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A Chain Rule lnvolving Vector Functions of Bounded Variation

By f E lbv(/, X), we mean thatf is a function of a real interval / to a Banach space X, with bounded variation on every compact subinterval of /; to such f, an X-valued measure df, called its differential measure, classically corresponds. Let Q be an open convex subset of X and y: Q-, R Two situations are investigated where the function Ff: t -y(f(t)) belongs to lbv(/, IR) and some properties of the real measure d(y çf) are established. In the first case, i' is supposed convex and con tinuous in Q. The subdifferential Ôr is invoked in the sense of Convex Analysis; under the ordering of real measures, d(y j) is shown to satisfy some inequalities. This generalizes previous results of one of the authors, aimed at deriving energy-like inequalities in nonsmooth mechanical evolution problems. ln the second case. r' is supposed Lipschitz on every bounded subset of Q and Clarke's generalized gradient of y is used. In both situations, if y happens to be Gâteaux-difTerentiable, and f E lbv(/, X) continuous, a chain rule of the familiar form is found to hold. Finally, for y Fréchet-differentiable, an expression of d(,' () is obtained. , 1987

INTRODUCTION

Let / denote a real interval and X a real Banach space. By f E lbv(/, X) we shall mean that fis a function of I to X with local/y bounded variation, i.e., it has a bounded variation on every compact subinterval of I. Classically, wi th every such function fis associated an X-valued measure on !, denoted in the sequel by df and commonly called the differential measure ( or Stieltjes measure) off Precisely, df is a <T-additive X-valued set function, defined on the class of the relatively compact Borel subsets of J, with finite variation. Conversely, every X-valued set function meeting these requirements equals the differential measure of some "cumulative dis tribution fonction." (See e.g. [START_REF] Dinculeanu | Vector Measures[END_REF], [START_REF] Moreau | Bounded Variation in time[END_REF].)

For the sake of consistency, all the measures considered in this article will similarly be denoted with a d, however archaic this may look.

In usual situations, there exists (non uniquely) a nonnegative real measure dµ on I and an element /� of Ll 0c (l, dµ; X) such that df = f� dµ.

This certainly holds if the Banach space Xis reflexive (more generally, X may be specified as possessing the "Radon-Nikodym property"; cf. [ 1, Chap. III, Sect. 1 ]; in particular, one may take dµ = ldfl, the "absolute value" or "variation measure" of the vector measure df The primary abject of this article is to extend, in two dilferent ways, the following results previously established by one of the authors [START_REF] Moreau | Sur les mesures différentielles de fonctions vectorielles et certains problèmes d'évolution[END_REF], with a view to derive energy-like inequalities in some mechanical evolution problems [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]: these concerned the special case where X equals a real Hilbert space H, with norm denoted by Il• 11-For every f E lbv(/, H), the real function ,-llf(t)ll 2 belongs to lbv(/, !R); it has been found that its differen tial measure is expressed by

( 1.1)
The dot in the right-hand side refers to the scalar product in H; this right hand side is naturally understood as a real measure, since the functions t-J + (t) and 1-f-(t), the right-limit and left-limit of fat every point, as elements of lbv(/, H), are universally locally integrable; more concretely, a representation df = f� dµ as above may be used in order to calculate this right-hand side. Furthermore, the following inequalities hold in the sense of the ordering of real measures

( 1.2)
In the special case H = �. equality ( 1.1) was stated by Daniell [START_REF] 0aniell | Differentiation with respect to a function of limited variation[END_REF] as early as 1918.

For the generalizations in view, the squared norm in H is replaced by some function y from an open subset of X to IR, which shall be supposed either convex and continuous or Lipschitz.

Concerning the notations f + and 1-for the respective right and left limits in the case of a possible endpoint of/, let us agree on the following: if I includes its possible left end, say t 1 , then by convention f-(t,) = f(t i ); symmetrically, if /includes its possible right end, say t., thenJ + (t,)=f(t,). These conventions secure that, generally, for every

[ a, b] c /, df( [ a, b]) = f + ( b) -J -(a).

ST A TEMENT OF RESUL TS

In Convex Analysis ôy(x) denotes the subdifferential of y at the point x, i.e., the subset of the dual space X' of X consisting of the elements x' such that the affine fonction u-<u-x,x')+y(x) minorizes y. In the case where y is convex and Gâteaux-difîerentiable at the point x, this trivially reduces to the single element Vy(x ), the gradient of y at this point.

THEO REM 1. Let f E lbv( /, X) with differential measure df = f� dµ; here dµ is a nonnegative rea/ measure on I and f� E L; 0c ( /, dµ; X ) . Let Q be an open convex subset of X and y: Q � IR be continuous and convex. Assume that, for every compact subinterval [a, b] 

of I, the closure of f( [a, b]) is contained in Q.
Then }', f: t -> y(!( t)) be longs to lbv(I, 1R) and its differential measure Comments on the Gâteaux-Differentiability of Convex Functions. If y is Gâteaux-differentiable at every point of Q, then convexity ensures the con tinuity of this function (in fact y equals , in that case, the supremum of a collection of continuous affine functions; hence it is Ls.c. and therefore con tinuous throughout the open convex set Q, because X is a barelled s pace [START_REF] Rockafellar | Level sets and continuity of conjugale convex functions[END_REF] ) .

The following implications are also useful ; if y : Q-> IR is convex and con tinuous, then at every point x E Q, the subdifferential ôy(x) is nonempty; } ' is Gâteaux-differentiable at x if and only if ôy(x) reduces to a singleton; a sufficient condition for that is the strict convexity of the con j ugate function Î,* of X' to ] -oo, + oo ] .

When Theorem 1 is specialized to the case of a convex Gâteaux-differen tiable function y , with gradient at a point x denoted by Vy(x), it yields that a chain rule of the familiar form Brezis [6, lemme 3.3 p. 73 J bas obtained an equality of the same sort as (2.2) by assuming f E Wl;,�(I, H) ( H is a Hilbert space ), but requiring only of y to be convex and l.s.c. from H to Joo, + oo]: if there exists g E Lf0c ( / , H) such that g(t) E ôy(f(t)) holds Lebesgue-a.e. then, with dµ equal to the Lebesgue measure of /, he proves that y o J is locally absolutely continuous and that, for almost every t,

VhEôy(f(t)): (yof) � (t) = ( h,f � (t) ).
For the second type of results of this paper Q is still supposed open and convex, but the convexity assumption for y: Q--+ 1R is dropped; instead, this real function is assumed Lipschitz on every bounded subset of Q. Again, we shall need the closure of every f( [a, b]) to be contained in Q. By ôy(x) will be denoted Clarke's generalized gradient [START_REF] Clarke | Generalized gradients of Lipschitz functionals[END_REF] at the point x, a convex weakly* compact subset of X'. THEOREM 2. With X, Q, /, f, df, dµ, f � as before, suppose that y: Q--+ IR is Lipschitz on every bounded subset of Q. Then y of belongs to lbv(/, IR) and d( y o /) admits, relative/y to dµ, a density ( y O !);, E Li1 0c (/, dµ; IR).

For dµ-almost every tin I there exists x in [f-(t),j + (t)] (the closed fine segment in X with endpoints the left limit and the right limit of f at t) and x' in ày(x) ( Clarke's generalized gradient of y at x) such that (yof);,(t)= (x',J;,(t)).

( continuo us from Q to x:. [START_REF] Leboljrg | Valeur moyenne pour gradient généralisé[END_REF]. This simplifies the application of Theorem 2. If in addition fi s continuous, a chain rule of the form (2.2) dµ-a.e. holds and the convexity of Q is not required.

The third theorem of this paper is aimed at constructing an expression of d(y o !), in order to generalize equality ( 1.1 ). A hint is found in the monograph of Vol'pert [8, Sect. 13.2, p. 248]; this author considers a function f, with values in !R n , defined in an open subset V of !R n . Such a function is said to be of locally bounded variation if its partial derivatives in the sense of distributions in V are measures; this generalizes lbv(/) in a specific way involving the Lebesgue measure of V essentially. In contrast, for n = 1 (and for an interval / nonnecessarily open in IR) the concept of a locally bounded variation relies only on the ordering of IR, without any reference to Lebesgue measure. Restricting ourselves to n = 1 will enable us to consider as before a function f with values in an arbitrary Banach space. THEOREM 3. Let X, Q, I, f, df, dµ, f� be as in the preceding theorems; suppose that y: Q-+ lR is continuously Fréchet-differentiable, with gradient at point x denoted by Vy(x). Then y a f E lbv(/, IR) and the differential measure d(yof) admits as density relative to dµ thefunction t -+ (8(t),f�(t)), where (}: I-+ X' is defined as

(}(t)= r Vy[(l-r)J-(t)+rf + (t)] dr. 0 3. A DERIVATION PROPERTY
The following extends to vector measures a result of Jeffery [START_REF] Jeffery | Non-absolutely convergent integrals with respect to fonctions of bounded variation[END_REF]. PROPOSITION 1. Let I denote a real interval, X a real Banach space, dµ a nonnegative Radon measure on I, dv an X-valued measure on I admitting a density dv/dµ E L/ 0c (/, dµ; X). Then, for dµ-almost every t, Proof The writing in (3.1) makes sense only if t does not belong to the respective subsets of /, I r = { t E /: 3a > 0, dµ(l n [ t, t + a J) = 0}

dv (t) = lim dv([ t, t+e ])= lim dv([ t-e,
1 1 = {tEI: 3/3 >0, dµ(/ Î\ [t-/3, t]) =0}.
Let us check that these two subsets are dµ-negligible. In fact, both / r and / 1 contain / 0 , the greatest open subset of I throughout which the measure dµ vanishes; / 0 equals the union of an at most countable collections (J ,, ) of disjoint subintervals of I and dµ(/0) = O. Any element t e of I,\10 (except trivially the possible right end of I) is the Ieft end of a nonzero interval closed on the left with zero dµ-measure; hence dµ( {te })= 0 and t e equals the left end of some of the intervals (J n ). This shows that I r \l o is at most countable; therefore dµ(I r ) = 0 and similar reasoning yields dµ(/ 1 ) = O.

Let h denote a representative of the element dv/dµ of L/ 0c (/, dµ; X); since this vector function is locally Bochner-integrable, it is strongly measurable. Hence there exists a separable subspace Z of X such that h(t) E Z for dµ-almost every t; let (z n ) denote a dense sequence in Z Let us apply Jeffery's theorem to the nonnegative real measure dv,, which admits as density relative to dµ the fonction t--+ llh( t)zn Il: there exists N,,, a dµ-negligible subset of / such that, for t r/:. N,,,

\ \ h(t)-znll = lim dv n ([t, t+s]) _ ,-o dµ([t, t+s]) c>O
Let N denote the union of { t: h(t)rf. Z} with the totality of the sets N,,. Let t rf. N and r, > O; there exists an integer n such that l \h( t) -z,, /1 �1'/-Since t ef: N ,, , there exists e 0 > 0 such that, for every e in JO, s 0 ], ' dv ,, ([t, t+s])

1 dµ([t, t+e]) -l l h(t ) -znll �'1-
In view of inequalities (3.2) Remark l. In view of the convention made, that dµ( [ t, t + e]) should be understood as the dµ-measure of / n [t, t + s], the above does not exclude that t equals t" the possible right end of /. In such a case dµ({t r })>Ü (otherwise, t r would be comprised in the excluded dµ-negligible set) and, for every e > 0, dv([t,,t,+s]) dv({t,}) dµ( [ t ,, t , + e]) dµ( { t r}) so that the first equality in (3.1) holds trivially. A similar remark applies to the second equality and the possible left end of I.

(3.3) J llh(s)-h( t )/\ dµ(s) � f ( llh(s ) -z11 !1 + llh( t) -z,,
Remark 2. For an alternative proof, valid when X has the Radon�Nikodym property (thus applicable to Jeffery's original case X=IR), see [START_REF] Moreau | Dérivation d'une mesure vectorielle sur un intervalle[END_REF]: there is used a technique of "jump unfolding" which reduces lbv functions to Lipschitz functions.

THE CONVEX CASE

Throughout this section, f and y are assumed to satisfy the assumptions of Theorem 1.

Observe that from f E lbv(I, X) it is easily deduced that the image f( [a, h]) of every compact subinterval of I has compact closure in X; Theorem I supposes this closure contained in Q. Assumption f(I) c Q would not be sufficient in order that y of E lbv ( I, IR). Counterexample: take

X= Ill Q = J-n/2, n/2[, y(x) = tg 2 x, I = [O, n/2] and f (t) = { � if t E [O, n/2[ if t = n/2.
LEMMA 1. Denote by x: the dual space of X, equipped with the weak* topology. Under the assumptions made, the multifunction x----. ôy(x) is upper semicontinuous from Q to x;., with nonempty convex compact values. For every compact subset K of Q, the real function y is Lipschitz on K.

Prool By the continuity of y, every point in Q possesses a neighborhood, say V, throughout which y is bounded from above. Therefore ( cf. [ 10 J or, for more details [START_REF] Moreau | Fonctionnelles convexes[END_REF]Sect. 11.e]; see also a proof in [ 12, Theorem 10]) ôy is an upper semicontinuous multifunction of V to X',, with nonempty convex compact values and the image of V under ôy is an equicontinuous subset of X'.

Since K may be covered by a finite collection of such neighborhoods, the image of K under ôy is an equicontinuous subset of X', thus contained in a ball centered at the origin; denote its radius by C. Let x and y be elements of K; for every x' E ôy(x) one has y(y)�y(x)+ <x', y-x)�y(x )+Cl\y-x\\ and the similar inequality after exchanging x and y. So the Lipschitz property is proved ( for fini te dimensional X, this is Theo rem 24. 7 in [ 13 J ). 

+ (t)) -y(/ -( s )) I � C'//J + (t)-f-(s)I/ = C'J/df( [ s, t] )Il � C'ld fl([ s , t]).
This proves the ltifl-continuity of d(y of). LEMMA 3. Let dµ be a nonnegative real Radon measure on l such that tif is dµ-continuous. Suppose (this is automatic if X has the Radon-Nikodym property) that df admits, relative/y to dµ a density J;, E L/ 0c (/, dµ; X). Then the real Junctions defined as <p*: t--+sup{ (g,J; ,(t)): gEôy(f-(t))} <p * : t--+Ïnf{ (g,/:(t)): gEoy(/ + (t))} are dµ-measurable ( or even Borelian, if the chosen representative of the element f� of L/ 0 c is constructed as the limit of a sequence of Borelian step functions) and locally dµ-integrable. Proof Take f� as the limit of a sequence of Borelian step-functions. We are to show that <p * is Borelian on every ln view of Lemma 1, one has (i) VuEX, VxEK, <P(u,x)�C\lu\\, (ii) VxEK, u--+<P(u,x) is a continuous real fonction in X, (iii) Vu EX, x--+<P(u,x) is an u.s.c. real fonction in K.

For every positive integer k, define

<P k (u, x) = sup (<P(u, v)-kl\v-xl l) l' E /( (4.2)
which is fini te throughout X x K, in view of ( i ). Due to ( ii ), u --+ <P k( u, x) is J.s.c., hence Borelian; x -4 <P k (u, x) is k-Lipschitz, hence continuous. Since K is separable and metrizable, it follows ( cf. [ 16, Lemma lll.14]) that <P k is Borelian on X x K.

That </J is Borelian results from <P(u, x) = inf <l> k (u, x).

In fact </J � <f) k; one has to check that for fixed u, x and e > 0, there exists k such that <P k (u,x)<<l>(u,x)+e. Now, due to (iii) there exists /1>0 such that for ll v-x\ l < fJ in (4. Finally observe that, due to (i), one has an inequality which proves that <p* is locally dµ-integrable. Similar reasoning applies to cp*.

Remark. The preceding does not rely on any separability assumption. If Xi s separable, the measurability of <p* and <p* may also be derived from Castaing's representation of the multifonction ay ( see, e.g., [START_REF] Castaing | Convex analysis and measurable multifonctions[END_REF] ). where the fu nction s ---+ r,( s) EX tends normwise to zero when When s tends to zero, J:(t) + 17( e) remains bounded in X, while ( ( h) tends to zero; thus the limit appearing in the last member of (6. In view of ( 6.3) and ( 6.4 ), this establishes the formula.

  possesses, relative to dµ, a density ( y O !)� E L ia c ( [, dµ; IR). The realfunctions ((J * : t�sup { ( g,f '. ,( t) ):gEày(f ( t )) J <p * : t � inf { ( g,f;, (t)): g E O }'( / + ( t)) } be long to L 1 1 0c ( /, dµ; IR ) and the inequalities (2.1) hold dµ-a.e. in I. In the set I, = { t E /: df( { t } ) = 0 } , equality <p * = <p* holds dµ-a.e. (in other words, dµ-a.e. in this set the subdifferential ôy(J + ( t )) , equivalently é1y(/-(t)), is contained in an affine hyperplane of X', orthogonal to f;,(t)).

(

  y of) � = (Vy ( f ) , _r ; ,) (2.2) holds dµ-a.e. in/ , ( and, a fortiori, in the set of the continuity points off} ; generally, dµ-a.e. in /, one has inequalities which ex tend ( 1.2 ) .

LEMMA 2 .

 2 The function y O f belongs to lbv(J, IR); ils differential measure is continuous relative/y to \df\, the absolute value of the vector measure df Proof Let [ a, b] denote a compact subinterval of /. If C � O is a Lipschitz constant of y on the compact set cl/( [ a, b] ), one readily obtains var(y of; a, b) � C var(/; a, b ) , which proves that y O f has a locally bounded variation. Let the compact interval [a', b'] be a neighborhood of [a, b] in /. This implies b' > b, except in the case where b happens to be the right end of /; symmetrically, a' < a except if a is the left end of/. Recall that, in Section 1, the conventions j + (b)=J(b) and J-(a)=J(a) has been made in these respective events. Let C' denote a Lipschitz constant of y on the compact set clf([a', b']).For every [ s , t] c [a, b] one has l d (y 0 /)([s, t ] ) I = l y(f

  [ a, b] c /. Let K =cl/( [ a, b] ), a compact subset of Q to which corresponds a constant C as in the proof of Lemma 1. For u in X and x in K, denote by c/J(u, x) the value at pointu of the support function of ôy(x ); then (4.1) Since f� and 1-equal the limits of sequences of Borelian step-functions, the fonction 1---.(J:(1),J-(t)) is Borelian from ]a,b] to XxK. Wejust have to show that c/J is Borelian.

  2), <P(u, x) + e majorizes <l>(u, v) thus majorizes also </J( u, v) -k Il vx Il; on the contrary, for I l vx I l � /J one has <P(u, v )-kl\v -x ll � max <P(u, •) -k/3 which may be made Jess than </J(u, x) + e by taking k large enough.The above technique may be traced back toCastaing [ 14]; a similar argument was also used byHausdorff [ 15, Sect. 42, pp. 282�283].

Proof of Theorem 1 .

 1 It just remains to complete the preceding lemmata by the calculation that follows. In view of Proposition 1, there exists a dµ-negligible subset N of I such that, for t If. N, one has, with nonzero denominators, 580 74,2-10 ( /) ' () 1 . d(yof)([t, t+e]) 1 . d(yof)([t-e, t]) yo t = ! ID ! ID -----µ E -0 d µ ( [ f, { + t]) & -0 d µ ( [ [ -€, f])

  l) equals <Vy(f-(t),f: (t)). Since in the present case dµ({t})=O, one has df( { t}) = 0, i.e., f + (t) = 1-(t). Therefore the asserted formula is true, as the expression of e reduces toO(t) = 'vy(f-( t)) = Vy(J+ (t)).Let us consider now the case where d µ ( { t}) > 0, i.e., t is an atom of d µ . Then and (y o f):(t) d(y o f}({ t }) y(f + (t))-y(f-( t) } dµ({t}) dµ({t}) conventions made in the Introduction if t is an endpoint of/ ) . Sin ce it has been assumed that cl f( [ a, b]) c Q for every [ a, b] c /, the points / + (t) and J-(t) belong to Q; the continuous differentiability of y throughout this open convex set yields y(f+(t)y(f-(t))= r <Vy[(l -r)f-(t)+rj + (t)],j + (t)-J-(t)) dr 0

  i; tends to zero; also d µ ( [ t , t + s]) tends to zero, sin ce t E /,. The Fréchet-differentiability of y at some point x means that y(x+h)=y(x)+ <Vy(x) , h) + l lhll ((h), where the real function ( tends to zero with 11h11. By making x= J-(t ) and h =j + (t+s)-J -(t), as expressed by (6.2), this yields y(f + (t + s))-y(f-(t)) = <Vy(J-(t)), d µ ([t, t + 8] )(f :(l) + r,(e))) + d µ([ t, t + s])!IJ;,(t) + >7( s) II ((h).

,>O Now, if gEo y ( J-(t)), d( y 0 / )([t, t + e]) = y (f + (t + e))-y ( J-(t)) � <g , J + (t + e)-f-(t) ).

After dividing by dµ( [ t, t + e]) one makes e tend to zero, hence

By taking the supremum for g ranging through o y (f -(t)) one obtains the first inequality (2.1 ). Strictly speaking, the above supposes that t is not the right end of /; otherwise the convention made in the Introduction, that f + (t)=f(t), has to be invoked.

The second inequality in (2.1) is proved symmetrically.

As for the last statement in Theorem 1, observe that df( { t}) vanishes if and only if .r-(t) = f + ( t). In that case <p * � <p * ; in view of (2.1) this yields <p * = <p * dµ-a.e. in /, .

PROOF OF THEOREM 2

The fact that y of belongs to lbv(/, IR) and the existence of ( y 0 .f);, E L{ 0c (/, d µ ; IR) are proved through similar inequalities as before.

First, suppose dµ( { t}) > O; then 

PROOF OF THEOREM 3

By the sarne arguments as before, y of belongs to lbv(/, IR) and there exists (}i , ,f);, E Lf 0c (I, dµ; IR). Put /, = { t E /: dµ( { t}) = 0}; let us first establish the asserted formula for t E (. Then we are allowed to neglect the possibility of t being an end point of /. In view of Proposition 1 one has, except for t is some dµ-negligible subset, and