
HAL Id: hal-01789013
https://hal.science/hal-01789013v1

Submitted on 9 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability, Convergence and Optimization of Interface
Treatments in Weak and Strong Thermal

Fluid-Structure Interaction
R. Moretti, Marc-Paul Errera, Vincent Couaillier, Frédéric Feyel

To cite this version:
R. Moretti, Marc-Paul Errera, Vincent Couaillier, Frédéric Feyel. Stability, Convergence and Op-
timization of Interface Treatments in Weak and Strong Thermal Fluid-Structure Interaction. In-
ternational Journal of Thermal Sciences, 2017, 126, pp.23 - 37. �10.1016/j.ijthermalsci.2017.12.014�.
�hal-01789013�

https://hal.science/hal-01789013v1
https://hal.archives-ouvertes.fr


 1 

Stability, Convergence and Optimization of Interface Treatments in  
Weak and Strong Thermal Fluid-Structure Interaction 

 
Rocco Moretti (1),  Marc-Paul Errera (*) (2), Vincent Couaillier (3) , Frédéric Feyel (4) 

 

(1) ONERA, The French Aerospace Lab, France, Email: rocco.moretti@onera.fr 
 (2) ONERA, The French Aerospace Lab, France, Email: marc.errera@onera.fr 

(3) ONERA, The French Aerospace Lab, France, Email: vincent.couaillier@onera.fr 
(4) SafranTech, Safran Group, France, Email: frederic.feyel@safrangroup.com 

 
Abstract - This paper presents the stability, convergence and optimization characteristics of interface treatments for 
steady conjugate heat transfer problems. The Dirichlet-Robin and Neumann-Robin procedures are presented in detail 
and compared on the basis of the Godunov-Ryabenkii normal mode analysis theory applied to a canonical aero-thermal 
coupling prototype. Two fundamental parameters are introduced, a "numerical" Biot number that controls the stability 
process and an optimal coupling coefficient that ensures unconditional stability. This coefficient is derived from a 
transition of the amplification factor. A comparative study of these two treatments is made in order to implement 
numerical schemes based on adaptive and local coupling coefficients, with no arbitrary relaxation parameters, and with 
no assumptions on the temporal advancement of the fluid domain. The coupled numerical test case illustrates that the 
optimal Dirichlet-Robin interface conditions provide effective and oscillation-free solutions for low and moderate fluid-
structure interactions. Moreover, the computation time is slightly shorter than the time required for a CFD computation 
only. However, for higher fluid-structure interactions, a Neumann interface condition on the fluid side presents good 
numerical properties so that no relaxation coefficients are required. 

Keywords - Conjugate heat transfer, optimal coefficients, Dirichlet, Neumann, Robin, stability 
 

Nomenclature 

a thermal diffusivity [m2.s-1] 
Bi Biot number 

)(∆Bi  mesh Biot number 

νBi  numerical Biot number 

D Fourier number 

 D  normalized Fourier number 
 F  inviscid and viscous flux 

g  temporal amplification factor 
h heat transfer coefficient [W.m-2.K-1] 
n coupling iteration 
ɛ error tolerance 
λ thermal conductivity [W.m-1.K-1] 
K thermal conductance [W.m-2.K-1] 
N number of cells at interface cells 
q heat flux [W.m-2] 
t time [s] 
T temperature [K] 
Γ thermal conductivity matrix  
w fluid conservative quantity  
y+ non-dimensional wall distance 
z complex variable 
α coupling coefficient [W.m-2.K-1] 
κ spatial amplification factor 
ν FVM/FEM parameter 

 ρ density [Kg.m-3] 
Λ  characteristic size [m] 
 Ω domain/partition 

y∆  size 1st cell   [m] 

t∆  time step  [s] 
 
Subscripts 
c coupled 
f fluid domain 
s solid domain 
ref reference value 
ν numerical 

fν   inward unit normal to the fluid domain 

sν   inward unit normal to the solid domain 
 
Superscripts 
n temporal index 
min minimum  
max maximum  
opt optimal 
( )•̂      unknown value 
 
 



1. Introduction 
 

Conjugate heat transfer (CHT) analysis is a simulation process that addresses the thermal 
interaction between a body and a fluid flowing over or through it. Conjugate heat transfer problems 
occur whenever fluid convection and solid material conduction are taken into account 
simultaneously. The concept of "conjugated problems" was first formulated in the early 1960s by 
Perelman [1]. As a result, heat transfer has been often investigated as a coupled problem [2] since 
this mutual interaction has become increasingly important in many numerical simulations.  

 
CHT analysis can be performed in a monolithic manner in which the equations are solved 

simultaneously in a single solver [3][4] but such an approach is not flexible and cannot be pursued 
with commercial codes. In contrast, partitioned techniques allow the direct use of a specialized 
solver for each subdomain, offering significant benefits in terms of efficiency and code reuse. In 
this strategy, the solution is advanced in time separately within each partition [5][6][7].  

 
However, the time lag due to the sequential treatment in partitioned procedures can have a 

detrimental effect on the stability and performance leading to slow convergence. In a fluid-structure 
interaction (FSI), this staggered process generally leads to spurious energy production. Specific 
numerical treatments are proposed in the literature to overcome these difficulties. Examples include 
a combined interface boundary condition, proposed by Jaiman et al. [8][9], an interface correction 
controlled by a coupling parameter [10] and the use of a specific partitioned algorithm in 
conjunction with a relevant Robin condition [11]. 

 
In CHT, we experience the same problems and constraints. There are many similarities 

between FSI and CHT. A variety of approaches have been employed based on finite elements, finite 
volumes, boundary elements and spectral approximations [12]-[17]. Numerical methods are also 
required to counteract the intrinsic destabilizing effect of the time lag and time discrepancy between 
each sub-domain. It is likewise standard to enforce continuity at the interface between the fluid and 
the solid. This can be achieved by using one or two coupling coefficients that control stability. 
Many papers in CHT have sought to improve the interface conditions by adopting simple model 
problems from which the interface conditions and coupling coefficients can be derived. 

 
In many cases, the model problems show that the structure of complex multiphysics systems is 

often as important as the behavior of the individual components themselves. Indeed, fluid and solid 
domains can interact in many different ways. Model problems are a means to understand and 
quantify these dynamic interactions. For instance, in FSI, the added-mass was highlighted by 
Causin et al. [18] from a simplified model problem. Using a different model problem and a normal 
mode analysis, Banks and Sjögreen [19] obtained a similar result. Similarly, in CHT, the nature of 
the instabilities derived from a simplified 1D model provides insights into the potential instabilities 
in 2D/3D flows.  

 
The behavior of the interface conditions in CHT is also often studied using a normal mode 

analysis. For instance, the pioneering work of Giles [20], the new procedure applied to CHT 
proposed by Roe et al. [21], the composite grid solver introduced by Henshaw and Chand [22] and 
the stability analysis in transient CHT presented by Kazemi-Kamyab et al. [23]. An interesting 
alternative is the steady-state approach described by Verstraete and Scholl [24]. It should be 
mentioned that there are other methods of investigation, such as the energy method, to analyze well-
posedness and stability [25]. 
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By using a thermal model problem, Errera and Chemin [26] have identified a numerical 

transition that can be expressed mathematically. This fundamental result has been derived from a 
normal mode stability analysis based on the theory of Godunov-Ryabenkii [27][28][29]. This 
transition results in an optimal coefficient in terms of stability and convergence.  

 
The formulation of the optimal coefficient was published relatively recently. Consequently few 

CHT computations have been reported, that take advantage of it. However, some interesting results 
have been reported. For instance, in a steady CHT computation of an effusion cooling system [30], 
the CPU time necessary to converge was divided by a factor of ten, in contrast to a conventional 
method. In another work devoted to testing systematically the values of various coupling 
coefficients [31], it was shown that the optimal coefficient in combination with a Dirichlet-Robin 
procedure (temperature prescribed to the fluid sub-domain) could be applied in an efficient manner 
as a tool for predicting and obtaining excellent stability properties. This result was confirmed 
recently in a complex set-up of a heating cell found in various industrial applications (conveyors, 
reheat furnaces). A systematic comparison of various coefficients was undertaken and it was shown 
that the optimal coefficient outperformed the previous results in the literature [32]. In transient CHT 
problems, optimal coefficients can also be applied to analyze heat transfer during a full transient 
flight cycle as shown in [33] where specific numerical characteristics at the interface were provided.  

 
Previous studies suggest that the one-dimensional normal mode analysis could provide relevant 

coefficients directly applicable to industrial CHT problems. These promising results have been 
obtained by using Dirichlet-Robin conditions, a method widely used in the literature. However, 
ideally, Robin conditions on either side of the interface should be considered because they introduce 
local simplified models whether for FSI [18] [34] or CHT [35]. Yet, this general Robin-Robin 
interface condition results in a very large family of schemes and we prefer, as a first step, to 
consider the two conditions that form the basis of this general approach. Thus, the present paper is 
confined to two complementary interface treatments : 

- A Dirichlet-Robin procedure : the temperature obtained from the solid is applied on the fluid 
side, and a "relaxed heat flux" is in turn used as a boundary condition for the solid. 

- A Neumann-Robin procedure : the heat flux obtained from the solid is applied on the fluid 
side and a Robin condition is in turn used as a boundary condition for the solid. 

 
The above CHT interface procedures are the most commonly used conditions in the literature. 

The goal of this paper is to present them in detail and to provide, for the first time, their remarkable 
properties, in particular the temporal and spatial amplification factor, instability zones, upper and 
lower stability bounds and optimal coefficients on the basis of a canonical coupling prototype. 
These results will be summarized in tables where the numerical properties are evaluated according 
to the nature of the fluid-solid interaction. Moreover, a comparative study of these two treatments 
will be made in order to implement efficient numerical schemes, that is to say schemes based on 
adaptive and local coupling coefficients, with no arbitrary relaxation parameters and with no 
assumptions on the temporal progression of the fluid domain. 

 
The paper is composed as follows. The theoretical study is presented first (Section 2) and the 

precise conditions to obtain optimal coefficients are provided. Then, the numerical Dirichlet-Robin 
transmission procedure is described: The advantages and disadvantages of this specific scheme are 
presented along with the appropriate numerical treatments for optimization (Section 3). To enhance 
further the numerical efficiency of the coupled approach, we put forward another complementary 
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numerical alternative, a Neumann-Robin procedure and the remarkable properties of this condition 
are provided for the first time (Section 4). These two interface procedures are then briefly compared 
(Section 5). This strategy is illustrated via a CHT test case (Section 6), emphasizing the stability and 
convergence properties of the coupling schemes under weak/moderate (Section 7) and strong 
(Section 8) thermal fluid-structure interaction. 

 

2. GOVERNING EQUATION AND COUPLING MODEL  

2.1. Finite volume fluid solver 

In the fluid domain, fΩ , the Reynolds-Averaged Navier-Stokes (RANS) equations are solved. 

The governing equations are the time-dependent Navier-Stokes (NS) equations which express the 
conservation laws written in the conservation form as   

( )[ ] 0=⋅∇+
∂

∂
f

f F
t

w
w

                 in fΩ  (1) 
 

where fw represents the vector of mass, momentum and energy quantities, F represents the flux 

including inviscid and viscous terms. The inviscid terms are solved using a second-order upwind 
spatial discretization. The viscous terms are discretized with a five-point central difference 
formulation. The time integration is obtained by an implicit method. 
 
2.2. Finite element solid solver 

In the solid domain, sΩ , if there are no heat sources, the steady temperature is modeled as a 

balance of thermal transport governed by the conductive heat transport equation  

( )  0=∇⋅Γ⋅∇ T in sΩ  (2) 
 

where ),,,( tzyxTT = is the unknown temperature field and Γ  is the thermal conductivity matrix. 
Assuming the thermal conductivity to be constant, the steady diffusion equation in the solid is 
reduced to the Laplace equation 0=∆T , i.e. an elliptic PDE over sΩ . 

 
2.3. Partitioned CHT procedure 

The partitioned CHT strategy employed hereafter is motivated by the desire to obtain a fast 
and stable steady solution to the fluid-structure thermal problem. The basic conventional serial 
staggered (CSS) algorithm, composed of 4 steps (see Figure 1) was implemented here to 
sequentially execute the CFD and the conduction solver. However, other partitioned fluid-thermal 
schemes could also be used [38].  
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2.4. Temporal steady coupling strategy 

      The fluid and solid domains operate on different time scales and the thermal response of the solid is 
generally very long. As a result, if only a fluid-solid steady solution is sought, the numerical coupling 
strategy should not take into account the unsteady diffusion of the solid material that causes no effect 
on the steady solution. So, in the solid, the steady solution of the heat equation can be obtained easily 
and directly from the Laplace equation. On the contrary, in a fluid domain, the steady-state Navier-
Stokes equations (laminar or RANS) are generally solved by a time-marching scheme. As a result, if 
the two above-mentioned approaches perform well as single sub-systems they should be taken together 
in a coupled system. This means that the intermediate temporal solutions are not physically 
meaningful. This "steady strategy" is adopted in the current paper. Note that this is a commonly used 
fluid-solid methodology when only a steady state is sought [24][26][36][37]. This approach does 
require however a special attention to stability issues. 

 
2.5.  Coupling model 

The coupling model is composed of two partitions with a shared interface. A schematic of both 
domains with node numbering is shown in Figure 2 (solid 0≤y , fluid 0≥y ). A uniform grid on 
either side of the interface is employed.  The boundary conditions at this interface are presented in 
the next paragraph. 

 
 

Figure 1.  CSS (Conventional Serial Staggered) algorithm  
 

Figure 2. Problem discretization for the 1D model (solid 0≤y , fluid 0≥y ).   
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2.6. Interface conditions 

Assuming that the convection term is negligible in the first fluid cell (no velocity component 
normal to the F-S interface in 2D and 3D flows), the CHT problem may be modelled through a 
simple one-dimensional thermally coupled problem. The equations in both domains are then 
solved through the CSS algorithm, with interface data being exchanged at each coupling iteration. 

 
At the F-S interface a general Robin transmission condition on the solid side, leads to the 

equation  

fffsfs TqTq αα +−=+ ˆˆ  (3) 
 

 where q  is the normal heat flux, T is the temperature and α  is a coupling coefficient; the super-

imposed hat symbol (^) denotes the sought values. Note that ssss TKq ν∂∂−= . is the normal solid 

heat flux and ffff TKq ν∂∂−= . ( fν  and sν  are inward-pointing unit normals, sf νν −= ) where K 

is the thermal conductance. 
 

Analogously, the same type of interface condition can be defined on the fluid side : 

sssfsf TqTq αα +−=+ ˆˆ  (4) 
 

Applying the right hand side of Eq.(4) as a boundary condition on the fluid domain, might pose a 
technical challenge for most research and commercial CFD packages that employ a reference 
temperature. As a result, Eq.(4) can easily be rewritten in the following form  

)ˆ(ˆ fs
s

s
sf TT

q
q −








+−=

α
α  (5) 

 

2.7. Temporal and spatial amplification factors 

The Godunov-Ryabenkii theory is used to analyze the stability of the coupled fluid-solid 
procedure because it includes the effects of boundary conditions on the numerical stability of the 
problem. 

 
The first step of the stability analysis consists in introducing normal mode solutions in the 

discrete model equations. These are the transient energy equation in the fluid and the steady heat 
conduction in the solid, with Robin conditions on both sides of the interface. The second step consists 
in considering the eigensolutions of the discrete problem. After elementary transformations not 
reported in this paper (see details in [26]), the temporal amplification factor )(zg  (i.e. each mode 

increases in amplitude by the ratio )(zg  ) can be expressed as follows   

))((

))((

))((

)(
)(

fssf

ssff
f

fssf

fsf

KK

KK

KK

K
zgz

αα
αα

κ
αα

αα
++
−−

+
++

+
==  (6) 

 
where fff yK ∆= νλ ( 21=ν in a FVM and 1=ν in a FEM ) and sssK Λ= λ are the thermal fluid 

and solid thermal conductances, respectively. The temporal amplification factor depends upon the 
complex function ),( fff Dzκκ = :  
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1
2

1
1

2

1
1),(

2

−












 −+−−+==
zD

z

zD

z
zD

ff
fff κκ  (7) 

 

This function is thus solution of a quadratic equation obtained from the interior scheme ( )0>j  in the 

fluid domain [26]. fD denotes the mesh Fourier number defined by  

2
fcff ytaD ∆∆=  (8) 

 
where fa  is the fluid thermal diffusivity and ct∆  is the coupling time step. The mesh Fourier number 

characterizes the heat conduction in the layer mesh of the transient domain.  
 
For simplicity, we define the function fD  representing a normalized Fourier number in terms of fD  

ff

f
ff

DD

D
zD

211
)1(

+++
=−== κ  (9) 

 

fD  describes the interval [ [∞+,0  as fD ranges over [ [1,0 .  

 

2.8. Stability analysis and transition 
 

As can be seen from (6) and (7) , the complex function g  is a complicated nonlinear equation 
in z. According to the normal mode stability theory, the approximation is stable only if no non-
trivial solutions to the equation )(zgz =  exist for 1≥z . Using the corollary of the maximum 

modulus principle in complex analysis, it can be shown that the condition )(zgz ≠ for 1≥z  is 

automatically satisfied if { } 1max
1

<
=

g
z

. In addition, the maximum { }g
z 1

max
=

 is obtained either at the 

points 1+=z  or 1−=z  (see [26][31]). Moreover, when "specified conditions" are met, there is a 
sudden transition from one point to another resulting in an amplification factor composed of two 
half-lines with a singular point at the intersection of these two lines. At this intersection the 
amplification factor turns back and attains an absolute minimum that is always located in the stable 
zone. The point where the maximum is transferred is a fundamental transition in aerothermal 
coupling.  
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3. DIRICHLET-ROBIN INTERFACE CONDITIONS 

3.1. Stability behavior 

The Dirichlet-Robin conditions{ }∞=≥ sf αα ;0  in Eqs. (3) and (4) are considered in this 

section. These conditions are frequently used in the literature. This procedure is also referred to as 
the coefficient forward temperature back (hFTB) method [24] [37][39]. 

 
3.2. Optimal coefficient 

The existence of a transition value for fα  is highlighted. At this transition, the shape of the 

curve changes, resulting in the lowest amplification factor. This value, denoted )(opt
fα , is given by 

)1(
2

)(
f

fopt
f D

K
−=α  (10) 

 
Note that this coefficient exists unconditionally. In other words, there is always, in the Dirichlet-
Robin procedure, a positive coefficient fα  satisfying Eq.(10).  

3.3. Mesh Biot number  

The stability condition 1),,( <∞=sfzg αα  applied to Eq. (6) leads to the following lower 

stability bound  

2
)1(

2
min s

f
f

f

K
D

K
−−=α  (11) 

 
which can also take the form  

[ ]1)1(
2

)(min −−= ∆
f

s
f DBi

Kα  (12) 
 

In this equation, we have introduced the dimensionless number 

domain solid  theof econductanc thermal

cell fluid1st   theof econductanc thermal)()( =
Λ
∆

==∆

ss

ff

s

f y

K

K
Bi

λ
νλ

 (13) 
 

)(∆Bi may be regarded as a mesh Biot number (or local Biot number) representing the thermal fluid-
structure interaction.  
 

3.4. Numerical Biot number 

We can now introduce another dimensionless numberνBi : 

)1()(
fDBiBi −= ∆

ν  (14) 
 

This parameter takes into account the coupling time step via the Fourier number. This 
dimensionless number is defined at any coupling iteration of a CHT computation and results from a 
balance between the unsteady fluid and steady solid domain properties. νBi is a local representation 

of the thermal fluid-structure coupling and plays a key role in the stability analysis. In the literature, 
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a conventional Biot number is used, requiring a heat transfer coefficient to be defined at steady 
state. We will explain the difference between these two numbers in subsection 3.6 .   

 
 From Eq. (12) and (14), two zones can be considered. The first zone is defined by  

1)1()( ≤−= ∆
fDBiBiν  (15) 

 
When this condition holds, the CHT procedure is stable for any positive value of fα , in particular 

for 0=fα . Thus, a Dirichlet-Neumann transmission condition can be used with no relaxation and 

without affecting the stability of the coupled problem.  
 

The second zone is 

1)1()( ≥−= ∆
fDBiBiν  (16) 

 
When this condition holds, the CHT procedure is inherently prone to instability and a 

relaxation coupling coefficient must be used such that min
ff αα > .  

The function { }gmax , i.e. the maximum value the amplification factor may take, is plotted in 

Figure 3 as a function of the coupling coefficient ( 0≥fα ), for two different mesh Biot numbers 

and the same Fourier number fD  ( 53.0=fD ). Note that this function is defined and continuous and 

that each curve is composed of two half-lines with a singular point similar to a cusp at the 
intersection. At )(opt

ff αα = , the two branches of the amplification factor join. At this remarkable 

value, the amplification factor attains its absolute minimum. 
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Figure 3 illustrates the general trends just discussed, for two different numerical Biot numbers.  
 
The main results of this stability analysis are summarized in Table 1. At low or moderate 

values of fα , the amplification factor is partly outside the stability domain for 86.1=νBi  (first row 

in Table 1) and completely inside the stability domain for 65.0=νBi  (second row in Table 1). The 

fundamental role of )(opt
fα  in controlling and guiding the behavior of the two curves is highlighted.  

Figure 3.  Temporal amplification factor of Dirichlet-Robin condition for mesh Biot numbers 
Blue curve : unconditionally stable (low Fluid-Structure interaction) and optimal coefficient 

Red curve  : conditionally stable (higher F-S interaction) and optimal coefficient 
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fα   0   min
fα  ---------------- opt

fα  -----------------
- 

∞  c o n d i t i o n  

g  0g  
U N S T A B L E 

  1  
 
 

optg  

   1 
1)1()( ≥−∆

fDBi  

g  
0g   

 
 

optg  
     

 1 
1)1()( ≤−∆

fDBi  

                       )1()(0
fDBig −= ∆                             )1(

2
1)1(

2

)()(

ff
opt D

Bi
D

Bi
g −+−=

∆∆

 

  

  
 

 
 

 
 The mathematical expression of the optimal coefficient was already presented in [26][31]. 
However, the other numerical properties of the Dirichlet-Robin transmission conditions (Table 1) 
have never been published before. 

 
Table 1 shows that, as long as the transient effects are predominant, the unconditional stability 

of the coupling procedure without relaxation can always be ensured by increasing fD  (and hence 

fD ) such that condition (15) holds. Otherwise, a certain level of relaxation is needed and the 

optimal level is provided by the choice of the optimal coefficient (Eq. (10)).    
 

3.5. Numerical Biot number and nature of the interface treatment 

The theoretical results proposed in this paper have the widest practical effect of reducing the 
CPU time and ensuring unconditional stability. Indeed, the following amplification factor is 
obtained  

1),(
)(

)(
)( <

+
=

opt
fs

opt
fopt

f
K

zg
α

α
α  (17) 

 
As a result, the optimal coefficient always provides a stable procedure and the lowest amplification 
factor.  

3.6. Conventional and numerical Biot number 

The current study introduces a "numerical" Biot number and particular emphasis was placed 
on its key role in the stability process. This numerical Biot number takes into account the thermal 
response of the first point of the boundary layer and directly participates in the stability of the 
coupled process (see Figure 4). It is worth noting that diffusion, on the fluid side, dominates and 
guides the coupling process, as long as transient effects prevail. 

 
The conventional Biot number defined by  

sK

h
Bi =  (18) 

 

           Table 1 : Numerical behavior of  Dirichlet-Robin procedure vs fα  ( )0; ≥∞= fs αα  
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is a criterion that gives a direct indication of the relative importance of the conduction and 
convection processes. It measures the resistance to heat flow within the solid relative to the 
resistance presented by the convection processes at the surface (see Figure 4). As a result, this 
number is a key parameter that determines the stability of the F-S equilibrium [24] [31]. However, 
this parameter, which strictly speaking is not defined during the fluid transients, cannot be used to 
set up a numerical CHT procedure, as long as a transient fluid state is involved in this procedure. 

 

 

 

 

 

 

 

 

 

 

 

  
 
 

3.7. The "optimal" coefficient : a dynamic approach 

As already mentioned, the Dirichlet-Robin procedure is widely used but the success of its 
application depends on finding a relevant coupling coefficient. It is often pointed out that a trade-off 
between computing time and stability must be considered. The results reported in this paper allow 
us to analyze the advantages and disadvantages of the effects of any other coupling coefficient of 
the Dirichlet-Robin condition. In the literature, various methods or values for this coefficient are 
presented.  

 
As long as fluid transient effects are predominant, it may be tempting to employ the fluid 

temperature in the first grid cell as a reference temperature. As a result, the local coupling 
coefficient becomes 

ff K=α  (19) 
 

This coefficient, proposed by Heselhaus [40], is always located in the stability zone (right side 
of the curves in Figure 3). However, it is a static coefficient that does not take into account the 
transient effect - represented by )1( fD− - of the fluid flow between two coupling instants. Thus, 

this coefficient over-emphasizes the stability component of the coupling process compared with its 
computational time, especially for a large Fourier number (large coupling time step), and results 
most often in a prohibitive CPU time. 

 

 

 
sS

ff y
Bi

Λ
∆

=∆

λ
νλ .)(   "mesh" Biot number 

sSk

h
Bi

Λ
=  "conventional"  Biot number 

 SOLID 
FLUID 

Tref 
sΛ  

 

Figure 4 - Mesh and conventional Biot numbers 

fy∆
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Without the assistance of a mathematical tool, such as a stability analysis, the choice of a 

relaxation parameter is made through trial and error. A small value of the coefficient will provide a 
large change in the wall temperature at each coupling and can lead to a faster procedure. However, 
Eq (12) shows that a coupling coefficient must be larger than min

fα , in other words, higher than the 

difference between the "transient" thermal conductance )1( ff DK − of the flow and the static solid 

thermal conductancesK .  

Two points should be noted :  

(1) In CHT, the ratio of the thermal conductivities 
sf

λλ plays an important role.  However, this 

ratio does not take the characteristic lengths of the two media into account. It is therefore preferable 
to introduce the mesh Biot number defined by (13). 

(2) In addition to the above considerations, the stabilizing effect of the coupling time step is the 
result of the Fourier number (Eq.(8)) or its normalized version (Eq. (9)). The combination of this 
term and the mesh Biot number provides the numerical Biot number (Eq. (14)) that can also be 
interpreted as the y-intercept of the amplification factor curves shown in Figure 3. It can also be 
regarded as a dynamic measure of the strength of the "transient" thermal F-S interaction. This 
number is a key factor in the stability analysis.   
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4. NEUMANN-ROBIN INTERFACE CONDITIONS  
4.1. Stability bounds  

The Neumann-Robin conditions{ }0;0 =≥ sf αα  in Eqs (3) and (4) are considered in the 

following. This procedure is also referred to as the coefficient forward flux back (hFFB) method 

[24][37][39]. The stability condition 1),( <fzg α  applied to Eq. (6) leads, after some basic calculus 

manipulations, to an upper stability bound max
fα  

)1(

2max

ffs

fs
f DKK

KK

+−
=α = 

)1(1

2
)(

f

f

DBi

K

+− ∆  (20) 
 

The coupling coefficient is always positive. As a result, two stability regions are highlighted : 
 
• 1)1()( ≥+∆

fDBi  : the coupling process is stable 0≥∀ fα  

• 1)1()( ≤+∆
fDBi  : the coupling procedure exhibits the upper stability bound max

fα  

 

4.2. Optimal procedure 

The optimal coefficient, )(opt
fα , is given by   

)1(2

2)(

ffs

fsopt
f DKK

KK

+−
=α = 

)1(2

2
)(

f

f

DBi

K

+− ∆  (21) 
 

Note that this time, in the Neumann-Robin procedure, a positive coefficient )(opt
fα  can only be 

defined conditionally if  

2)1()( ≤+∆
fDBi  (22) 

 
Thus, in the framework of the Neumann-Robin procedure, three zones can be identified. The 

first zone exhibits an upper stability limit defined by (20). In this zone, there is an optimal 
coefficient )(opt

fα for which the modulus of the amplification factor attains an absolute minimum.  

 
The second zone is very narrow. It also presents an optimal coefficient, but in contrast to the 

previous case, there is no stability bound. 
 
The third zone is also unconditionally stable, but no optimal coefficient can be defined. That is 

to say the minimum of the amplification factor is obtained for ∞=fα  (Neumann-Dirichlet 

procedure-heat flux imposed on the fluid side and temperature imposed on the solid side). The 
amplification factor is here a monotone function.   

 
These three zones are clearly illustrated by the three curves depicted in Figure 5.  
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4.3. Summary 

The general behavior of the Neumann-Robin coupling procedure for steady CHT is illustrated, 
in terms of fα  in Table 2. At low thermal F-S interaction, the amplification factor is partly outside 

the stability domain (first row in Table 2) and completely inside the stability domain for higher 
thermal interactions (second row in Table 2). These two functions present an optimal coefficient. 
On the contrary, for very high F-S interactions, the curve is totally inside the stability domain and 
no optimal coefficient can be defined (third row in Table 2). 

 
 

Figure 5.  Temporal amplification factor of Neumann-Robin condition for three mesh Biot numbers 
        Red curve  : conditionally stable (low F-S interaction) and optimal coefficient 

Green curve : unconditionally stable (moderate F-S interaction) and optimal coefficient 
Blue curve  : unconditionally stable (high F-S interaction) and no optimal coefficient 
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To the best of our knowledge, the mathematical expression of the upper stability bound, the 
expression of the so-called optimal coefficient, as well as the numerical properties of the Neumann-
Robin transmission conditions have never been published before. 
 
4.4. Stabilizing effect of the Fourier number 

As discussed before, the two interface conditions considered in this paper may be regarded as 
two complementary conditions. The first is unconditionally stable at small numerical Biot numbers 
whereas the second is unconditionally stable at large numerical Biot numbers.  

 

4.5. Overlapping zone 

The two interface conditions exhibit an overlapping zone in which both may be considered 
stable. Given the stability limits presented in the preceding sections, there is a visibly overlapping 
zone where both procedures are unconditionally stable. This zone is defined by  

ff D
Bi

D −
≤≤

+
∆

1

1

1

1 )(  (23) 
 

This overlapping zone becomes narrower as the normalized Fourier number fD  gets smaller. 

Conversely, this zone becomes significantly extended for large Fourier numbers. 
 

5. SUMMARY 

It is often argued that, for stability reasons, the best choice in a partitioned CHT approach is the 
classical Dirichlet-Neumann scheme, i.e. where the fluid is supplemented with the Dirichlet 
condition (temperature) on the fluid side. Nevertheless, the theoretical approach in Sections 3 & 4 
shows that the situation is not quite so simple or straightforward, and that there are even arguments 
against this statement. A short summary is provided below. 

 
Two different cases must be considered. 
 

 (1) Fluid transient effects are predominant 
 
This is the most general situation and no assumptions on the temporal advancement of the fluid 

domain are required. Special attention must thus be given to condition (15) 

                   Table 2 : Numerical behavior of Neumann-Robin procedure vs fα ( )0;0 ≥= fs αα  
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( 1)1()( ≤−= ∆
fDBiBiν ). If this condition holds, the "transient" thermal resistance of the fluid 

domain at the shared interface is greater than the resistance offered by the whole solid domain. A 
Dirichlet condition on the fluid side is therefore appropriate.  

 
If, in contrast, condition (16) holds )1)1(( )( ≥−= ∆

fDBiBiν , and in extreme cases where 

1>>νBi , then it is implied either that the solid thermal gradients are not negligible or that the 

thermal fluid conductance is larger than that of the solid. In this case, a Dirichlet condition imposed 
on the fluid is unlikely to provide the most efficient solution, even though the optimal coefficient is 
able theoretically to stabilize and optimize the procedure. The test case presented in Section 6 will 
serve as an illustration. 

 
It should however be underlined that there is a powerful argument in favour of the Dirichlet 

condition. Indeed, the term )1( fD−  may become as small as necessary and thus the unconditional 

stability condition 1)1()( ≤−∆
fDBi  (2nd row of Table 1) can always be satisfied. As a result, the 

stability bound can theoretically be removed by an appropriate choice of fD , i.e. by an appropriate 

choice of the time step. Conversely, in the condition 1)1()( ≤+∆
fDBi  (1st row in Table 2), the term 

)1( fD+  has no stabilizing effect. 

 
Nevertheless, we must not forget that for large )(∆Bi and for a given (small) time step, the 

Dirichlet condition on the fluid side is prone to instability (1st row of Table 1), i.e. the part of the 
left-half line in Figure 3 is greater than unity. 
 
 (2) Steady-like fluid solutions  
 

The heat transfer coefficient h  is often used [36] [41] [42] in this situation, when the fluid 
domain is updated only after a sufficient level of advancement in time. The fluid solution is not 
necessarily fully converged. The implementation of this heat transfer coefficient can only be 
defined after a sufficient number of fluid iterations have been carried out between two coupling 
instants. On this basis, a steady-like fluid state can be considered ( 0≈fD ). From (12) the stability 

condition of the steady F-S equilibrium is thus given by   

)1(
2

)(
2

1 −=−> Bi
K

Kh s
sfα  (24) 

 
where Bi  is the conventional Biot number (18). 

Consequently, the coefficient hf =α  satisfies the stability condition (24), thereby providing a 

better understanding of why this choice can be appropriate (but not optimal). Keep in mind, 
however, that this procedure is valid only if the fluid transient thermal effect becomes negligible. 
 

Using the conventional Biot number instead of the mesh Biot number, Eq. (24) reveals two types 
of thermal interaction at steady state : 

 
• 1<Bi : The stability condition (24) is automatically fulfilled for any positive coupling 

coefficient fα . 
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• 1>Bi : The stability condition is given by (24).  
 

This stability condition appears only when a temperature is imposed on the fluid side. At 
1>Bi , the CHT procedure becomes unconditionally stable when the heat flux (Neumann condition) 

is imposed (no stability bound as shown in the 3rd row of Table 2). 
 

However we would like to point out once again that, although the conditions based on the 
conventional Biot number are theoretically valid to determine the stability of the fluid-solid 
equilibrium at steady-state, they are not appropriate to characterize the stability properties during a 
coupling process when fluid transient effects are not negligible. In addition, choosing a relevant 
reference temperature is a delicate task. As a result, the choice of the heat transfer coefficient, h, is 
questionable. 
 

Finally, it is worth noting that these conclusions are valid for a steady CHT procedure in which 
a transient (or steady-like) fluid solution is used. For other coupled aero-thermal problems, stability 
considerations must be considered specifically [33]. 
 
 
6.  TEST CASE 

6.1. CHT tests 

In the following, computing results are presented to illustrate the importance of the interface 
treatment in CHT problems. This has been studied employing the Dirichlet-Robin conditions with 
an emphasis on the optimal treatment. Then, Neumann conditions were employed on the fluid side 
in accordance with the conditions highlighted in this paper.  

 
6.2. Numerical tools  

The solid solver : The computer code in the solid, called Zébulon [43], is a three-dimensional 
finite-element code. It is an advanced object-parallel code for structural mechanics with many non-
linear solution capabilities. Zébulon can solve many types of heat transfer problems and particularly 
those in which the temperature field is calculated with no consideration of the stress/deformation in 
the overall structure. Only this solver will be employed in the study presented in this paper. 

 
The fluid solver : elsA is a multi-application CFD simulation platform dealing with internal 

and external aerodynamics from the low subsonic to the high supersonic flow regime [44][45][46]. 
The compressible 3-D Reynolds averaged Navier-Stokes equations for arbitrary moving bodies are 
solved by a cell centered finite-volume method with second order upwind or central space 
discretization containing scalar or matrix artificial dissipation on multi-block structured meshes. A 
high flexibility in the multi-block approach is achieved in elsA through the patched grid, 
hierarchical mesh refinement and Chimera techniques. The discrete equations are integrated either 
by multistage Runge-Kutta schemes with implicit residual smoothing, or (which in general leads to 
a better efficiency) by backward Euler integration with implicit LU schemes. A large variety of 
turbulence models are available, ranging from eddy viscosity to full differential Reynolds stress 
models, which include options for Detached Eddy Simulation (DES) and Large Eddy Simulation 
(LES). Various transition models are also available for complex geometry configurations. The elsA 
software package includes an important module for dealing with aeroelasticity. Also, a module 
dealing with calculation of gradients by linearized equation or by adjoint solver techniques is very 
useful for aerodynamic optimization. 
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The coupling library : The coupling between these two computer codes has been carried out 

through the coupling library CWIPI [47], developed by ONERA. CWIPI (Coupling  With  
Interpolation  Parallel  Interface)  is  a  library  that  makes  it  possible  to  couple  an arbitrary 
number of parallel  codes  with  MPI  communications. Coupling is made through an exchange zone 
that can be discretized in a different way on any coupled code. Linear, surface or volume couplings 
are available. CWIPI takes into account all types of geometrical elements (polygon, polyhedral); 
there is no requirement about the mesh nature.  

 

6.3. Test case 

The interface treatments presented so far are now applied to an academic simple 2D test case. 
We consider the problem of convective heat transfer over, and the conduction heat transfer within, a 
flat plate. The geometry and boundary conditions are illustrated in figure 6.  

 

 

 

 
6.3.1. Fluid domain 

The fluid domain is a rectangular channel 500 mm long with a symmetry boundary condition 
on the upper side. In the z-direction, there are no gradients. The interaction between the inlet and the 
viscous wall boundary conditions creates a singularity at the point where these two boundary 
conditions join. This singularity could generate numerical instabilities in the coupling process. 
Thus, a buffer zone with an adiabatic wall enables us to remove this singularity and to have a well-
established fluid flow at the coupled interface. The presence of an adiabatic viscous wall induces a 
thermal leading edge at the flat plate.    

 
Turbulent air flows from the inlet to interact with the upper wall of the solid plate (coupled 

interface), before exiting. A near wall well-refined mesh (y+~1) was employed to correctly capture 
the flow boundary layer. That gives us the optimal calculation of the heat transfer. Most 
importantly, the convection contribution on the coupling process can be neglected (hypothesis of 
the 1D model), so no wall functions have been employed. Figure 7 shows a part of the fluid-solid 
mesh which is extremely refined at the interface (∆yf =5.4·10-5 m). 
The temperature of the fluid is 1200 K, i.e. 200 K higher than the initial temperature of the flat 
plate.  

Figure 6.  2D test case  
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The mesh illustrated in Figure 8 has been adapted to capture a fairly high exchange coefficient 

at the leading edge of the coupled interface. In fact a refined mesh in the x-direction near the 
leading edge gives a better estimation of the shear stresses in the leading edge (theoretically 
infinite).  

 

 

 
 
Figure 9 shows the heat transfer coefficient, h, along the flat plate obtained with the grid of 

Figure 8. The refinement (∆xf = 3.3.10-4 m) is sufficient at the leading edge to obtain a coefficient 

Figure 7.  Fluid-solid mesh near the leading edge of the flat plate.  
The red and blue meshes are the coupled fluid and solid meshes respectively. The green one 

is the buffer zone mesh. 

Figure 8.  Refined fluid mesh at the Leading Edge 
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that varies from 3938 to 111. This interval is large enough to test this coefficient on the following 
test cases.  

 
6.3.2. Solid domain 

The solid domain is a rectangular flat plate, 3 mm thick and 350 mm long, i.e. the same sizes 
as the coupled fluid domain. The external faces of the solid plate are supposed to be adiabatic and a 
constant temperature (1000 K) is imposed on the lower side of the solid. The solid contains 10 
mesh-points uniformly distributed in the y-direction (see Figure 7). 

 
6.3.3. Interface  

The coupling interface is 350 mm long and is composed of 60 elements. The fluid and the solid 
meshes are coincident at the interface (see Figure 7). This precaution was taken to avoid any spatial 
grid-to-grid interpolation error and to focus the numerical study on stability issues. 
 

6.3.4. Temporal parameters 

The coupled simulations were performed using the temporal parameters presented in Table 3. 
     

ft∆ (s) ct∆ (s) fD  fD  )1( fD−  

3. 10-5 6. 10-4 400. 0.93 0.07 
 
 

6.3.5. Convergence Criterion 

The convergence criterion (error tolerance or stopping criterion) used in this paper is based on 
the infinity norm of the absolute interface temperature, defined by 

 
 

Figure 9.  Heat transfer coefficient h, along the flat plate. 

         Table 3 : Temporal parameters 
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where n is the coupling iteration and i represents the spatial index along the fluid interface (Nf 
faces).  We will consider a simulation to have converged if :  

 
ε<∆ fT          with   310−=ε  

 

(26) 
 

6.3.6. Solid thermal conductivity and thermal F-S interaction 

The previous sections have shown that the numerical interface methods are directly dependent 
on the numerical Biot number. As the interest here is on implementing adaptive local schemes, it is 
fundamental to cover a broad range of different Biot numbers and ideally within the same flow 
field.  

 
In the next two sections, the behavior of the interface conditions is studied with different 

materials by varying the solid conduction coefficient λs, i.e. the mesh and numerical Biot number. 
The following test cases are classified in two separate categories in accordance with the theory 
presented in the previous sections : 

 
(1) Weak/moderate thermal interaction 
(2) Strong thermal interaction. 

 
For the weak/moderate F-S interaction, the Dirichlet-Robin interface condition is well-suited. For 
higher interactions, another interface treatment using the Neumann-Dirichlet condition will also be 
considered.
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7. Weak and Moderate Thermal Fluid-Structure Interaction 

7.1. Amplification factors 

Weak thermal interactions are characterized by low values of the numerical Biot number. To 
determine this, we should look at the amplification factor shown in Figure 10. 

 

 
 
 

 
The numerical Biot number represents the y-intercept ( 0=fα ). The higher this value, the 

greater the amplification factor. As can be seen, a weak thermal interaction case ( .10=sλ W.m-1.K- 1) 
along with two moderate ones ( 5.2=sλ  and 5.0=sλ ) are considered. The curve for the weak thermal 

case is entirely within the stable area ( ( ) 1max <g  ) as the blue curve with square markers in Figure 

10 shows. Thus, according to the model problem, it must be stable for all values of the fα  

coefficient. For the other two cases, the left side of the curve is partly in the unstable zone and 
therefore should not be stable for low values of the coupling coefficient ( min

ff αα < ).  

     Figure 10. Amplification factor for three weak thermal interaction cases 
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7.2. Dirichlet-Robin interface conditions 

Four coupling coefficients are used for the three test cases: 

 (0) 0=fα  (Dirichlet - Neumann interface condition) 

 (1) )(opt
ff αα =  

 (2) )(10 opt
ff αα ⋅=  

 (3) )(opt
fff K αα >=   

 
In the case of a weak thermal interaction, the Dirichlet-Robin interface condition is clearly the 

most relevant as we have demonstrated in section 3. In Table 4, numerical numbers characterizing 
the thermal interaction are presented, namely the solid thermal conduction coefficient sλ , the mesh 
Biot number Bi(∆) and the numerical Biot number Biν for the test case considered. In the same table, 
the number of coupling iterations needed to reach convergence is indicated.  

 
Parameters Iterations to converge ( 310−=ε ) 

sλ  sK  
 

)(∆Bi  
Eq.(13) 

νBi  
Eq.(14) 

0=fα  )(opt
ff αα =  )(*.10 opt

ff αα =  ff K=α  

10. 3333. 6.6 0.5 62 62 65 76 

2.5 833. 27.3 1.9 71 72 102 216 

0.5 166. 141.5 9.4 Crash 
at the 4th it. 

84 250 591 

 
 
   
The convergence history for the four values of the coupling coefficient, fα , is shown in 

Figures 11, 12 and 13, by plotting the interface temperature residuals, as a function of the coupling 
iteration. As might be anticipated, the convergence history largely depends on the value of the 
coupling coefficient. In weak thermal F-S interactions (Figure 11), there are no significant 
differences for low values of the coupling coefficient fα  and it can be seen that the trends marked 

by the two lines 0=fα  and )(opt
ff αα =  are roughly the same. For high values of the coupling 

parameter, convergence is a little slower, but at a tolerable level, even with ff K=α where a linear 

convergence is observed.  

          Table 4 : Numerical properties and convergence for weak & moderate thermal interaction 
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In the same manner as outlined above, in moderate thermal F-S interactions )9.1( =νBi , there 

are no major differences for low values of the coupling coefficient fα  as shown in Figure 12. 

However, this time, note that the computation for 0=fα  is supposed to be unstable according to 

the model problem (first row of Table 1). These discrepancies may be due to some stabilizing effect 
generated by the flow, not included in the theoretical model. It is necessary nevertheless to specify 
that even if convergence is rapidly reached, important oscillations of the interface temperature near 
the leading edge are observed during the initial phase of the coupling process for this value. On the 
contrary, for )(opt

ff αα = , the temperature behavior is oscillation-free. For bigger values of fα , 

stable CHT computations are obtained, but they take a little longer.  
 

Figure 11. Convergence vs coupling iterations (λs = 10 W.m-1.K- 1 - 5.0=νBi ) 
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For a higher thermal F-S interaction )4.9( =νBi , as expected, 0=fα  leads to divergent 

computations after the 4th coupling iteration (Figure 13). The other three coefficients result in stable 
computations. The fastest convergence is obtained for )(opt

ff αα = . For ff K=α , the coupling 

process is so slow that its convergence, at 310−=∆ fT K, cannot be represented in this Figure. This 

indicates that the fluid-solid system tends to be "frozen" and thus, this over-stable solution becomes 
prohibitive. Clearly, the higher the thermal interaction, the more attention must be paid to the choice 
of the boundary conditions (at least with a Dirichlet condition imposed on the fluid side). 

   
 

 

Figure 12. Convergence vs coupling iterations (λs = 2.5 W.m-1.K- 1 - 9.1=νBi ) 
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In summary, these convergence behaviors were largely predictable from the model problem. As 

expected, )(opt
fα  appears to be the optimal choice, providing a monotonic, stable and fast 

convergence for all simulations.  
 

7.3. CHT simulation solution near the stability limit 

Now, emphasis is put on the last test case (with 5.0=sλ W.m-1.K- 1 and 4.9=νBi ) to analyze the 

interface temperature close to the stability limit. Three points of the coupling interface have been 
selected, namely the leading edge, the midpoint and the trailing edge. Three values of fα  have been 

specifically chosen near the stability limit ( .380=fα , .400=fα  and )(opt
ff αα = ) to illustrate some 

specific and interesting trends. The location of these points along the temporal amplification factor 
curve is shown in Figure 14. 

Figure 13. Convergence vs coupling iterations (λs = 0.5 W.m-1.K- 1 - 4.9=νBi ) 
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First of all, it is interesting to observe, for 380=fα , the very large oscillations (about 1000 K) 

of the interface temperature at the leading edge, that do not decay (Figure 15). For the other two 
points of the interface, the computation converges rapidly. Clearly, this constant value of fα  is too 

small to stabilize the coupled process at the leading edge but sufficient for the other two points.   
 
 

Figure 14. Amplification factor for λs = 0.5 W.m-1.K- 1 - 4.9=νBi  
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By slightly increasing the coefficient ( .400=fα ), the temperature oscillations at the leading edge 

are slowly damped (Figure 16). This is a good example of the need of a local coupling coefficient. 
 
 
 
 
 
 
 
 
 
    
 

 

Figure 15. Temperature vs coupling iteration at the leading edge for .380=fα  The dotted line 

indicates the temperature oscillation (one out of three points is shown) and the solid line 
highlights the bifurcation behavior. 
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Interesting results have been found when fα is taken as the heat transfer coefficient h (Figure 17). 

This is a common practice in the literature.  
 

Figure 16. Temperature vs coupling iterations for .400=fα  (one out of three points is shown).  
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The heat transfer coefficient h was calculated by: 

ref
n

i

n
in

if TT

q
h

−
==α  

(27) 

where the i-index indicates the point on the coupling surface and the n-index the current 
coupling iteration. refT is the reference temperature (we take it as the temperature of the incoming 

flow). In this case the fα coefficient is local. The resulting h evolution is similar to that shown in 

Figure 9. We can see that the leading edge area can be stabilized easily. However, it is not at all the 
case for the other two points located downstream where large oscillations can be observed. Indeed, 
at the leading edge, the heat transfer coefficient h is very large (see Figure 9) and thus located on 
the right-hand side of the amplification curve, i.e. in the stable zone (see red curve in Figure 10). 
Then, it decreases sharply and the resulting coefficient has a too small stabilizing effect (value 
located on the left-hand side of the amplification factor curve). This illustrates unambiguously that 
the "convective" heat transfer coefficient is unsuitable for stabilizing the F-S diffusion interaction. 

 

Figure 17. Temperature vs coupling iterations for α = h(x) (a point on three is shown)   
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The only way of preventing severe numerical problems in heterogeneous surfaces is to 
implement adaptive coefficients reflecting local coupling conditions. For instance, using the optimal 
coefficient )(opt

fα , the temperature over the whole surface is stable and fast-converging as shown in 

Figure 18.  
 
 

 
 
 
 
  

7.4. Use of hf =α  near convergence 

In section 5 it was suggested that the heat transfer coefficient ( hf =α ) could be used after a 

sufficient level of advancement in time. In other words, when the convective heat transfer is close to 
equilibrium with the solid conduction, but not perfectly converged.    
 
 
 
 

Figure 18. Temperature vs coupling iterations for )(opt
ff αα =   
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It was therefore decided to implement the optimal coefficient )(opt
fα  before switching to the 

condition hf =α  at a convergence level of 410−=ε (see Eq.(26)). Large and persistent oscillations 

suddenly occur, which means that the convective coefficient is not a relevant choice in this case 
(see Figure 19). As mentioned above, this coefficient produces under-relaxed solutions at the 
trailing edge, and this is confirmed even when the CHT solution is close to steady-state, i.e. quite 
converged. Furthermore, implementing a convective coefficient raises a fundamental issue, which is 
the choice of a relevant reference temperature.   
 

7.5. Comparison in performance between optimal CHT and CFD only 

Figure 20 shows the convergence history (residual of the mass density) between the CHT 
computation and a CFD only, with a given temperature prescribed at the interface.  
 

 

Figure 19. Convergence history of hf =α  from 410−=∆ fT  
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The small peaks that can be observed are simply attributable to the updating of the boundary 
conditions during the CHT process( )fc tt ∆=∆ 20 . Apart from these small differences, the two curves 

indicate the same tendencies. One even notices that CHT process based on the optimal coefficient is 
a bit quicker than the CFD only, as shown by the zoomed view in Figure 20. Here we compare only 
the number of CFD iterations necessary to converge without taking into consideration the solid 
iterations and the time taken for the MPI exchanges. This result can be explained by the fact that a 
temperature imposed in the CFD computation represents a perfect conducting condition while in the 
CHT computation, an ideal and local thermal conductance has been implemented at the F-S 
interface. 
 
 
 
 
 
 
 
 

Figure 20. Comparison of convergence history between CHT and CFD only  
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8. Strong Thermal Fluid-Structure Interaction  

8.1. Amplification factors 

The preceding results clearly show that, for a given transmission condition scheme (in this case 
Dirichlet-Robin), it is possible to optimize the numerical procedure in terms of stability and 
convergence. This optimization is already a significant achievement. However, as stated before, it is 
useful to know whether the Dirichlet-Robin procedure is the most appropriate scheme to be used. In 
the following test case, we will show that this procedure and the resulting optimal coefficient 
(Eq. (10)) are not always appropriate.  

 
Stability issues with the Dirichlet-Robin interface condition arise when the mesh Biot number 
)(∆Bi is too large. This is illustrated in Figure 21 where a zoomed view of the amplification factor is 

represented for four different thermal conductivities of increasingly insulating materials, i.e. 
reducing sλ , chosen for analysis.  

 

 
 

 
 
As expected, the amplification factor in weak thermal interaction cases (Figure 10) is 

appreciably lower (or slightly higher in the first part of the curve) than unity. However, it is the 
opposite for a strong thermal interaction where the mesh Biot number has a very high value. In this 
case, the minimum of the amplification factor (the optimal coefficient) is close to unity. As a result, 
the CFD model induces a little destabilizing effect shifting it into the unstable zone. The minimal 
value of  { }gmax  can be calculated by:  

{ }
)1(

2
1

)1(
2max )(

)(

1

f

f

z
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D
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−+

−
== ∆
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=
 (28) 

 

This high value indicates that a Dirichlet condition may be inappropriate. Of course, it can 
always be stabilized, as shown theoretically (through the time-dependent term )1( fD− ). However, 

this stabilization might come at a high cost and sometimes it is not possible because of destabilizing 

Figure 21. Amplification factor for three strong thermal interaction cases 
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effects induced by the flow, as mentioned previously. In this case, a natural physics-based approach 
consists in imposing a Neumann condition on the fluid side for strong thermal interaction.  

8.2. Comparison between the optimal Dirichlet-Robin and the Neumann-Dirichlet interface 
condition 

In Table 5 the numerical properties for Dirichlet-Robin and Neumann-Dirichlet interface 
conditions and the convergence iterations needed to converge, are shown. 

 
Iterations to converge ( 310−=ε ) Parameters 

Dirichlet-Robin )( ∞=sα  Neumann-Dirichlet )0( =sα  

sλ  sK  
 

)(∆Bi  
Eq.(13) 

νBi  
Eq.(14) 

)(opt
ff αα =  ff K=α  ∞=fα  

0.5 166. 141. 9.4 84 591 103 

0.16 53. 446. 28.9 273 815 105 

0.05 16.6 1645. 86.8 oscillations 830 109 

0.01 3.3 7161. 428. Crash at the 13th 

iteration 
516 104 

 
 
Figures 22, 23, 24 and 25 show the residual of the Neumann-Dirichlet (N-D) procedure as well 

as the convergence history of the optimal Dirichlet-Robin condition.  
 
 

 
Table 5 : Numerical proprieties and convergence iteration at 10 -3 in the cases with strong thermal interaction for the two 

boundary conditions. sα is the coupling coefficient on the fluid side. 
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Figure 22. Convergence vs coupling iterations (λs = 0.5 W.m-1.K- 1 - 4.9=νBi ) 
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Figure 23. Convergence vs coupling iterations (λs = 0.16 W.m-1.K- 1 - 9.28=νBi ) 
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Figure 24. Convergence vs coupling iterations (λs = 0.05 W.m-1.K- 1 - 8.86=νBi ) 
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Figure 25. Convergence vs coupling iterations (λs = 0.01 W.m-1.K- 1 - .428=νBi ) 

 

 
 

 

Figure 22 shows that for a moderate thermal interaction, the choice of the optimal Dirichlet- 
Robin is still the most efficient. However, if the mesh Biot number rises again, a degradation of the 
efficiency of the optimal Dirichlet-Robin interface condition is observed compared to the Neumann 
-Dirichlet one (Figure 23). This drop in performance becomes significant (273 coupling iterations 
are necessary for convergence for the optimal Dirichlet-Robin interface condition instead of 105 for 
the Neumann-Dirichlet condition). As the mesh Biot number increases further, the optimal 
Dirichlet-Robin does not achieve convergence (the temperature oscillates with an amplitude of 
1000 K at every coupling iteration) while the N-D condition is rapidly convergent (see Figure 24). 
For very high mesh Biot numbers, the performance of the N-D conditions remains almost the same, 
whereas the optimal Dirichlet-Robin condition diverges as shown in Figure 25.  

As a result, a Neumann-Dirichlet interface condition is more suitable to stabilize strong 
thermal interaction problems. These CHT computations highlight the importance of a relevant 
transmission procedure taking into account the heterogeneous nature of complex systems. Let us 
recall that the Neumann-Dirichlet procedure works without relaxation since there is no optimal 
coefficient for this condition at large numerical Biot number, as indicated by Table 2 and it shows 
the fastest convergence properties, when used appropriately for extremely large mesh Biot numbers.  
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9. CONCLUSION 

A simplified model problem was used as a basis to present the general expression of the 
amplification factor, the stability bounds, the optimal coefficient and the general numerical 
characteristics for two different interface procedures. It was shown that the numerical properties 
depend on the ratio of the fluid and solid thermal resistances and that the mesh Fourier number 
plays a crucial role. Furthermore, a numerical Biot number was introduced, and this number, in 
conjunction with the optimal coefficient, control the overall coupling process.  
 

The conditions that establish the nature and character of the most relevant interface approach were 
identified and expressed. The numerical Biot number can clearly be regarded as a good criterion to 
choose the most appropriate physics-based approach. This number characterizes the strength of the 
thermal fluid-structure interaction and guides the CHT process as long as transient effects prevail. 
This number is based on the thermal response of the first point of the boundary layer which directly 
participates in the coupling process. Consequently, the resulting coupling coefficients are reliable 
from the very initial instants in the fluid domain until convergence.   

 
Two possible scenarios were used to demonstrate the disparate thermal fluid-structure interaction 

provided by the CHT test case. As long as the numerical Biot number remains low or moderate, it was 
shown that the so-called optimal coefficient provides the best results in terms of stability and 
convergence in the Dirichlet-Robin procedure. This strategy can thus be used, regardless of the 
temporal evolution of the fluid domain, even when strong transient fluid effects are predominant. This 
adaptive and local coefficient makes it possible to avoid arbitrary relaxation coupling parameters. This 
strategy always gives stable and oscillation-free coupled solutions for this kind of fluid-structure 
interaction. Moreover, it is remarkable to note that the CHT computation time is even shorter than the 
time required for a CFD only computation in terms of fluid iterations. 

 
For higher values of the numerical Biot number, or in other words when thermal gradients within 

the solid become important, a Dirichlet condition on the fluid side can no longer be considered as a 
physics-based approach. In this case, a Neumann condition is a suitable interface condition presenting 
good numerical properties with no need for relaxation coefficients. This was shown theoretically in this 
paper and confirmed by the test cases. As a result, a strategy based on these two complementary 
conditions was presented. Great numerical efficiency and substantial savings in computing time could 
be attained by using an appropriate interface transmission condition instead of being limited to a 
single procedure. 
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