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GENERALIZED k-FRACTIONAL CONFORMABLE INTEGRALS
AND RELATED INEQUALITIES

SIDDRA HABIB, SHAHID MUBEEN, MUHAMMAD NAWAZ NAEEM, AND FENG QI

ABSTRACT. In the paper, the authors introduce the generalized k-fractional
conformable integrals, which are the k-analogues of the recently introduced
fractional conformable integrals and can be reduced to other fractional inte-
grals under specific values of the parameters involved, prove the existence of
k-fractional conformable integrals, and generalize some integral inequalities to
ones for generalized k-fractional conformable integrals.

1. INTRODUCTION

Fractional calculus is the study of derivatives and integrals of non-integer order
and is the generalized form of classical derivatives and integrals. It is as dated
as classical calculus, but it acquires more importance in recent two decades, this
is due to its applications in various fields such as physics, biology, fluid dynam-
ics, control theory, image processing, signal processing, and computer networking.
See [5l, 6} [7, [8, [9] 10 1T}, 12} 15, 16, 2T, 22] 24, [45] (0, (I, 52) 53]. In recent years,
the research has been proceeded to generalize the existing inequalities through
innovative ideas and approaches of fractional calculus. One of the trendiest ap-
proaches among researchers is the use of fractional integral operators. Due to their
potentials to be expended for the existence of nontrivial and positive solutions of
several classes of fractional differential equations, the integral inequalities involving
fractional integrals are considerably important.

A large bulk of existing literature consists of generalizations of numerous in-
equalities via fractional integral operators and their applications [3] 27 [32] [46], [49].
Mubeen and Igbal [2§] contributed the ongoing research by presenting the improved
version of generalized Griiss type integral inequalities for k-Riemann—Liouville frac-
tional integrals. Agarwal et al. [2] obtained certain Hermite-Hadamard type in-
equalities for generalized k-fractional integrals. Set et al. [39] presented an inte-
gral identity and generalized Hermite-Hadamard type inequalities for Riemann—
Liouville fractional integral. Mubeen et al. [29] established integral inequalities
of Ostrowski type for k-fractional Riemann—Liouville integrals. Sarikaya and Bu-
dak [37] utilized local fractional integrals to derive a generalized inequality. Khan
et al. [25] produced some important generalized inequalities for a finite class of
positive decreasing functions for fractional conformable integrals. Jleli et al. [I8]
determined a Hartman—Winter type inequality involving fractional derivative with
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respect to another function. In the papers [43] [44] 48] and closely related references
therein, there are more information on this topic.

The main object of this paper is to develop a new notion “generalized k-fractional
conformable integral” which is the generalized form of fractional operators reported
in [I7]. Hereafter, we also generalize some integral inequalities given in [25] for a
finite class of positive and decreasing functions to ones involving our newly intro-
duced k-fractional conformable integrals. For details of those inequalities, their
applications, and their stability, we refer readers to [23] [26] 4T}, [42].

2. NOTATIONS

The notion of left and right fractional conformable derivatives for a differentiable
function f, introduced by Abdeljawad [1], can be expressed as

T (M) =(T =)' = f(T) and T f(T) = (b= T)'~f"(T).

Correspondingly, left and right fractional conformable integrals for 0 < a < 1 can
be represented by

T b
a _ f(z) o _ / f(z)
He f(T) = /a - dz and Hp- f(T) = B a)ie
Let T'(z) for £(z) > 0 denote the classical gamma function. The left and right

fractional conformable integral (LFCI and RFCI) operators of order § € C for
R(B) > 0 can be defined [I7] respectively by

U, f(z) = P(lﬂ) /:{(Ia)aa(ta)ar_l(t 1O g

dax.

and

L [Th=a) = =017 __f@)
PHY f(x) = dt.
st = [ | ORI
Diaz and Pariguan [I3] generalized the classical Pochhammer symbol (\),,, the
classical gamma function I'(z), and the classical beta function B(u, v) respectively
as
1, n = 0;

()‘)n»k{/\()\+k)...()\+(n—l)k), n €N,
Fk(w) - nh—>Holo (l')n,k 7

and

1/t

By (u,v) = %/ /R (1 — )R d
0

See also [30], BT] B3] B4, B5]. It is not difficult to see that the k-gamma function

Ik (z) and the k-beta function By (u,v) satisfy

Deo) = [ wrte M du, (o) = Jim Du(a),
0

Iip(z) = k”’“ﬂ"(i) Ti(z+ k) = 2Tk (2),

and

By (u,v) = iB<Z7 Z), By (u,v) = W
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3. GENERALIZED k-FRACTIONAL CONFORMABLE INTEGRALS

In this section, we introduce the generalized left and right k-fractional con-
formable integrals which generalize the Riemann—Liouville fractional integrals [36]
p. 44], Hadamard fractional integrals [4], Katugampola fractional integrals [19], and
generalized fractional integrals [38].

Definition 3.1. Let f be a continuous function on a finite real interval [a, b]. Then
the generalized left and right k-fractional conformable integrals (k-FCI) of order
B € C for R(B) > 0 are respectively defined as

N D S LG il ()l A 4 )
e ) = s [ [T

and

S S N U e () S A ()
k”bf(“"”)‘krkw)“ a ] D

where k > 0 and o € R\{0}.

Theorem 3.1. Let f € Li[a,b], @ € R\{0}, and k > 0. Then both f?—[&f(a:) and
f’)—[bo‘,f(a:) exist for all z € [a,b] and R(5) > 0.

Proof. Let A’ = [a,b] X [a,b] and P’ : A" — R such that
P'(z,t) = [(x —a)® — (t —a)®]P/F 1 (t —a)* L.
It is clear that P’ = P! + P’ , where

[(z—a)® —(t —a)®)P/* Yt —a)*, a<t<z<b
0, a<z<t<b

P_;_(.L“,t) = {

and

P/ (./,C t) _ [(t—a,)o‘ — (x —a)a]ﬁ/k—l(x _a/)a—l7 a S t S z S b,
o 0, a<zx<t<h.

Since P’ is measurable on A’, we can write

/bP’(x,t)dt:/wP’(%t)dt
= /m[(x —a)® — (t—a)*P/* Yt —a)* tdt = %(x — a)*P/k,

Therefore, we obtain

/ab [/abp’(x,t)lf(:c)ldt] da = /ab |f ()] [/:P'(z,t)dt} da
aﬂk . O}f<b—a>aﬁ/’“/abf<x>|dx
ak

b
== | @—a)**|f(x)lde <
=3 (b= @) E|| f (@) 1y fap) < 00

So, by Tonelli’s theorem for iterated integrals [I4] p. 147], the function Q' : A’ — R
such that Q'(z,t) = P'(x,t) f(z) is integrable over A’. Hence, by Fubibni’s theorem,
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it follows that ff P'(z,t)f(x)dz is integrable over [a, ] as a function of ¢ € [a, b].
This implies that 2%3@ f(z) exists.

The existence of the right k-fractional conformable integral 27—[2’1 f(z) can be
proved in a similar manner. The proof of Theorem is complete. ([l

4. INEQUALITIES FOR GENERALIZED k-FRACTIONAL CONFORMABLE INTEGRALS

Fractional integral inequalities have been analyzed for many useful purposes.
One of the most useful applications of such inequalities is the existence of nontrivial
solutions of fractional differential equations. Many applications find in the literature
for the existence of nontrivial solution eigenvalue problems by inequalities, see [32]
49]. Generalizing pre-existing inequalities by applying fractional integral operators
is the most popular trend in the research field nowadays.

In this section, we present some k-analogues of inequalities in [40, 46], 47] for
generalized k-fractional conformable integrals.

Theorem 4.1. Let {g;,1 <i < n} be a sequence of continuous positive decreasing
functions on the interval [a,b]. Leta <z <b,n>0,&> v, >0 forl <p<n.
Then the left k-FCI operator ’,f’}-l;’tr satisfies

g ([T 07 95(@)) _ (2. (0 = ) [Ty, 0705 (@)

4.1
PHo (ITm 0 @) e (2= @) T 6] (@) .
Proof. Under given conditions, we have
[(p—a)" — (1 = a)"][g5 " (7) — g5 " (p)] = 0.
Let us define a function
1 o _ NaB/k-1
W3 (@, p,7) = TR (3) w—a) " (r—a)
oY
M 80— i — (- s () -5 0] (02)

Under given assumptions, the function 233+ (z, p,T) is positive for all 7 € (a,].
Integrating on both sides of the above equation (4.2 with respect to 7 from a to x
gives

Il3’~a _ 1 Mz —a)® — (1 —a)® B/k—1
OS\/G kda+(x7p77-)d7'— krk(/@)/a |: - :l

ng; (p— )" — (7 — a)"|[g5~ (7) — & ()] —F

=(p— lBHC‘ (ng’gp )
iF#p

+9577 (p) [§H3+ ((x —o"]] gﬁ(ﬂﬁ))]
—(p—a)’g;7 (p) [’2%2# (ﬁ g/(ﬂf))] - [Q’HZ& <(w —a)" ﬁg/(ﬂv)ﬂ - (43)
i=1 i#p
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Multiplying the relation (4.3) by

1 [@—a)*—(p—a)* 1" I g7 ()
krkw){ 2 ] (o —a)a 44)

and integrating on both sides with respect to p from a to x yield

0< [Q’H;ﬂ (H gﬂgi(w))] [’2%% ((w —a)" Hgﬂ(x)ﬂ
1#p i=1
_ [’27—[3+ ((m —a)" Hgi ,igg(a:)ﬂ lfj;q;; (H gii(x)ﬂ . (45)
i#p i=1

Dividing on both sides of relation (4.5 by

WHE ((m ~a)" ﬁgr <x>>] [ﬁ%gx (ng)ﬂ
=1 i=1

results in (4.1)). The proof of Theorem is complete. U

Corollary 4.1. Let {g;,1 <i < n} be a sequence of continuous positive decreasing
functions on the interval [a,b]. Leta < x <b,n>0,&> 7, >0 forl <p<n.
Then the left k-FCI operator g?—ngr satisfies

o (- )
i=1 i#p

TH <ngg§<z>>] [fﬂgu ((x —a)" Hgi%x))]
i#Ep i=1

> [ZH{% ((x —a)"[[ 9 igi(fﬂ))] [fHE# (H g, igi(%))]

i#p i#p

PH (H gﬁ(:v)ﬂ [QHZ# <(x —a)" Hgii(fv)ﬂ . (4.6)

i=1 =1

Proof. Multiplying on both sides of the relation (4.3]) by

1 {(m—a)a—(p—cw r/’“ T g ()
kL' (0) o (p—a)t=e

and integrating on both sides with respect to p from a to x arrive at

0< [zH;a ((x —a)" Hgﬁ(m)ﬂ [ﬁ%i@ (H gxg§<m>>]
i=1 i#p
THS, <Hgﬁg§(x)>] [Zﬁgu ((x —a)" Hg;(x))]
i#p i=1
- li’ﬂéﬂ <(fﬂ —a)" Hgiigi(w)ﬂ [fﬂf% <H 9 igi(%))]
i#p i#p

(4.7)
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- [27'% (H 9i igi(%))] [QHSQ ((%‘ —a)"[[ o (x)ﬂ - (48)

i#p i=1
Dividing on both sides of (4.8) by

[ﬁ”fl& <(w —a)" f[gi "gﬁ(w)ﬂ [f’ﬂéﬁ (ﬁ 9 'igfj(w)ﬂ

i#p 1#p
WHG <H 9i igf;(x))] lf’Hfﬁ ((m —a)' [ 9" (w)ﬂ
iF#Ep i=1
leads to (4.6). The proof of Corollary is complete. (]

Theorem 4.2. Let h(z) be a continuous increasing function and {g;,1 < i < n}
be a sequence of continuous positive decreasing functions on the interval [a,b]. Let
a<xz<bn>0,>v>0forl <p<n. Then the left k-FCI operator f?—[;ﬁ
satisfies

WMo (T, 97 95(x) N pHe (W) TTE, 977 95 (2))
£H3+ (H?:l 9" (x)) - gHanr (h(2) [Ti=y 97" ()
Proof. Under given conditions, we have
[W7(p) = W ()] 9577 (1) — 9577 (p)] > 0.

Let us define a function

(4.9)

B 7o B 1 (x — a)a _ (T _ a)a B/k—1
v T2z, p,T) = KT (0) [ - }

% H?:1 977 ()

(r —a)i-a (W7 (p) — K(7)][g5 77 (7) — g5 "7 (p)].  (4.10)

Accordingly, the function fja"; (x, p,T) is positive for all 7 € (a,b]. Integrating on
both sides of the above equation (4.10) with respect to 7 from a to x shows

mﬁ~a . 1 Mz —a)® — (1 —a)® B/k—1
Og/a kda+(x7p7T)dT— ]{;Fk(ﬂ)/a |: - :|

x [T9" @) = " (D][g577 (1) = 9577 (p)]
=1

(r—at-e
= h"(p) lfﬂf; (H 9; 1’95(?6)) +9;7 7 (p) [f%% (h"(fv) Hgii(z)ﬂ
i#p i=1

= W(p)g5 % (p) [Q% (H g;<:c>>] - [ffﬂzu (h%c) [T @))] N

i#p
Multiplying on both sides of the relation (4.11)) by (4.4) and integrating on both
sides with respect to p from a to = give

0< [Zﬁsa (H g;gf,(x))] [ﬁ%;ﬁ (/ﬂ(m) Hgi%x))]
i#p i=1

dr
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- [‘2%; (h%) ﬁgygg(x))] [fﬂzu (H gﬁmﬂ e

i#p
Dividing on both sides of (4.12]) by

PH <h’7<x> Hgﬁx)) [ﬁ% (H g;‘(ac))]
i=1 i=1
leads to (4.9). The proof of Theorem is complete. |

Corollary 4.2. Let h(z) be a continuous increasing function and {g;,1 <1i < n}
be a sequence of continuous positive decreasing functions on the interval [a,b]. Let
a<z<bn>0,{>7>0forl <p<n. Then the left k-FCI opemtorf o
satisfies

FHZ# (h"(fv) [Ts" (@)] FH% (H 9i igﬁ(ﬂc))]

i=1 i#p

. (H giig]ﬁ(x))] [EH;:; (hw) [[o@ )

i#p

|
> [ZHZ# (h"(fv) ﬁgfgf.(x)ﬂ [Qﬂ;ﬂ (f[ giigﬁ(:c)ﬂ

i#p i#p
+ | (H gmm))] [QHZ# (hﬂ(z) IIo @))] - (413)

Proof. Multiplying on both sides of the relation (4.11]) by (4.7) and integrating on
both sides with respect to p from a to x derive

0< [ZH& (h”(w) Hgﬁ'(m)ﬂ [f”HS# (H 9/95(33))]

i#p

i (H g ig;;;(x))] [f%:iu (h%) [T <x>)]

iF#p

- [ZHZZ (h”(x) Hgi”gé(x)ﬂ [f“fifh (H 9#‘95(96))]

i#p i#p
n n
- [27'121 (H 9i L'gf;(l‘))] [57’12# (h"(ﬂf) H%”(J«“))] - (4.14)
i#p i=1
Dividing on both sides of (4.14]) by

[ZH;: (h%) 1 igf,(m))] [Z’H& (H J; ig§<x>>]

i#p i#p
+ WMo (H 9i 7‘95(33))] lf“rlfﬁ (h”(x) Hgﬁ(x)ﬂ
i#£p i=1

reveals (4.13]). The proof of Corollary is complete. O
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Theorem 4.3. Let {g;,1 <1i <n} be a sequence of continuous positive decreasing
functions on the interval [a,b]. Leta <z <b,n>0,&> v, >0 forl <p<n.
Then the right k-FCI operator f?—[?, satisfies

oy ([ o' g5(@) iy (0= 0)" [T, 67 95())

. 4.15
P (Mol (@) M (O er Mg @)
Proof. Under given conditions, we have
[(b—p)" = (b—7)"[g5 7 () — g5~ (p)] = 0.
Let us define a function
bh— ) — (b— ) B/k—1
<M 82— gy - - o150 - 50 (0] (420

Consequently, the function ffj’l‘;‘, (x, p,T) is positive for all T € (a, b]. Integrating on
both sides of the above equation (4.16) with respect to 7 from z to b gives

o< [t tmpriar = grigy [ L=

X H g (b= p)" = (b= 7)"[g57 (1) — g5 (p)]

=(b—p)" FH? (ﬁ 9 'igfj(w)>

i#p

—(b—p)"g5 " (p) lf’H? (H 9 (f@)

_dr
(b—71)l-@

+ 9570 (p) [i%? ((b ok Hg : <x>>]
- [Q'H;f ((b —o T <x>>] . (@)

i#p
Multiplying the relation (4.17)) by
a a k— n i
1 {(bx) ) r/ I 0 (o) (418)
kTk(B) a (b—p)t=

and integrating on both sides with respect to p from x to b produce

0= [Q”H? (H g/aé(%))] [f%? <(b —a)" ][ g (@)]

i#p i=1

- [ﬁi%? ((b ~ay" f[gzl'gax))] [’2%3 (H g/‘(a:))] . (@19)

i#p
Dividing on both sides of (4.19)) by

WMy ((b — )" Hg;m) [f%? (H g;<x>)]
=1 =1

yields (4.15). The proof of Theorem is complete. a
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Corollary 4.3. Let {g;,1 <i < n} be a sequence of continuous positive decreasing
functions on the interval [a,b]. Leta <z <b,n>0,&> v, >0 forl <p<n.

Then the right k-FCI operator f?—[?, satisfies

e (oo i) e (1)
i=1 i#p

g (f[ i ig§<x>>] lfﬂi“ ((b ~ay Hmm)]

i#p

> [Z’Hi“ ((b ay ﬁgrgﬂx))] [ZH;: (f[ gng)(x))]

i#p i#p

s (i) [ ot o
i=1 i=1
Proof. Multiplying the relation (4.17) by

1 {(b —2)” — (b— p)&}e/“n?_l 97" (p)
kL' (6) o (b—p)i—o

and integrating on both sides with respect to p from z to b procure

0< [2?%? ((b — )" f[g?i (x)ﬂ [Q’H? (ﬁ gﬂgf,(x)ﬂ

i#p

WM <H 9 iyﬁ(fﬂ))] [fH? <(b — )" HW(%))]

i#p

- [ﬁ“ri? ((x —a)" Hgﬂgf)(x)ﬂ FH? (H gi"gﬁ(x)ﬂ
i#p i#p
- [m (H g/‘g§<x>ﬂ [ﬁ%;ﬁ ((b ! Hg/m)]. (1.22)

i#p
Dividing on both sides of (4.22)) by

[Zﬁz& ((b —2)" ] g?ig,%(x))] [Q’Hz*- (H g;g§<x>>]

_|_

(4.21)

+

i#p i#p
+ [WHi- <H 9i igé(ﬂ?))] [gH?— ((b —2)" [ o (I))]
i#p i=1
demonstrates (4.20). The proof of Corollary is complete. O

Theorem 4.4. Let h(x) be a continuous increasing function and {g;,1 < i < n}
be a sequence of continuous positive decreasing functions on the interval [a,b]. Let
a<zx<bn>0,£>v >0 forl<p<n. Then the right k-FCI operator Q'Hb‘”‘_
satisfies
o (i 07 95(@) (M5 (h7(@) [Ty, 97 95())
PHy (T2 (@)~ (Mg (@) [T, 9 (@)

(4.23)
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Proof. Under given conditions, we have
[17(p) — W™ (7)) [g5 77 (1) — g5 " (p)] = 0.

Let us define a function

« o 1 (b_z)Oé _ (b—T)a B/k—1
RIE 0T = i ) [ a ]
: %_—g)()[h (o) = (PN [g 7 (7) — 9577 ()] (4.29)

Thus, the function gjba, (x, p,T) is positive for all 7 € (a,b]. Integrating on both
sides of the above equation (4.24) with respect to 7 from z to b results in

o< [t tmprar = gk [ o)

< TLa ) = 1] 557 () - 5 (0) =

= 1"(p) [ﬁ%?- (Hgﬁgﬁ(@) +9577(p) [f%?- (h”(:c) Hgmx))]

i#p
—h"(p)gs " (p) [fﬂz?— (H gii(x)ﬂ - lgH?— <h"(93) [To" (@)] - (4.25)
i=1 i#p
Multiplying the relation (4.25) by (4.18]) and integrating on both sides with respect
to p from x to b yield

0= [QH? (H g/QE(ﬂS))] [f?i? (h”(x) Hw"(%))]
i#p i=1
- [571? <h"(x)ﬁgi"9§(x)>] [Q’H? (ﬁ gli(ﬂﬂ)ﬂ- (4.26)

i#p i=1

Dividing on both sides of (4.26]) by

VA (h"(x) I1g (@) FH? (H gﬁ(ﬂﬁ))]
i=1 i=1
leads to (4.23). The proof of Theorem is complete. a

Corollary 4.4. Let h(z) be a continuous increasing function and {g;,1 < i < n}
be a sequence of continuous positive decreasing functions on the interval [a,b]. Let

a<z<bn>0,&>v,>0 forl <p<mn. Then the right k-FCI operator g?—lg‘,
satisfies

[ZHz‘ (h”(w) Hgm))] [QH? (Hg;gﬁx))]
i=1 i#p
Mg (H gi"gﬁ(w)ﬂ [m (h’](x) Hgi%x))]
1=1

i#p

+
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> [Z’H? (h"(x) Hgﬂgi(m‘)ﬂ FH? (H gﬂgfy(w))]

i#p i#p

;- <H g/(a»)] [i%? (h"u) [Lo <x>>] - (a2

i=1

Proof. Multiplying the relation (4.25)) by (4.21]) and integrating on both sides with
respect to p from x to b give

0< [zﬁs_ (h"(x) Hg;@c))] [ﬁ%gﬂ (nggax))]
i=1 i#p
WH- (H g;g§<m>ﬂ [f%? (hﬂ(m) Hgi%x))]

i#p
- [27{? (h"(w) Hgiigi(w)ﬂ [f%? (H giigﬁ(x)ﬂ
i#p i#p
- [ZH? <H gﬁgﬁ(@)] [27'[? <h"($)Hgii($)>1~ (4.28)
itp i=1

Dividing on both sides of (4.28]) by

[mf (h%c) e ig,%u))] [f%:: (f[g/gf,m)]

i#p i#p
+ |- <H giigf,(x))] [Q'H? (h"(x) Hgii(ﬂﬂ))]
iF#Ep i=1
concludes (4.27)). The proof of Corollary is complete. O

5. CONCLUSIONS

In this paper, we have presented the left and right k-fractional conformable in-
tegrals and generalized some important integral inequalities to ones for our newly
introduced k-FCI operators related to a finite sequence of positive and decreasing
functions. Our work produces k-analogues of many pre-existing results in the lit-
erature. Further, many special cases for other integral operators can be derived
from our generalizations. The results obtained can be employed to confirm the ex-
istence of nontrivial solutions of fractional differential equations of different classes.
The k-FCI operators in this paper are different from those introduced by Katugam-
pola [20] as their kernels depend on the boundary points a and b and need a different
convolution theory under conformable Laplace. Our k-fractional conformable in-
tegrals in this paper generalize well-known fractional integral operators such as
Caputo integral operators [36, p. 44], Riemann-Liouville integral operators [30,
p. 44], Hadamard integral operators [4], and their k-analogues.
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