector measures

understood as in Sec.7 below).

DEFINITION 3.4. 7he vector measure C.ND=u8 s called the mass-
current of the matter in the window W.
The real distribution div(ue) /s called the mass-input relative te

this winaow .

A vector distribution, such as F in (3.7), is said to lake /{s values
n the subspace E of G if (F,¢>€E for every cpED‘(G,lR). By observing
that (divC).VD= div(C.VD), one obtains:

PROPOSITION 3.5. 7he vector distribution divC takes Its values In E

I and only 1r the mass-input 1s zerao

REMARK 3.6. Since the linear space E is equipped with a Euclidean metric,
it makes sense to impose on a Galilean coordinate system, say 0x%% %23,
the condition of arthonormality In what concerns the “spatial” axes
0x'x%x>. Now, one observes that any change of Galilean coordinates preser-
ving this condition is expressed by a matrix whose determinant equals 1.
Consequently, a well defined nonnegative real measure in the space G may
be introduced as admitting the Lebesgue measure of R?as image in any of
these speciél coordinate systems. We shall call this measure the 6&a///ean
volume. Alternatively, if a frame-free construction is wished, one may put
E(t)={EeG : D(E)=t}). For every teR, this level set of the date function is an
affine space, equipped with a Euclidean metric since its vectors let
themselves be identified with the elements of E. Hence, in E(t), the
three-gimensional volume is frame-free defined, a real measure denoted
here by v,. Then, the Galilean volume emerges as the element of DG, R)

assigning to every 9eD%G, R) the real number g (JE(t)m(ﬁ)dvt(E,) dt.
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Here is an éxample of the use of the Galilean volume measure. Let Q
be a subset of G, assumed open to fix the ideas. The characteristic function
X, Makes the density, relative to Galilean volume, of some nonnegative real
measure w. In some usual situations, the gradient Vw, a priori an element
of D'(G,6™), happens to belong to D'YUG,6™), ie it equals a covector
measure , concentrated on the boundary 8. For every vector field
neDO(G,tB'), the real number <Vw,n> by definition constitutes the
(inward) 7/ux of ny across dQ. This generalizes the familier situation where
30 is a smooth surface and gives rise to formulas of the Green-
Ostrogradsky type; [4] and [22] are reference books on questions of this
sort.

REMARK 3.7. Some terms expressing "forces” or “efforts” should naturally
contribute in the right-hand member FED"(G,G’) of (3.7). A connection
then has to be made with the wvirtval power (or virtual work) formalism
under which efforts are commonly treated. In Stat/cs, the possible equili-
brium of a mechanical system, relative to some reference space X, IS
investigated. To this end, it is usual to describe every effort through the
power it would develop in every motion with smooth velocity field n. By
axiom, this power depends linearly on the “test field” n. In other words, one
defines each effort as a real linear functional on some space D"(X,E), in
fact a covector distribution, element of DX, E*). When coming to Dyna-
mics, the definition of efforts has to be expanded in the dimension of time
too. Each effort will then appear as an E*-valued distribution in G, in
practice an element of D™G,E") for some integer h.

In contrast, the distribution F in (3.7) is G-valued; more specially, if
the mass-input vanishes, this distribution is E-valued. At the present
stage, this lack of consistency is readily overcome by observing that the
Euclidean metric of E allows one to identify this space with its dual. The
introduction of the operator “equ”, instead of "div", in Sec.7 below, will

provide a deeper insight.



4, A single particle.

Let P be a punctual particle, with mass m>0. Let p(t) denote, as in
(3.5), its position -we shall rather say its p/acement, in accordance with
the current terminology of Continuum Mechanics- at time t in the inertial
reference space X. Let Ox'x%x% denote an orthonormal Cartesian frame of
this space.

The motion p:R—X is assumed continuous. Equivalently, the mapping
t->n(t)=(t,p(t)) is continuous of R to G. In view of the special form of its
first component, it is clear that n is injective and proper, in the sense
that the inverse image of every compact subset of G is compact in R.

when, in a problem of Continuum Mechanics, the motion of individu-
ated particles is expressed, one is used to say that investigation is con-
ducted in Lagrange variab/es. In contrast, the £uler variabl/e standpoint
consists in focusing attention on the velocity field in time-space. The
formulation of Dynamics we are proposing clearly is of the latter sort. This
section is to demonstrate that, nevertheless, the said formulation is able
to generate differential equations of the Lagrangian style.

We first have to state the definition of the model "punctual particle”
in this framework. Here, the chosen window W will be the whole of G.

The presence measure of the particle in G, an element of D‘O(G, R), is
defined as #he Jinear runctional © which assigns (o every (pGDO(G, R) the
réal number <8,¢>=m jn @(n(t)) dt. In fact, because every compact subset of
G has a compact inverse image under 1, one readily checks that 8 meets the
suitable cohtinuitg requirements for being a measure. Since m>0, the
expression <8,¢> is nonnegative for every nonnegative ¢ (an alternative
reason for asserting that 6 is a measure). In other words, if ¢ denotes the
Lebesgue measure on R, then 6 equals e /mage under © of the measure
ml.

There is now to introduce the ve/ocity r7e/d u of the investigated
material. The natural assumption to make, in order to allow for its cons-
truction, is that the mapping p, or equivalently n, is Jocal/ly absolutely



continuous . Then the derivative Ti(t) = (1,p(t)) exists for almost every t and

t->Ti(t) makes an element of L! (R, ;). The complementary set G\TU(R) is

loc
8-negligible. Hence, for B-almost every point £ of G, there exists a unique
teR such that E=m(t). Therefore, four functions E—>uX(E).=T*(n"(£)) are
defined B-ae. in G, with uE)=1 if a=0 and u(E)=p™(m '(E)) otherwise.
Through standard properties of the images of measures, the vector f ield u
which has these components is an element of L (G, 8; G'); this vector field

loc
(6,8, &) if and only if me L2 (R,1;G)

‘ 2
more specially belongs to L loc

loc
- 1,2
(equivalently peWw,; (R, X)).
Under the latter conditions, the kinetic tensor measure C exists; its
components C*®=u*uPe are the linear functionals

(41) c: g m| THORAD M)A
R

Due to the definition of partial derivatives in the theory of Distri-
butions, the left-hand member of (2.2) in the present case equals the
functional defined, for every peD'(G,R), by
(42) %y, g>= %, g 0> = mL A g et dt

Observe that t—@(n(t)) is an absolutely continuous function, with
derivative equal to ﬁﬁ(t)%(n(t)) for almost every t. Since =1, this

yields in particular

de(m(t))
€, 9>=-my = =0t =0

i.e. the mass-input is zero. This reflects the implicit assumption that the
particle evolves without collecting nor losing any material.

Consequently, in view of Prop. 3.5, the vector distribution divC takes
its values in E. For consistency with the writing of Classical Mechanics, we
shall, in the rest of the section, identify this Euclidean linear space with

its dual.

By the notation Yelbv(l,E), we mean that Y is a function of a real
interval 1 to E (or, more generally, to a Banach space [16]) w/th Jocally
bounaed variation, i.e. Y has bounded variation on every compact sub-
interval of I. With such a function Y, an E-valued measure on [ is
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classically assoclated, that we denote by dY and call the ai/rerential
measure of Y. A measure dirrerential equation [16] [18] is a condition
imposed on an unknown Y€lbv(l,E) in the form of an equality of E-valued
measures
dy =&(t, Y(t)) dn,

where dh is a given real measure on I and ¢:IxE—-E a given function
meeting suitable regularity requirements. Because E has finite dimension
(this would more generally hold for a Banach space possessing the
Radon-Nikoadym property [16]), a nonnegative real measure ds on [ is sure
to exist (non uniquely), relative to which dY and dh possess density

functions Y’SGL,’OC(I,ds;!E) and h’SeL,’OC(I,ds;R). Then the above condition is
1

equivalent to an equality inL, .

(I,ds;E). In particular, the Lebesgue measure
on I may be taken as ds if and only if both functions Y and h happen to be
locally absolutely continuous. In the latter case, the measure differential
equation reduces to a differential equation in the usual (Carathéodory)
sense,

Incidentally, for mechanical systems presenting unilateral cons-
traints and/or dry friction, efforts are connected to the motion through
relations of such a form that Dynamics is finally expressed in a /measwre

aifrerential inclusions [16] [17].

PROPOSITION 4.1. Suyppose that the aistribution F EI)"(G,IE), ENLres-
sing the errorts that the investigated particle experiences, happens to be
a measure. | Then the funaamental equation (3.7) holds if and only it the
element p of L,QOC(IR, E) /possesses a representative which/ is a runction
with Jocally bounded variation, satisrying the measure airrerential
equation

(43) m dp=1""(F).

Proof. Choose y€D(R,R) with support contained in some compact interval
I; the image of I under the continuous mapping p is a compact subset, say
K, of X. Denote by { an element of D(X,R) with value 1 throughout a



neighbourhood of K. Then the function ¢ defined as
(4.4) E=(x, )= @(E) = y0&) £(x)

belongs to D(G,R). With this choice of ¢, the expression in (4.2) becomes
do(r(t))

€% pd=-m|mX() dt =-m (L) (b dt
B R R

Consequently, if (3.7) holds, one has, for every i€{1,2,3},
(45) -m| PO = 9>
R

If the distribution F' is a measure, there exists a real number A>0 such
that, for every ¢€D(G,R) with support contained in the compact subset
IxsuppC of RxX=G, the inequality kFi,cp>|<AlkplLoholds. Therefore, by
choosing ¢ under the form (4.4), one obtains

Ijnbi(t)\p’(t)dtlsm"Alhp“oo,

for every y with support contained in I. This classically entafls that p' has
locally bounded variation. Furthermore, the right-hand side of (4.5) eguals
¢ '(F), y> . Therefore m"'(F') equals the derivative, in the sense of the
Distributions on R, of the measure mf)i dt. This derivative is nothing but the
differential measure of the function b‘, 50 (4.3) is established.

Conversely, if pi verifies (4.3), the same calculation shows that
<C°‘°‘@, ¢> = <F%, ¢> for every ¢ of the form (4.4). By density, the same holds
for every ¢€IG, R). O

The most familiar case, where the distribution F can be asserted to
equal a measure, is that of a particle swomitted to a rorce field. Giving
such a field consists in defining, on a subset of G assumed at all event to
contain T(R), a universally locally integrable (for instance continuous)
E-valued function, say f. The particle fs said submitted (proportionally to
its mass) to the force field if the distribution F equals e G- va/ued
measure possessing the function E—(0,1(8)) as aensity, relative to the
presence measure 8. In such a case, the measure 1 (F) is found to possess
the function t—(0,mf(m(t))) as density relative to the Lebesgue measure ¢
of R. Therefore, (4.3) is satisfied if and only if the E-valued measure dp
possesses t—f(n(t)) as density relative to V. 7A/s equivalently means
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hat p(—:wi) 'c‘( R,X)) and that the classical aifferential equation p(t)=
f((t, p(L))) nolas.

In general, as soon as pewZ:'(RX)), each component C“% of the
vector distribution divC equals a real measure on G; this is the image of
the measure mn™! under the (continuous, injective and proper) mapping
m:R—G, Alternatively, this may be established by performing on the
expression (4.2) an integration by parts, yielding
(46) «®,>= ij A (D) dt.

2

Essentially 1°=0, while 7', %, 7° equal, for almost every t, the compo-

nents of the acceleration vector p(t)eE, relative to the reference space X.

5. Initial conditions.
This Section provides examples of the change of window through the

restriction procedure. For simplicity, let us assume that the analysis of
some dynamical situation has been first conducted with the whole space G
used as window and that the corresponding distribution F in the funda-
mental equation has been found to be a G-valued measure. As a part of the
proposed formulation of Dynamics, we now are going to stipulate how the
elements of this analysis relate to the treatment of Dynamics one could
alternatively conduct when using another window W. The latter will be
supposed to be a Borel subset of G, so that its characteristic function, say
X, belongs to L™ of any (Radon) measure.

Let us respectively denote by 6, u, C the presence measure, the
velocity field and the kinetic tensor measure in the former treatment. we
aecree that, when the window W Is useq the presence measure should be
6,=x6 and the velocity rie/d u =xu. Consequently, the kinetic tensor
measure equals C =u ®u_ 8 =xC. The fundamental equation always has the
form of an equality of distributions in G. In view of what has been
previously written with & as window, the new equation necessarily is

divC, = yF+ div(yC) -xdivC.



The products XF and ydivC make sense because, by assumption, F and,
consequently, divC are measures.

One naturally interprets XF as ¢&he part of the rformerly considered
right-hand member F which is "visible" in the window W.

The vector distribution div(xC) -xdivC is easily found to have its
support contained in the boundary of W. This distribution conveys some
information about what happens outside the restricted window one is now
using. Additional regularity assumptions may confer to this term a more
suggestive look.

Suppose, for Instance, that C has the form Cly, where y denotes the
Galilean volume (Rem. 3.6) and C'Y an element of L,’OC(G,x; G'@SG’). Suppose
that the latter tensor function has locally bounded variation, in the
four-dimensional sense [4][22] and that W is closed, with boundary W
equal to a c? hypersurface. Then, the real measure -Xy possesses as
distribution gradient a G"*-valued measure, say v, with support contained
in W, which may be viewed as the owtgoing rlux operator, relative to W.
The above assumptions secure that divC is a G-valued measure and that
C possesses an outside trace on dW, say C’Y", which is a locally
v-integrable tensor function. One finally obtains that, in such a case, the
term div(yC) -xdivC equals C’Y*.v (the dot refers to contracted tensor

product).

The variables t and x°, in Sec.4, were assumed to range through the
whole of R. Problems pertaining to a limited time interval may be
formulated as well, provided the window is restricted adequately.

EXAMPLE 5.1. As the first example, let W equal the closed half space
F(to):{ﬁeﬁ D)2, ),
which may be called e closed ruture or instant 1, By this choice we do
not mean that the concerned mechanical system was not in existence before
L, but that Jnvestigation begins at this instant
We shall restrict ourselves, for brevity, to the framework of Sec.4,
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t.e. the system consists of a single particlie, with motion described by

1,2

2R, 6) and we assume that e aistrivution F is @ measure. S0 T is

new
an element of 1bv(R,6"); this implies the existence of ﬁ“(to) and ﬁ*(to),
the limits or the absolute velocily T on the lert and on the right or Ly
denoted in the sequel by uy and ug.

Let X, denote the characteristic function of the subset F(to) of G.In
terms of the presence measure 8 introduced in Sec.4, the presence measure

relative to the new window equals xoe, i.e. the functional

By w—»mj @(m(t))dt.
21,

The kinetic tensor measure, in the former treatment, was C=u®u 6. In the
new window, it becomes Cy=u®u8,=},C. Similarly, the vector measure F
expressing the forces involved, has to be replaced by F,=X,F . In particular,
if F expresses the action of a force field f:G—E, one has F=(0,1)8, thus
Fo=(0,1)6,.

Recall that C,and F,must still be considered as distributions on the
whole of G. In that sense, let us calculate the components of div Co, i.e. the
distributions
CRy: 9>, o= O ) dt=-m|  AXDdgemD)

2, >,
We now apply a formula for the aifferential measure of the product of two
functions g and h belonging to 1bv(R, R), namely [16]
d(gh) = g"dh+h*dg.
Take g=m™ and h=geft ; since @ef is locally absolutely continuous, the (at
most countable) set of the discontinuity points of m™ is negligible
relatively to the measure d(gom). Therefore
T (ot = (M™)* d(ipoTt) = d(T™ x(poT1)) - ((pott) dT™.
Besides, for any function q€lbv(R,R) and for any compact interval [to,t]],
one has

(5.1) [ da=arep-atty
[tg.,]
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Therefore, the distribution (div CO)"‘ consists in the functional

(52 <Cy,p>= MAY (L) (gt em|  (gem(t) (L)
2

This equals the sum of the two following measures:

1° a measure concentrated in W which, in view of (4.2), in nothing but
the component of rank oc of F = X,F,

2° the point measure with mass m ug’, placed at point n(to)‘

In conclusion, if the dynamics of the particle is treated in the window
F(to), one has to retain, of the effort measure F formerly considered, only
what is "visible in the window", namely F,, and to aad to it the G- valued
point measure Jocatead at the point with coordinates (L, p'(to),
02(ty),p(t,)) and whose valve has components m, mp(ty), mp(ty),
mba'(to). Giving the latter measure amounts to specifying the following
data:; the /nitial position of the particle, its mass m and the /imit u, of
its velocity on the lert or

Observe that, with regard to the chosen window, the mass-input
distribution is no more zero. It equals the real measure with value m,
located at the point Ti(t)=(t,, p(ty)).

In the above treatment, the hyperpiane {E€G:D(E)=1,} is part of the
window. If, in particular, the particle experiences a shock at instant t,,
this will be included in the study, entailing for the right-limit ug of the
absolute velocity a value different from the given left-limit u,. Here is an

aiternative viewpoint.

EXAMPLE 5.2. We now take as window the apven future of L, Le.
F(t,)={E€C : DE)>t,}.
In that case, a possible shock at instant t, is no part of the study, so giving
u, would not provide sufficient information about the particle history for
predicting its further evolution.
Let us denote by X, the characteristic function of !F(to)‘ The presence
measure is now 8,=Y,8, the kinetic tensor measure C,= u®ub, and the



effort measure F,= ,F.
In the place of (5.1), the formula
J dg=q*(t,)-g*(t,)
o ty]
has to be used, yielding instead of (5.2),

co®

(CRy, 9>= M (te) (gomty)+m [ (gomXDAT*(L)

t>t,
The conclusion is analogous to what has been obtained in the preceding
case. Dynamics now is expressed by equalling the distribution divC, to the
sum of the following terms:
1° The vector measure F,,
2° The point measure with value mua, located at n(to).

6. Confinement by a boundary.
Again, in this section, we shall restrict ourselves to the dynamics of

a single particle and the time variable will be assumed to range through the
whole of R. The effect of a material boundary, that the particle 1s not
allowed to cross, will be taken into account.

Thereby, the mapping 1 s permitted to take only values In some
region of G. Let this region be defined by an inequality b(E) <O, with given
beC%(G,R), S0 the boundary is described as the hypersurface S of G, with
equation b(E) =0. The section of S by an /sochronous hyperplane {£: D(E)=t},
is denoted by S, In order that all these sections properly represent
boundaries at the corresponding instants, one assumes that, at every point
of S, the gradient Vb does not belong to the linear subspace generated in
G’ by VD (inparticular, it does not vanish).

In that way, only the global location of the boundary in time-space is
given, without any further information about the motion of the material it
is made of. Such a description would clearly not be enough if one attempted
to take into account any frictional effect occurring in the event of contact.
But it will prove sufficient for developing the model of an /dka/ boundary,



through which the following physical assumptions, concerning the effort
that the boundary possibly exerts on the confined particle, are formalized:

1° The effort vanishes on any time interval during which the particle does
not touch the boundary.
2° In the event of contact, no aahesion, 1.e. glueing or welding effect, takes

place.
3° In the same event, no friction is present.

DEFINITION 6.1. 7he hypersurface S 7s said to constitute an ideal
boundary /7 the reasivility or a distribution ReD' (G, E), for expressing
the effort it exerts upon the confined material (namefly the partic/e, in

the present instance) is characterizead by the rollowing property:
For every r)e:D‘(G, E) which at any point of S, satisfies 1.Vb 20,
one has <R, n> <0 .

Here is a consequence of this property.

PROPOSITION 6.2. frery ReD' (6, E) agreeing with the above Definition
/s an E- valved measure on G with support contained in S. For every
representation or this measure in the form R =R’pu, where | aenoltes a
nonnégative real measure on G and R’UE L,'OC(G,U ), the value R‘U(E,) /s,
at y- almost every point t, an element of E orthogonal to 50({) anda

directed toward the permitted region

Proof. We shall restrict the proof to the special case where S equals a
hyperplane of G. In fact, the techniques presented in Sec.7 below, concer-
ning vector distributions on manifolds and their representation in arbitrary
coordinates, make it possible to reduce the general case 10 this one.

In this special case, a Galilean coordinate system of G, in the sense
of Definition 3.3, may be chosen such that the permitted region equals the
half-space x!'<0. We thus take as b the linear function £-—+x’, so Vb
equals the constant vector with components (0,1,0,0). The components R‘,
i€{1,2,3], of the vector distribution R equal, by definition, the elements of
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D''(6,R) such that, for every ne€D'(G, E), one has <R,n>=<R, 0" The
condition 1n.Vb>0 on S reduces, in the present case, to 0';0 holding
throughout the coordinate hyperplane x'=0. Since this imposes no
restriction on r)2 and 03, one concludes that the distributions R2 and R3
vanish. As for the distribution R,, it equals the linear functional which
assigns to every r)'ei)'(G,lR) the real number <R,r)’im>. First, the
assumption made implies that this real number should be <0 as soon as r)1
is a nonnegative element of DUG,R), classically implying that R, equals a
nonpositive real measure. Secondly, this assumption entails that such a
functional assigns the value zero to every n' whose support does not
intersect S, so the support of R is contained in S. The asserted properties
follow, through standard arguments. a

To fix the ideas, let us assume that, in addition to the above boundary
efforts, the investigated particle is submitted to a given force field. Then,
according to Prop. 4.1, the velocity function t->Ti(t) belongs to 1bv(R,G").
However, assuming that the boundary fullfills the requirement of Definition
6.1 is a priori not enough to secure that the function m takes its values in
the permitted region only. We now are going to show how adequate window
restriction allows one to take this requirement into account.

Let us use as window the permitted region W={£€G:b(E) <0}
Asserting that the fundamental equation (3.7) is satisfied with F equal, in
view of what precedes, to an E-valued distribution on G, implies, through
Prop. 3.5, that the corresponding mass-input vanishes. Then the following
Proposition may be invoked.

PROPOSITION 6.3. Assume that, relatively to the above winadow, lhe
motion Me€ W,’0 'CQ(IR,G) Nas Zero mass-input, DUt nonzero présence mea-

sure. Then (L) belongs ror every t to the permitied region.

Proof. Put w:={teR: n(t)e W}. The mass current equals the vector measure

g-m ADemmId=m Y HOADmDL,
tew teR
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where Xw denotes the characteristic function of w. The mass—-input is the
divergence of this vector measure, namelg the distribution
p>-m| X DAY M) dt=-m [ a0 Gemana
teR ’ teR

Choose 1, ¥, ¢, ¢ in the same way as in the proof of Prop. 4.1. Thisyields

VyeDR,R): |y (Dy'(©)dt=0,
teR w

meaning that x, has zero derivative in the sense of the Distributions.
Therefore, this function takes a constant value B (equal to 0 or 1), except
possibly in some Lebesgue-negligible subset of R.

Since W is closed in G, the function ¥, is us.c. on R. Imagine the
existence of TE€R whith ¥, (T)=0; then ¥, vanishes on a neighbourhood of
T. This requires B=0, implying that Y, vanishes Lebesgue-ae, 1in
contradiction with the assumption of nonzero presence mesure relatively to
the window W. ]

REMARK 6.4. Using Prop.4.1, one finds that, under the above conditions,
the velocity function t->Ti(t) belongs to 1bv(R,G") and that the dynamics of
the particle is governed by a measure differential inciusion [12][17]. But,
in the event of the particle colliding with the boundary, evolution is not
uniquely determined by this inclusion.

Actually, the circumstances of shocks are, In practice, so complex
that the physical information needed for a aeterministic anansis is
usually out or reach.

If the boundary is fixed (relative to some inertial reference space), it
is traditional to complement the statement of evolution problems by the

requirement of energy preservation The possible collisions are then called
elastic bounces Even so, the uniqueness of solution to initial value
problems is conditioned by additional smoothness assumptions [2][19][21].
Energy balance for motions with lbv velocity function is drawn in [17] and
objections to the preservation of (mechanical) energy are raised, even if
the materials of which the boundary and the investigated system are made
may be treated as perfectly elastic. Preference is given, in [17], to
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the sortness (ie. Inelasticity) assumption of the possible collisions. In the
present context, this would be expressed by asserting that, af awy t such
that bItN=0, the right-side limit Tt Is g tangent vector to S. The
resulting evolution problems are a/ssjpative and prove more comfortable,
analytically and numerically, than in the case of elastic bounces.
Furthermore, the physical circumstances in which the softness assumption
may be accepted seem easier to identify in practice. The existence of
solutions to the corresponding initial value problems is established in

[8](9]

7. Operators ge/ and egu on a Riemannian manifold.

Three integers d, r, h will recurrently appear in the rest of this paper.
Let It be assumed once for all that
(7.1) O<h<r-1<d-2.

Let M denote a C%-differential manifold (without boundary), of finite
dimension n. A Riemannian metric is defined on M by giving some
symmetric doubly covariant tensor field g, assumed to be r times
continuously differentiable. This we shall express by writing
geC" (M, M ®_M™), in a somehow abusive system of notations, to be
applied in all the sequel. Understand that g fs actually not a mapping of M
to a set which would be denoted by M™® M™, but a selector, assigning to
every xeM an element of M@ M., where M, denotes the cotangent
space to M at point x.

For every vector field veC™ (M, M), the L/e derivative L g makes

sense. Thisisa CM'f ield, of the same tensorial type as g.

DEFINITION 7.1 7he airrerential operator
def: "M, M) - C"OM, M= @ M™)
agerined as
defv:=%L g
s called the deformation aperator.



This denomination is suggested by the Kinematics of Continua. In fact,
if v is the velocity field of a continuous medium in motion throughout M,
then defv equals the rate of geformation tensor of the medium (we shall
come back to this in Sec.9; see also [7], Chap.1).

when coordinates are used in M, the classical expression of Lie
derivatives [7] yields the components of the tensor defv in the form
(7.2) (def vl =5 (g v+ gy V¥ i+ gy V" )

Let us now introduce the space DM, M '® M) of the tensor distri-
butions on M, of order h (more correctly, one should say "of order less
than or equal to h"), doubly contravariant and symmetric. By definition, an
element T of this space is a real continuous linear functional on
DM, M*® M™); the latter denotes the subspace of C'(M,M*®M')
consisting of fields whose support is compact in M. Continuity is meant in
a sense similar to that of the theory of real distributions with order h in
R". In this theory, for every compact subset K of R", a Banach norm is
constructed on the subspace DR(R"R) of DYR",R) consisting of the
functions whose support is contained in K. This construction involves the
suprema of the absolute values of the partial derivatives, up to order h, of
the considered function. To do the same here, one has to use local charts in
M a compact subset K of M is covered by the domains of a finite number of
them. The norm of an element of DQ(M,M "®55M") is constructed from the
partial derivatives, up to order h, of its components. It is found that any
change of charts replaces the constructed norm by an equivalent one. A
functional D"—>R is said continuous if its restriction to every 1)2 is
continuous.

We shall uniformly denote by <,.> all the R-valued bilinear forms
corresponding to the pairing of a space of fields with a space of distri-
butions. In contrast, for every xeM, the pairing bilinear form of M’ and
M7 s denoted by a simple dot, as well as the forms which pair the
adequate couples of tensor products of them.

Relatively to a local chart of M, the tensor distribution T is repre-
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sented by its components T The latter may be viewed as real distributions
on the domain D of the chart (an open submanifold of M) or, alternatively,
as real distributions on the range of this chart (an open subset of R"). From
the first standpoint, one may define T as follows. For every xeD, the chart
induces a base, say {e(”,...,e(")}, in the cotangent space M, to M at point x ;
the assignments x—e" are %' fields of covectors in D. Then the element
T4 of D™D, R) is introduced by

(7.3) VoeD"O,R):  <TY ¢>=«T,9pePoel

As a consequence, for every xe DM, M™® M), one finds <T,x> = <T", X

Of course, all what precedes can be more generally done for arbitrary
tensorial types, without the restriction of symmetry; some other cases
will be met in the sequel. This is modeiled on De Rham's theory of Currents
on differential manifolds [20]; the same concepts have already been used
by A. Lichnerowicz [6] [S]

In particular, when h=0, the tensor distribution is said to be a doubly
contravariant symmetric fensor measuwre. 1ts components are real measures
in the standard sense. By applying to them the Radon-Nikodym theorem, one
shows the existence of a (non unique) nonnegative real measure y on M,
relative to which T possesses a gens/ty TLEL“(M, U, M@ M7); notation:T =
T,u. Therefore, the action of T may in that case be expressed as an integral
(7.4) Txo=[xaT= [xTa0 = [ x,Taw
This integral more generally makes sense for every xeL (M, y ;M@ M),
By the notations L' or L* here we mean that, in any chart, the components
of the considered fields are elements of spaces of the corresponding sorts.

Observe that the tensor measures so defined on the manifold M can by
no means be viewed as o-additive functions of subsets, except of course

for the tensorial order zero, i.e. the case of sca/ar measures.

DEFINITION 7.2. 7he negative lranspose or def ,a linear mapping of
D"‘(M,M VM) lo I)’h”(M,iM ™), Is called the equilibrium aperator and
aenoted by equ . /n other words, ror every T in M M ’®SM Y and
every 1y in DM, M),
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(7.5) <equT,n>=-<T,defn.

The denomination “equ” is suggested by the treatment of the Statics
of a Continuous Medium through the AMethod or Virtual Fewer : in this
method, some Zest velocity Fields, similar to 1 above, are considered.
Assume that the tensor distribution T is meant to represent the internal
efforts of the medium, in such a way that, whenever the medium moves
with n as velocity field, <T,defn> equals the power of these efforts.
Similarly, assume that the external efforts are represented by an element f
of D‘h*‘(fM, M), i.e. the corresponding power equals <F,n>. Then, the requi-
rement of zero total power for every test field n yields the equilibrium
equation of the medium in the form F=-equT.

If coordinates are used in M, one derives from (7.2) and (7.5) the
expression of the components of equ T:

(7.6) (equT)y = Gy T+ (g =390 T
The products of distributions by functions, which appear on the right-hand
side, make sense, due to Inequalities (7.1).

REMARK 7.3. If the Riemannian manifold M simply consists in a Euclidean
space, one readily finds, by using orthonormal Cartesian coordinates and
dropping the distinction between covariance and contravariance, that the
operator "equ" coincides with what, in Secs. 2 and 3 , has been introduced
as the "divergence” of the considered tensor distribution. The meaning that
the latter operator may take in the manifold context calls for some
comments; also the case of tensor Tields has to be compared with that of
tensor distributions.

Let us agree [7] to mark with i the subscript introduced by
the covariant derivation of any differentiable field, relatively to the
standard torsion-free connection associated with the Riemannian metric. In
particular, the divergence of a (doubly contravariant) tensor rield
deC(M, M'®@M") is defined as the (contravariant) vector field with

components (div@ﬂ:@’j“. Here & is not necessarily symmetric and this
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more generally applies to a tensor field of higher rank, provided its first
index corresponds to contravariance. In [6], the negative of this operation
of contracted covariant derivation is called codifrerentiation.

The operation ; may also be introduced for a tensor distribution,
element of some space of the DM sort. This 15, by definition, the negative
transpose of the similar operation, applied to fields belonging to the paired
D" space. The covariant derivative, associated in that way with any tensor
distribution, is another tensor distribution of one unit up in tensorial rank
and one unit up in distributional order. It obeys the same calculation rules
as the covariant derivative of tensor fields. Its construction is indifferent
to the choice of a chart: this is made clear by observing that the operator
so defined on some D space equals the negative transpose of the
divergence operator, defined on the adequate D™ space.

Covariant derivation allows one, in particular, to introduce the
divergence or a tensor Jistribution TeD MM, M'@M") as the element divT
of D™ (M, M) such that (divTH=T!,.

As another instance, the covariant derivative of a rea/ measure
UED'O(M,IR) equals the element Vy of D"(CM,M"), with components
ynei)"(?v{,lR) such that

VneD MM 1 <n)uo=-<n', 0.

The Riemannian volume is the nonnegative real measure p on M
equal, as soon as an arbitrary local chart (x) is chosen, to p=(det g(x))v Qt(x);
here &, denotes the real measure on M whose image in the chart equals the
Lebesgue méasure of R". One finds 0,;=0

For deC'(M, M'®M") as above, ®p is an element of D UM, MM
and 1t turns out that div(®p)=(dive)p.

In contrast with divT, the element equT, as defined by (7.5), is a
covector distribution. Also recall that (7.5) essentially applies to
symmetric T (equivalently, if this definition is used for nonsymmetric T,
the result depends only on the symmetric part of it). By observing that, for

every differentiable vector field n, one has [7],
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(def n)ij:—’?[(gkir)k)m (gkjr)“)“]
one derives from (7.5) that, for T€ D™ (M, M'® M),
(7.7) (equT);= g, (div T

8. Lagrange equations.
The setting of this section is the Analytical Dynamics of a mechanical

system with finite freedom n. Classically, the system possible states
constitute a C"-differential manifold Q, where some local coordinates are
denoted by g',..,q". For simplicity, we shall make the sc/eronomy assump-
tion, 1.e. the constraints underlying the above parametrization do not depend
on time. Consequently, the generic expression of the kinetic energy is a
time-independent positive definite quadratic form with respect to the
time-derivatives ¢, say
(8.1) E. = 39 mdd.
The doubly covariant tensor field g defines in Q a Riemannian metric.

For a twice differentiable motion t—»q‘:pi(t) (or, more generally, if

2. 1R R)), the Lagrange equations may be

. i
the functions p' belong to W; .

developed in the form

(8.2) g+ (gu,k—%gjk,i)bjb" =1,
The functions fiEL,'oc(!R,lR) are the covariant components, relative to the
local coordinates in use, of the efforts acting on the system (possibly
defined in an indirect way, through the phenomenological laws governing

the phgsical_ environment).

Similarly to what has been aone in Sec.4 for a single particie, we
are going to show that these equations are implied by a more geéneral

PP

rormuiation, valia even in the absence of the second gerivatives p!

To the local coordinates invoked above in Q correspond local Coor-
dinates in the product manifold RxQ, denoted by (q°,q',..,q", with o
ranging through R. &Greek indices will take their values in {0,1,.,n}
and Zatin ones in {1,.,n}. Any motion t—p(t)eQ may equivalently be
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represented by the mapping t—»1(t)=(t, p(t))eRxQ. Let us equip the manifold
RxQ with a Riemannian metric, by adjoining to the above matrix g;, a row
and a column as follows: g, ,=0,, =0 1T x>0 and g,,=1.

Using Lagrange equations amounts to reduce the dynamics of the
system to that of a particle with unit mass, moving in the Riemannian
manifold Q. So, similarly to what has been done in Sec4, we shall
associate with every continuous motion p:R—=>Q its gresence measure
9€D’°(RxQ,IR+). This equals the functional assigning to every
q)d)"([RxQ,lR) the real number JRq)(n(t))dt. Then, 8-almost every point of
RxQ has the form E=m(t), teR. Provided that the functions p', or
- {R,R), one may assign to
such a E the welocity components UW(E)=T*(t) (observe that u°-=-1),
defining the element u(E) of the tangent space (RxQ). If, more specially,
the functions p', or equivalently the functions m*, belong to W, :2, the
products u*¢® belong to L, (RxQ,8;R), ensuring that the real measures
c*®= y*uP8 make sense. These are the components of the tensor measure
C=u®ub, an element of D‘O(RxQ,(RxQ)‘G)S((RxQ)‘) called as before
the «inetic tensor measure. If (7.6) is used to express the components
(eun)a, elements of I)"(leQ,!R), one finds, if B=i>0,

(equC)=gy C*y + (g, -3 9 )"

equivalently the functions %, belong to W

For B=0, there simply comes out
(equCly =(u¥e) .

This is the divergence of the vector measure u8 (a concept independent of
the Riemanhian metric). Similarly to the Galilean case, ué may be called
the /mass current and its divergence the mass /nput . Here, the same
integration by part as in Sec. 4 yields that this divergence vanishes
(8.3) div(u6) = (equC),=0.
The reason of this fact is that the w/ndow we are using equals the whole of
RxQ.

If p' happens to belong to W2 (R, R), the same integration by parts as
in (45) yields that Cj“.k equals the real measure q)-—»JR bj(t)tp(n(t))dt. So,
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(equC), 1s found equal to the real measure w»fRLi(t)cp(n(t)dt, where L,
denotes the left-hand member of (8.2). This shows that, in such a smooth
case, the Lagrange equations are equivalent to the writing

(8.4) equC= F,

where the element F of D"(leQ,!RxQ"‘) is defined as follows: the
components F. , i>0, equal the measures defined on RxQ as the functionals
oL T (1) o(m(t)) dt and, by convention, Fo=0.

We thererore propose to accept (84) as governing the ayunamics orf

the considered system in /ess smooth situations too.

Let the covector distribution F be a measure, nonnecessarily
admitting as above a density relative to 8. There comes out, as in Sec.4,
that a motion satisfies (8.4) if and only if t—p't) are functions with
derivatives bielbv(!R,lR), verifying the measure dirrerential equations
corresponding to (8.2), namely
(8.5) G0+ (g4 -39 PPN dt=mU(F )

This includes in particular the traditional treatment of shoecks, by
means of the concept of percussion. The connection of this extension of
Analytical Dynamics with the principle of Hamilton will be made clear in
Sec.11.

In particular, the confinement of the system by a boundary, as
introduced in Sec.6, may be analyzed in the present setting Let the
permitted region of RxQ be defined by the inequality b(E)<0, with
becz(leQ,lR) At every point of the limiting hypersurface S={L€RxQ:
b(£)=0]} it is assumed that at least one of the partial derivatives b’i, for
i>0, do not vanish. Such an inequality naturally arises when one expresses,
in the framework of Analytical Dynamics, the mutual impenetrability of
two parts of the investigated system in physical space, or also the confi-
nement of one of these parts by some external obstacle. Let us split the
distribution F, in (8.4), into the sum of a term E, representing regular
efforts, and of a term R corresponding to possible contact or impact
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effects. Depending on the circumstances which prevail in physical space,
the law governing R may happen to be similar to what has been formulated
in Definition 6.1, conferring to the hypersurface S of RxQ the status of
an Jaeal boundary .

With a view to precisely transpose Definition 6.1, let us denote by ﬂo
the set of the test fields r)efD'(leQ,(PxQ)‘) satisfying the two following
conditions:

(8.6) VEERxQ : n’(E)=0,
(8.7) YEES : nkE).Vb(E)=0
(the dot refers to the pairing of the tangent space and the cotangent space

at every point of RxQ).

DEFINITION 8.1. 70e consraered uniiateral constraint will be sa/aideal /7
the reasio’/ity or an element R or D’ "RxQ,RxQ’*) 7or representing the
associated contact or Impact errects is characterized by

(8.8) R,=0,

(8.9) nea, - <R,n<0

in common applications, this is found equivalent to the fact that, in
physical space, the possible contact or impact of the concerned bodies
displays no rriction nor adhesion

Using this property in order to eliminate R, one obtains:

PROPOSITION 8.2. 7he motion with kinetic tensor measure C /S
aynamically reasible in the presence of the above unilateral constraint v
and onty ir

(8.10) vneAa, : <equC-E,n><0.

In the line of Prop. 6.2, condition (8.10) is found to imply that
equC-E is a measure. Therefore, as soon it is ascertained that also E is a
measure, the functions t— bi(t) corresponding to such a motion belong to
1bv(R, R).

Incidentally, in view of the definition of "equ”, (8.10) is equivalent to
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(8.11) VneA, : CE,n>+<C,defn>>0.

The special case where the function b 1s a constant with regard Lo
t deserves notice. Due to the scleronomy assumption, this happens, in
particular, if the inequality b<O expresses the mutual impenetrability of
two parts of the system in physical space or also if it expresses the
confinement of some of these parts by a 77xed external obstacle. Then, one
may introduce, instead of A, the set A defined by imposing on n the
condition (8.7) alone. In view of (8.3) and because the component of rank
zero of E has been assumed to vanish, there comes out that (8.10), in this
case, is equivalent to
(8.12) ¥neA :  <equC-E,n><0.

Let us stress that the preceding provides only an expression of
Dynamics. In the case of impact, condition (8.10) has to be complemented
with some phenomenological shock /aw, e.g. the assumptions that bounces
are e/astic or that they are sos¢.

9. The transport technique.

Let M be a Cd—manifold, d>2, with dimension n. A vector field
neDY(M, M"), 1<0<d-1, may be seen as he velocity rield of a continuous
medium A, in motion throughout M. This means that, for every element A
of A, canedl a particle, the placement mapping T—p(T,AEM is a solution

to dx/dt=n(x), a differential equation in M. In other words

ap(T,A\)
(9.1 = JA)
) P n(p(T,\))

holds for every T€R and every A€A. Both members are elements of the
tangent space to M at point p(T,\). Here, time is denoted by T, in order to
prevent, in further applications, any confusion with the time variable t of
Dynamics.

Through the use of local coordinates in M, (9.1) is reduced to a
differential equation in R". Standard facts, concerning the dependence of
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solutions with regard to initial conditions, imply the following. Denote by
b, the mapping A—>p(T,A) of A onto M. One finds that, for every Tand T in
R, the mapping pt,opt‘1 is a C’-diffeomorphism of M (leaving invariant
every point of M\suppn).

An equivalent statement is that the continuvous meaium N may bOé
equipped with the structure of aC°- airferential manirold in such a wal/
that every mapping ., weR, /s a C°- dirreomorphism or A anto M.

Clearly here, the medium A is considered only from the kinematical
standpoint, without referring to any material realization.

More generally, n may also depend on the time T, this variable
ranging, instead of the whole of R, in some open real interval 1 (containing
0). The smoothness assumption made in this case is that the vector field
A—>n(T,A\) has its support contained in a tT-constant compact subset of M
and that the vector field (t,\)—=(1,n(T, A)) of the product manifold IxM is
C°.

DEFINITION 9.1. Such manifoid as A above whose motion over M /s
aderined through some velocity rield neD° (M, M), possibly depending on T
s called a carrier ol order .

Every object of the C%-differential geometry of A possesses under
each diffeomorphism Pes TEl, an /mage or push-rorward, which is an object
of the same nature in the C%-differential geometry of M (recall that
0gd-1). A tfdependent object in M, equal to the image under Py of some
T-constant object in A, is called g moving object convected by the
carrier A. This agrees with the meaning that the word "convected” has in
Continuum Mechanics.

Consider, in particular, a specified particle NeA and a specified
element x of the tangent space A). The C° mapping p;: A—M induces a
linear mapping of A, to M;)(t,)\)’ said dangent to p_ at point A; we shall
denote this linear mapping by p’(T,A) (or 3p(t,A)/dA, while the other
partial derivative, namely dp(t,A)/3T, will be denoted by p(T,\); the
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latter, an element of M, is the velocity of the moving point T—>p(T, A)).
Applying p'(T,A\) to x yields, for every T, an element c(T) of .’M’D(IN which
naturally will be called @ moving vector in M, attached to the moving
point T— p(T,\) and convected by A. Symmetrically, a fixed element x”
could be chosen in the cotangent space A’}. Because p _ is a
diffeomorphism, it induces a linear mapping of this space onto M';(M),
namely the inverse transpose of p'(T,A); the image obtained of x*is a
moving covector, say c*(T), convected by A. In general, some fixed element
in the tensor product of an arbitrary number of copies of A} and A7
yields, as image, a /moving tensor of the same type in M, attached to the
moving point T—>p(T,\)) and said convected by A.

PROPOSITION 9.2. With regard to lecal coordinales <Y M, et a
moving vector ¢, convected by N, have components c(t). These are C°
runctions or T, with 1irst gerivatives

ac'

(9.2) —-n.d,
ot Vi

where the partial derivatives n" i or the components ar the velocity rield
or A are calculated at paint p(T, ).
Symmetrically, the components ¢, (1) of a convected covector c*
are C° runctions or ©, with rirst derivatives
ac, .
(9.3) 3% r}‘,kc].‘ .

Proof. The element x of A, may be identified with the derivative at r=0 of
a differentiable function r— A(r)eA, defined on a neighbourhood of 0 in R,
and such that MO)=X. Put X(T,r)=p(t, A(M). In view of the definition of the
image of x, the component ¢'(T) of this image equals the partial derivative
a>'<'/ar, calculated for r=0. Now T— X(t,r) is, for every r, the motion in M
of the particle A(r) of A, so this function makes a solution to the diffe-
rential equation (9.1). Then (9.2) is nothing but the classical formula
governing the dependence of such a solution with regard to the parameter r
(this formula is simply established by putting the differential equation into
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integral form, and by deriving the integral relatively to r). The derivation
relative to T may actually be performed ¢ times, because the functions Iy
are C%, by assumption.

Furthermore, if ¢ and ¢* respectively are a vector and a covector,
convected by A, attached to the same particle A, then cc’=x.x"is a
constant with regard to T. Hence, taking derivatives relatively to T, one
obtains c¥cl+ckcr=0 for every such pair. By identification this implies
(9.3), provided that the existence of é; is secured. The latter existence may
be established by successively taking as x the n elements of a base in
A This yields n convected vectors denoted by Cy),....Cq,. The components
¢, verify n linear equations cz)c;:constant. The matrix c{‘i) is nonsingular
and its elements are differentiable functions of T. Hence the same is true

for its inverse, so the proof is complete, O

REMARK 9.3. The above holds even if n depends on T, under the
smoothness assumptions made before Definition 9.1. More generally,
formulas similar to (9.2) and (9.3) express the T-derivatives of the
components of a canvected tensor of any sort, attached to the moving point
T->p(T, ). For instance, if C‘j(t) are the components of a convected tensor
of second order and mixed type, one has

(‘:ij _ r)i’k ij _ Dk'jcik'

REMARK 9.4. The derivatives dc'/dT in (9.2) do not make the components
of a vector which would be associated with the moving vector T-»c(T) in a
way independent of the coordinates in use. In fact, since ¢(T) is an element
of M ) @ T-dependent space, 1t can possess a T-derivative only with
reference to some connection in the manifold M. Let us observe however
that, in usual Continuum Mechanics, M happens to be the familiar Euclidean
three-dimensional space. In this special case, (9.2) expresses the compo-
nents of the same vector whichever is the Cartesian (nonnecessarily
orthonormal) coordinate system in use. This vector simply is the derivative

of T—»c(T) withregard to the standard connection of the familiar Euclidean
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space.

What precedes concerns /oca/ objects, associated with a fixed AeA.
Let us now consider t-constant /7e/ds of the manifold A.

For instance, let a vector field A—>C(N€A) be given, first without
adding any smoothness assumption. The push-forward of this field under
the diffeomorphism pI:/\—ﬂv{ is naturally defined as the vector field z(T,.),
assigning to every x in M the element p'(T, AXZ(A)) of M, with )\:p;'(x),
This t-dependent vector field on M will be said convected by the carrier
A. Formula (9.2) yields the derivative of the real function t—»z‘(t,pt(x)),
for A fixed in A. The existence of the derivative of t—»z‘(t,x), for x fixed in
M, is conditioned by additional smoothness assumptions. In fact, if the
functions z' are C', the chain rule yields

37'(1T,x) -
e UL T

where all terms in the right-hand side are evaluated at point (T,x). Since

2(T,x), for fixed x, belongs whichever is T to the same linear space M.,
this expresses the components of dz(t,x)/dT, a vector independent of the
coordinates used. It is well known as the [/e bracket of the vector fields z
andn.

As other examples of fields in M convected by A, one may consider
the images under P, of a covector field and of a scalar field, both defined in
A independently of T. In particular, it turns out that, if the tT-dependent
element s, of C'(M,R) Is convected, its gragient Vs eCo(M,M™) is 2

convected covector field.

Strictly, the roles of M and A cannot be exchanged, since the diffe-
rentiability order of A, by construction, is smaller than that of M.
However, one may symmetrically start with a t-constant vector field
zeC'(M,M ) and consider its pull-back wunder p., a T-dependent vector
field A—>C (T, MeA] In A Through standard arguments of Differential Calcu-
lus, the differentiability properties found in the preceding imply that, for
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every fixed A, the derivative (ac(t,x)/at)ho exists. As a function of A, it
makes an element of C%(A,A). The C° vector field in M obtained as its
push-forward under Po is nothing but the /7e derivative an‘

Differential Geometers are used to define the Lie derivation
associated with a vector field n through the consideration of the //ow,
or evalution aperator, generated by n, without explicitely introducing the
moving manifold A. The present equivalent construction should look more
familiar to Continuum Mechanists and, in our views, makes the further
proofs easier.

As another example, let us consider, instead of a vector field, the
tensor field g used in Sec.7 to define in M a Riemannian metric. IS
pull-back under p_ is a t-dependent tensor field )\»xt(Me/\”‘®sA”‘. This
corresponds to the t-dependent Riemannian metric induced on A by each of
its placements in M. There comes out that the t-derivative {{1 exists. Its
push-forward under P, 15 the Lre gerivative Lng‘ Thereby is explained the
connection of the latter with the time-rate of deformation of the

continuous medium.

Let us terminate this section by observing that the pull-back and the
push-forward, under a diffeomorphism of adequate order, may also be
defined for tensor aistributions Consider, for instance, an element © of
DOUANON), fe. a doubly contravariant tensor measure on A. By
associating with every xeDYUA,A*® A™) its push-forward, say p(x),
under the diffeomorphism p_: A—-M, one defines a one-to-one linear
mapping of this space to DOMM>*@M™), bi-continuous in the
pseudo-topologies we have referred to in Sec.7. Then, the push-forward
szt(@) is defined as the element of D‘O(M,M’t&w{‘) such that

VDA, A ® A"): <T,p (x)>=<8, x>
If © is T-constant, then T is called g dvubly contravariant tensor measure
maoving in M, convected by the carrier A.
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10. A variational formula.
As in Sec.7, let us equip the manifold M with a Riemannian metric by

fixing an element g of C"(M,M™®_ M ™). Let T€ D'O(M,M’@DSM’), ie Tisa
doubly contravariant symmetric tensor measure on M. At the first stage,
this tensor measure will, for simplicity, be assumed to have campact
syppart. Then Jg:dT :Jga@dT“@ is a meaningful real number that we shall
call the ¢race integral of T, relative to the Riemannian metric of M. We
are going to study the t-derivative of this real functional when the tensor

measure T is convected by a carrier.

PROPOSITION 10.1. Let T denote a - depending avubly contravariant
symmetric tensor measure , with compact support in M, convected by a
carrier with velocity rield neD (M, M), Then

d
(10.1) (—EJ'g:dTX:—2<equTt,r)>.

Proof. By assumption, T, equals the push-forward under p, of some
T-constant @ei)'o(/\,/\‘®s/\’). Denoting, as before, by y' the pull-back of g
under p_, one has
Jpg0:0T =] e
Because © is a tT-constant tensor measure with compact support, the
T-derivative of the right-hand member equals IA{;‘:d@. Justifying this
derivation rests on the use of local coordinates in A. Since the support of ©
is compact, it is covered by the domains of a finite collection of local
charts of /\A; by invoking an adequate partition of unity, one 15 reduced to
the case of a single chart. The mean value theorem and the uniform
continuity of the components of y* imply that this vector field equals the
T-derivative of y*in the sense of the pseudo-topology of Ilo(/\,/\"‘@s/\"‘).
Now, pushing forward by P, one obtains
[ \¥:08 = 2], defn:dT = 2T, def n>=-2<equT,n>. 0

REMARK 10.2. The velocity field n above may depend on T, under the same
smoothness assumptions as in in Sec.9, involving that, for every T in the
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concerned interval, the support of n is contained in a fixed compact subset
K of M.

The extension of Prop. 10.1 to a measure T with non compact support
is only a matter of definition. Since the integral on the left-hand side of
(10.1) is no more sure to make sense, a real function «eDUM,R) with
value 1 throughout K is to be chosen. Applying (10.1) to the tensor measure
T yields a Joca/ version of Prop. 10.1; only the choice of o has to be
adapted to that of n.

11. Hamilton's principle.
Various statements, concerning systems of finite freedom or conti-

nuous media, have been placed under this name. Also the status of the for-
mulated assertions varies, depending on authors, from that of an occasional
corollary to that of the very basis of Dynamics.

The general idea is to characterize the dynamically feasible motions
by a property of the variations that a certain real functional undergoes,
when the investigated motion is submitted to a certain class of alterations.
In the line of what precedes, we are going to perform such alterations
through the transport by carriers. The connection of our "equ” formulation
of Dynamics with statements of Hamilton's style will thus be made clear.

For brevity, let us restrict ourselves to the setting of Sec.8. A motion
of the investigated system is described as a w,‘of mapping Tt R->RxQ. A
time interval [t,,t,] is specified and, in the manifold RxQ, we shall use as
window the open band

W={(0®,MERQ: ty<a’<t,}.
The components C*® of the corresponding kinetic tensor measure consist of
the functionals
(11.1) o] IOROemA
[t. 4]
Consequently, the trace integral of C equals



(112) Joac=|  gamuynmdo at
In this context, Proposition 10.1 yields a characterization of the dynami-

cally feasible motions in the following variational form.

PROPOSITION 11.1.  7re aistribution equality (8.4), governing lhe
dynamics of the consigered system, holds in the open subset W or RxQ
Irand only Ir, Tor every carrier with velocity rield neD (W,(RxQ)), ane
has

(11.3) -‘2—(5‘3‘:0jgzdct = -<F,

Here C_ aenotes the doubly contravariant tensor measure, convected by

the carrier, which reauces to C ror t=0.

In order to compare this statement with Hamilton's principle, let us
now consider the kinetic part of the #ami/tonian action functional, namely,
for every Pew'([t,,t,],Q)

(11.4) AP = Eat =4
[to:t4] [to.t4]

Due to the definition, given in Sec.8, of the matrix Gyp: ONE has

g, (PN PHIPKL) dt.

(11.5) Lgrac=ardit,-to)

Since the term %—(t,—t o) remains constant in the considered varfations, we
have to compare the transport of C, invoked in the above Proposition, with
the application to A of the traditional procedure of the Calculus of
Variations. 'The latter consists in imbedding the investigated motion
t—p(t)eQ into a family depending on an additional real parameter, that we
shall also denote by T, say (t, T)—P(t, 1), such that
(11.6) vt:  P(t,0)=p(t),
(11.7) VT:  Plt,, D=p(ty), P, D=pt,).

Now, a way of constructing P consists in introducing a carr/er in
RxQ and making it transport the point T(t)=(t,p(1)). Let us specially define
this carrier by a velocity field neD(W,(RxQ)") whose component o rank
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Fero vanishes; this may be called an Zsechronous carrier, since its flow
preserves each submanifold q®= constant of W. For every value of the real
variable T in some neighbourhood of zero, let us denote by y  the
corresponding transport mapping. In other words qxt(qo,q) is the position at
T of the carrier particle whose placement at 1=0 equals the element
(qo,q) of W. Then define P through

(11.8) y (L, p(t) =(t,P(t, T)).

Conditions (11.6) and (11.7) clearly are satisfied.

Observe that t—(t,p(1))=1(t) is a chain of points in RxQ which, if the
traditional smoothness assumptions of the Calculus of Variations are made,
depend in a C' way on the real variable t. Its derivative is the vector
(1,p(tH="(t), an element of the tangent space (RxQ)y=RxQ )
Evaluating, for every T, the derivative of t—TI(t,T)=(1,P(t,T)) yields an
element of RxQp ., Sy TI(t, ©)=(1,P(t,T)). In view of the definition (11.8)
of P, this makes, for fixed t and with T playing the role of time, @ moving
vector convected by the carrier, such that TI(t,0)=Ti(t).

Similarly, the presence measure of t—TI(t,T), namely the T-depen-
dent functional assigning to every cpEDO(W,!R) the real number J(p(ﬂ(t,t))dt,
is convected by the carrier and reduces, for T=0, to the presence measure
of t—1i(t). As a consequence, the kinetic tensor measure of t—[I(t,T) is
convected by the carrier and reduces for T=0 to the kinetic tensor measure
of t—m(t). By identifying this tensor measure with C_in Prop.11.1, one
concludes that, if t—p(t) is a dynamically feasible motion of the system,
one has, inview of (11.5),

(11.9) (E%) AP(, ) = -<F,0)>

1=0
In order to recover from this equality the principle of Hamilton in its

traditional form one has to make the special assumption that the
distribution F expresses efforts deriving from a (time-independent)
potential energy runction, say UeC'(W,R). This means that F=-(VU)8,
where 6 denotes the presence measure. Since, by construction,
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n(P(t,TN=08P(t,T)/3T, the right-hand member of (11.9) is found equal to
(d/dt)tzojU(P(t,t))dt. S0, the classical Hamilton action has zero derivative

at t=0 in the course of the considered transport.

The foregoing was only meant to explain the connection of Prop. 11.1
with Hamilton's principle, without attempting to establish any precise
equivalence. Actually the two statements have different scopes. Prop.11.1
properly pertains to Aensmooth Dynamics .

In particular, this Proposition may be applied, in the line of Secs.6
and 8, to motions submitted, with possible shocks, to the /ageal unilateral
constraint defined by the inequality b(E)<O0. Again, we shall split F into
the sum of a term E, representing regularly distributed efforts, and a term
R, arising from contact or impact. Let E derive from a potential energy
U(t,q). wWe are going to consider carriers whose velocity field n belong to
the set denoted by A, in Sec.8, i.e. these carriers are rsochronous and, at
every boundary point of the permitted region, they flow in the ovtward
direction. Then, similarly to Prop. 8.2, one obtains

PROPOSITION 11.2. Lef P pe related through (11.8) to the investigated
motion p . The latter is dyamically reasible in the presence of lhe
consigered unilateral constraint 11 and onty ir the inequality

(11.10) (ad;) j[t

ladc -
O’H][?g.dct U(t,P(t,T]dt> 0
1=0

holds ror every carrier with velocity rield neA,.

As in Sec.8, one observes that, if the functions b and U are constant
with regard to t, the set A, may equivalently be replaced by A, ie the
considered carriers need not be isochronous.

Of course, one may alternatively reverse the inequality in the
definition (8.7) of A,, provided that inequality (11.10) is also reversed.
Introducing, in that way, carriers whose flow at the boundary is directed
inward might look more natural. But it would ruin the prospect of
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investigating solutions through minimization arguments. In fact, the study
of the second derivative with respect to T [15], when the support of 1) is
contained in the interior of the permitted region, shows that minimization,

in the present context, can by no means be exchanged with maximization.
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