N
N

N

HAL

open science

Stability, Convergence and Optimization of Interface
Treatments in Weak and Strong Thermal
Fluid-Structure Interaction

R. Moretti, Marc-Paul Errera, Vincent Couaillier, Frédéric Feyel

» To cite this version:

R. Moretti, Marc-Paul Errera, Vincent Couaillier, Frédéric Feyel. Stability, Convergence and Op-

timization of Interface Treatments in Weak and Strong Thermal Fluid-Structure Interaction.

ternational Journal of Thermal Sciences, 2017, 126, pp.23 - 37.

hal-01789013

HAL Id: hal-01789013
https://hal.science/hal-01789013v1
Submitted on 9 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1016/j.ijthermalsci.2017.12.014 .


https://hal.science/hal-01789013v1
https://hal.archives-ouvertes.fr

Stability, Convergence and Optimization of Interface Treatmentsin
Weak and Strong Thermal Fluid-Structure Interaction

Rocco Moretti®?, Marc-Paul Errer® @, Vincent Couaillie® , Frédéric Feyéf’

) ONERA, The French Aerospace Lab, France, Email: rocco.moretti@onera.fr
2> ONERA, The French Aerospace Lab, France, Email: marc.errera@onera.fr

© ONERA, The French Aerospace Lab, France, Email: vincent.couaillier @onera.fr
“ SafranTech, Safran Group, France, Email: frederic.feyel @safrangroup.com

Abstract - This paper presents the stability, convergenceagtichization characteristics of interface treatnseforr
steady conjugate heat transfer problems. The DétdRobin and Neumann-Robin procedures are predeanteetalil
and compared on the basis of the Godunov-Ryabankinal mode analysis theory applied to a canomieab-thermal
coupling prototype. Two fundamental parametersiatreduced, a "numerical" Biot number that contriiie stability
process and an optimal coupling coefficient thaguees unconditional stability. This coefficientdsrived from a
transition of the amplification factor. A compaxatti study of these two treatments is made in ordemplement
numerical schemes based on adaptive and localingupefficients, with no arbitrary relaxation pareters, and with
no assumptions on the temporal advancement ofidiee domain. The coupled numerical test case ilaist that the
optimal Dirichlet-Robin interface conditions proeiéffective and oscillation-free solutions for lawd moderate fluid-
structure interactions. Moreover, the computatioretis slightly shorter than the time required &€FD computation
only. However, for higher fluid-structure interams, a Neumann interface condition on the fluice gjdesents good
numerical properties so that no relaxation coedfits are required.

Keywords - Conjugate heat transfer, optimal coefficients, @iket, Neumann, Robin, stability

Nomenclature

a thermal diffusivity[m?®.s”] p) density [Kg.nt]
Bi Biot number TAN characteristic sizfm]
Bi® mesh Biot number Q domain/partition
I,  numerical Biot number Ay S_'Ze Lstcell m]
Fourier number At time step [s]
_nor_me_llized Fqurier number Subscripts
inviscid and viscous flux c coupled
temporal amplification factor f fluid domain
heat transfer coefficiefitv.m?.K™| s solid domain
coupling iteration ref reference value
error tolerance N Y v numerical
thermal conductivitfW.m’ K" ] v, inward unit normal to the fluid domain
thermal conductand®V.m™.K™] ) . i )
% inward unit normal to the solid domain

number of cells at interface cells
heat flux]W.m?]

time [s]

temperature [K]

thermal conductivity matrix
fluid conservative quantity
non-dimensional wall distance
complex variable

coupling coefficient [W.ri1.K™]
spatial amplification factor
FVM/FEM parameter
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Superscripts
n temporal index

min minimum

max  maximum

opt optimal

(¥)  unknown value



1. Introduction

Conjugate heat transfer (CHT) analysis is a sindaprocess that addresses the thermal
interaction between a body and a fluid flowing ogethrough it. Conjugate heat transfer problems
occur whenever fluid convection and solid mater@nduction are taken into account
simultaneously. The concept of "conjugated problewss first formulated in the early 1960s by
Perelman [1]. As a result, heat transfer has bém investigated as a coupled problem [2] since
this mutual interaction has become increasinglyartgnt in many numerical simulations.

CHT analysis can be performed in a monolithic mannewhich the equations are solved
simultaneously in a single solver [3][4] but suchapproach is not flexible and cannot be pursued
with commercial codes. In contrast, partitionedhteqgues allow the direct use of a specialized
solver for each subdomain, offering significant &feés in terms of efficiency and code reuse. In
this strategy, the solution is advanced in timeasagely within each partition [5][6][7].

However, the time lag due to the sequential treatne partitioned procedures can have a
detrimental effect on the stability and performatezaing to slow convergence. In a fluid-structure
interaction (FSI), this staggered process genettalgs to spurious energy production. Specific
numerical treatments are proposed in the literatmm/ercome these difficulties. Examples include
a combined interface boundary condition, proposgddman et al. [8][9], an interface correction
controlled by a coupling parameter [10] and the w$ea specific partitioned algorithm in
conjunction with a relevant Robin condition [11].

In CHT, we experience the same problems and contsiraThere are many similarities
between FSI and CHT. A variety of approaches haenlemployed based on finite elements, finite
volumes, boundary elements and spectral approxamatjl2]-[17]. Numerical methods are also
required to counteract the intrinsic destabilizeffigct of the time lag and time discrepancy between
each sub-domain. It is likewise standard to enfeadinuity at the interface between the fluid and
the solid. This can be achieved by using one or ¢eapling coefficients that control stability.
Many papers in CHT have sought to improve the fater conditions by adopting simple model
problems from which the interface conditions andptmg coefficients can be derived.

In many cases, the model problems show that thetate of complex multiphysics systems is
often as important as the behavior of the indivicdieanponents themselves. Indeed, fluid and solid
domains can interact in many different ways. Mogdelblems are a means to understand and
guantify these dynamic interactions. For instanoefSl, the added-mass was highlighted by
Causin et al. [18] from a simplified model probledsing a different model problem and a normal
mode analysis, Banks and Sjégreen [19] obtainachéas result. Similarly, in CHT, the nature of
the instabilities derived from a simplified 1D mogeovides insights into the potential instabiliie
in 2D/3D flows.

The behavior of the interface conditions in CHTalso often studied using a normal mode
analysis. For instance, the pioneering work of &il20], the new procedure applied to CHT
proposed by Roe et al. [21], the composite gridesointroduced by Henshaw and Chand [22] and
the stability analysis in transient CHT presentgdKazemi-Kamyab et al. [23]. An interesting
alternative is the steady-state approach descriyed/erstraete and Scholl [24]. It should be
mentioned that there are other methods of inveastigasuch as the energy method, to analyze well-
posedness and stability [25].



By using a thermal model problem, Errera and Che[@8] have identified a numerical
transition that can be expressed mathematicallis ftindamental result has been derived from a
normal mode stability analysis based on the thewryGodunov-Ryabenkii [27][28][29]. This
transition results in an optimal coefficient inrtex of stability and convergence.

The formulation of the optimal coefficient was pshkd relatively recently. Consequently few
CHT computations have been reported, that takerddga of it. However, some interesting results
have been reported. For instance, in a steady Giipatation of an effusion cooling system [30],
the CPU time necessary to converge was divided tactar of ten, in contrast to a conventional
method. In another work devoted to testing systmaify the values of various coupling
coefficients [31], it was shown that the optimakffiwient in combination with a Dirichlet-Robin
procedure (temperature prescribed to the fluiddafain) could be applied in an efficient manner
as a tool for predicting and obtaining excellerabgity properties. This result was confirmed
recently in a complex set-up of a heating cell bum various industrial applications (conveyors,
reheat furnaces). A systematic comparison of varmefficients was undertaken and it was shown
that the optimal coefficient outperformed the poes results in the literature [32]. In transientTTH
problems, optimal coefficients can also be appt®@dnalyze heat transfer during a full transient
flight cycle as shown in [33] where specific nunsaficharacteristics at the interface were provided.

Previous studies suggest that the one-dimensi@mradal mode analysis could provide relevant
coefficients directly applicable to industrial CH¥roblems. These promising results have been
obtained by using Dirichlet-Robin conditions, a huet widely used in the literature. However,
ideally, Robin conditions on either side of theeifidice should be considered because they introduce
local simplified models whether for FSI [18] [34t €HT [35]. Yet, this general Robin-Robin
interface condition results in a very large family schemes and we prefer, as a first step, to
consider the two conditions that form the basishaf general approach. Thus, the present paper is
confined to two complementary interface treatments

- A Dirichlet-Robin procedure : the temperatureamed from the solid is applied on the fluid
side, and a "relaxed heat flux" is in turn used &undary condition for the solid.

- A Neumann-Robin procedure : the heat flux obtdifrem the solid is applied on the fluid
side and a Robin condition is in turn used as aataty condition for the solid.

The above CHT interface procedures are the mosthmonly used conditions in the literature.
The goal of this paper is to present them in detad to provide, for the first time, their remarkab
properties, in particular the temporal and spatmplification factor, instability zones, upper and
lower stability bounds and optimal coefficients the basis of a canonical coupling prototype.
These results will be summarized in tables wheeentimerical properties are evaluated according
to the nature of the fluid-solid interaction. Moveo, a comparative study of these two treatments
will be made in order to implement efficient nuneati schemes, that is to say schemes based on
adaptive and local coupling coefficients, with ndbitary relaxation parameters and with no
assumptions on the temporal progression of thd lomain.

The paper is composed as follows. The theoreticalysis presented first (Section 2) and the
precise conditions to obtain optimal coefficiente provided.Then, the numerical Dirichlet-Robin
transmission procedure is described: The advantaggslisadvantages of this specific scheme are
presented along with the appropriate numericatrtreats for optimization (Section 3). To enhance
further the numerical efficiency of the coupled aggzh, we put forward another complementary



numerical alternative, a Neumann-Robin proceducktha remarkable properties of this condition
are provided for the first time (Section 4). Thége interface procedures are then briefly compared
(Section 5). This strategy is illustrated vi€HT test case (Section 6), emphasizing the stalaifit
convergence properties of the coupling schemes runéak/moderate (Section 7) and strong
(Section 8) thermal fluid-structure interaction.

2. GOVERNING EQUATION AND COUPLING MODEL
2.1. Finite volume fluid solver

In the fluid domain,Q,, the Reynolds-Averaged Navier-Stokes (RANS) eguatiare solved.

The governing equations are the time-dependentel&tokes (NS) equations which express the
conservation laws written in the conservation f@sn

av‘:f +orF(w, )] =0 inQ, &)

where w, represents the vector of mass, momentum and emgraptities, F represents the flux

including inviscid and viscous terms. The invist&dms are solved using a second-order upwind
spatial discretization. The viscous terms are disted with a five-point central difference
formulation. The time integration is obtained byiaplicit method.

2.2. Finite element solid solver

In the solid domainQ,, if there are no heat sources, the steady tempereét modeled as a
balance of thermal transport governed by the camdribeat transport equation

Ofr mT)=0 in Q, 2)

whereT =T Kk y z1)is the unknown temperature field afidis the thermal conductivity matrix.
Assuming the thermal conductivity to be constahg steady diffusion equation in the solid is
reduced to the Laplace equatiai = ,@.e. an elliptic PDE ovef)..

2.3. Partitioned CHT procedure

The partitioned CHT strategy employed hereaftendctivated by the desire to obtain a fast
and stable steady solution to the fluid-structurermal problem. The basic conventional serial
staggered (CSS) algorithm, composed of 4 steps Fsgere 1) was implemented here to
sequentially execute the CFD and the conductiomesoHowever, other partitioned fluid-thermal
schemes could also be used [38].
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Figurel. CSS (Conventional Serial Staggered) algorithm

2.4. Temporal steady coupling strategy

The fluid and solid domains operate on d#ifiéeitime scales and the thermal response of tieeisol
generally very long. As a result, if only a fluidhsl steady solution is sought, the numerical cmgpl
strategy should not take into account the unsteé#tlysion of the solid material that causes no affe
on the steady solution. So, in the solid, the steadlution of the heat equation can be obtainedyeas
and directly from the Laplace equation. On the @yt in a fluid domain, the steady-state Navier-
Stokes equations (laminar or RANS) are generallyesoby a time-marching scheme. As a result, if
the two above-mentioned approaches perform wealingge sub-systems they should be taken together
in a coupled system. This means that the interrteedi@mporal solutions are not physically
meaningful. This "steady strategy" is adopted & d¢hrrent paper. Note that this is a commonly used
fluid-solid methodology when only a steady statesasight [24][26][36][37]. This approach does
require however a special attention to stabilisyes.

2.5. Coupling model

The coupling model is composed of two partitionthva shared interface. A schematic of both
domains with node numbering is shown in Figure&ids/ <0, fluid y=0). A uniform grid on

either side of the interface is employed. The llauy conditions at this interface are presented in
the next paragraph.

Solid Interface Fluid
-J -2 -1 -
o A
romee : # - A
! & I Y | Y | ;
A s - - | - 1 - 1r--"-~""-~""-"===- > J
y o1 AR
- A >
i > Y
Q, 0 Qp
Finite Element Method ! Finite Volume Method

Figure 2. Problem discretization for the 1D model (sofjt< O, fluid y = 0).



2.6. Interface conditions

Assuming that the convection term is negligibleha first fluid cell (no velocity component
normal to the F-S interface in 2D and 3D flowsk BHT problem may be modelled through a
simple one-dimensional thermally coupled problerhe Tequations in both domains are then
solved through the CSS algorithm, with interfaceadseing exchanged at each coupling iteration.

At the F-S interface a general Robin transmissionddion on the solid side, leads to the
equation

qs+affs:_qf +a, T, (3)

where q is the normal heat fluxT is the temperature and is a coupling coefficient; the super-
imposed hat symbol (") denotes the sought valuete Nhatg, = -K..0T,/dv, is the normal solid
heat flux andq, =-K,.dT, /ov, (v, andv, are inward-pointing unit normals, =-v.) whereK

is the thermal conductance.

Analogously, the same type of interface conditian be defined on the fluid side :
df + as-l,:f = _qs + asTs (4)

Applying the right hand side of Eq.(4) as a bougdarndition on the fluid domain, might pose a
technical challenge for most research and comnie@i® packages that employ a reference
temperature. As a result, Eq.(4) can easily beit@nrin the following form

Qf :as(|:_&+Ts}_TAf) (5)
a

S

2.7. Temporal and spatial amplification factors

The Godunov-Ryabenkii theory is used to analyze dtability of the coupled fluid-solid
procedure because it includes the effects of bayndanditions on the numerical stability of the
problem.

The first step of the stability analysis consistsintroducing normal mode solutions in the
discrete model equations. These are the transmargy equation in the fluid and the steady heat
conduction in the solid, with Robin conditions artlbsides of the interface. The second step censist
in considering the eigensolutions of the discretgblem. After elementary transformations not
reported in this paper (see details in [26]), #@poral amplification factog z( fi.e. each mode

increases in amplitude by the rq\g()z)| ) can be expressed as follows

_ _ (af +as) Kf (Kf _af )(Ks_as)
z=9(2 = K + (6)
(Kf +as)(Ks +af) (Kf +as)(Ks +af)
where K =A; /vAy; (v=%2in a FVM andv =1in a FEM ) andK_ = A, /A are the thermal fluid
and solid thermal conductances, respectively. €ngporal amplification factor depends upon the
complex functio, =« (z,D; )




2
kK, =k,(D,,2) =1+ 271 _ 271 (7
2D, z 2D, z

This function is thus solution of a quadratic egurabbtained from the interior scher(nje> O) in the
fluid domain [26].D, denotes the mesh Fourier number defined by

D, =a,At,/Ay} (8)
wherea; is the fluid thermal diffusivity and\t, is the coupling time step. The mesh Fourier number

characterizes the heat conduction in the layer roé#e transient domain

For simplicity, we define the functiob, representing a normalized Fourier number in tesfng
Df

9
1+D, +,/1+2D, ©

D, describes the intervdd, + = as D, ranges ovef0,1[.

D, =k,(z=-)=

2.8. Sability analysis and transition

As can be seen from (6) and (7) , the complex fancg is a complicated nonlinear equation
in z. According to the normal mode stability theorye thpproximation is stable only if no non-
trivial solutions to the equatiorz=g z( éxist for |z|zl. Using the corollary of the maximum

modulus principle in complex analysis, it can bewsh that the conditionz# g z( fpr |z|21 is
automatically satisfied imaf{[g|}<1. In addition, the maximurrma>{j g|} is obtained either at the
Zl= z =1

points z=+1 or z=-1 (see [26][31]). Moreover, when "specified condid are met, there is a
sudden transition from one point to another resglin an amplification factor composed of two
half-lines with a singular point at the intersentiof these two lines. At this intersection the
amplification factor turns back and attains an &deaminimum that is always located in the stable
zone. The point where the maximum is transferrea findamental transition in aerothermal
coupling.



3. DIRICHLET-ROBIN INTERFACE CONDITIONS
3.1. Sability behavior

The Dirichlet-Robin conditionlsa; =0;a, = } in Egs. (3) and (4) are considered in this

section. These conditions are frequently used énliterature. This procedure is also referred to as
the coefficient forward temperature batlkB) method [24] [37][39].

3.2. Optimal coefficient
The existence of a transition value far is highlighted. At this transition, the shape bét

curve changes, resulting in the lowest amplificafactor. This value, denoted™, is given by

K _
a® == (-D;) (0

Note that this coefficient exists unconditionally. other words, there is always, in the Dirichlet-
Robin procedure, a positive coefficiemt satisfying Eq.(10).

3.3. Mesh Biot number
The stability conditiofg(z,crf,aS =oo)‘<1 applied to Eq. (6) leads to the following lower
stability bound
K, _ K
a™=—(@0-D;,)-—= (11)
P =a=Dy) -
which can also take the form
ar =%[Bi ®(1-D,)-1] (12)

In this equation, we have introduced the dimensssihumber
Bi® = Ky _ A¢ /(v by;) _ thermakonductaneof thelstfluid cell
K AN thermalconductaneof thesoliddomain

Bi® may be regarded as a mesh Biot number (or localrBimber) representing the thermal fluid-
structure interaction.

(13)

S

3.4. Numerical Biot number

We can now introduce another dimensionless nuiier
Bi, =B’ (1-D,) (14)

This parameter takes into account the coupling tistep via the Fourier number. This
dimensionless number is defined at any couplingtiten of a CHT computation and results from a

balance between the unsteady fluid and steady dohghin propertiesBi, is a local representation
of the thermal fluid-structure coupling and playsey role in the stability analysis. In the liters,



a conventional Biot number is used, requiring at liemsfer coefficient to be defined at steady
state. We will explain the difference between thesenumbers in subsection 3.6 .

From Eqg. (12) and (14), two zones can be considdiee first zone is defined by
Bi, =Bi®(1-D,)<1 (15)

When this condition holds, the CHT procedure iblstdor any positive value o, , in particular
for a, =0. Thus, a Dirichlet-Neumann transmission conditian be used with no relaxation and
without affecting the stability of the coupled plein.

The second zone is
Bi, =Bi®” (1-D,)=1 (16)

When this condition holds, the CHT procedure isenamtly prone to instability and a

relaxation coupling coefficient must be used sineh &, > a;

The function ma>{|g|} l.e. the maximum value the amplification factoayrtake, is plotted in
Figure 3 as a function of the coupling coeffici¢nt, =0), for two different mesh Biot numbers

and the same Fourier numbBr (D, = 053). Note that this function is defined and continsiamd

that each curve is composed of two half-lines wathsingular point similar to a cusp at the
intersection. Ata, =a!™, the two branches of the amplification factor jokt this remarkable

value, the amplification factor attains its abselotinimum.
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Figure 3. Temporal amplification factor of Dirichlet-Robin idition for mesh Biot numbers
Blue curve : unconditionally stable (low Fluid-Sttuie interaction) and optimal coefficient
Red curve : conditionally stable (higher F-S intdiomn) and optimal coefficient

Figure 3 illustrates the general trends just disedsfor two different numerical Biot numbers.

The main results of this stability analysis are swarized in Table 1. At low or moderate
values ofa, , the amplification factor is partly outside thalstity domain forBi, =186 (first row

in Table 1) and completely inside the stability gomfor Bi, = 065 (second row in Table 1). The
fundamental role of{® in controlling and guiding the behavior of the taurves is highlighted.
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a; 0 a?“” a?Pt 00 condition

1 _

|g| ¢ |unsTaBLE \ g / Bi(A)(l—Df)Zl
0

|g| g \ gopt /

Bi®@-D;)<1

O_R®H_D o _ BI® D Bi D
g  =Bi"”(@1-Dy) gn = 5 @-Dy)/1+ 5 @-Dy)

Table 1 : Numerical behavior of Dirichlet-Robiropedurevs a; (a, = ;a; 20)

The mathematical expression of the optimal coefficwas already presented in [26][31].
However, the other numerical properties of the ddiet-Robin transmission conditions (Table 1)
have never been published before.

Table 1 shows that, as long as the transient sfie predominant, the unconditional stability
of the coupling procedure without relaxation cawasls be ensured by increasiiy (and hence

D, ) such that condition (15) holds. Otherwise, aaiarievel of relaxation is needed and the
optimal level is provided by the choice of the ol coefficient (Eq. (10)).

3.5. Numerical Biot number and nature of the interface treatment

The theoretical results proposed in this paper higewidest practical effect of reducing the
CPU time and ensuring unconditional stability. lede the following amplification factor is
obtained

(opt)
a
(opt)y| — f
‘g(z,aff )‘— K.+ <1 (17)
S
As a result, the optimal coefficient always prowdestable procedure and the lowest amplification
factor.

3.6. Conventional and numerical Biot number

The current study introduces a "numerical”" Biot te@mand particular emphasis was placed
on its key role in the stability process. This nuice Biot number takes into account the thermal
response of the first point of the boundary layed @irectly participates in the stability of the
coupled process (see Figure 4). It is worth nothg diffusion, on the fluid side, dominates and
guides the coupling process, as long as transifute prevalil.

The conventionaBiot number defined by

Bi=— (18)
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is a criterion that gives a direct indication ofethelative importance of the conduction and
convection processes. It measures the resistandeab flow within the solid relative to the
resistance presented by the convection processtdw aurface (see Figure 4). As a result, this
number is a key parameter that determines thelisyadii the F-S equilibrium [24] [31]. However,
this parameter, which strictly speaking is not edi during the fluid transients, cannot be used to
set up a numerical CHT procedure, as long as aiganfluid state is involved in this procedure.

Ay,

FLUID

lll 5@ A/ wnash Biot number

S s
/

SOLID

Figure 4 - Mesh and conventional Biot numbers

3.7. The"optimal™ coefficient : a dynamic approach

As already mentioned, the Dirichlet-Robin procedigravidely used but the success of its
application depends on finding a relevant coupdiogfficient. It is often pointed out that a tradé-o
between computing time and stability must be careid. The results reported in this paper allow
us to analyze the advantages and disadvantagée @fffects of any other coupling coefficient of
the Dirichlet-Robin condition. In the literatureanous methods or values for this coefficient are
presented.

As long as fluid transient effects are predomindintnay be tempting to employ the fluid
temperature in the first grid cell as a referenempgerature. As a result, the local coupling
coefficient becomes

a, =K, (19)

This coefficient, proposed by Heselhaus [40], vgagfs located in the stability zone (right side
of the curves in Figure 3). However, it is a statoefficient that does not take into account the

transient effect - represented Ifi- D, )- of the fluid flow between two coupling instani&us,
this coefficient over-emphasizes the stability comgnt of the coupling process compared with its

computational time, especially for a large Founember (large coupling time step), and results
most often in a prohibitive CPU time.
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Without the assistance of a mathematical tool, sagla stability analysis, the choice of a
relaxation parameter is made through trial andreAsmall value of the coefficient will provide a
large change in the wall temperature at each cognd can lead to a faster procedure. However,

Eq (12) shows that a coupling coefficient must drgeér thamr ™ , in other words, higher than the

difference between the "transient" thermal condumteK , (L- D, ) of the flow and the static solid
thermal conductande, .

Two points should be noted :
(2) In CHT, the ratio of the thermal conductivitig§/)| plays an important role. However, this

ratio does not take the characteristic lengthiefttvo media into account. It is therefore preferab
to introduce the mesh Biot number defined by (13).

(2) In addition to the above considerations, the stabg effect of the coupling time step is the
result of the Fourier number (Eq.(8)) or its nonzed version (Eq. (9)). The combination of this
term and the mesh Biot number provides the nunmeBa# number (Eq. (14)) that can also be
interpreted as thg-intercept of the amplification factor curves shoimnFigure 3. It can also be

regarded as a dynamic measure of the strengtheofttAnsient” thermal F-S interaction. This
number is a key factor in the stability analysis.
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4. NEUMANN-ROBIN INTERFACE CONDITIONS
4.1. Sability bounds

The Neumann-Robin conditio{ug'f >0;a, :O} in Egs (3) and (4) are considered in the
following. This procedure is also referred to as twoefficient forward flux backhfFFB) method
[24][37][39]. The stability conditiodg(z,af)‘ <1 applied to Eq. (6) leads, after some basic casculu
manipulations, to an upper stability boua@™

2K K, 2K,
ai™ = === (20)
Ki-K{@+D;) 1-Bi*”(@+D;)

The coupling coefficient is always positive. As auk, two stability regions are highlighted :

« Bi”@+D,)=>=1:the coupling process is statiler, > 0
« Bi””(1+D,) <1 : the coupling procedure exhibits the upper sitgthlound a ™

4.2. Optimal procedure

The optimal coefficienta{®™ , is given by

2K K 2K,
2K, -K,(@1+D,) T2 gi® @+D,)
Note that this time, in the Neumann-Robin procedargositive coefficienta!®™ can only be
defined conditionally if

(opt) —
f

(21)

Bi®(@1+D,)<2 (22)

Thus, in the framework of the Neumann-Robin procedthree zones can be identified. The
first zone exhibits an upper stability limit defthéoy (20). In this zone, there is an optimal

coefficient a!° for which the modulus of the amplification factdtaéns an absolute minimum.

The second zone is very narrow. It also presentspéimal coefficient, but in contrast to the
previous case, there is no stability bound.

The third zone is also unconditionally stable, bauoptimal coefficient can be defined. That is
to say the minimum of the amplification factor ibta@ined for a, =« (Neumann-Dirichlet

procedure-heat flux imposed on the fluid side agmiperature imposed on the solid side). The
amplification factor is here a monotone function.

These three zones are clearly illustrated by theethurves depicted in Figure 5.
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Figure5. Temporal amplification factor of Neumann-Robin cibiech for three mesh Biot numbers
Red curve : conditionally stable (low Fa$eraction) and optimal coefficient
Green curve : unconditionally stable (moderateiRt&action) and optimal coefficient
Blue curve : unconditionally stable (high F-S iagion) and no optimal coefficient
4.3. Summary

The general behavior of the Neumann-Robin couplinggdure for steady CHT is illustrated,
in terms ofa, in Table 2. At low thermal F-S interaction, the difigation factor is partly outside
the stability domain (first row in Table 2) and cdetply inside the stability domain for higher

thermal interactions (second row in Table 2). Theae functions present an optimal coefficient.
On the contrary, for very high F-S interactions tlurve is totally inside the stability domain and

no optimal coefficient can be defined (third rowTiable 2).
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as | o a® af® ) condition

\ g / 1 UNSTABLE Bi®@1+D,)<1
ERE \ g™ //' lg(e)| | 1<BI® @+D;)<2
] !  , la(@) | BI®@a+D;)=2

Table 2 : Numerical behavioNg#umann-Robin proceduws a; (as =0;a¢ 20)

To the best of our knowledge, the mathematical esgioe of the upper stability bound, the
expression of the so-called optimal coefficientwadl as the numerical properties of the Neumann-
Robin transmission conditions have never been plubdl before.

4.4. Sabilizing effect of the Fourier number

As discussed before, the two interface conditiamssiered in this paper may be regarded as
two complementary conditions. The first is uncormutitilly stable at small numerical Biot numbers
whereas the second is unconditionally stable gelaumerical Biot numbers.

4.5. Overlapping zone

The two interface conditions exhibit an overlappzane in which both may be considered
stable. Given the stability limits presented in greceding sections, there is a visibly overlapping
zone where both procedures are unconditionallylestdlhis zone is defined by

- < Bi(A) <L

- <—— (23)
This overlapping zone becomes narrower as the nm@daFourier numbeD, gets smaller.

Conversely, this zone becomes significantly extdrfdelarge Fourier numbers.

5. SUMMARY

It is often argued that, for stability reasons, lest choice in a partitioned CHT approach is the
classical Dirichlet-Neumann scheme, i.e. where flned is supplemented with the Dirichlet
condition (temperature) on the fluid side. Neveehs, the theoretical approach in Sections 3 & 4
shows that the situation is not quite so simplstaightforward, and that there are even arguments
against this statement. A short summary is provissdw.

Two different cases must be considered.

(1)_Fluid transient effects are predominant

This is the most general situation and no assungptionthe temporal advancement of the fluid
domain are required. Special attention must thus been to condition (15)
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(Bi, =Bi®” @1-D,) <1). If this condition holds, the "transient" thermadsistance of the fluid

domain at the shared interface is greater thamasistance offered by the whole solid domain. A
Dirichlet condition on the fluid side is therefappropriate.

If, in contrast, condition (16) hold$Bi, =Bi” (1- D,)=>1), and in extreme cases where

Bi, >>1, then it is implied either that the solid therngmhdients are not negligible or that the

thermal fluid conductance is larger than that @f $blid. In this case, a Dirichlet condition impdse
on the fluid is unlikely to provide the most eféiat solution, even though the optimal coefficient i
able theoretically to stabilize and optimize theqadure. The test case presented in Section 6 will
serve as an illustration.

It should however be underlined that there is agrw argument in favour of the Dirichlet
condition. Indeed, the terri—D,) may become as small as necessary and thus thaditicoal

stability conditionBi®@-D,)<1 (2" row of Table 1) can always be satisfied. As a teshe
stability bound can theoretically be removed byagpropriate choice ob, , i.e. by an appropriate
choice of the time step. Conversely, in the cooditi®” (1+ D, ) <1 (1* row in Table 2), the term
@+ D,) has no stabilizing effect.

Nevertheless, we must not forget that for lagj& and for a given (small) time step, the
Dirichlet condition on the fluid side is prone tustability (1st row of Table 1), i.e. the part bet
left-half line in Figure 3 is greater than unity.

(2)_Seady-like fluid solutions

The heat transfer coefficiertt is often used [36] [41] [42] in this situation, & the fluid
domain is updated only after a sufficient levelagfvancement in time. The fluid solution is not
necessarily fully converged. The implementation luk theat transfer coefficient can only be
defined after a sufficient number of fluid iterat® have been carried out between two coupling

instants. On this basis, a steady-like fluid state be considered; =0). From (12) the stability
condition of the steady F-S equilibrium is thusagi\by

1 Ke o
>=(h-K,)=—=(Bi-1 (24)
ay 2( ) 2( -1

where Bi is the conventional Biot number (18).
Consequently, the coefficiemt, =h satisfies the stability condition (24), therebypwyding a

better understanding of why this choice can be @ppate (but not optimal). Keep in mind,
however, that this procedure is valid only if thad transient thermal effect becomes negligible.

Using the conventional Biot number instead of thresimBiot number, Eq. (24) reveals two types
of thermal interaction at steady state :

* Bi<1: The stability condition (24) is automatically filled for any positive coupling
coefficienta;, .
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* Bi >1: The stability condition is given by (24).

This stability condition appears only when a terapgre is imposed on the fluid side. At
Bi >1, the CHT procedure becomes unconditionally stalblen the heat flux (Neumann condition)
is imposed (no stability bound as shown in tilev of Table 2).

However we would like to point out once again thathough the conditions based on the
conventional Biot number are theoretically valid determine the stability of the fluid-solid
equilibrium at steady-state, they are not approgii@ characterize the stability properties dusng
coupling process when fluid transient effects aoé megligible. In addition, choosing a relevant
reference temperature is a delicate task. As dtrélsa choice of the heat transfer coefficidntjs
guestionable.

Finally, it is worth noting that these conclusiare valid for a steady CHT procedure in which
a transient (or steady-like) fluid solution is usedr other coupled aero-thermal problems, stabilit
considerations must be considered specifically.[33]

6. TEST CASE
6.1. CHT tests

In the following, computing results are presentedlltistrate the importance of the interface
treatment in CHT problems. This has been studiegl@ymg the Dirichlet-Robin conditions with
an emphasis on the optimal treatment. Then, Neurnanditions were employed on the fluid side
in accordance with the conditions highlighted iis thaper.

6.2. Numerical tools

The solid solver : The computer code in the solid, called ZébuléB][is a three-dimensional
finite-element code. It is an advanced object-palrabde for structural mechanics with many non-
linear solution capabilities. Zébulon can solve yneypes of heat transfer problems and particularly
those in which the temperature field is calculatgith no consideration of the stress/deformation in
the overall structure. Only this solver will be doyed in the study presented in this paper.

The fluid solver : elsA is a multi-application CFD simulation plat dealing with internal
and external aerodynamics from the low subsoniti¢ohigh supersonic flow regime [44][45][46].
The compressible 3-D Reynolds averaged Navier-Stekgations for arbitrary moving bodies are
solved by a cell centered finite-volume method ws#tbcond order upwind or central space
discretization containing scalar or matrix artidicdissipation on multi-block structured meshes. A
high flexibility in the multi-block approach is aelwed in elsA through the patched grid,
hierarchical mesh refinement and Chimera techniqties discrete equations are integrated either
by multistage Runge-Kutta schemes with impliciidaal smoothing, or (which in general leads to
a better efficiency) by backward Euler integratwith implicit LU schemes. A large variety of
turbulence models are available, ranging from eddgosity to full differential Reynolds stress
models, which include options for Detached Eddy @ation (DES) and Large Eddy Simulation
(LES). Various transition models are also availdblecomplex geometry configurations. The elsA
software package includes an important module fmalidg with aeroelasticity. Also, a module
dealing with calculation of gradients by linearizeguation or by adjoint solver techniques is very
useful for aerodynamic optimization.



19

The coupling library : The coupling between these two computer codssblean carried out
through the coupling library CWIPI [47], developdry ONERA. CWIPI (Coupling With
Interpolation Parallel Interface) is a librathat makes it possible to couple an arbitra
number of parallel codes with MPI communicasio@oupling is made through an exchange zone
that can be discretized in a different way on amypted code. Linear, surface or volume couplings
are available. CWIPI takes into account all typég@ometrical elements (polygon, polyhedral);
there is no requirement about the mesh nature.

6.3. Test case

The interface treatments presented so far are pphea to an academic simple 2D test case.
We consider the problem of convective heat trans¥er, and the conduction heat transfer within, a
flat plate. The geometry and boundary conditiomsildustrated in figure 6.

—_— U, =83m/s

Y

A

e T = 1200 K

| i
|

| Buffer Zone Fluid

|

I

: 150 mm L = 350 mm

|

|

Coupled interface

Adiabatic Wall

Solid lAS =3 mm

T =1000 K

Figure6. 2D test case

6.3.1. Fluid domain

The fluid domain is a rectangular channel 500 mnglwith a symmetry boundary condition
on the upper side. In tiedirection, there are no gradients. The interactietween the inlet and the
viscous wall boundary conditions creates a singylat the point where these two boundary
conditions join. This singularity could generatenmarical instabilities in the coupling process.
Thus, a buffer zone with an adiabatic wall enablkes$o remove this singularity and to have a well-
established fluid flow at the coupled interfaceeTgresence of an adiabatic viscous wall induces a
thermal leading edge at the flat plate.

Turbulent air flows from the inlet to interact withe upper wall of the solid plate (coupled
interface), before exiting. A near wall well-refthenesh y*~1) was employed to correctly capture
the flow boundary layer. That gives us the optincalculation of the heat transfer. Most
importantly, the convection contribution on the pling process can be neglected (hypothesis of
the 1D model), so no wall functions have been egwguo Figure 7 shows a part of the fluid-solid
mesh which is extremely refined at the interfatg £5.410° m).

The temperature of the fluid is 1200 K, i.e. 20thigher than the initial temperature of the flat
plate.
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Figure 7. Fluid-solid mesh near the leading edge of thepiate.
The red and blue meshes are the coupled fluid alitirmeshes respectively. The green one
is the buffer zone mesh.

The mesh illustrated in Figure 8 has been adaptedpture a fairly high exchange coefficient
at the leading edge of the coupled interface. bt tarefined mesh in the-direction near the
leading edge gives a better estimation of the sk&asses in the leading edge (theoretically
infinite).

L s s s L 1 s s s s 1 s s s s 1 L s s L 1 s s s s 1 s s s s L s s s 1
0.05 0.1 015 0z 025 03 0.35
X

Figure 8. Refined fluid mesh at the Leading Edge

Figure 9 shows the heat transfer coefficiegntalong the flat plate obtained with the grid of
Figure 8. The refinementt = 3.3.10* m) is sufficient at the leading edge to obtairpafficient
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that varies from 3938 to 111. This interval is Enough to test this coefficient on the following
test cases.
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Figure 9. Heat transfer coefficiert, along the flat plate.

6.3.2. Solid domain

The solid domain is a rectangular flat plate, 3 thiok and 350 mm long, i.e. the same sizes
as the coupled fluid domain. The external facethefsolid plate are supposed to be adiabatic and a
constant temperature (1000 K) is imposed on thestoside of the solid. The solid contains 10
mesh-points uniformly distributed in tlyedirection (see Figure 7).

6.3.3. Interface

The coupling interface is 350 mm long and is coneplasf 60 elements. The fluid and the solid
meshes are coincident at the interface (see Figurehis precaution was taken to avoid any spatial
grid-to-grid interpolation error and to focus thenmerical study on stability issues.

6.3.4. Temporal parameters

The coupled simulations were performed using theteal parameters presented in Table 3.

Atg(s)| At(s) | Dy | Dy | @-Dy)
3.10°| 6.10% |400.|0.93] 0.07

Table 3 : Temporal parameters

6.3.5. Convergence Criterion

The convergence criterion (error tolerance or stappriterion) used in this paper is based on
the infinity norm of the absolute interface tempere, defined by
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AT, = maxT" =T (25)

i=1,N;

wheren is the coupling iteration andrepresents the spatial index along the fluid fater (N
faces). We will consider a simulation to have cnged if :

AT, <& with =107 (26)

6.3.6. Solid thermal conductivity and thermal F-Sinteraction

The previous sections have shown that the numeritatface methods are directly dependent
on the numerical Biot number. As the interest hemn implementing adaptive local schemes, it is
fundamental to cover a broad range of differentt Biombers and ideally within the same flow
field.

In the next two sections, the behavior of the fais conditions is studied with different
materials by varying the solid conduction coeffitigs, i.e. the mesh and numerical Biot number.
The following test cases are classified in two safgacategories in accordance with the theory
presented in the previous sections :

(1) Weak/moderate thermal interaction
(2) Strong thermal interaction.

For the weak/moderate F-S interaction, the DiricRebin interface condition is well-suited. For
higher interactions, another interface treatmeirmtguthe Neumann-Dirichlet condition will also be
considered.
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7. Weak and Moderate Thermal Fluid-Structure I nteraction

7.1. Amplification factors

Weak thermal interactions are characterized by Vawes of the numerical Biot number. To
determine this, we should look at the amplificatiactor shown in Figure 10.

10 e B T T T T T T T Tl T T T T TTT
—s— A =0.5
- | Ae =25 ||
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L af = lﬂcﬁpt
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max (|g|)

0,5
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o 10t 102 10% 10* 10> 106
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Figure 10. Amplification factor for three weak thermal intetian cases

The numerical Biot number represents thimtercept @, =0). The higher this value, the

greater the amplification factor. As can be seewgak thermal interaction casg, 10 wW.m"K ?)
along with two moderate oneg,(= 25 and A, = 05) are considered. The curve for the weak thermal

case is entirely within the stable arerae(xﬂg|)<1 ) as the blue curve with square markers in Figure
10 shows. Thus, according to the model problemmiist be stable for all values of the

coefficient. For the other two cases, the left silehe curve is partly in the unstable zone and
therefore should not be stable for low values ef¢bupling coefficientd, <a™).
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7.2. Dirichlet-Robin interface conditions
Four coupling coefficients are used for the thiess tases:
(0) a, =0 (Dirichlet - Neumann interface condition)
W) ag=a™
@ a, =10
@ a; =K, >a™

In the case of a weak thermal interaction, thedblgt-Robin interface condition is clearly the
most relevant as we have demonstrated in sectiém Bable 4, numerical numbers characterizing
the thermal interaction are presented, namely dlid thermal conduction coefficient,, the mesh
Biot numberBiY and the numerical Biot numbei, for the test case considered. In the same table,
the number of coupling iterations needed to reactvergence is indicated.

Parameters Iterationsto converge (£ =107°)
AS KS Bl(A) BIV a/f :O af :a&Opt) a/f =10.* agom) af — Kf
Eq.(13)| Eq.(14)
10.| 3333.| 6.6 0.5 62 62 65 76
25| 833.| 27.3 1.9 71 72 102 216
Crash
0.5| 166. | 1415 9.4 atthe A it 84 250 591

Table 4 : Numerical properties and convergence for weakd@derate thermal interaction

The convergence history for the four values of toepling coefficient,a,, is shown in

Figures 11, 12 and 13, by plotting the interfacagerature residuals, as a function of the coupling
iteration. As might be anticipated, the convergehistory largely depends on the value of the
coupling coefficient. In weak thermal F-S interaos (Figure 11), there are no significant
differences for low values of the coupling coe#iti o, and it can be seen that the trends marked

by the two linesa, =0 and a, =a!® are roughly the same. For high values of the dogpl
parameter, convergence is a little slower, but taerable level, even witla;, = K; where a linear
convergence is observed.
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Figure 11. Convergences coupling iterationsig = 10 W.nm".K™*- Bi, = 05)

In the same manner as outlined above, in modehatenal F-S interactior(8i, = 19)there
are no major differences for low values of the dmgpcoefficient o, as shown in Figure 12.
However, this time, note that the computation fr=0 is supposed to be unstable according to

the model problem (first row of Table 1). Thesectkpancies may be due to some stabilizing effect
generated by the flow, not included in the thecettmodel. It is necessary nevertheless to specify
that even if convergence is rapidly reached, ingraroscillations of the interface temperature near
the leading edge are observed during the initialsplof the coupling process for this value. On the

contrary, fora, =a!®, the temperature behavior is oscillation-free. Bayger values ofa, ,
stable CHT computations are obtained, but they galkfle longer.
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Figure 12. Convergences coupling iterationsi = 2.5 W.mt.K ™ - Bi, =1.9)

For a higher thermal F-S interacti@®i, =94), as expected,a; =0 leads to divergent
computations after thé™coupling iteration (Figure 13). The other threefticients result in stable
computations. The fastest convergence is obtaimed f=a!™ . Fora, =K,, the coupling
process is so slow that its convergencel &t =10°K, cannot be represented in this Figure. This

indicates that the fluid-solid system tends to foezen" and thus, this over-stable solution becomes
prohibitive. Clearly, the higher the thermal intetran, the more attention must be paid to the ahoic
of the boundary conditions (at least with a Diretidondition imposed on the fluid side).
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Figure 13. Convergences coupling iterationsi = 0.5 W.m.K*- Bi, =94)

In summary, these convergence behaviors were lapgetiictable from the model problem. As
expected, ai® appears to be the optimal choice, providing a rtmmio, stable and fast

convergence for all simulations.

7.3. CHT simulation solution near the stability limit

Now, emphasis is put on the last test case (witho5 w.m™.K *andBi, = 94) to analyze the
interface temperature close to the stability liffiiree points of the coupling interface have been
selected, namely the leading edge, the midpointlaadrailing edge. Three values @f have been
specifically chosen near the stability limir (=380,a, =400 anda; =a'®) to illustrate some

specific and interesting trends. The location @&sthpoints along the temporal amplification factor
curve is shown in Figure 14.
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Figure 14. Amplification factor foris= 0.5 W.m.K * - Bi, =94

First of all, it is interesting to observe, far, =380, the very large oscillations (about 1000 K)

of the interface temperature at the leading edus, do not decay (Figure 15). For the other two
points of the interface, the computation convermggsdly. Clearly, this constant value of, is too

small to stabilize the coupled process at the fepddge but sufficient for the other two points.
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Figure 15. Temperature vs coupling iteration at the leadingeeidr a; =380 The dotted line

indicates the temperature oscillation (one ouhodé points is shown) and the solid line
highlights the bifurcation behavior.

By slightly increasing the coefficienta( =400), the temperature oscillations at the leading edge
are slowly damped (Figure 16). This is a good eXarmapthe need of a local coupling coefficient.
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Figure 16. Temperaturess coupling iterations forr; =400 (one out of three points is shown).

Interesting results have been found whens taken as the heat transfer coefficibr{Figure 17).
This is a common practice in the literature.
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Figure 17. Temperaturess coupling iterations fon = h(x) (a point on three is shown)
The heat transfer coefficiehtwas calculated by:
a. = hn - qin
f -I-il"l _'I'ref (27)

where thei-index indicates the point on the coupling surfaocd #he n-index the current
coupling iteration.T, is the reference temperature (we take it as th@eeature of the incoming

flow). In this case thex, coefficient is local. The resultinig evolution is similar to that shown in

Figure 9. We can see that the leading edge arebecatabilized easily. However, it is not at a# th
case for the other two points located downstreararvkarge oscillations can be observed. Indeed,
at the leading edge, the heat transfer coeffideist very large (see Figure 9) and thus located on
the right-hand side of the amplification curve, irethe stable zone (see red curve in Figure 10).
Then, it decreases sharply and the resulting «effi has a too small stabilizing effect (value
located on the left-hand side of the amplificatfaotor curve). This illustrates unambiguously that
the "convective" heat transfer coefficient is uteole for stabilizing the F-S diffusion interaction
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The only way of preventing severe numerical prolsleim heterogeneous surfaces is to
implement adaptive coefficients reflecting localipbng conditions. For instance, using the optimal

coefficient {® , the temperature over the whole surface is stabiefast-converging as shown in
Figure 18.
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Figure 18. Temperaturess coupling iterations for; = a’;

7.4.Useof a; =h near convergence

In section 5 it was suggested that the heat tramsfefficient (@; =h) could be used after a

sufficient level of advancement in time. In othesrds, when the convective heat transfer is close to
equilibrium with the solid conduction, but not peafly converged.
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Figure 19. Convergence history of a; =h from AT; =10"*

It was therefore decided to implement the optimaéficient a!® before switching to the

condition a; =h at a convergence level af=10"(see Eq.(26)). Large and persistent oscillations

suddenly occur, which means that the convectivdficant is not a relevant choice in this case
(see Figure 19). As mentioned above, this coefiicigroduces under-relaxed solutions at the
trailing edge, and this is confirmed even when @€l solution is close to steady-state, i.e. quite
converged. Furthermore, implementing a convectoadficient raises a fundamental issue, which is
the choice of a relevant reference temperature.

7.5. Comparison in performance between optimal CHT and CFD only

Figure 20 shows the convergence history (residfidh® mass density) between the CHT
computation and a CFD only, with a given temperaprescribed at the interface.
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The small peaks that can be observed are simplypwtible to the updating of the boundary
conditions during the CHT proce(m;C =20At, ) Apart from these small differences, the two carve

indicate the same tendencies. One even noticeSthatprocess based on the optimal coefficient is
a bit quicker than the CFD only, as shown by thenzed view in Figure 20. Here we compare only
the number of CFD iterations necessary to convevigeout taking into consideration the solid
iterations and the time taken for the MPI exchan@éss result can be explained by the fact that a
temperature imposed in the CFD computation repteseperfect conducting condition while in the
CHT computation, an ideal and local thermal conalicé has been implemented at the F-S
interface.
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8. Strong Thermal Fluid-Structure Interaction

8.1. Amplification factors

The preceding results clearly show that, for a gitransmission condition scheme (in this case
Dirichlet-Robin), it is possible to optimize the marical procedure in terms of stability and
convergence. This optimization is already a sigatft achievement. However, as stated before, it is
useful to know whether the Dirichlet-Robin proceslis the most appropriate scheme to be used. In
the following test case, we will show that this gedure and the resulting optimal coefficient
(Eqg. (10)) are not always appropriate.

Stability issues with the Dirichlet-Robin interfacendition arise when the mesh Biot number

Biis too large. This is illustrated in Figure 21 wierzoomed view of the amplification factor is
represented for four different thermal conductestiof increasingly insulating materials, i.e.
reducingl,, chosen for analysis.
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Figure 21. Amplification factor for three strong thermal irdetion cases

As expected, the amplification factor in weak thakninteraction cases (Figure 10) is
appreciably lower (or slightly higher in the fingart of the curve) than unity. However, it is the
opposite for a strong thermal interaction wherertesh Biot number has a very high value. In this
case, the minimum of the amplification factor (dmimal coefficient) is close to unity. As a result
the CFD model induces a little destabilizing effebtifting it into the unstable zone. The minimal

value of max{g} can be calculated by:

mgx{jg|} = éi @ (28)

This high value indicates that a Dirichlet conditimay be inappropriate. Of course, it can
always be stabilized, as shown theoretically (tghothe time-dependent teif- D, ) ). However,

this stabilization might come at a high cost anehatimes it is not possible because of destabilizing
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effects induced by the flow, as mentioned previpusl this case, a natural physics-based approach
consists in imposing a Neumann condition on thigl fhide for strong thermal interaction.

8.2. Comparison between the optimal Dirichlet-Robin and the Neumann-Dirichlet interface

condition
In Table 5 the numerical properties for Dirichletdn and Neumann-Dirichlet interface

conditions and the convergence iterations neededrgerge, are shown.

BT |terations to converge (£ =107°)
Dirichlet-Robin (ag = «) Neumann-Dirichlet(a = 0)
/15 Ks Bi(A) Bly a; :O'E(Opt) a; :Kf a; =«
Eq.(13)| Eq.(14)

0.5 | 166.| 141. 9.4 84 591 103

0.16| 53. | 446. 28.9 273 815 105

0.05| 16.6| 1645.| 86.8 oscillations 830 109

0.01| 3.3 | 7161.| 428 Crashatthe 13| 516 104

iteration

Table5: Numerical proprieties and convergence iteratioh(atin the cases with strong thermal interaction fer tivo
boundary conditions@  is the coupling coefficient on the fluid side.

Figures 22, 23, 24 and 25 show the residual ofNtx@mann-Dirichlet (N-D) procedure as well
as the convergence history of the optimal Diriciitebin condition.
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Figure 22. Convergences coupling iterationsi, = 0.5 W.m".K * - Bi, = 94)
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Figure 23. Convergences coupling iterations)¢ = 0.16 W.n.K'* - Bi = 289)



39

—

<

o
[TTT T 177

102
1 —e—  Neumann-Dirichlet
10 —<— Dirichlet-Robin (a% Y

:
i

10—3 | I | | |
20 40 60 80 100 120

Coupling Iterations

-

Figure 24. Convergences coupling iterations)g = 0.05 W.nT.K ' - Bi, = 86.8)



40

102 4
10 ! —e—  Neumann-Dirichlet E
: —e— Dirichlet-Robin (a%") ]
~ ! §
<
10~1! T

i
L1l

1072

20 40 6O 80 100 120

Coupling Iterations

[E—
5
oo

—
(]
J : =

-] T T T 1T /@U_Q_Lé_ll#ﬂ—é—l-
Ll
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Figure 22 shows that for a moderate thermal intemacthe choice of the optimal Dirichlet-
Robin is still the most efficient. However, if theesh Biot number rises again, a degradation of the
efficiency of the optimal Dirichlet-Robin interfac®ndition is observed compared to the Neumann
-Dirichlet one (Figure 23). This drop in performangecomes significant (273 coupling iterations
are necessary for convergence for the optimal BlgteRobin interface condition instead of 105 for
the Neumann-Dirichlet condition). As the mesh Bimimber increases further, the optimal
Dirichlet-Robin does not achieve convergence (#mperature oscillates with an amplitude of
1000 K at every coupling iteration) while the N-Dndlition is rapidly convergent (see Figure 24).
For very high mesh Biot numbers, the performanci@®fN-D conditions remains almost the same,
whereas the optimal Dirichlet-Robin condition diyes as shown in Figure 25.

As a result, a Neumann-Dirichlet interface conditis more suitable to stabilize strong
thermal interaction problems. These CHT computatibighlight the importance of a relevant
transmission procedure taking into account therbgmeous nature of complex systems. Let us
recall that the Neumann-Dirichlet procedure workighaut relaxation since there is no optimal
coefficient for this condition at large numericabBnumber, as indicated by Table 2 and it shows
the fastest convergence properties, when used pypgely for extremely large mesh Biot numbers.
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9. CONCLUSION

A simplified model problem was used as a basis resgnt the general expression of the
amplification factor, the stability bounds, the ioml coefficient and the general numerical
characteristics for two different interface procexhu It was shown that the numerical properties
depend on the ratio of the fluid and solid thermeslistances and that the mesh Fourier number
plays a crucial role. Furthermore, a numerical Biamber was introduced, and this number, in
conjunction with the optimal coefficient, contrblet overall coupling process.

The conditions that establish the nature and cteara€the most relevant interface approach were
identified and expressed. The numerical Biot nundaer clearly be regarded as a good criterion to
choose the most appropriate physics-based approachnumber characterizes the strength of the
thermal fluid-structure interaction and guides @H4T process as long as transient effects prevail.
This number is based on the thermal response dirtgoint of the boundary layer which directly
participates in the coupling process. Consequetitly,resulting coupling coefficients are reliable
from the very initial instants in the fluid domaintil convergence.

Two possible scenarios were used to demonstratdigparate thermal fluid-structure interaction
provided by the CHT test case. As long as the nigaldéBiot number remains low or moderate, it was
shown that the so-called optimal coefficient pregidthe best results in terms of stability and
convergence in the Dirichlet-Robin procedure. Tsliategy can thus be used, regardless of the
temporal evolution of the fluid domain, even whé&orsg transient fluid effects are predominant. This
adaptive and local coefficient makes it possiblavoid arbitrary relaxation coupling parameterdsTh
strategy always gives stable and oscillation-freapted solutions for this kind of fluid-structure
interaction. Moreover, it is remarkable to notet th& CHT computation time is even shorter than the
time required for a CFD only computation in terrhlud iterations.

For higher values of the numerical Biot numberinoother words when thermal gradients within
the solid become important, a Dirichlet conditiamtbe fluid side can no longer be considered as a
physics-based approach. In this case, a Neumartitioonis a suitable interface condition presenting
good numerical properties with no need for relaxatoefficients. This was shown theoretically iis th
paper and confirmed by the test cases. As a resudtrategy based on these two complementary
conditions was presented. Great numerical effigiemd substantial savings in computing time could
be attained by using an appropriate interface tnésson condition instead of being limited to a
single procedure.
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