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VARIA TIONAL PROPERTIES OF STATIONARY 

JNVISCID INCOMPRESSIBLE FLOWS WITH POSSIBLE 

ABRUPT OR 

J J MOREAU 
Département de Mathématiques, Université des Sciences et l echniques du Languedoc, 

34060 Montpellier Ce<lex, France 

Abstract-Ihe inviscid flows. possibly rotational and nonsmooth, which satisfy the equation of 
stationary incompressible hydrodynamics, are characterized as giving zero variation rate to somc 
real fünctional when the corresponding scalar and vector fields are transported by what is called a 
carrier, i e. a mobile differcntial manifold This transport does not have to preservc volumes; the 
Bernoulli fonction figures as the natural unknown sca[ar field rather than the pressure Inhomogeneity 
may be sharp, implying in particular the presence of free surfaces The key mathematical concept 
is thal of a divcrgcnce-free vector measure convected by a carrier For easier handling of this 
concept, somc versions of the main vaiiational statement are derived, involving vector potentials 
and stream fonctions in two or thrcc dimensions; axial!y symmetric tlows are a!so considered 

IN I RODUC IION 

THE TECHNIQUE oi "horizontal va1iations" for characterizing the solutions to some field 
equations has been prcsented in a former paper [ l], devoted to barotrnpic fluid flows, 
possihly with abrupt inhomogeneity The considered flows were not a priori assumed 
stationary and the main result of the said paper may be seen as a transcript of Hamilton's 
principle into the formalism of Euler's variables For brevity, the incompressible case was 

i left aside (cxcept in some introductory example we shall generalize below, Prop. 6 d ); 
actually, in the traditional spirit of analytical dynamics, the results may readily be adapted 
to incompressible fluids, by retaining only volume-preserving variations 

In contrast, the present paper is entirely devoted to swtionarv flmvs. and thus bears 

no direct connection wîth Hamilton's principle The fluid is assumed incompressible but 
the considered variations do not have to prcserve volume; this should be an advantage 
in possible computational applications 

Recall that by horizontal variation we mean the transport of the investigated mathe
matical olljects by an imagined continuons medium A, called a carrier, in motion over 
the concerned region of space: Such a medium, or moving differential manifold, is 
essentially distinct from the material fluid under study; the real variable ordering its 
displacements is dcnoted by , , not to be mistaken with the time of dynamics f hc carrier 

motion need not be stationary with regard to , Sorne of the calculations made in the 
sequel are readily equivalent to what is called Lie derivation in diftèrential geometry (see 
e.g [I 1, 121) However we think it more effective to confine the exposition to the language
of the dementary kinematics of continua This language makes clcar, in particular, that
the characte1izcd abjects are the critical points of real fünctionals defi.ned in some infinite
dimensional manifolds consisting of possible positions of the carrier. Hence approximation
Prncedures may be seen as walks toward these points This is formally similar to the
equilib1ium prnblem of an elastic medium. The conesponding numerical computation
will possibly take as an unknown the deformation of some finite-element mesh. Procedmes

rof this soit are currently used in the treatment of fee-boundary or optimal-design 
Problems [2, 3] Codes involving such deformations have also bcen developed to the end 
of computing large deformations of materials [ 18, I 9)

Resorting to moving-mesh procedures for the trcatment of such essentially "Eulcrian" 
Problcms as those of stationary hydrndynamîcs looks at first glance uneconomic. Actually 
this rnight prove effective when singular solutions are expected If the type of singularity 
is a priori known (for instance discontinuity across some unknown surface) a singularity 

 



of this type will be placed in the initial approximant; computation will bave to transport 
this singularity to the right place, white deforming it Of course the device shou[d prove 
ail the more efficient as the starting point is closer to the expected solution 

About the second variation of the investigated functionals and how some stahilitv
requirements give to measures the precminence over other sorts of distributions, sce [! 3j 
In a difforent way, the use of carriers might also prove effective for the study of 
unstationary flows: the evolutivc fields, possibly nonsmooth, wil! be determincd as 
resulting from reference fields by some transport: then the unknown is the carrier motion 
with T equal to the proper time of dynamics 

The present paper is entirely restricted to characterizing the solutions of field equations 
in some open set ü, without attention to boundary conditions To that end the considered 
canier will be supposed wmpact, in the sense that the velocity field <P dcfining its motion 
has a compact support in n On the other hand , <P îs assumed very smooth; this is an 
essential feature of the calculus of horizontal variations: the smoother is the carrier 
motion, the more inegular may be the investigated fields Jn particular, the densitv 
function p of the fluid may present discontinuities and possibly drop to zero beyond 
some unknown surface: this aecounts for a liquid flow with jiee swjàœ in the presence oj
a mass-less atmosphere We thereby generalize some Iong-known vaiiational character
ization of irrotational flows with fi-ee boundary or slipstream surface [4-6] 

For the reader's convenience, preliminary Sections 2 and 3 recall the concepts and 
main formulas of the horizontal variation technique, with retèrence to [l] for proofs 

Since irregular flows are to be dealt with, hydrodynamical equations must fnst be 
given a weak fo1m, in terms of Schwartz distributions, so as to embody in particulai the 
jump conditions across possible discontinuity smfaces That is the objcct of Section 4 
The Lehesgue measure in Q is denoted by /; the density field p of the fluid is supposed to 
belong to .L hic and the velocity field u to Lf

oc 
Then volume and mass conservations are 

expressed by formulating that the vector mearnre1 ul and pu! have zero divergences in 
the sense of distributions The momentum cquation is formulated in the same style, with 
a vcctor density of extraneous force relatively to the mass measure supposed to have the 
form grad V 

The propositions to corne will put fo1ward, instead of the pressure field p, the 
"Bernoulli function": 

b=p+!pu;u, pU 

Section 5 recalls the mechanical relevance of this scalar field As a consequence of the 
dynamical equations, the vector measme bu! is divergence-free; the connections of this 
with energy tram/ers is stresscd, when the considered domain surrounds some part of 
space in which other mechanical processes take place 

Ihen cornes in Section 6 the main variational statement: p, b, u constitute a solution 
of the dynamical equations in the open set Q if and only if the integral 

'J3 L (tpu,u, + pU + b) dl 

is stationary when the sca!ar fields p, band the vector mearnre ul are convected by every 
smooth compact carrier If one restricts the carrier to be isocho, ic, i e, div 'P = 0, one 
obtains a statement eliminating b, which generalizes the introductory examples of[!] 
and [7] 

The conditions div (ul) = 0 and div (pu/) = 0 of volume and mass conservations are 
placed a priori; this does not constitute a constraint, in the customary sense of the 
calculus of variations, since, as recalled in Section 3, these conditions are automatically 
preserved under the above transport; thev do not induce anv rest1iction on the comidered

car rien 
In the two-dimensional case, which is the object of Section 7, the easiest way of 

handling divergence-frec vector measures is to have each of them derive from a stream 
fimction \/; This is always possible in a simply connected domain: for general 0, sorne 



global necessary and sufficient conditions are indicated After this it is establishcd that, if 
the scalar field if; is convected by some carrier, the corresponding vector measure is itself 
convected This yields a simple version of the general variational statement 

The three-dimensional case is considered similarly in Section 8; if Q is not simple 
cnough, some global conditions have to be satisfied, in order that the divergence-free 
vcctor measure ul derive from a vector potential II It is cstablished that, when the vector 
field II E L /oc is transvected by some carrier, in the sense recalled in Section 2, the 
conesponding vectm measure (i e. the curl, in the sense of distributions, of the vector 
mcasurc Il/) is convected This generates variants of the statements of Section 6 

A more practical way of handling divergence-frce vector measures in three dimensions 
is devclopcd in Section 9 It consists in assuming II undcr the forrn if; grad 8, whcrc if; 
and O are scalar fields This is a vector potential of the divergence-free vector measure 
(grad if; X grad 0)/, where the gradients are possibly understood in some weak sense. This 
vector measure is shown to be convected by the carrier if such are the scalar fields if; and 
O fhe conesponding transcript of the main variational statement proves specially usefol 
for the treatment of axia!lv svmmet1 ù flows, which arc subjects of the final Section 10 
Then (} is taken equal to the azimuth angle, while if is a fonction of the two variables z 
and r, actually Stokes's stream fonction, traditional in the study of such flows Investigation 
of the flow is then rcstricted to some open meridian half-plane 

List of notations 

1J\Q, li() (resp 
1J(Q, JR2)) 

1J'k(Q, lli2) (resp 
1J'(Q, mm 

1Jk(Q, X), :l)'k(il, 
X) (resp :D(Q,
X), :D'(Q, X))

l 

.LP(Q, /; li() 
(resp .. U(Q, 
l; X)) 1 ,s; p 
< +ro,

L. ""(Q, /; [s?l)
(resp .L

co(Q,
l; X) 

Lioc(Q, l; li() 
(1esp L.f

oc<n,
l; X), l ,s; p 
,s; + CX) 

the totality of the real fonctions in the open subsct Q of%, which are 
continuously differentiable up to mder k at Ieast (resp indefinitely 
differentiable) and whose support relative to n is compact 

the conesponding spaces of Schwartz's distributions, i c the dual spaces 
of the above 

similar spaces consisting of vector fields and of vector distributions 

Lebcsgue's measure in % 
the totality of the /-measmable real functions f (resp vector fields u) in 

Q such that Jnl / jP dl< +oo (resp f nlulv d/ < +e1J, with I ·· i denoting 
the norm in X) 

the totality of the /-measmable real functions f (resp vector fields u) in 
Q such that 1 /1 (resp lui) is bounded, with the possible exception of 
a l-negligible subset of n 

the .totality of the real fonctions (resp vector fields) in n whose 
restriction to every compact subset K of Q belongs to _LP(K, !; lTu) 
resp _LP(K, !; X). 

M an open half-plane, i.e not containing its edge Z 
M the two-dimensîonal linear space of the vectors of Jvf. 
m the two-dimensional Lebesgue measure in A1 
r the distance to Z of the generic point of M 
% n-dimensional Euclidean point space
X the Euclidean vector space associatcd with the above, i e the totality of the free 

vectors of% 
A an n-dimensional differential manifold 
A� the tangent Iinear space to A at the point À 
At the dual of the above, i.e the cotangent space to A at À 
1r a diffeomorphism of A into % 
1r� the tangent mapping to 1r at the point À (a linear bijection of A� onto X). 

2 FORMULAS FOR HORIZONTAL VARIATIONS 

let Q denote an open subset of the n-dimensional Fuclidean space x; By horizoma! 
variation in Q, we mean the transport of some investigated mathematical objects by a 



continuous medium A, conceivcd in the abstiact_ callcd a carrier; the flow of this
imagined medium is defined by giving its velocity field 'P, a @" vector field in n, I � le 

In order to prevent in dynamica! prnblems any confusion with the physical time, the 
variable, ranging in some real interval J, which indexes the evolution of A is denoted bv 
r instead of t Possibly 'P will depend on r, i e the carrier flow may not be stationary, 
provided 'P is supposed @' jointly with regard to r and x in J X U 

In the sections to come we shall only considei compao carriers in n, i e the 1uppon 
of the vector field x --, 'P(r, \) is umtazned in a r-constant LOmpact rnbset of n 
Conscquently cvery partîcle of A which, at some r, happens to have a position outside 
of this compact set remains at rest 

From the velocity field being @k jointly in r and x, it classically follows that the 
transition (or "deplacemcnt") of A in % between cvcry two instants r 1 and r2 is a @k 

diffeomorphism Equivalently, the medium A is endowed with the structure of @" 
differential manifold, the points of which are its particles, such that for every 7 the 
plaœment mappin!{ r.,: À r.(r, À) fi:om A into % is a f! k diflèomorphism It is precisely 
a @k diffeomorphism of A onto Q if the canier is compact in Q In a classieal way, every 
object of the (3)

k diffèrential geometry of A is transformed under such a (r-depcndent) 
diffeornorphism into a similar ( r-dependent) abject of the diflèrential geornetry of n; in 
fact the latter constitutes a diftèrential submanifold of X, 

In particular a r-dcpcndent ,ea! /inzction vr: Q -, lffi may equal the image under ;r, of 
some r-constant real fonction 11: A· -, Il«, i e 'ï/r E I, Vx En: r,.(x) = 71(1r�1(;,)) According 
to the usua1 vocabulmy of continuum mechanics, in such a case yr is said convected by 
the canie1 .A This is equivalent to the vanishing, for every r E !, of its drag-denvative 
o"' along the canie1 A In genera!, for eve1y fonction (r, x) ·--, v(r, x) from IX n into Il«, 
this drag-derivative is by definition 

(2 I) 

where Y/ denotes the fonction definecl in J X A by 

1J(T, A)""' v(r, r.,(À)) (2 2) 

and 3 1 17 the partial derivative of this fonction relatively to its first argument Observe that 
the existence of the drag-derivative does not require of v to be diflerentiable in 11; if the 
latter holds, a well-known elementary formula relates o,py to the partial derivativc av;ar

Similarly, a r-dependent veuor field in n, i.e. a mapping u' of Q into the linear space 
X associated with %, is said convected by A if it equals, for every r E I, the image under 
r., of some r-constant vector field of the diftèrential manifold A If the vector u'(x) is 
defincd by its components ui(r, x) relative to some orthonormal Cartesian frame of%, 
such a mode of transport is found characterizcd by the condition 

(22) 

heie o"' denotes as above the drag-derivative along A of the considered real tunctions; by 
'P, 

1 
are denoted the partial dcrivatives of the components of the velocity field 'P, relative 

to the said Cartesian frame 
Recall that a vector field of the differcntial manifold A (or cross-section of the tangent 

fiber hundle) îs by defmition an assignment assocîating with every À E A an element of 
the linear space A�, tangent to the manifold at this point 

Symmetrically, there may be considered a coveao1 field, associating with eYcry À an 
element of the cotangent space A':, the dual of A� Every diffeomorphism 1r, yields as 
image of a covcctor field in A a covector field in Q; here one has to recall that, due to 
the Eudidean structure of 'X, the common practice identifies the tangent and cotangent 
spaces at every point of '.X with the single Euclidean linear space X Bence, a r-dependent 
vector field (r, x) · v'(.x) in n may happen to equal for eve1y r the image under 7f, of 



some 7-constant covcctm field of A; we rcfcr to thîs situation by saying that the vcctor 
field v' is uamvec1ed by the carrier A Equivalently, fèn every u· convected, the Euclidcan 
scalat product u1 (1r,(À)) v'(-ir,(À)), for each particle À of A, does not depend on 7, i e the 
real function u' · v' is convected In view of (2 2) this may be used to derive the following 
characterjzation of a transvected vector field 

(2 3) 

, IHE TRANSPOR1 OF SCALAR OR VECIOR MEASURES 

Measures are most easily introduced into the geometry of the differential manifold A 
by the dualitv method 

from this standpoin1, a sca!ar rneaswe (nonnecessarily positive) on A is a real linear 
fonctional, satisfying some known continuity requirements (sketched in [ 1 ]; for detailed 
exposition, see e.g [8, 9]) on the linear space 2J0(A, of the continuous real functions 
with compact support in A Under every diffeomorphism, such an object possesses a 
naturally defined image For instance, the Lebesgue measure lis a scalar measme on the 
manifold constituted by the open subset Q of % ; its image under -ir� 1 is a r-dependent 
scalar measure on A, say µ.7 The dilatation formula of the dassical kinematics of continua 
amounts to the fact [ 10] that the mapping 7 -· µ T of the interval J into the topological 
linear space ,1J'n(A, H�) of the scalar measures on A admits as derivative a scalar measure 
on A, whose image under rr7 equals div 'Pl Let us develop in that line the drag-denvation

rule for integrals. to be uscd in further sections of this paper 
Propositwn 3.a Let J7 denote a fimction {rom I X n into !Pl, Sll<h that, for everv r in some
neighborhood H of 70 in I. the Lebesgue mtegra!

f (r) l v(r, x) d/(x) 

exists Suppose that, for (7, x) E H X n (with the possible exœpiion oj a Lebesgue

negligible subse1), the drag-derivative (2 1) exist, and that, for every 7 E H, the fimction
x _, lb<PF(r, x)I is dommated bv somc r-constant 1-mtegrab!e fimction in n Then b"'J,'(70 , )

is Lebesgue integrable in n and tlze fimction f possesses at r "° r0 a derivative equal ra

/'(7o) = J (o.,,v(7o, x:) + J'(7o, x)'Pi bo, x)) dl(x) 
n 

(3 l) 

The proof simply consists in interpreting 'Tf"T as a change of vaiiables, which transforms 
/ (7) into an integral over A Let us denote by Cf) some admissible coordinates in this 
manifold and by J(T, À) the Jacobian dete1minant of 1r, at the point À E A when this 
mapping is expressed th10ugh œ) coordinates; then 

f (r) = i v(r, 1r,(À))J(7, À) dHÀ) 

where � denotes the measure induced on A by the n-dimensional Lebesgue mcasure of 
the <e) variables The neighborhood H of r0 may be taken as a compact subinte1val of/; 
on the other hand, the assumptions made about the velocity field 'f' entai! that the partial 
derivative d.l/d7 exists and is continuous throughout H X A, with compact support This 
allows one to apply lebesgue's dominated convergence theorem to the integrand [17(7, 
À).l(r, À) 1)(70, À).1(70, À)](7 - r0)-1, with 1) defined in (2 2) and 7 assuming an arbitrary 
sequence of  values converging to r0 Finally, use the definition (2 I) of the drag-derivative, 
together with the classical dilatation formula 

1 à.J - - (1, .\) ccc• div 'P(7, 7r(7, À)) 
1 a1 

(3 2) 



Let us consider similarly on the manifold A a vector (1esp wveam) meamre, say o,
defined as a real lincar functional, satisfying certain continuity requircmcnts (sec e.g [ 1 ]), 
on the lincar space of the continuous covec.tor (rcsp ve<lor) fields with compact support 
in A By a multidimensional version of the Lebesgue-Nikodym theorem, this definition 
is proved equivalent to the existence of a (nonuniquc) nonnegativc scalar measure v 
together with a locally 11-integrable vector (resp covecto1) field o:. such that O ,- o;.1,; one 
calls o: the demitv of(} relative to the scalar measme 11 

He1e again we are in the prcscnce of objects whose images under every diffeomorphism 
are readily defined On the other hand, in the Euclidean manifold n, the concepts of 
vector and of covector measurcs mergc into a single one for instance, a r-dependent 
vector measure on Q, say v', may happcn to equal the image under 1r, of some T-constant 
vcctor (rcsp eoveetor) mcasure on A; in that case we shall say that V

7 is wnveued (rcsp 
ttansvected) by the carrier A Equivalently there cxists a nonnegative scalar measme n'

on n, convected by A, and a convected (rcsp transvccted) vector field v;; 
in n such that, for cvery r, one has v' v�n'

ln accmdance with the definition of difkrcntial operators in the thcory of Schwartz 
distributions, a vector measure v on n is said divugence free if 

f (grad a) .. dv = 0 
Jn 

holds for every a E XJ(Q, mn, or equivalently for every a E XJ1(Q, !R() l his notion may 
actually be dcveloped without any Euclidean metric In fact, in the diftèrential manifold 
A, for every e 1 rcal fonction a, with compact support, the gradient ( or "diflerential") of 
a constitutes a @ 0 covector field with compact support; hence the integral of this g1adient 
field with regard to any vector measme O on A makes sense By definition, the value of 
the integral is a real number essentially preserved when the considered abjects are replaced 
by their respective images under any diffeomorphisrn Therefo,e: 

Propo1ition 3 b // a T-dependent vector mea,ure vT on n, convected bv A, lzappem 10 be

divergence-free fm 1ome r E /, the same holds for even, r

Let us end this section by considering the special case wherc some T-dependent vector 
measure vr in Q possesses a density, say v/, relative to the Lebesgue measurc l As before, 
let us denote by µr the image of l under 1r;:- 1

; then the image of v' under 11"
7 

1 equals 
o;µ\ where o; denotes the vector field image of v? unde1 1r; 1 Now, let us use again the 
r-constant scalar measure � defincd on A by means of the Lebesgue mcasure of some
admissible comdinates œ), and the conesponding Jacobian determinant F(À) = /(r, À),
a continuous real fonction on I X A Sincc µ7 Pt the vcctor measure e;µ' is r
constant if and only if the veetor field ro; is T-constant, exccpt possibly on some �
negligîble (equivalently µ7-negligible) subset of A Iherefore, the r-dependent vectOI
measure v' = v?l on Q is convected by A if and only if the vector field defined in !î (up
to the possible exception of Lebesgue-negligible set) by

is convectcd by A In vîew of (2 2) and O 2) this is finally found equivalent to the 
assertion that the drag-derivativcs of the Cartesian components v; of v", exist and satisfy 

with the possible exception of a Lebcsgue-negligible subset of l X n 

4 THE DYNAMICAl EQUATIONS 

(3 3) 

In ail the sequcl % is the Euclidean n-dimensional space defined by some inertial 
refcrencc frame (practically n equals 2 or 3); as beforc wc shall denote by X the associated 
linear space, i c the set of the frce vectors of 'X 



Let n be an open subset of %, in which the stationarv flow of senne incompres,ible,

possibly inhomogeneous, inviscid flwd is observed The pressure p and the density p are 
real fonctions in n, as well as the components u,, 1elative to somc orthonormal base, of 
the velocity u The density of distributed extraneous forces (usually gravity forces) relative 
to the mass measure is assumed to have the form grad U, where U denotes a given rea! 
function 

In the elementary case where ail thcse fonctions are e 1
, the dynamical equations of 

the fluid rcad 

to be joined with the kincmatical conditions of volume and mass conservation 

u,
1 

= 0, 

(pu;) 1 = 0 

(4 1) 

(4 2) 

(4 3) 

As we are to deal witb possibly nonsrnooth flows, these three relations will first be 
given a form with extended meaning. Under ( 4 3) the left-hand side of ( 4 1) becomes 
(pu;it;)J , which is the i

th component of the divergence vector of the tensor field with 
components pUjll; In order to translate this înto the Ianguage of Schwartz distributions, 
let us denote as before hy / the Lebesgue measure in Q and suppose 

p E L î;'c(n, !; lm), (4 4) 

The given components U; of the mass density of extrancous forces arc usually very 
smooth; it suffices here to suppose them in L 1�c(Q, l; fi«) Under assumptions (4 4). the 
functions pu,u

1 
and p constitutc the densities, relative to l, of some measures in Q Ihen, 

the following relations, involving the partial derivatives of these measures, in the sense of 
Schwartz distiibutions in the open set St, 

(lljll,l) 
J 

= -(pl), + u ,/, (4 5) 

are meaningful and, for the @ 1 case, equivalent to (41) Similarly (4 2) and (4 3) become 

(u)); = 0, 

(pu;f) 1 = 0, 

(4 6) 

(4 7) 

expressing that the vector mea,wes ul (the "volume current") and pu! (the "mass 
current") are divergence-free in n 

Undoubtedly (4.5). (4 6) and (4 7) are the conditions to be satisfied by the flow 
whenever ( 4 4) holds. 

For instance, let � denote a surface separating two open subsets ft and i.r of Q and 
supposed to possess a continuous normal unit vector n, directed toward n+ FOI a real 
function f which is @ 1 in n+ and W and admits unilateral limits f + and f · at every 
point of �. the gradient of the scalar measure fl (a vector distribution whose components 
are the partial derivatives of fl in the sense of the distributions in Q} classically equals the 
sum of the two following vector measures: the measure (grad / )/, diffused in Q, and the 
measure (/ ' - f )nu, concentrated on 2:, with u denoting the scalar measure ·'area" on 
this surface Let us apply this by taking respectively as / the functions u;, p, p of a flow 
assumed smooth in n+ and n-, with � as a locus of discontinuity In  that case, (4 5) (4 6) 
( 4. 7) turn out equivalent to 

(i) (41). (4.2) and (4 3) holding in n+ and ff;
(ii) the vanishing of the corresponding measure concentrated on Z



Therefore (4 7) entails that p 1u,'n/ and p-1çn; equal the same real tunction, say a, 
defmcd in 2:; in vîew of that, ( 4 5) yîelds 

a(u/ u,) ,,... (p-1 p)n,

As ( 4 6) cntails ( u,' -- -- u1 )n, 0 one fast obtains 

p' p 

and finally 

0 

a(u; u,) = 0 

(4 8) 

This means that cither u1 = u, 1 e the vclocîty has no jump on l:, or a, 0, i.e u' and 
u are tangential to 2: 

The above applies in paiticular whcn p is supposed to vanish throughout üL ; then 
(4 5) yields that p equals a constant, say p0, in this region (assumed to be connected) 
This accounts for an atmosphere oJ negligib/e de111itv, whi/e L desuibn the fiee sur(a(e 
of \Ome liq111d occupving �r; on this surface ( 4 .8) reduces to the classical condition p 
= p0 In such situations the liquid motion is the p10per object of the study, with ::!; a 
priori unknown; the vclocity u at every point of the atmosphere has only to satisfy u11 

= 0 for consistency and the simplest is to imagine u = 0 all over n 1 
C'oncerning the general use of (4 5), let us observe that the pressure is a mechanically 

meaningful fonction, and not only the scalar mcasure pl For instance, when investigating 
how the hydrodynamical efforts aie distiibuted over some physical boundary, one has to 
determine p as a fonction on this surface and not only as an element of cl loc(Q, !; fr&) 
Even whcn discussing the flow inside the open region n, one may have to check the 
feasibility of a solution by comparing p with the vaporization pressure of the liquid (see 
e g. [141) Howeve1. in many studies aimed at dctermining only the fluid motion, the 
constraint of volume conservation for eve1 y pait of the material is treated as unconditional; 
then p may be seen as the remtion a1sociated with tlzis constwint, actually fiictionless In 
the spirit of traditional mechanics it is wished to eliminate such an unknown fi:om the 
calculation T o that end, instead of ( 4 5 ), wc shall writc 

div (pu@ u/) - p(grad V)l E grad :JJ'(Q, (4 9) 

Herc the right-hand side dcnotes the totality of the vector distributions in n which equal 
the gradients of elements of :J)'(n, l:R<.) About p and u, we make here the same assumptions 
as in (4 4) But, without furthe1 study of the left-hand sidc in (4 9) there is no reason to 
assert that the scalar distribution (defined up to the addition of a constant distribution} 
admitting it as gradient has the form pl, p E L foc(Q, /; l.R{) Therefore (4 9) constitutes a 
weaker fo11nulatwn of hydrodynamics than (4 5). 

Let us finish thîs section by 1ecalling some facts to be used in the sequel about the 
subspace grad .iJ'(Q, 1�) of :J)'(Q, X) If g E :JJ'(Q, X) is a gradient, the paitial derivatives 
of the scalar distributions g; which constitute iis componcnts relative to some orthonormal 
Cartesian frame trîvially satisfy 

g; 1 -- gj; = 0, (4 10) 

i e g has zero curl in n In the special case where Q equals a product of coordinate 
intervals (possibly the whole of %) condition (4 10) conversely implies g E grad 'lJ'(Q, 
mn (cf [ 15], Chap 2). This more generally holds if Q is "simply connected" but, with 
arbitrary n, (4 10) is not sufficient for g to be a gradient Let us denote as beforc by 
(,, ·) the duality bîlinear form betwecn elements ot D(Q, lP.?) and .V'(Q, lk1) 



Prop01illo11 4 a J he veao1 distributwn g 1s a gradient if and 011/v i/ 

hold1 fi)1 eveq, veuor field !fJ C::: Xl(r!. X) wirh ::t?O divc1gence 

( 4 11) 

This ensues, as a very specia! case, from De Rham's homology theory of cw,enl'i on 
differential manifolds [ 16]; for a more elementary proof, sec [ 1 71, Annex When in 
particulai g is a veam measure, the bracket in (4 1 !) may be writtcn as an integral; this 
specially holds with g gî/ where g1 is a veao, field belonging to L L/n, !; X) Finally in 
the common case where g1 is a umtinuou, veuor j1c/d, the above condition may 
equivalently (through the use of mollifiers) be replaced by the vanishing of the ci1culation 
of this vector field along every closed curve in r!; this is a wcll-known characterization of 
the continuous vector fields whîch are, in the elementary sense, the gradients of sca!ar 
fields 

5 THE BERNOUI. LI FUNC r ION 

1 n the elementary case where the considered fonctions are differentiable, eqn ( 4 l) is 
classically transformed înto 

(5 l) 

witb u denoting the magnitude of u and where 

(5 2) 

is the Be11wull1 fimrtion As (4 2) and (4. 3) yield u1p 1 = 0, (5 1) readily implies 

uib, = 0, (5 3) 

meaning tbat b equals a constant along every streamline Ihe classical Bernoulli theorem 
concerns a connected regîon wherc it is assumed that p is a constant and ui 1 

- u
11 = 0,

î e cml u = 0; then, (5 1) shows that b equals a constant thwughout this region
The essential feature of the fonction b is its connection with energv transfer s Assume 

the dimension cqual to 3; the following embodies some commonly encountered formulas 
about the energy balance of hydraulic machines 

First observe that, in view of 1111 = 0, (5 3) bccomcs 

div bu = 0 (5 4) 

Bence the vector field bu has zero flux across the boundary of every boundcd reg10n 
where our set of equations is saüsfied 

More generally, suppose these equations satisfied in an open region n, sunounding 
some compact part K of%, with possible exchange of fluid between n and K Ihen (5 4) 
implies that the flux 

'l:J = L lm v dŒ (5 5) 

assumes the same nlue for every simple closed surface 1: drawn in n and srnrounding 
K, with II as outward normal unit It is found that 'P equals the Ill€'( haniw! power 
transferri'd /ionz K into Q; for instance, if A consists of a wind energy converter, 'P 
expresses the negative of the power extracted from the wind 

The writing in (5 5) requires that the vect01 field bu is smooth enough for the surface 
integral to rnake sensc But the following equivalent expression may be considered in 



more gencral instances: one constructs a @ 1 real function cr vanishing in sorne open
subset of fi sunoundîng K and assuming the value l on i and heyond: then 

'P = l bu · grad a dl
Il 

(5 6) 

r his makes scnse as soon as the vector field hu belongs to 1 i10c(n, /; X) Any other ci 1 
fonction a', vanishing in some open subset of n surrnunding K and assuming the value
1 beyond such surface as ::::; confers the same value to the integral in (5 6), sincc a a'
E iD 1 cn, 11«)

Similar remar ks apply to the divcrgencc-fiee vector measures u/, the volume currcnt.
and pu/, the mass cunent The two întegrals 

'V cc l u ·· grad a dl,
n 

the volume flux from K, and 

the mass /lux from K, are independcnt of 0: whenever this fonction meets the sarne 
requirements as abovc Observe however that the preceding concept of the power 
transferred secms mechanically unclem if the balance of fluid exchange between K and Q
is not zern; thus we shall require M = 0 In contiast, 'V may <lifter from zero if, during 
its transit through K, the fluid undergoes some density change resulting, for instance, 
from temperatme alteration 

What p1ecedes emphasizes the importance of b among the firnctions describing the 
flow, on an equal footing with the pressure p As seen in Section 4, if some free surface 
is present, separating the proper fluid from a massless atmosphere which occupies the 
region Q+ , the pressure condition on this surface is automatically involved in the 
dynamical equations of the whole system, when written in terms of distributions The 
constant pressure p0 of such an atmosphere is usually among the data; since p cc 0 
thrnughout n+ , this constant equals the value in n+ of b as well 

We have adopted (4 5) as the general form of the dynamical equations: introducing b 
instead of p yields the alternative writing 

(pu1uJ) 
1 = -[(b - fpu2 + pU)l] i + pUJ 

with b assumed to belong to L l0,:(Q, l: ml) 

6 MAIN VARIAl!ONAL STAIEMENl 

(5 7) 

For simplicity, it wîll be assumed in al/ rnbsequent sections that Jn IUl dl < +w; 
otherwise some covering argument should be associated with the forthcoming variational 
statements 

ln this section the dimension of % is arbitrary 

Propo1ition 6.a Ler a vector field u E .i 2(H, !: X), two scala/ fields h E 1 1 (n, !; 1El:), P
E .1 °"(fi, !; Il«) be defined in an open 1uh5et n of% (! denotes a, befô1e the Lebesgue

measure in Q) These elements sati�fy the dvnarnirn! equation (5 7) in Q !f and onlv 1/, fm 
everv compact e I cat I ier in Q, the r-derivatzve of the fàllowmg functionaf vani 5he1 a! 1 

= 0: 

(6 l) 



where b7

, p7

, reducing to b and p fm r = 0, are 1calm Jield, convected by the carrier and 
u', reducing to u for T = 0, is a veaor field 1uch that the vectm measure u" / is wnvected 

In this statement the velocitv field 'P qf the carrier may equivalentlv be as1umed 
r-constant and re1t1icted to be/ong to ."D(U, X)

Proof One easily checks (cf [l], Prop 9 4) that the integral '.B(T) makes sense for
every T in some compact neighborhood Il of zero in IT& ln orde1 to apply Proposition 
3 a, we füst have to show that the integrand in (6 1) possesses a drag-derivative b"" In 
fact br and p' have zero drag-derivatives by hypothesis and 

(6 2) 

On the other hand, by using (3 3), one obtains 

(6 3) 

Ihat the right-hand sides in (6.2) and (6. 3) have absolute values dominated, for TEH, 
by some T-constant /-integrable fonctions is readily established by the same reasoning as 
in [ 1 ], proof of Prop 9 4 Then Proposition 3 a above yields 

If ( ··, · ) represents the duality bilinear form between Schwartz distributions and elements 
of 1.J(U, �), with u denoting as before the magnitude of u, this writes down equivalcntly 
as 

'.l:l'(O) = (pu,uJ, rp;) + ((pU + b - !pu 2)l, <i'u) + (pU;l, 'P) 

:: --((pu;u)) 1, 'P,) - ([(pU + b - !pu2)l],, 4';) f (pU ;l, 'P;) 

The vanishing of this expression for every 'P E 1.>(Q, X) (equivalently for every cp E: JJ 1 (Sl, 
X), due to the special form of the considered distributions) is equation (5 7) 

Remark 6.b. The conditions (u)), = 0 and (pu/); = 0 of volume and mass 
conservations will be additionally împosed to the fields involvcd in this pwposition This 
does not constitute a constraint in the customary sense of the calcul us of variations since, 
as obse1ved in Section 3, these propcrties are automatically satisfied by all eompeting 
elements, without restricting the variation procedure in any way 

Starting with some field set (u 1
, b1

, p1 ) verifying these conditions, one may consider 
the totality of the field sets in Q resulting from this one by the transport, in the way 
prescribed in the proposition, by arbitrary @ 1 (resp @ w) compact carriers in n This 
constitutes, roughly speaking, an infinite-dimensional manifold and Prop 6 a characterizes 
the elements of this manifold satisfying (5 .7) (if any) as the critica! points of the fünctional 
(6 1). The author's prospect about the use of this fact in numerical computation has been 
described in the introductory section. 

Proving the existence of such critical points remains today out of sight This is very 
similar to the existence problem in large deformation elasticity (see e.g [ 11 ]), a problem 
essentially unsolvcd to-date, though numerical methods are effective 

In Section 5, the equations of hydrodynamics have been shown to imply that the 
vector measure bu/ is divergence-free. This property also is preserved under the considered 
transport since, by assumption, the scalar field band the vector mcasure u/ are convected 
by the canier Hence the manifold constructed as above from (u. 1 , b1

, p 1) as starting 
elemcnt can contain critical points of 'B only if div (b1 u 1!) = 0 (supposedly li 1u 1 E 
L 1�c( n, l; X))



ln Section 5 thcrc was also considered the case where n surrounds some compact pan 
K of % in which other mechanical processcs take place This put forward the fluxes 'P 
'V, .M of the respective divergence-free vector measures huL uf, pu/ Here as in (5.6) on� 
may considcr for cvery T 

'P' c:c- f b'u' grad Cl'
7 dl 

\) 

and similar expressions 'V T and Ai 7, with aT E @ 1 (D, lR<) vanishing in somc open subset 
of Q sunounding K and assuming the value l beyond some closed surface cnclosing the 
whole Thcsc features of Œ

T are preserved under the transport by the carrier whcn this 
real fonction is supposed convected; then grad ex' is a transvected continuous vector field 
with compact support in f2. Henœ 'P r, 'Y\ .Jlr/' a, e T-constan! if the c 01 rnpnnding veuo, 
meas111es are convected by wme carrier (nonnecessarily compact in D) 

Rernmk 6 c The carrier in Prop 6 a is not supposed to comply with the incompressibility 
condition imposed on another account to the material fluîd In that respect, the scalar 
function b in the functional 13 plays a role roughly analogous to that of a L agi ange 
multiplier On the contrary, by restricting ourselves to zsochoric carriers, i e div 'P o,

we shall now obtain a statement which eliminates b (equivalently the pressure), and thus 
chaiacterizes the solutions u, p of the dynarnical condition ( 4 9) 1 his generalizes a resu!t 
of [7], an introductory lecture to the calculus of horizontal variations 

Proposition 6 d The elements u E L 2(n, !; X) and p E L "'(Q, !; IR�) sati,fl' the dvnamica/ 
condition ( 4 9) in n if and onlv N', fm eve1 y compact i sochom @ 1 ( equiva!entlv @ ((/1 /Ier 
in Q, the T-de1ivative of the (ollowing fimctional vani1hes at r = 0: 

B(T) = r (!p
Tu;u; + p'U) dl, 

Jlî 

where the sca!ar field p' and the vector field u7, 1ed11cing ro p and u fin T -,- 0, are 
convected by the carrier 

Proof Since the carrier is isochoric, the Lebesgue measure l is convected, hence the 
vector measure ur/ is convected [cquivalently, the last tenn in O 3) vanîshesl Then the 
same calculation as in the proof of Prop 6 a yields 

B'(O) = (-(pu,u)) 
1 

[(pU - !rm2
)/], + pU J, <P,) 

For every 'I' in :l>(n, X) (equivalently in :l> 1(D, X) satisfying <f!
1 

i = O. one has 

fhcrefore, P10p 4 a shows that B'(O) vanishcs for every such .P if and only if (4 9) holds 

7 STREAM FUNCTION OF A PLANE FLOW 

In this section, the Euclidean space % is supposed two-dimensional and, for technical 
simplicity, oriented fhat the vector measure u/ or, more generally. somc vector distribution 
v E :l)'(Q, X) has zero divergence in the open subset Q may equivalently be expressed in 
tenns of the partial derivatives of the two scalar distributions v 1 , v2 which constitute ils 
components relative to some orthonmmal Cartesian trame, by 

(7 1) 

In view of the facts recalled at the end of Section 4, if n is 11mp/p conneLred, this is 
cquivalent to the existence of a scalar distribution 'JI E :l)'(n, 11«) such that 

(7 2) 



 

je by using the two-dimensional alternator symbol E,,, 

( 7 3) 

This relation is invariant under any change of the Cartesian frame, as long as it remains 
orthonormal and positive 

With arbitrary Q, (7 1) is no more suffieient fr)r the existence of '1t related to v in the 
above way The nccessary and sufficient condition prnvided by Prop 4 a becomes herc 

holding for cvery 'P E .V(�l, X) with zero divergence Sînce, in this two-dimensional case, 
the rotation of the considercd vectors through 1r /2 exchanges the operators "div" and 
"curl," this condition is equivalent to <v" 'Yi) = 0 holding for every 'Y E:. .V(n, X) with 
zero curl Now 'Y having a compact support in the open subset Q of%, its extension to 
the whole of % by zero in % "- Q has also a zero curl; this elementarily implies the 
existence of a f! '" real fonction a such that 'Y = grad a; observe that a has not necessarüy 
a compact support relative to Q: this fonction is only a constant in every connccted 
component Q "- supp 'Y 

If it is additionally supposed, as in the prcvious sections, tbat v �0 u/, with u 
E .l. fi,c(fl, !; X), one finds \JI = .f;l, where y; is a fonction belonging to .L f0c(Q, l; for 
every p E [ 1, co J (see e .g f 15], Chap 6) In the traditional case where u is more specially 
a continuous vector field, i/; becomes a @ 1 rcal fonction in Q defined up to the addition 
of an arbitra1y constant (we naturally suppose Q connected) classically called the stream 
function of u and u 1 "' i/; 2, u2 = -f I hold in the sense of elementary partial derivation 
The above conditions concerning v are equivalent in that case to u having a zero flux 
across every closed curve drawn in Q 

Proposition 7 a Suppose that Q is an arbitrarv open subset of the two-dimen,ional 
Euclidean space % Let a vector measwe v in Q derive fj,om a stream function 1/, 
E .l. /0c

(Q, !; lhl) in the seme that (7 3) holds in Q, with \JI y;l Let a T-dependent vector 

measure v' and a r-dependent scalar fimction ,v be convected bv a e 1 carrier in n and 
re,pectively reduce to v and f for r r0 Then, iV is. for everv T, the stream /imction of 
the vector measwe v' 

We shall base the proof on the following: 

Lemma 7 b. Let w' be a r-dependent @ 1 vectm field 111 Çl, tramvected br a (:>:' camer A 
Then the scalar measure 

(7 4) 

is conveaed bv the carrier 

Establishing this amounts to check that the measure f' possesses a r-constant integral 
over every moving compact subset of Q which is convected, i e. which equals the image 
under 1r(r, ··) of some r-constant subset Li of the canier A One may equivalcntly restrict 
onesclf to the case of a convected subset Dr of Q whose boundary éJDT is a piecewise-@ 1 

curve; by choosing on this curve the adequate orientation, the Stokes-Riemann integral 
formula yiclds 

(7 5) 

Now, for every r, the curve éJJY equals the image under 1r r of the T-constant curve é)!::,. of 
the manifold A, admitting a piecewise-t! 1 parametrization, say r _, À(r), r E [r 1 , r2]
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Puttîng X
7(r) r./À(r)), one obtains a piecewise-@ 1 parametrization of dIY, and thus 

expresses the right-hand member of ( 7 5) under the forrn 

fr, 

d_xT 
W

7

( x r(r)) · ·-- dr
ri dr 

Now dx r /dr constitutes, for every fixed r, a moving vecto1 convccted by A; since w has
hccn supposed transvectcd the above expression is r-constant, q e.d 

Proqf of Propo5itwn 7. a That y/ constitutes the stream fonction of the vector measurc 
V

7

, i e that (7 3) is satisfied with 'V' •,V l, means, according to the definition of derivatives
in the theory of distributions, that for every vector field w E .:0(1:l, X) one has 

(7 6) 

Since, in the p1escnt case, the considered distributions are measures the same equivalently 
holds for every wr in the space JJ 1(n, X) of the @ 1 vectOI fields with compact support in 
n and the intcgrnl notation may be used, under which ( 7.6) becomes 

j w;dvT =- ·f f:.;/vv'[Ji/;' dl (77) 

Observe that the propcrty y/ E .L 1�c(Q, !; lm) is preserved under the convection of v,' by 
the @ 2 carrier A As for the !aw of dependence of w' on r, let us suppose this vector field 
transvected by A Clearly if, for r = r0, the element w' runs through the whole of ;fJ 1 (!1, 
X), so it does also for every r This proves Prop. 7 a since, in view of Lcmma 7 b, both 
members of (7 7) are r-constant 

Ibis al!ows us to transcript Prop 6.a as follows 

Proposition 7c. Let a vector field u E L. 2(n, !; X) der ive {rom a ïtream {unction -,;,, /et 
h E L 1(0, l: IR2) and p E L uo(n, !; H«) These elements comtitute a solution c>

{ 
the

dynamical equation (5 7) in n if and only u: for everv compact (!! 1 can ier in Q, the
r-detivative of the fàllowing /imctional vanishes at r = 0:

where ,v, p', br, reducing ta if;, p, b for T = 0, are scalar fields wnvf'ltc>d by the canin 
Equivalently the ve{ocitv field of the carrie1 may be as sumed r-tmHtant and 1estm tcd

to belong to ;fJ(Q, X) 

The proof simply consists in observing that in vicw of ( 7. 1), the vector measure v' 
� u' l admits 1V as stream fonction if and only if the vector measure with components 
E1kv; equals the gradient of \V7 = ,J;7l Equivalently, E;ku'; are the components of grnd f, 
an elcment of L 2(il, l; X) whose value at almost every point of fi has the same Eudidean 
nOim as u' 

Similarly, Prop 6 d is trnnscripted into the following: 

Proposition 7 d. Let a vector (ze/d u E L. 2(Q, l; X) der ive {rom a stream fimction if;, lei P1 

E L if"(f.2,/; !.!«) Ihese elements constitute a wlution <{! the dvnam1ca! condifwm ( 4 9) if 
and only if, for every compact @ 1 (equivalenlly f! '° and/m r-wnstanl) isochorù wrrie1 /11 
n, the r-derivative oj thc> following functional vani,hes at r 0: 

B(r) = ( (!p'(grad ij;7)2 + p'U) dl, 
Jn 

v:hcre, if,,' and p', reducing to if; and p for r = 0, are 1ca!ar fzefds umvec rcd bv the umiCI 

The special case of a smooth flow of incompressible homogeneous tluid served as the 
introductory example of horizontal variation in [ 1, 7] 



8 VECTOR POTENTIAI 

In this section, the Fuclidean space % is supposed three-dimensional and, for technical 
simplicity, oriented For every smooth vectm field II in the open subset Cl of %, the 
vector field u = curl II has zero divergence; II is classically called a vec:101 potential of u 
Equivalently, the vector measure v = u/ equals the curl, in the scnse of distributions, of 
the vector measure 'V Ill In terms of the components of the considered vcctor 
distributions, relative to some po,irive orthonormal frame, this is by 

whe1e t;1k clcnotes the three-climensional alternato1 

(8. 1) 

For arbitrary distributions in Q, (8 l) is immedîately found to imply v11 = 0 In the 
simple case where n is delimited by coordinate planes it is easy to establish that, 
convcrsely, this condition secures the existence of a (nonunique) vectm distribution 'V 
satisfying (8 1) But in general, the vanishing of V; 1 in n is not sufficient The following is 
a special case of De Rham 's homology theory of currents [ 16] 

Ihere exists a vecto1 dzsllibutwn w wt1ifving (8 1) in n U and onlv U (v;, î'i) vamshcs
fàr everv vector field î' E :D(n, X) with zero cur!

As in Section 7 one sees that such î' are exactly the clemcnts of :D(Q, X) of the form 
grad a (then the real fonction a equals a constan1 in every connected component of 
Q"-.supp î') 

In the simple case where v = u/, with u a continuous vector field, the above condition 
is found equivalent to the vanishing of the flux of u across cvery smooth surface which 
equals a connected component of the boundary of a compact subsct of Q This in turn is 
equîvalent to div u = 0 holding in Q (at least in the sense of distributions, if u îs not @ 1) 

togcther with the vanishing of the said flux for a certain base set of smooth closed surfaces 
in Q (a finite set in usual instances) 

Similady to Prop 7 a, one has the following 

Proposition 8 a 5'uppose that n is an arbitrmv open subsel of the tl11ee-dime111ional
orie11ted E uclidean space % Let a vector mearnre v in Q der ive (rom a vector potential
II E: .[ /0c(n, l; X), in the sen se that (8 !) holds with 'V = II! Let a r-dependent vector
measurc v' be convectcd bv wme @ 2 carrier in n and reduœ to v for r = r0, let a r
dependent vector field rrr be tramvected bv the same carrier and 1educe to II for r = ,0 

Then II' 1 s for everv r a vector potential of v' 

Ptoqf Let us first establish the statement in the special case II E @ 1(n, X), so that V 

u/, where u = curl II is a continuons vector field For every r the transvected vector 
field rrr is @ 1 and the convected vector measure v' has the form u'l, with u' a continuous 
vector field We have to show that u' = curl 'V' or, equivalently, that the Stokes formula 

l II' dx
C· 

r U
7

' n drr 
J,, 

(82) 

holds for every compact 01ientable portion S' of (;J I surface, whose boundary C' is a 
piecewise-@ 1 curve, with orientation connectcd in the customary way with the direction 
of the normal unit vector n to 5' This surface may be supposed convected by the canier, 
i e it equals for every r the image under 7f7 of some fixed @ 1 surface portion i in the 
manifold A For the task of calculating the rigbt-hand side of (8 2) one would choose a 
@ l parametrization, say (1, s) -, À(r, s) of (r, 1) ranging through a compact subset 6. 
of IP.{2 Putting x'(r, s)-= 1r,(À(r, s)) one obtains a @ 1 parametrization of S', hence 

i i (ax' ax') 
u'··ndo- = u'(x(r,s))· -X- drds

5, t. a, as 
(8 3) 

Now the pa1tial derivativcs àx'/ar and â>::'/as constitute, for evcry fixed (1, s) E: .6., a pair 
of moving vcctors convected by the carrier A lhat the vector mcasure v' = u' / is 



convcc1ed, has heen characterized in Section 3 by introducing some coordinates {f) in 
the manifold A and the Jacohian determinant r of the concsponding expression of 1r'; 
this results in 

k' 
u'(x(1, ,)) =-0 /'(�(�, s)), 

where k' denotes some convected vector, i e the image under 1r',(J\(1, 1)) of some
,-constant elcmcnt K of the tangent space A�rn) Consequently, the integrand on the right
in (8.3) equals the determinant of the components of the three elements K, ava,, éJ'AF!\
of this tangent space relative to the base induced by œ) coordinates: fm every (1, 1) in ci 
this is ,-constant, so the r ight-hand side in (8 2) is r-constant fhc Ieft-hand side is ais<; 
,-constant, by the same argument as in the prnof of Lemrna 7 b 

This special case being established, it will play now a mie sirnilar 10 I emma 7 b in 
the proof of Prop 7 a That V

7 and 'Ji' satisfy (8 1) means that for every w' E .'Zl(!.1, X) 
one has 

Herc 'IF' = Il'l, with Il' E 1. 1�,c('J,l; X); hence the integral notation may be used, yielding 

(8 4) 

to hold equivalently for every w' E 1J 1(rl, X) The latter r-dcpendent vector field may be 
chosen transvected so that, in view of our first step, the vector measure with cornponcnts 
t;ikw';), i e -(eml w1 )/, is convected Since, by assumption, the vector field Il" is 
transvected and the vector measure v1 eonvected, both members of (8 4) are r-constant; 
Prop 8 a is thus proved. 

Using the above propositions to forrnulate a transcript of Prop 6 a is left to the reader; 
the sections to corne are devoted to some special cases 

9 PAIRS OF STREAM FUNCIIONS IN THREE DIMENSIONS 

[he three-dimensional Euclidean space % is supposed oriented As soon as two scalar 
fonctions y; and () are smooth enough for elementary calculation to apply, one finds 

grad 1/; X grad O curl (1/; grad 0) �, -curl (8 grad f) 

Hence the vector field grad y; X grad () derivcs from a vector potentiaL and thus is 
divergence-free If 1/; and O are conveetcd by a carrier, the vector fields 1/; grad 6 and 
0 grad y; are transvected, permitting the use of Prop 8 a The two following propositions 
place this observation in a more general setting 

P;oposition 9 a Let the vector field1 g and h, elernents 11( J_ f
oc

(Ü, /; X), be curl)iee 111 thc

weak 1·eme (i e the vector mearnre5 g/ and hl are rnr!�fiee in the sense 1)/ distributiom 111 
ü) Then the vector measwe g X hl Î5 divergenajree in n 

Proof One has to show that, for every œ E :JJ(n, 

(9 j) 

lhrnugh the use of mollifiers, the vectm fields g and h may arbitrarily he approximated, 
in the I.2 nmm of some compact subset of n containing supp cr in its interior, by curl
free vector fields g and h smooth enough for the following calculation to be va!id: 



This establishes (9 1 ), after întegration by parts 
As for the transport by some @ 1 carrier, one has the following 

Propo,itwn 9. b If the vectm /ield1 g' and h7, element, of L fuc(U, !; X), are tramvected,
the vector mea1we gr X h'/ i, wnvectcd

ln fact, let us check that for every transvected vector field wT E :D 0(n, X) the integral 
j W

7 

·· (gT X h7 ) dl is r-constant By using coordinates (e) in the carrier manifold A, this
intcgral may be expresscd as 

where each of the two exptessions in parentheses reprcsents the scalar triple prnduct of 
three elements of X Using a positive orthonormal base in X one expresses these triple 
products as the determinants of the corresponding cornponents Then the multiplication 
rule of determinanis transforms the above integrand into a determinant whose elements 
are nine scalar products such as w'(1r,) · (3rr,/3� 1 ) Since by assumption wT(1r7), gT(1r7), 
h'(1rT) are transvected, while the three vectors éh,J3f are visîbly convectcd, these scalar 
products are r-constant Ihis establishes the proposition 

Observe on the other hand, as a consequence of Prop 8 a, that if the transvected vecto1
fields g' and h' are curl�fiec /(H r = r0 , 10 they are {or everv r

l he simplest way of constructing such transvected curl-frec vector fields is to takc 
them cqual, at least locally, to the respective gradients of convected scalar fonctions 
Ihese gradients may be understood in the weak sense, i e concerning for instance g', 
one supposes the existence of a convccted scalar fonction 1V E J. /0c(Q, l; li<,?) such that 
for evcry T and every Œ E ,1) 1{n, JP2) one has 

r Œg' d/ �• - f if,,' g1ad O' d/ 
Ju Jn 

ln other words, the vector measure g' l equals the gradient, in the sense of distributions, 
of the scalar measure y/ l Concerning the regularity of ,f/ in such a situation, see e g 
[15], Chap 6 

The above generates various transcriptions of Prop 6.a Fm instance, the vector field 
u' E: ,L 2(!.1, l; X) involved in this proposition may be taken under the form 

u' = (grad ,ff) X (grad 0'), 

where the scalar fonctions y/ and O' are convected by the canier In view of the foregoing 
this secures that the vector measure uT! is divergence-fiee and convected; therefore the 
following proposition 

Proposition 9 c Ler a veoo1 field u E L 2(!), l; X) equal grad ,f; X grad e in n Let b 
E .l 1(!.1, l; �) and p E J.'''(Q, l; il«) These e/emenrs comtitute a rnlution of the dvnamica!
equation (5. 7) in n if and onlv if {01 eve1 v compact e 1 (cquivalentlv @ 00) carrier in U the
r-derivative of the jèJ!low111g fîmctiona/ vani 1he1 at T = 0:

1l(r) = 1· [!p'(grad ij;' X grad W)2 + p'U + h'] dl
[! 

whe1e 1V, 8', p', br, reducing to f, fJ, p, b /01 r = 0, me scalm fields convected hv the 
carrier 



 

Remmk 9 d In the case wherc i/;, 0, p are @ 1, the identity 

div (p grad if,, X grad 0) = (grad p, grad i/;, grad 0) 

makes the condition (pu,!); �- 0 of mass conservation equivalent to the vanishing of the 
Jacobian determinant of p, il,,, O; this is known to imply that the th1ee functions /J, v,,, o 
are dependent, i .. e the triplet (p(x), f(x), O(x)), for x rnnning through n, ranges in a strict 
submanifo!d of Lr&3 evidently independent of r when the three functions are convected bv 
some carrier fhe same remark applies to b, sincc the dynamical equation has bee;1 

shown in Section 5 to imply div bu c.. 0: the three functions h, if;, 0 are dependent 

10 AXIJ\I.LY SYMMEIR!C FIOWS 

In this section it is supposed that the open subset n of the three-dimensional space % 
presents the rotational symmetry about some axis denoted hy Z The vector field u and 
the scalar fields p, p, b defming the investigated flow in n are a priori assumed to have 
the same symmetry (up to a Lebesguc-negligible subset of Q), as well as the given scalar 
field U For simplicity, we assume in addition the mino1 1vmmetrv of the flow, relative 
to any meridian plane, which amounts to say that, for (almost) every x in �2, the vector 
u(x) is parallel to the meridian plane through x fhis is commonly refcrred to as the 
axza!lv 1vmmetric case 

The dynamical equation (4 5), formulates the vanishing of some vector distribution 
I E :z:J'(Q, X), i e for every test vector field 'P E :IJ(n, X) the vanishing of the real number 
<7 i , 'P,), denoted in the sequel by (T; 'P) Now the above assumptions readily imply that 
r is axially symmetric in the sense that ( l; 'P) remains unchangcd when 'P is replaced 
by 'Pa , the vector field resulting from 'P by the rotation through an arbitrary angle a 
about Z and also when 'Pis replaced by its minor image 'P* relative to a meridian plane 

With every 'P E :z:J(Q, X) is associated its axzally IJ!Fnmeltü. ave,age ip c- ('P + 'P*)/2, 
wherc i/> denotes the rotational ave,age of 'P, i e the vector field defined for every x E Q 
by 

ii>(x) 
! 12,,. - - 'Pc,.(X) da 21r () 

Visibly if! is an axially symmetric element of .V(n, X) and, for I as above, (l; 'P) 
c:cc <I; 'P) 

Therefore, sin ce the axial symmetry of the flow is a pri01 i assumed, al! variaiional 
siatemenl\ qf Section 6, 8, 9 ma)J equivalenrly be refànnulated bv resfl icting the comidered 
carriers to have axzalli1 srmmetric veloutF fields 

The economic way of desctibing the axially symmetric vector field 'P E 1J(Q, X) (resp 
'P E 2)k(Q, X) with k a positive integer) consists in giving its restriction 'Pu to some 
meridian half-plane .M, open, i e not including its edge Z Let us denote by w the open 
subset n n Af of M and by M the two-dimcnsionaI Euclidean linear space associated 
with M The restrictions to M of ail axially symmetric elements of :z:J(Q, X) (resp 1J') 
constitute a linear subspace of @ 00(w, M) (resp & k) that we shall dcnote by ;!Ja(w, M) 
(resp. f)�) Clearly if Q n Z = f1 one has :Da(w, M) = JJ(w, M) (and similarly for JJ�) 
but, when U n Z cf H, some conditions in the vicinity of Z, not to be developed h 
have to be satisfied by an element of @ '°(w, M) in order that it belongs to JJa(w, M) (;,.,v
similarly for V�) Ihe samc observations and notations apply to a rotationally symmetric 
scalar field 'P E :z:J(Q, H«) (resp :IJ k) and to its restriction 'PM E :z:Ja(w, IP2) (resp . .V�J 

As for the locally integrable fields u, p, b, p in Q corresponding as above to an axially 
symmetric flow, it should be kept in mind that the meaningfü! objects are actually the 
measures ul, pl, b!, pl Let us denote by m the two-dimensional Lebesgue rneasure in w 
and by , the real function x ___, dist (x, Z). By the restrictwn uM of u /o Af, we shall mean 
an element of.,[ /0c(w, rn; M) such that, for every 'Pu E J:J(w, M) (equivalently 'Pu È
:IJk(w, M)) one has 



(J 

 

21r f lllM ·· 'f'M dm� 
Jo 
r U • 'f' df, ( 10 l) 

where 'P denotes the axially syrnmctric vector field generated by 'PM Ibis reflects the 
classical technique of reducing the triple integral of a rotationally symmet,ic scalar field 
to a double integral in some meridian half-plane Observe that, when Q n Z -+ .0, some 
condition have to be satisfied by an element of .L/0c(w, m; M) in Oider that it corresponds 
in this way to some axially symmetric elemcnt of .L 1�c(Q, /: X); this condition is 
automatically satisficd by every element of .L 1(w, nn; M)

Similar definitions and obse1vations apply to the restrictions PM, bM , PM of the locally 
integrable axially symmetric scalar fields, p,b, p 

Now, let us take the axially symmetric vector field 'P E Xl(Q, X) (resp ]J k) as the 
velocity field of a carrier: clearly the motion of this carrier leaves invmiant every meridian 
plane and, in particular, its action in w may be dcpicted as a two-dimcnsional carrier 
with 'P,.,1 as velocity field Ihe convection in n of axially symmetric scalar fields such as 
p, p, b readily passes on to the convection of their respective restrictions to w; the same 
is truc for the convection (resp. the transvection) of an axially symmetric vector field 
such as u But some care must be taken when expressing the convection of the three
dimensional axially syrnmetric veuor meamre ut in n; similarly to ( 10 1) it cornes out 
that this vector measure is convected by the three-dimensional axially symmctric carrier 
with velocity field 'f> if and only if the two-dimensional vector measure m,11m is convected 
by the two-dîmensional carrier with velocity field 'f>M The following makes this opeiation 
casier 

Let us use in lt1 Cartesian orthonormal coordinates, respectively z, along Z as an 
axis, and r > 0 as before Let us denote by uz and u, the components of uM. If the axially 
syrnmetric vector measure u/ is divergence-free in n, the two-dimensional vector rneasure 
ruum is divergcnce-frec in w. When w is simply connected, this implies in the same way 
as in Sect 7 the existence of if;u E .L 1�c{w, m: lîè) such that. in the sense of distributions 
in w, one has 

] éJ,j;M u =---
= , a, ' 

] d,j;M u, = - ---
r i)z 

(10 2) 

ln the differentiable case, f u is nothing but classical Stoke'\ çtream Jïmction of the 
considered axially symmetric flow 

This is directly connected with the results of Section 9 Let us take herc for h the 
gradient of the azimuth angle x -+ O(x), a real fonction locally dcfined in % ".. Z up to an 
additive constant The vector field h is @ 00 in % ".. Z with zero curl On the other hand, 
let us take for the fonction ,J; of Section 9 the rotationally symmetric extension of the 
fünction denoted above by lfA1; this yields 

u/ = (grad 1{;) X h/, ( 10 3) 

which turns out to be equivalent to (10.2) 
Since the scalar field e is a constant in M. it is automatically convected by any two

dimensional carrier in w Iherefore Prop 9 c yields the next prnposition 

Proposition 10.a. Let the open subset n <�f % be rotationally svmmetric about Z, a1 wel/ 
a1 rhe potentwl fimction U of extrnneous forces Let an axiallv svmmetric flmv be described 
as above br the mendian element1 ,J;,11, PM, bM, wzth 

grad fM E L 2( w, � dm; M) 
bM E: .1.. 1(w, 1 dm; H<<) , 

PME .1.. "''(w, dm; IP2) 

(10 4) 

( 10 5) 

(10 6) 



lhi1 Jlow 1at1sfics (4.5) in nif and onlv if, j'm cverv carrier with ve!ocitp field 'PM E JJ,iw 
M) (equivalemlv 1) t(w, M)) the T-denvative of the /'o!lowing fimctional va11i1he1 at ; 

0: 

ivhe1e fl1 , pl1 , M.1, reducing w i/;M, Pu, hM fhr r =-- 0, me ,calar fields wnvected bv 1he 

can1e1 

Remark 10.6 Supposing u undcr the form (10.2), or cquivalently (10 3), involves that 
the vcctor measure u/ is divergence-free in n "- 7, not nccessarily in U if n "- 7 f= fJ In 
fact the vector field h figuring in (10 3) is cm 1-free in % "- .7 but, as an element of 
.L 1�c(%, f: X), its curl in the sensc of distributions equals a nonzero vector measure 
concentrated on Z I he following proposition shows that, in the present instance, we are 
fteed from this hindrance thanks to assumption (104) 

PropO\ilion 10 c Let Q be an open subset of the three-dimensiona! Eucl!dean spaœ %, 
intenecting the straight fine Z Every e!ement of .L 2(Q, /; X) wzth zero divergence in the
seme of distributions 111 the open set n "- Z a!so has a zem divergence m Q 

Proqf we have to show that, under the assumptions made, 

I u · grad 'P dl = 0 
!l 

( 10 7) 

holds for every <P E. :D(Q, LI«) Let us choose a (iJ "'-' fonction f: [O, + oo [- [O, 1 ], taking 
the constant value l in [0, � 1 and vanishing in [ 1, + en[ With every E > 0 let us associa te 
the function 

a: x - f [� dist (x, Z)J, 

which belongs to @"'-'(%, rRl), as well as (J = 1 - a. The left-hand side in ( 10 7) equals 
the sum of two ter ms First, f n u · grad ((J'P)dl vanishes since {3<P E :D(Q" Z, [Rl) Second, 
we are to show that under assumption u E L 2(n, l; X), the expression 

l u · grad(a'P) dl = l rxu · grad 'P dl+ l <Pu giad a dl, 
n Q n 

where <P is fixed in 1)(Q, !Pl), tends to zero with "· This is trivial in what concerns the first
term on the right, since Ier[ < 1 and since the Lebesgue measure of the set K = (supp a)
n (supp 'P) tends to zero As for the last tcrm, the Cauchy-Schwarz inequality yields 

Now, introducing the characteristic function of supp a, one has 

which tends to zero by Lebesgue dominated convergence; on the othcr hand, if D denotes 
the diameter of the compact set supp 'P, one elementarîly finds the following upper 
bound, independent of E: 

( (grad a,f d/,,::; 27rD (
1 

sf '2( ç) d s 
JK Jo



Remark 10 cl As in the preccding sections, the condition div (pu/) = 0 of mass 
conservation has to be satisfied additionally Duc to (10.4) and (10 6), Prop 10.c implies 
that this condition holds in the whole of n as soon as it holds in n "- Z This in turn is 
readily fùund equivalcnt to div (pMuMrm) 0, holding in the sense of two-dimensional 
dist1ibutions in w ln view of ( 10 2), this in turn is equivalent to 

a ( àiJ;M) a ( oif;M) 
i:Jz 

PM or ÙI PM à:; 
0, 

which is meaningful in the sense of distributions in w In the case where PM and VIM are 
smooth, this reduces to the vanishing of the Jacobian determinant of thcse two fonctions, 
which means that the couple (PM, fM) takcs it values in some strict submanifold of JJ«2 

These properties are natuially preserved when the scalar functions PM and V'M are 
convected by a carrier 

Rcmark 10 e Similarly to the abovc remarks, if n n Z =fa fr, one may ask whether the 
dynamical equation (4.5) holding in n"-Z is sufficient for this equation to hold in n If 
so, the assumptîon 'P1,1 E 'i)a(w, M) in Prop 10 a could be replaced by 'PM E 'i)(w, M) 
By the same sort of upper bounds as in the proof of Prop 10 c, the answe1 is found to 
be yes, it� in addition to (10 4), (10 5), and (JO 6) it is supposed that u E L�,(n, /; X); 
but we are unable to assert that some Jess stringent sufficicnt condition cannot be found 
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