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VARIATIONAL PROPERTIES OF STATIONARY
INVISCI®D INCOMPRESSIBILLE FLOWS WITH POSSIBLE
ABRUPT INHOMOGENEITY OR FREE SURFACFE

1T MOREAU
Département de Mathématiques, Université des Sciences et Technigues du Languedoc,
34060 Montpellier Cedex, France

Abstract—The inviscid flows, possiblv rotational and nonsmooth, which satisfy the equation of
stationary incompressible hydrodynamics, are characterized as giving zero variation rate to some
real functional when the corresponding scalar and vector fields are transported by what is called a
carrier, i e. a mobile differential manifold This transport does not have to preserve volumes; the
Bernoulli function figures as the natural unknown scalar field rather than the pressure Inhomogeneity
may be sharp, implying in particular the presence of free surfaces The key mathematical concept
is that of a divergence-free vector measure convected by a carrier For easier handling ef this
concept, some versions of the main variational statemnent are derived, involving vector potentials
and stream functions in two or three dimensions; axially symmetric flows are also considered

I INIRODUCTIION

THE TECHNIQUE of “horizontal variations™ for characterizing the solutions to some field
equations has been presented in a former paper [1], devoted to baretropic fluid flows,
possibly with abrupt inhomogeneity The considered flows were not a priori assumed
stationary and the main result of the said paper may be seen as a transcript of Hamilton’s
principle into the formalism of Euler’s vanables For brevity, the incompressible case was
left aside (except in some introductory example we shall generalize below, Prop. 6.d);
actually, in the traditional spirit of analytical dynamics, the results may readily be adapted
to incompiressible fluids, by retaining only volume-preserving variations.

In contrast, the present paper is entirely devoted to siationary flows, and thus bears
no direct connection with Hamilton’s principle. The fluid is assumed incompressible but
the considered variations do not have to prcserve volume; this should be an advantage
in possible computational applications

Recall that by horizontal variation we mean the transport of the investigated mathe-
matical objects by an imagined continuous medium A, called a carrier, in motion over
the concerned region of space Such a medium, or moving differential manifold, is
essentially distinct from the material fluild under study; the real variable ordering its
displacements i1s denoted by 7, not to be mistaken with the time of'dynamics. The carrier
motion need not be stationary with regard to r Some of the calculations made in the
sequel are readily equivalent to what is called Lie derivation in differential geometry (see
eg [11, 12)) However we think it more effective to confine the exposition to the language
of the elementary kinematics of continua This language makes clear, in particular, that
the characterized objects are the critical points of real functionals defined in some infinite-
dimensional manifolds consisting of possible positions of the carrier. Hence approximation
procedures may be seen as walks toward these points This is formally similar to the
equilibrium problem of an elastic medium. The corresponding numerical computation
will possibly take as an unknown the deformation of some finite-element mesh. Procedures
of this sort are currently used in the treatment of free-boundary or optimal-design
problems [2, 3] Codes involving such deformations have also been developed to the end
of computing large deformations of materials [18, 19)

Resorting to moving-mesh procedures for the treatment of such essentially “Eulerian”
problems as those of stationary hydrodynamics looks at first glance uneconomic. Actually
this might prove effective when singular solutions are expected If the type of singularity
is & priori known (for instance discontinuity across some unknown surface) a singularity



of this type will be placed in the initial approximant; computation will have to transport
this singularity to the right place, while deforming it Of course the device should prove
all the more efficient as the starting point is closer to the expected solution

About the second variation of the investigated functionals and how some stability
requirements give to measures the preeminence over other sorts of distributions, see [Hj
In a different way, the use of carriers might also prove effective for the study qf
unstationary flows: the evolutive fields, possibly nonsmooth, will be determined as
resulting from reference fields by some transport: then the unknown is the carrier motign
with 7 equal to the proper time of dynamics

The present paper is entirely restricted to characterizing the solutions of field equations
in some open set {2, without attention to boundary conditions Io that end the considered
cartier will be supposed compact, in the sense that the velocity field ¥ defining its motion
has a compact support in £. On the other hand, ¥ is assumed very smooth; this is an
essential feature of the calculus of horizontal variations: the smoother is the carrjer
motion, the more irregular may be the investigated fields In particular, the density
function p of the fluid may present discontinuities and possibly drop to zero beyond
some unknown surface; this accounts for a liguid flow with free surface in the presence of
a mass-less aimosphere. We thereby generalize some long-known variational charactes-
ization of irrotational flows with free boundary or slipstream surface [4-6]

For the reader’s convenience, preliminary Sections 2 and 3 recall the concepts and
main formulas of the horizontal variation technique, with reference to [1] for proofs

Since irregular flows are to be dealt with, hydrodynamical equations must first be
given a weak form, in terms of Schwartz distributions, so as to embody in particulas the
jump conditions across possible discontinuity surfaces That is the object of Section 4
The Lebesgue measure in € is denoted by /; the density field p of the fluid is supposed to
belong to .£{Z. and the velocity field u to .L2,. Then volume and mass conser vations are
expressed by formulating that the vector measures u/ and pu/ have zero divergences in
the sense of distributions The momentum cquation is formulated in the same style, with
a vector density of extraneous force relatively to the mass measure supposed to have the
form grad U

The propositions to come will put ferward, instead of the pressure field p, the
“Bernoulli function”:

b=p+ipuu —pU

Section 3 recalls the mechanical relevance of this scalar field As a consequence of the
dynamical equations, the vector measure bu/ is divergence-free; the connections of this
with energy transfers is stressed, when the considered domain surrounds some part of
space in which other mechanical processes take place

Then comes in Section 6 the main variational statement: p, b, u constitute a solution
of the dynamical equations in the open set  if and only if the integral

B = f Gouu; + pU + b) d!
Q

is stationary when the scafar fields p, b and the vector measure ul are convected by every
smooth compact carrier If one restricts the carrier to be isochoric, ie, div ¢ = (), one
obtains a statement eliminating b, which generalizes the introductory examples of [{]
and [7]

The conditions div (u/) = 0 and div (pu/) = 0 of volume and mass conservations are
placed a priori; this does not constitute a constraint, in the customary sense of the
calculus of variations, since, as recalled in Section 3, these conditions are automatically
preserved under the above transport; they do not induce any restiiction on the considered
carriers

In the two-dimensional case, which is the object of Section 7, the easiest way of
handling divergence-fiec vector measures is to have each of them derive from a stredit
function ¢ This is always possible in a simply connected domain: for general €, som¢



global necessary and sufficient conditions are indicated After this it is established that, if
the scalar field ¥ is convected by some carrier, the corresponding vector measure is itself
convected This yields a simple version of the general variational statement

The three-dimensional case is considered similarly in Section 8: if Q is not simple
enough, some global conditions have to be satisfied, in order that the divergence-free
vector measure u/ derive from a vector potential TI 1t is established that, when the vector
field Il € £}, is transvected by some carrier, in the sense recalled in Section 2, the
corresponding vector measure (i e the curl, in the sense of distributions, of the vector
measure II/) is convected This generates variants of the statements of Section 6

A more practical way of handling divergence-frce vector measures in three dimensions
is developed in Section 9 It consists in assuming IT under the form  grad 4, where ¥
and 6 are scalar fields This is a vector potential of the divergence-fiee vector measure
(grad ¥ X grad f)/, where the gradients are possibly understood in some weak sense. This
vector measure 1s shown to be convected by the carrier if such are the scalar fields ¢ and
¢ The corresponding transcript of the main variational statement proves specially useful
for the treatment of axially symmetiic flows, which arc subjects of the final Section 16
Then @ is taken equal to the azimuth angle, while ¢ is a function of the two variables z
and r, actually Stokes’s stream function, traditional in the study of such flows Investigation
of the flow is then restricted to some open meridian half-plane

List of notations

DXQ, ®) (resp  the totality of the real functions in the open subset Q of %, which are
D, R)) continuously differentiable up to order k at least (resp indefinitely

differentiable) and whose support relative to Q is compact

DHQ, ®) (1esp  the corresponding spaces of Schwartz’s distributions, 1.¢ the dual spaces
D'(Q, RY of the above

DHQ, X), DX,  similar spaces consisting of vector fields and of vector distributions
X) (resp D(Q,

X), D'(Q, X))

[ Lebesgue’s measure in X

LAQ, I R) the totality of the /~-measurable real functions f (resp vector fields u) in
(rtesp LA(Q, Q such that [of /|7 dl < +oo (resp [glul” d/ < +oo, with |- | denoting
LX) 1 <p the norm in X)
<+,

L2Q, [, 1) the totality of the /~-measurable real functions f (resp vector fields u) in
(resp L*(Q,  such that | f| (resp |u]) is bounded, with the possible exception of
& X) a l-negligible subset of Q

L7 (Q, 1 R) the totality of the real functions (resp vector fields) in Q@ whose
(resp L (R, restriction to every compact subset K of Q belongs to LK, /; R)
LX), 1 <p resp LK, [; X).
< tou

M an open half-plane, i.e not containing its edge Z

M the two-dimensional linear space of the vectors of A7

m  the two-dimensional I ebesgue measure in A/

v the distance to Z of the generic point of M

X n-dimensional Euclidean point space

X  the Euclidean vector space associated with the above, ie the totality of the free
vectors of X6

A an n-dimensional differential manifold

» the tangent linear space to A at the point A

A the dual of the above, ie the cotangent space to A at A

m  a diffeomorphism of A into X

T, the tangent mapping to = at the point A (a linear bijection of A} onto X).

2 FORMULAS FOR HORIZONTAL VARIATIONS

Let Q@ denote an open subset of the n-dimensional Euclidean space X By herizonial
varigrion in Q, we mean the transport of some investigated mathematical objects by a



continuous medium A, conceived in the abstiact, called a cairier; the flow of thig
imagined medium is defined by giving its velocity field ¥, a @* vector field in Q, | < I
< oo '

In order to prevent in dynamical problems any confusion with the physical time, the
variable, ranging in some real interval /, which indexes the evolution of A is denoted bv
7 instead of { Possibly € will depend on 7, i e the carrier flow may not be Stalionar);,
provided ¢ is supposed €* jointly with regard to 7 and x in / X §

In the sections to come we shall only consider compacr carriers in 2, 1e the Support
of the vector field x - ¥(7, x) is contained in a T-constanl compadt subsel of
Consequently every particle of A which, at some 7, happens to have a position outside
of this compact set remains at rest

From the velocity field being @ jointly in 7 and x, it classically follows that the
transition (or “deplacement”) of A in % between every two instants 7, and 7, is a @*
difftomorphism  Equivalently, the medium A is endowed with the structure of @*
differential manifold, the points of which are its particles, such that for every 7 the
placement mapping = . X — (v, ) fom A into X is a @* diffeomorphism. It is precisely
a @* diffeomorphism of A onto Q il the carrier is compact in Q. In a classical way, every
object of the @* differential geometry of A is transformed under such a (r-dependent)
diffeomorphism into a similar (7-dependent) object of the differential geometry of €; in
fact the latter constitutes a differential submanifold of X,

In particular a 7-dependent real function y™: Q@ — IR may equal the image under =, of
some r-constant real function n: A — R, ie V7 € I, Vx € Q: y.(x) = n(ir; (x)) According
to the usual vocabulary of continuum mechanics, in such a case y” is said convecied by
the cartier A. This is equivalent to the vanishing, for every v € I, of its drag-derivative
de along the carrier A. In general, for every function (v, x) — y(r, x) from / X  into I2,
this drag-derivative 1s by definition

bov(7, x) = dinlr, m; (x)), 2n
where n denotes the function defined in / X A by
n(7, N) = y(r, 7,(N) (22)

and d,n the partial derivative of this function relatively to its first argument Observe that
the existence of the drag-derivative does not require of p to be differentiable in € if the
latter holds, a well-known elementary formula relates dey to the partial derivative dy/dr.

Similarly, a 7-dependent vecror field in @, 1.e. a mapping w” of Q into the linear space
X associated with %6, is said convected by A if it equals, for evety 7 € I, the image under
wr, of some r-constant vector field of the differential manifold A If the vector uw'(x) is
defined by its components u;(7, x) relative to some orthonormal Cartesian frame of %,
such a mode of transport is found characterized by the condition

o
1]
=

dptt;(7, x) = ¥, {7, x)u(r, x¥; (

here 8, denotes as above the drag-derivative along A of the considered real functions; by
¢, are denoted the partial derivatives of the components of the velocity field ¥, relative
to the said Cartesian frame

Recall that a vector field of the differential manifold A (or cross-section of the tangent
fiber bundle) is by definition an assignment associating with every A € A an element of
the linear space A}, tangent to the manifold at this point

Symmetrically, there may be considered a covector field, associating with every A an
element of the cotangent space AY, the dual of A} Every difftomorphism 7, yields as
image of a covector field in A a covector field in ©; here one has to recall that, due t0
the Euclidean structure of X0, the common practice identifies the tangent and cotangent
spaces at every point of X; with the single Euclidean linear space X. Hence, a r-dependent
vector field (, x) — v'(x) in © may happen to equal for every = the image under =, of



some 7-constant covector field of A; we refer to this situation by saying that the vector
field v* is transvected by the carrier A Equivalently, for every w” convected, the Fuclidean
scalar product w’(#r.(\))- v'(7,(N\)), for each particle A of A, does not depend on 7, ie the
real function u” - v” is convected In view of (2 2) this may be used to derive the following
characterization of a transvected vector field

5¢U,(T, X) = _(P}i(Tﬁ X)D/(T,'v X) (2 2)

3 THE TRANSPORT OF SCALAR OR VECTOR MEASURES

Measures are most easily introduced into the geometry of the differential manifold A
by the dualiry method

From this standpoint, a sca/ar measure (nonnecessarily positive) on A is a real linear
functional, satisfying some known continuity requirements (sketched in [1]; for detailed
exposition, see e.g [, 9]) on the linear space DA, IR) of the continuous real functions
with compact support in A Under every difftfomorphism, such an object possesses a
naturally defined image For instance, the Lebesgue measure / is a scalar measure on the
manifold constituted by the open subset Q ot %; its image under =;'is a r-dependent
scalar measure on A, say u” The dilararion formula of the classical kinematics of continua
amounts to the fact [10] that the mapping 7 — u” of the interval 7 into the topological
linear space D'%(A, IR) of the scalar measures on A admits as derivative a scalar measure
on A, whose image under 7" equals div ¢/ Let us develop in that line the drag-derivation
rule for integrals, 10 be used in further sections of this paper

Proposition 3.a Let y denote & function from I X Q into I, such that, for every r in some
neighborhood H of r¢ in I, the Lebesgue integral

f(r) = .[7 y(7, x) di(x)

exists Suppose that, for (r, x) € H X Q (with the possible exception of a Lebesgue-
negligible subset), the drag-dervivative (2.1) exists and that, for every T € H, the function
x — |bey(r, X)| is dominated by some r-consiant [-integrable function in @ Then 6y(ty, )
is Lebesgue integrable in Q and the function f possesses al v = vy & derivative equal 1o

f(10) = f“ (6e¥(To, x) + y(7e, X)¥P; {70, x)) d(x) (3.1)

The proof simply consists in interpreting =, as a change of variables, which transforms
/(7) into an integral over A. Let us denote by (£) some admissible coordinates in this
manifold and by J(r, A\) the }acobian determinant of =, at the point A & A when this
mapping is expressed through (£') coordinates; then

/(1) = f v(r, w(N) (7, X) dE(N)

where { denotes the measure induced on A by the »n-dimensional Lebesgue mecasure of
the (&) variables The neighborhood H of 4 may be taken as a compact subinterval of 7;
on the other hand, the assumptions made about the velocity field ¥ entail that the partial
derivative d.J/dr exists and is continuous throughout /' X A, with compact support This
allows one to apply [ ebesgue’s dominated convergence theorem to the integrand [x(7,
N1, N) = n(Ta, MK 1o, M(x — 1e)”!, with 5 defined in (2 2) and 7 assuming an arbitrary
sequence of values converging to ry Finally, use the definition (2 1) of the drag-derivative,
together with the classical dilatation formula

1 0. .
Ly (7, A) = div @(7, n(7, N)) (32)
Jor



Let us consider similarly on the manifold A a vector (resp. covecior) measure, say 6,
defined as a real lincar functional, satisfying certain continuity requirements (sec e.g [1]),
on the linear space of the continuous covector (resp. vector) fields with compact support
in A By a multidimensional version of the Lebesgue-Nikodym theorem, this definition
1s proved equivalent to the existence of a (nonunique) nonnegative scalar measure »
together with a locally r-integrable vector (resp covector) field 0, such that 8 = 0'»; one
calls 8., the density of 6 relative to the scalar measuie .

Here again we are in the presence of objects whose images under every diffeomorphism
are readily defined On the other hand, in the Euclidean manifold Q, the concepts of
vector and of covector measures merge into a single one For instance, a r-dependent
vector measure on 2, say v’, may happen to equal the image under =, of some 7-constant
vector (resp covector) measure on A} in that case we shall say that v™ is convected (resp
transvected) by the carrier A Equivalently there exists a nonnegative scalar measuie i’
on €, convected by A, and a convected (resp transvected) vector field v/
in Q such that, for every r, one has v\ = vin’

In accordance with the definition of differential operators in the theory of Schwartz
distributions, a vector measure v on 2 is said divergence free if

f (grad a)-dv =0
Q

holds for every « € D(Q, R), or equivalently for every ¢ € D, ). This notion may
actually be developed without any Euclidean meetric. In fact, in the differential manifold
A, for every @! real function @, with compact support, the gradient (or “differential) of
« constitutes a @° covector field with compact support; hence the integral of this gradient
field with regard to any vector measure # on A makes sense By definition, the value of
the integral is a real number essentially preserved when the considered objects are replaced
by their respective images under any difftomorphism Therefore:

Proposition 3b If a t-dependent vector measure v° on Q, convected by A, happens to be
divergence-free for some r € I, the same holds for every t.

Let us end this section by considering the special case where some 7-dependent vector
measure v’ in Q possesses a density, say vi, relative to the Lebesgue measure /. As before,
let us denote by " the image of / under =, !; then the image of v’ under ="' equals
7w, where 877 denotes the vector field image of v/ under «;' Now, let us use again the
r-constant scalar measure £ defined on A by means of the Lebesgue measure of some
admissible coordinates (£9), and the corresponding Jacobian determinant J°(A) = J(7, M),
a continuous real function on 7 X A Since p” = J’, the vector measure 6, u" is 7-
constant if and only if the vector field J78} is 7-constant, except possibly on some &-
negligible (equivalently p’-negligible) subset of A Therefore, the r-dependent vector
measure v\ = v/ on Q is convected by A if and only if the vector field defined in € (up
to the possible exception of Lebesgue-negligible set) by

X — S (w7 ()W

is convected by A. In view of (2 2) and (3 2) this is finally found equivalent to the
assertion that the drag-derivatives of the Cartesian components v, of v, exist and satisfy

Ol = ‘pz jU; - @J »/U;. (3 3)
with the possible exception of a Lebesgue-negligible subset of 7 X Q.

4 THE DYNAMICAL EQUATIONS
In all the sequel % 1is the Euclidean n-dimensional space defined by some inertial
reference frame (practically # equals 2 or 3); as before we shall denote by X the associated
linear space, 1 ¢ the set of the free vectors of X



Let Q be an open subset of 2, in which the stationary flow of some incompressible,
possibly inhomogeneous, inviscid fluid is observed The pressure p and the density p are
real functions in €, as well as the components ;. 1elative to some orthonormal base, of
the velocity u The density of distributed extraneous forces (usually gravity forces) relative
to the mass measure is assumed to have the form grad U, where U denotes a given real

function
In the elementary case where all these functions are @', the dynamical equations of

the fluid read
pup, ;= —p,+ pl,, 41)
to be joined with the kinematical conditions of volume and mass conservation

u; =0, (42)
(p1g) ;=0 (4.3)

As we are to deal with possibly nonsmooth flows, these three relations will first be
given a form with extended meaning Under (4 3) the left-hand side of (4.1) becomes
(su;) ;, which is the i™ component of the divergence vector of the tensor field with
components p#; In order to translate this into the language of Schwartz distributions,
let us denote as before by / the Lebesgue measure in Q and suppose

PE LEQELER), w€ LD LX), pE LLLLR) (4.4)

The given components U; of the mass density of extrancous forces arc¢ usually very
smooth; it suffices here to suppose them in £ ,(Q, /i IR) Under assumptions (4 4), the
functions pw,u, and p constitute the densities, relative to /, of some measures in @ Then,
the following relations, involving the partial derivatives of these measures, in the sense of
Schwartz distributions in the open set Q,

(uuel) , = —(ply, + U, (45)
are meaningful and, for the @' case, equivalent to (4.1). Similarly (4 2) and (4 3) become

(ul) ;= 0, (4 6)
(puj/)j = O, (4 7)

expressing that the vector measures ul (the “volume current™) and pu/ (the “mass
current”) are divergence-free in €0

Undoubtedly (4.5), (46) and (4 7) are the conditions to be satisfied by the flow
whenever (4 4) holds

For instance, let 2 denote a surface separating two open subsets @ and € of Q and
supposed to possess a continuous normal unit vector n, directed toward Q% For a real
function f which is @' in Q' and @ and admits unilateral limits f* and f~ at every
point of Z, the gradient of the scalar measure fI (a vector distribution whose components
are the partial derivatives of /I in the sense of the distributions in Q) classically equals the
sum of the two following vector measures: the measure (grad f )/, diffused in Q, and the
measure (/¥ — / “)no, concentrated on 2, with ¢ denoting the scalar measure “area” on
this surface Let us apply this by taking respectively as f the functions u;, p, p of a flow
assumed smooth in @ and ©7, with 2 as a locus of discontinuity In that case, (4 5) (4 @)
(4.7) turn out equivalent to

(1) (41),(42)and (4 3) holding in Q" and Q;
(i1) the vanishing of the corresponding measure concentrated on Z



Therefore (4 7) entails that p"u'n/ and p uyn; equal the same real function, say ,
defined in 2; in view of that, (4 5) vields

0(”1" 1(1) bl "(‘D’f' 1’")/‘1,

As (4 6) entails (#; — u;)n; = 0 one first obtains

pr—p =0 (4 8)
and finally
aluiy —u;) =0
This means that either u* = u", ie the velocity has no jump on 2, or ¢ = 0, i.e. u* and

u” are tangential to 2

The above applies in particular when p is supposed to vanish throughout €% then
(4 35) yields that p equals a constant, say py, in this region (assumed to be connected)
This accounts for an atmosphere of negligible density, while T describes the Jiree surfuce
of some ligind occupying Q7; on this surface (4 8) reduces to the classical condition p
= po In such situations the liquid motion is the preper object of the study, with 3 4
priori unknown; the velocity u at every point of the atmosphere has only to satisfy u,,
= ( for consistency and the simplest is to imagine u = 0 all over Q*.

Concerning the general use of (4.5), let us observe that the pressure is a mechanically
meaningful function, and not only the scalar measure p/ For instance, when investigating
how the hydrodynamical eftorts are distributed over some physical boundary, one has to
determine p as a function on this surface and not only as an element of .LL(Q, /; B)
Even when discussing the flow inside the open region Q, one may have to check the
feasibility of a solution by comparing p with the vaporization pressure of the liquid (see
eg [l4]) However, in many studies aimed at determining only the fluid motion, the
constraint of volume conservation for every part of the material is treated as unconditional;
then p may be seen as the reaction associated with this constraint, actually fiictionless In
the spirit of traditional mechanics it is wished to eliminate such an unknown from the
calculation To that end, instead of (4 5), we shall write

div (pu ®@ u/) — p(grad U)! € grad D'(Q, &) (49)

Here the right-hand side denotes the totality of the vector distributions in Q which equal
the gradients of elements of D'(Q, R). About p and u, we make here the same assumptions
as in (4 4) But, without further study of the left-hand side in (4 9) there is no reason to
assert that the scalar distribution (defined up to the addition of a constant distribution}
admitting it as gradient has the form pl, p € LLJ(Q, ; R). Therefore (4.9) constitutes a
weaker formulation of hydrodynamics than (4 5).

Let us finish this section by recalling some facts 10 be used in the sequel about the
subspace grad D'(Q, ) of D'(Q, X) I g € D'(Q, X) is a gradient, the partial derivatives
of the scalar distributions g; which constitute its components relative to some orthonormal
Cartesian frame trivially satisfy

8i; " 8i~ O’ (4 10)

ie g has zero curl in Q In the special case where Q equals a product of coordinate
intervals (possibly the whole of %) condition (4. 10) conversely implies g & grad D¢,
®) (cf [15], Chap 2) This more generally holds if Q is “simply connected” but, with
arbitrary Q, (4.10) is not sufficient for g to be a gradient. let us denote as before by
{+, - the duality bilincar form between elements of D(2, }2) and D'(Q, &)



Proposition 4 a The vector distribution g is a gradient if and only tf
(&:.%y=0 (411)

holds for every vector field @ €& D(Q, X) with zero divergence

This ensues, as a very special case, from De Rham’s homology theory of currenis on
differential manifolds [16]; for a more elementary proof, see [17], Annex When in
particular g is a vector measure, the bracket in (4 11) may be written as an integral; this
specially holds with g = gi/ where g7 is a vector field belonging to £, (Q, /; X). Finally in
the common case where g} is a continuous vector field, the above condition may
equivalently (through the use of mollifiers) be replaced by the vanishing of the circutazion
of this vector field along every closed curve in ©; this is a well-known characterization of
the continuous vector fields which are, in the elementary sense, the gradients of scalar

fields

S THE BERNQULLI FUNCIION
In the elementary case where the considered functions are differentiable, eqn (4 1) is
classically transformed into

puit ; ;) = ~b, + Gut — Ulp,, (5.1)
with 17 denoting the magnitude of u and where
b=p+ipu - pU (52)
is the Bernoullt function As (4.2) and (4.3) vield u,p, = 0, (5 1) readily implies
ub, =0, (5.3)

meaning that b equals a constant along every streamline. The classical Bernoulli theorem
concerns a connected region where it is assumed that p is a constant and ;, — 1;; = 0,
te curl u = 0; then, (5.1) shows that b equals a constant thioughout this region

The essential feature of the function b is its connection with energy transfers Assume
the dimension cqual to 3; the following embodies some commonly encountered formulas
about the energy balance of hydraulic machines

First observe that, in view of «,, = 0, (5 3) becomes

div bu = 0 (54)

Hence the vector field bu has zero flux across the boundary of every bounded region
where our set of equations is satisfied

More generally, suppose these equations satisfied in an open region €, surrounding
some compact part K of X, with possible exchange of fluid between €2 and X Then (5 4)
implies that the flux

‘n
N
—

‘P=j‘bu‘vd(r (

assumes the same value for every simple closed surface » drawn in € and surrounding
K, with v as outward normal unit It is found that ? equals the mechanical power
transferred from K into Q; for instance, if’ K consists of a wind energy converter, 7
expresses the negative of the power extracted from the wind

The writing in (5.5) requires that the vectsr field bu is smooth enough for the surface
integral to make sensc. But the following equivalent expression may be considered in



more genera) instances: one constructs a @' real function « vanishing in some open

subset of € surrounding K and assuming the value | on £ and heyond: then

?;J‘b‘ dadl :
0 u-grad « (:\6)

Ihis makes sense as soon as the vector field bu belongs to L2, /; X) Any other ¢!
function «', vanishing in some open subset of I surrounding A and assuming the valye
1 beyond such surface as T confers the same value to the integral in (5 6). since o
e D, R)

Similar remarks apply to the divergence-free vector measures u/, the volume currens
and pul/, the mass current The two integrals

v ~j u-grad o d/,
Q
the volume flux from K, and
M= f pu-grad o d/,
Q

the mass flux from K, are independent of e whenever this function meets the same
requirements as above Observe however that the preceding concept of the power
transferred seems mechanically unclear if the balance of fluid exchange between K and Q
1s not zero; thus we shall require Mt = 0 In contiast, V may differ from zero if, during
its transit through K, the fluid undergoes some density change resulting, for instance,
from temperature alteration

What precedes emphasizes the importance of » among the functions describing the
flow, on an equal footing with the pressure p. As seen in Section 4, if some free surface
is present, separating the proper fluid from a massless atmosphere which occupies the
region Q7 the pressure condition on this surface is automatically involved in the
dynamical equations of the whole system, when written in terms of distributions The
constant pressure po of such an atmosphere is usually among the data; since p = 0
throughout Q*, this constant equals the value in Q* of & as well

We have adopted (4 5) as the general form of the dynamical equations: introducing b
instead of p yields the alternative writing

(puatl) ; = —[(b — Jpu” + pUN]; + pUl 6N
with b assumed to belong to .£ (S, [ 1)

6 MAIN VARIATIONAL STATEMENT
For simplicity, it will be assumed in all subsequent sections that [, |Ul dl < 4o
otherwise some covering argument should be associated with the forthcoming variational

statements
In this section the dimension of % is arbitrary

Proposition 6.a Let a vector field w € LD, F X), two scalar fields b € LYQ, {; B), p
€ L™, I, R) be defined in an open subset Q@ of % (I denotes as before the Lebesgue
measure in Q) These elements satisfy the dvhamical equation (5 7) in Q if and only i, [or
every compact ' carrier in Q, the r-derivative of the following functional vanishes al 1

B(r) = f Gpufui + p U+ by dl GRY
2



where b7, p’, reducing (0 b and p Jor v = 0, are scalar fields convected by the carrier and
w, reducing tou for v = 0, is a vecior field such that the vector measure W'l is convected

In this statement the velocity field ¢ of the carrier may equivalently be assumed
7-constant and restricted to belong to DH(Q, X)

Proof One easily checks (cf [1], Prop 9 4) that the integral #(r) makes sense for
every 7 in some compact neighborhood H of zero in I In order to apply Proposition
3 a, we first have to show that the integrand in (6.1) possesses a drag-derivative §, In
fact b” and p” have zero drag-derivatives by hypothesis and

belp™U) = pToeU = p"U P, (62)

On the other hand, by using (3 3), one obtains
dolzp uiu]) = p'uiul®; ; — p"uiui¥; (6 3)
That the right-hand sides in (6.2) and (8.3) have absolute values dominated, for r & H,

by some 7-constant /-integrable functions is readily established by the same reasoning as
in [1], proof of Prop 9.4 Then Proposition 3 a above yields

jgr(o) = f [pu,u,% e pu,u;@” + [)(],,'90, -+ (%pu,u, + pU + b)‘lpjj‘j d[
Q
= f lowi®, , + (pU + b — Spua)P,; + pU P dl
a

If (-, - represents the duality bilinear form between Schwartz distributions and elements
of D(Q, ), with u denoting as before the magnitude of u, this writes down equivalently
as

%l(.) = <[)ll,‘llj[, (pi j> + <(/)lj + b — %pllz)l, ¢1,> + <p(}Y1[, ¢,>
(o) ,, Py — ([(0U + b = 3pud)],, Py + {pU il P,

The vanishing of this expression for every ¥ € D(Q, X) (equivalently for every ¢ € 0 1(Q,
X), due to the special form of the considered distributions) is equation (5.7)

Remark 6.b. The conditions (#/); = 0 and (pul); = 0 of volume and mass
conservations will be additionally imposed to the fields involved in this proposition This
does not constitute a constraint in the customary sense of the calculus of variations since,
as observed in Section 3, these properties are automatically satisfied by all competing
elements, without restricting the variation procedure in any way

Starting with some field set (u', b', p') verifying these conditions, one may consider
the totality of the field sets in © resulting from this one by the transport, in the way
prescribed in the proposition, by arbitrary @' (resp @ %) compact carriers in € This
constitutes, roughly speaking, an infinite-dimensional manifold and Prop 6 a characterizes
the elements of this manifold satisfying (5.7) (if any) as the critical points of the functional
(6 1). The author’s prospect about the use of this fact in numerical computation has been
described in the introductory section,

Proving the existence of such critical points remains today out of sight This is very
similar to the existence problem in large deformation elasticity (see e.g [11]), a problem
essentially unsolved to-date, though numerical methods are effective

In Section 5, the equations of hydredynamics have been shown to imply that the
vector measure bu/ is divergence-free. This property also is preserved under the considered
transport since, by assumption, the scalar field b and the vector measure u/ are convected
by the carrier Hence the manifold constructed as above from (u', b', p') as starting
element can contain critical points of B only if div (b'u'/) = 0 (supposedly b'u' &

1o, 45 X))



In Section S there was also considered the case where € surrounds some compact part
K of % in which other mechanical processes take place [his put forward the fluxes P,
Y. .M of the respective divergence-free vector measures Aul, u/, pu/ Here as in (5.6) one
may consider for every 7

P o= f bu”-grad o d/
2

and similar expressions V' and M7, with & € € (Q, IR) vanishing in some open sybge
of Q surrounding K and assuming the value | beyond some closed surface enclosing the
whole. These features of o7 are preserved under the transport by the carrier when this
real function is supposed convected; then grad « is a transvected continuous vector field
with compact support in @ Hence P7, V7, M7 are r-constant if the corresponding vecior
measures are convected by some carrier (nonnecessarily compact in Q)

Rewnark 6.c. The carrier in Prop 6 a is not supposed to comply with the incompressibility
condition imposed on another account to the material fluid In that respect, the scalar
function b in the functional B plays a role roughly analogous to that of a [ agiange
multiplier. On the contrary, by restricting ourselves to 1sochoric carriers, ie div @ = (),
we shall now obtain a statement which eliminates b (equivalently the pressure), and thug
characterizes the solutions u, p of the dynamical condition (4 9).1his generalizes a result
of [7], an introductory lecture to the calculus of horizontal variations

Proposition 6.d  The elements w € L3, I, X) and p € L =(Q, I; R) satisfy the dynamical
condition (4 9) in Q if and only if, for every compact isochoric C (equivalently € * ) caiijer
in Q, the r-devivative of the following functional vanishes at r = 0O:

B(r) = f Gouju; + p’U)dl,
Q

where the scalar field p7 and the vector field W, reducing to p and u for v = 0, are
convected by the carrier

Proof Since the carrier is isochoric, the Lebesgue measure / is convected, hence the
vector measure u’/ is convected [equivalently, the last term in (3 3) vanishes] Then the
same calculation as in the proof of Prop 6 a yields

B'0) = (—(puasd) , = pU — 300211 + pU L, #)
For every € in I(Q, X) (equivalently in D'(Q, X) satisfying ¢,, = 0, one has
<[(PU B %OUZ)/]:', ‘pi> = “’<(PU - %PUJ)L ‘Pn\) =0
Therefore, Prop 4 a shows that B'(0) vanishes for every such € if and only if (4.9) helds

7 STREAM FUNCTION OF A PLANE FLOW
In this section, the Euclidean space X is supposed two-dimensional and, for technical
simplicity, oriented That the vector measure u/ or, more generally, somc vector distribution
v € D(Q, X) has zero divergence in the open subset Q@ may equivalently be expressed n
terms of the partial derivatives of the two scalar distributions v,, v, which constitute is
components relative to some orthonormal Cartesian frame, by

~1

vy —(—U)2 =0 (70

In view of the facts recalled at the end of Section 4, if Q is simply connecred, this 15
cquivalent to the existence of a scalar distribution ¥ € D'(Q, &) such that

~3

[3%]

v =Wy, oy = Wy, (



i e by using the two-dimensional alternator symbol ¢,
v = eV 5 (7 3)

This relation is invariant under any change of the Cartesian frame, as long as it remains
orthonormal and positive

With arbitrary ©, (7 1) is no more sufficient for the existence of W related to v in the
above way The necessary and sufficient condition provided by Prop 4 a becomes here

(~=1y, @iy + {vy, ) = 0,

holding for every € € D(£, X) with zero divergence Since, in this two-dimensional case,
the rotation of the considered vectors through /2 exchanges the operators “div’” and
“curl,” this condition is equivalent to {v;, ;> = 0 holding for every v & D(Q, X) with
zero curl Now 7 having a compact support in the open subset Q of X, its extension to
the whole of X by zero in X\ Q has also a zero curl; this elementarily implies the
existence of a @ real function « such that ¥ = grad «; observe that « has not necessarily
a compact support relative to Q: this function is only a constant in every connected
component £ \.supp .

If it is additionally supposed, as in the previous sections, that v = u/, with u
€ L1 I X), one finds ¥ = ¢/, where y is a function belonging to £L£(Q, 4 ) for
every p € {1, oo] (see e.g [15], Chap 6). In the traditional case where u is more specially
a continuous vector field, ¥ becomes a @' real function in Q defined up to the addition
of an arbitrary constant (we naturally suppose Q connected) classically called the sireain
function of w and u; = ¥ 5, 1, = =y, hold in the sense of elementary partial derivation.
The above conditions concerning v are equivalent in that case to u having a zero flux
across every closed curve drawn in Q

Proposition 7a Suppose that Q is an arbitrary open subset of the two-dimensional
Euclidean space X Let a vector measure v in Q derive from a stream function
€ L1, (Q, L R) in the sense that (7.3) holds in Q, with ¥ = Yl Ler a t-dependent vector
measure v' and a r-dependent scalar function ¥* be convected by a @' carrier in Q and
respectively reduce to v and y for v = re Then, V" is, for every 7, the stream function of
the vector measure v’

We shall base the proof on the following:

Lemma 7b. Let W be a r-dependent @' vector ficld in Q, transvected by a €7 cairicr A
Then the scalar measure

&= egwid (7.4)

is convected by the carrier

Establishing this amounts to check that the measure {7 possesses a r-constant integral
over every moving compact subset of © which is convected, i1 e. which equals the image
under ={r,-) of some T-constant subset A of the carrier A. One may equivalently restrict
oneself to the case of a convected subset D" of © whose boundary dD" is a piecewise-C*
curve; by choosing on this curve the adequate orientation, the Stokes-Riemann integral
formula yields

f W] ; df:f wi dx; (7.5)
b abD

Now, for every 7, the curve 3D equals the image under =, of the r-constant curve dA of
the manifold A, admitting a piecewise-@' parametrization, say r — X(r), r € [r,, 72}
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Putting x7(¥) = =,(\(r)), one obtains a piecewise-®' parametrization of 407, and thus
expresses the right-hand member of (7 5) under the form

-

n L dx
[Fworoy g

Now dx’/dr constitutes, for every fixed », a moving vector convected by A; since w has
been supposed transvected the above expression is r-constant, g ed

Proof of Proposition Ta That {7 constitutes the stream function of the vector measyye
v',1e that (7 3) is satisfied with ¥ = {7/, means, according to the definition of derivatiyeg
in the theory of distributions, that for every vector field w € D(Q, X} one has

<‘U?3 M’)z> = <€U\I'rj, Vp’1> = <\I/1, €W J>‘ (7 6]

Since, in the present case, the considered distributions are measures the same equivalently
holds for every w™ in the space D'(Q, X) of the @ vector fields with compact support ip
Q and the integral notation may be used, under which (7.6) becomes

~2

J widoj = f ewi gt dl (7N
Observe that the property " € .L (€, [; R) is preserved under the convection of ¥ by
the @2 carrier A As for the law of dependence of w” on 7, let us suppose this vector field
transvected by A Clearly if, for 7 = 74, the element w”™ runs through the whole of D'(Q,
X), so 1t does also for every r This proves Prop. 7 a since, in view of Lemma 7 b, both
members of (7.7) are r-constant

This allows us to transcript Prop. 6.a as follows

Proposition 7.c. Let a vecior field u € LY, I X) derive from a stream function \, let
b e LYQ, L R) and p € L=, [; R). These elements constitute a solution of the
dynamical equation (5.7) in Q if and only if, for every compact @' carrier in Q, the
r-detrivative of the following functional vanishes at v = 0:

B(r) = f Gp(grad 7 + p"U + b7y dl
94

where W7, p*, b7, reducing to , p, b for v = 0, are scalar frelds convected by the carrier
Equivalently. the velocity field of the carrier may be assumed r-constant and resiricted
to belong to D(Q, X).

The proof simply consists in observing that in view of (7 3), the vector measure v’
= u"/ admits " as stream function if and only if the vector measure with components
€0l equals the gradient of ¥~ = 7l Equivalently, ¢,u} are the components of grad ¥'.
an element of .£%(€, I; X) whose value at almost every point of { has the same Fuclidean
norm as u’

Similarly, Prop 6.d is transcripted into the following:

Proposition 7d. Let a vector field w € L, I, X).derive from a stream funciion ¥. {et pe
€ L2 &), I'hese elements constitute a selution of the dynamical condirions (49) if
and only if, for every compact €' (equivalently @ = and/or T-constant) isochoric carrier i
Q, the -derivative of the following functional vanishes at + = 0:

B() = f Gp'(grad y")? + p'U) dl,
Q
where, ' and p°, reducing to | and p for r = 0, are scalar fields convected by the cariie

The special case of a smooth flow of incompressible homogeneous fluid served as the
introductory example of horizontal vanation in [1, 7]



8 VECTOR POTENTIAL
In this section, the FEuclidean space % is supposed three-dimensional and, for technical
simplicity, oriented For every smooth vector field II in the open subset ¢ of 26, the
vector field u = curl IT has zero divergence; II is classically called a vecior potential of u
Equivalently, the vector measure v = u/ equals the curl, in the sense of distributions, of
the vector measure ¥ = II/ In terms of the components of the considered vectos
distributions, relative to some positive orthonormal frame, this is expressed by

v; eijk\l,k I3 (8 1)

where ¢, denotes the three-dimensional alternator

For arbitrary distributions in €, (8 1) is immediately found to imply v;, = 0 In the
simple case where Q is delimited by coordinate planes it is easy to establish that,
conversely, this condition secures the existence of a (nonunique) vector distribution ¥
satisfying (8 1) But in general, the vanishing of v;; in Q is not sufficient The following is
a special case of De Rham’s homology theory of currents [16]

There exists a vector distribution ¥ satisfving (8 1) in Q if and only if (v,. v,y vamishes
for every vector ficld v < B(Q, X) with zero curl

As in Section 7 one sees that such < are exactly the clements of D(Q, X) of the form
grad « (then the real function « cquals a constant in every connected component of
Q\supp )

In the simple case where v = u/, with u a continuous vector field, the above condition
is found equivalent to the vanishing of the flux of u across cvery smooth surface which
equals a connected component of the boundary of a compact subsct of @ This in turn is
equivalent to divu = 0 holding in © (at least in the sense of distributions, if u is not ')
together with the vanishing of the said flux for a certain base set of smooth closed surfaces
in © (a finite set in usual instances).

Similarly to Prop 7 a, one has the following

Proposition 8.a Suppose that Q is an arbitrary open subset of the three-dimensional
oriented Euclidean space X6 Let a vector measure v in Q derive from a vector potential
II € £1.(Q, I; X), in the sense that (8 1) holds with ¥ = 11l Let a t-dependent vector
measure v° be convected by some C* carrier in Q and reduce to v for v = 14, let a r-
dependent vector field T17 be transvected by the same carrier and reduce 10 11 fer r = 1,
Then W7 is for everv T a vector potential of v’

Proof Let us first establish the statement in the special case II € @49, X), so that v
= ul, where u = curl II is a continuous vector field. For every r the transvected vector
field IT" is @' and the convected vector measure v* has the form w”/, with u” a continuous
vector field We have to show that u” = curl ¥ or, equivalently, that the Stokes formula

I dxrf w - nde 8.2)

T

holds for every compact erientable portion S* of @' surface, whose boundary " is a
piecewise-C ! curve, with orientation connected in the customary way with the direction
of the normal unit vector n to S” This surface may be supposed convected by the carrier,
ie it equals for every 7 the image under w, of some fixed @' surface portion = in the
manifold A For the task of calculating the right-hand side of (8 2) one would choose a
@' parametrization, say (r, s) — A(r, s) of £, (#, 5) ranging through a compact subset A
of I2? Putting x7(7, s) = =.(\(#, 5)) one obtains a @' parametrization of S”, hence

3-,1' a LT
f w-ndeg = f u(x(r, 5))- << i X X )dr ds. (8 3)
v A or as

Now the partial derivatives dx7/dr and 8x’/ds constitute, for every fixed (¢, 5) € A, a pair
of moving vectors convected by the carrier A That the vector measure v = w’/ is



convected, has been characterized in Section 3 by introducing some coordinateg (&9 in
the manifold A and the Jacobian determinant /7 of the corresponding expression of "
this results in '

7

w(x(t, s)) TG, )
where k&’ denotes some convected vector, ie the image under #'(A(s, $)) of some
7-constant element « of the tangent space Aj, . Consequently, the integrand on the Tight
in (8.3) equals the determinant of the components of the three elements , dN/d;, NG
of this tangent space relative to the base induced by (&) coordinates: for every (, s} in 4,
this is 7-constant, so the right-hand side in (8 2) is r-constant The left-hand side is aiso
r-constant, by the same argument as in the proof of Lemma 7 b

This special case being established, it will play now a role similar to Lemma 7b iy
the proof of Prop 7a That v’ and ¥ satisfy (8.1) means that for every w' @ 9)(q, X)
one has

o7, wiy = LepWi o wiy = Vi, ewi )

Here ¥~ = II"/, with II" € £ L{Q./; X); hence the integral notation may be used, yielding

f wi dv] = ~f epwi 1L dl (84

to hold equivalently for every w” & D'(2, X) The latter r-dependent vector field may be
chosen transvected so that, in view of our first step, the vector measure with components
egwid, ie —(curl w')l, is convected Since, by assumption, the vector field II" is
transvected and the vector measure v' convected, both members of (8 4) are 7-constant;
Prop 8 a is thus proved.

Using the above propositions to formulate a transcript of Prop 6 a is left to the reader,
the sections to come are devoted to some special cases

9 PAIRS OF STREAM FUNCIIONS IN THREE DIMENSIONS

[ he three-dimensional Euclidean space X is supposed oriented As soon as two scalar
functions ¥ and # are smooth enough for elementary calculation to apply. one finds

grad ¢ X grad # = cuil (¢ grad #) = ~curl (4 grad )

Hence the vector field grad ¢ X grad § derives from a vector potential, and thus is
divergence-free. 1f ¥ and ¢ are convected by a carrier, the vector fields ¢ grad # and
# grad ¢ are transvected, permitting the use of Prop 8 a. The two following propositions
place this observation in a more general setting

Proposition 9 a. Let the vector fields g and h, elements of L3 I X), be curl-free m the
weak sense (i e the vector measures gl and hl are curl-free in the sense of distributions in
Q) Then the vector measure g X Wi Is divergence-fiee in

Proof One has to show that, for every o € D(8, ),

f «© [6{;/\,&;7}{ d/ =0 (, 1)
Q2

T'hrough the use of mollifiers, the vector fields g and h may arbitrarily he approximated,
in the Z? norm of some compact subset of € containing supp « in its interior, by curl-
free vector fields g and h smooth enough for the following calculation to be valid:



(g i = eyl + e, = 0

This establishes (9. 1), after integration by parts.
As for the transport by some €' carrier, one has the following

Proposition 9b. If the vector fields g' and W, elements of L}3(Q, 1 X), are transvected,
the vector measwre g X W[ is convected
In fact, let us check that for every transvected vector field w” € D%, X) the integral
w'-(g” X h") d/ is r-constant. By using coordinates (£) in the carrier manifold A, this
integral may be expressed as

gr, dm, O,
agl ’ ag? * ag%

f (W), g'(7.), h’(m))( ) dg' dg” dg,

where each of the two expressions in parentheses represents the scalar triple product of
three elements of X. Using a positive orthonormal base in X one expresses these triple
products as the determinants of the corresponding components Then the multiplication
rule of determinants transforms the above integrand into a determinant whose elements
are nine scalar products such as w’(w,)  (d7,/d¢') Since by assumption w'(w,), g'(w,),
h'(w,) are transvected, while the three vectors @x,/d¢' are visibly convected, these scalar
products are r-constant. This establishes the proposition

Observe on the other hand, as a consequence of Prop. 8 a, that if the transvected vectos
fields g" and W are curl-free for v = 1y, so they are for every 7

Ihe simplest way of constructing such transvected curl-free vector fields is to take
them equal, at least locally, to the respective gradients of convected scalar functions
These gradients may be understood in the weak sense, ie concerning for instance g,
one supposes the existence of a convected scalar function ™ € £ L(Q, & I2) such that
for every 7 and every a € 9 (Q, B) one has

f ag dl = ~~f ¢ grad o d/.
Q Q

In other words, the vector measure g’/ equals the gradient, in the sense of distributions,
of the scalar measure Y’/ Concerning the regularity of ¢ in such a situation, see e g
[L5], Chap 6

The above generates various transcriptions of Prop. 6.a For instance, the vector field
w € .£L2Q, [, X) involved in this proposition may be taken under the form

u” = (grad ¢") X (grad 67),

where the scalar functions ¢’ and ™ are convected by the carrier In view of the foregoing
this secures that the vector measure u’/ is divergence-fiee and convected; theiefore the
following proposition

Preposition 9 c. Let a vector field w € L3Q, I; X) equal grad ¢ X grad 0 in Q Let b
E LN, ER) and p € L7, I 1R) These elements constitute a solution of the dynamical
equation (5.7) in Q if and only if for every compact @' (equivalently @ *) carrier in Q the
r-derivative of the following functional vanishes at + = 0:

B(r) = j [3¢°(grad ¢ X grad 67 + p"U + b7] d/
113

where W', 87, p7, b7, reducing to , 8, p, b for v = 0, are scalar fields convected by the
carrier



Remark 9d In the case where ¥, 6, p are €', the identity
div (p grad ¢ X grad §) = (grad p, grad ¢, grad 6)

makes the condition (pu,4); = O of mass conservation equivalent to the vanishing of the
Jacobian determinant of p, ¥, ¢ this is known to imply that the three functions p, . ¢
are dependeny, i.e the triplet (o(x), ¥(x), 6(x)), for x running through €, ranges in a striet
submanifold of &’ evidently independent of 7 when the three functions are convected by,
some carrier. The same remark applies to 4, since the dynamical equation has bec{]
shown in Section 5 to imply div bu = 0: the three functions #, , ¢ are dependent

10 AXIALLY SYMMEIRIC FIOWS

In this section it is supposed that the open subset 2 of the three-dimensional space ¢
presents the rotational symmetry about some axis denoted by Z The vector field u and
the scalar fields p, p, b defining the investigated flow in Q are a priori assumed to have
the same symmetry (up to a [ebesguc-negligible subset of ), as well as the given scalar
field U For simplicity, we assume in addition the wirror synunetry of the flow, relative
to any meridian plane, which amounts to say that, for (almost) every x in . the vector
u(x) is parallel to the meridian plane through x. This is commonly referred to as the
axially symmetric case

The dynamical equation (4 5), formulates the vanishing of some vector distribution
T € D'(Q,X), 1e for every test vector field ¥ € D(R2, X) the vanishing of the real number
{T;, ¥, denoted in the sequel by {T; ¢) Now the above assumptions readily imply that
I is axially symmetric in the sense that (T; ¢ remains unchanged when ¥ is replaced
by €., the vector field resulting from ¥ by the rotation through an arbitrary angle o
about Z and aiso when @ is replaced by its mirror image ¥% relative to a meridian plane

With every @ € D(Q, X) is associated its axially spmmetric average @ = (P + Px)/2,
where @ denotes the rorational average of ¥, i e the vector field defined for every x € Q
by

N | S
P(x) = ;"f ®,.(x) da
2T JO

Visibly ¢ is an axially symmetric element of 2(Q, X) and, for T as above, (I; ¥)
=(I;®)

Therefore, since the axial symmetry of the flow is a priorn assumed, all variational
statement s of Section 6, 8, 9 may equivalenily be reformulated by restricting the considered
carriers to have axially symmerric velocity fields

The economic way of describing the axially symmetric vector field € € 2(Q, X) (resp
¢ € DXQ, X) with k a positive integer) consists in giving its restriction ¥,, to some
meridian half-plane M, open, i e not including its edge Z I.et us denote by w the open
subset @ N Af of M and by M the two-dimensional Euclidean linear space associated
with M. The restrictions to M of all axially symmetric elements of 2(€, X) (resp. D)
constitute a linear subspace of @ *(w, M) (resp @%) that we shall denote by D (w, M)
(resp. DY) Clearly if @ N Z = & one has D (w. M) = D(w, M) (and similarly for D5)
but, when @ N Z ¥ #, some conditions in the vicinity of Z, not to be developed b
have to be satisfied by an element of € “(w, M) in order that it belongs to B, (w, M) (auw
similarly for D%). The same observations and notations apply to a rotationally symmetric
scalar field ¥ € D(Q. R) (resp DX) and to its restriction €4, € D (w, B) (resp. DX)

As for the locally integrable fields u, p, b, p in @ corresponding as above to an axially
symmetric flow, it should be kept in mind that the meaningful objects are actually the
measures ul, p/, b/, pl Let us denote by m the two-dimensional L ebesgue measure in o
and by r the real function x -— dist (x, Z) By the restriction wy,; of u to M, we shall mean
an element of £ L(w, m; M) such that, for every ®,, € Dw, M) (equivalently € €
D*w, M)) one has



27rf s Py dm rf u-¥d] (10 1)

@ Q

where ¥ denotes the axially symmetric vector field generated by ¥,, This reflects the
classical technique of reducing the triple integral of a rotationally symmetric scalar field
to a double integral in some meridian half-plane Observe that, when @ N Z # @, some
condition have to be satisfied by an element of .£ },(w, 72; M) in o1der that it corresponds
in this way to some axially symmetric element of .£..(Q, [ X); this condition is
automatically satisfied by every element of £ '(w, rnz; M)

Similar definitions and obseirvations apply to the 1estrictions pyy, bas, pas Of the locally
integrable axially symmetric scalar fields, p,b, p

Now, let us take the axially symmetric vector field ¢ € D(Q, X) (resp D¥) as the
velocity field of a carrier; clearly the motion of this carrier leaves invariant every meridian
plane and, in particular, its action in » may be depicted as a two-dimensional carrier
with @, as velocity field The convection in Q of axially symmetric scalar fields such as
p, p, b 1eadily passes on to the convection of their respective restrictions to w; the same
is truc for the convection (resp. the transvection) of an axially symmetric vector field
such as u But some care must be taken when expressing the convection of the three-
dimensional axially symmetric vector measure ul in Q; similarly to (10 1) it comes out
that this vector measure is convected by the three-dimensional axially symmetric carrier
with velocity field ¢ if and only if the two-dimensional vector measure »ruy# is convected
by the two-dimensional carrier with velocity field ,, The following makes this operation
caster

ILet us use in M Cartesian orthonormal coordinates, respectively z, along Z as an
axis, and r > 0 as before let us denote by u, and u, the components of u,, If the axially
symmetric vector measure u/ is divergence-free in €0, the two-dimensional vector measure
rupgm 1s divergence-frec in w. When w 1s simply connected, this implies in the same way
as in Sect 7 the existence of ¥us € L L{w, m; R) such that, in the sense of distributions
in w, one has

1 18y,
u_,=~8%l u, = -———ﬁﬂ (10 2)

voar . r dz

In the differentiable case, ¥,, is nothing but classical Stoke’s stream function ot the
considered axially symmetric flow

This is directly connected with the results of Section 9 Let us take here for h the
gradient of the azimuth angle x — 6(x), a real function locally defined in 26 \ Z up to an
additive constant The vector field h is @* in X \ Z with zero curl On the other hand,
let us take for the function ¥ of Section 9 the rotationally symmetric extension of the
function denoted above by ¥,,; this yields

u/ = (grad ¥) X h/, (10 3)

which turns out to be equivalent to (10.2)
Since the scalar field 6 is a constant in A4, it is automatically convected by any two-
dimensional carrier in w Therefore Prop 9 ¢ yields the next proposition

Proposition 10.a. Let the open subset Q of X be rotationally symmetric about 7, as well
as the potential function U of extraneous forces Let an axially symmetric flow be described
as ahove by the meridian elements ¥y, par. bps, with

N 1
grad ¢, € L"(w, ; dm; M) {10 4)

by € LY w, 1 dmy 1R) (10 5)
pu © L (w, dm; R) (10 6)



This flow satisfies (4.5) in Q if and only if, for every carrier with velocity field Y4, & 7 o,
\4) (equivalently Biw, M)) the t-derivative of the following functional vanishes g r
=

’ 1 .
B(r) = f [’,ﬁ"’z’ piderad i) + bis pMU} dm,

where Yy, phr, Bas, reducing 10 Yag, pas, bas for T = 0, are scalar fields convected by e
carrier

Remark 10.6. Supposing u under the form (10.2), or equivalently (10 3), involves that
the vector measure u/ is divergence-free in ©\ Z, not necessarily in Q if @\ 2 # 0 In
fact the vector field h figuring in (10.3) is cuil-free in X\ 7 but, as an element of

LEAX. I X), its curl in the sense of distributions equals a nonzero vector measure
Concentrated on Z The following proposition shows that, in the present instance, we are
freed from this hindrance thanks to assumption (10.4)

Proposition 10 c¢. Let Q be an open subset of the three-dimensional Euclidean space X,
intersecting the straight line 7 Every element of L3(Q, I X) with zero divergence in the
sense of distributions in the open set Q\ 7 also has a zero divergence n Q

Proof we have to show that, under the assumptions made,
fu-grad‘Pd[:O (107)
Q

holds for every ¢ € D(Q, R) Let us choose a @™ function f: [0, +oo[— [0, 1}, taking
the constant value 1 in [0, 4] and vanishing in [1, +~ o[ With every ¢ > 0 let us associate
the function

@ x —'fl:~1~ dist (x, Z):l,
€

which belongs to @ *(X;, ®), as well as 8 = | — « The left-hand side in (10 7) equals
the sum of two terms First, fﬂ u - grad (8¥)d! vanishes since 8¢ €& D(Q\Z, ®) Second,
we are to show that under assumption u € £, /; X), the expression

f u-grad(e¥)d/ = f ou-grad ¥ d/ + f Pu-giad o d/,
1 Q Q@

where ¢ is fixed in D(Q, ), tends to zero with e This is trivial in what concerns the first
term on the right, since |a| < 1 and since the Lebesgue measure of the set X' = (supp «)
M (supp ¥) tends to zero. As for the last term, the Cauchy-Schwarz inequality yields

®u- grad « dl‘ < f ¥ d/f (grad o) d/
Q K K

Now, introducing the characteristic function of supp «, one has

f 2l dl = f Ysuppa? 1 dl,
K o

which tends to zero by Lebesgue dominated convergence; on the other hand, if D denstes
the diameter of the compact set supp ¥, one elementarily finds the following upper
bound. independent of e:

1
f(grada 27r1)f 5/ (s) ds
(]



Remark 10d. As in the preceding sections, the condition div (pu/) = 0 of mass
conservation has to be satisfied additionally Due to (10.4) and (10.6), Prop 10.c implies
that this condition holds in the whole of € as soon as it holds in @\ Z This in turn is
readily found equivalent to div (ppai##1) = 0, holding in the sense of two-dimensional
distributions in o In view of (10 2), this in turn is equivalent to

7?7,,(, ?ﬁ&{)_ﬁ(. "’_%L;ﬁz):o
az \PM e ) T e \PM s :

which is meaningful in the sense of distributions in w. In the case where py, and ¢, are
smooth, this reduces to the vanishing of the Jacobian determinant of these two functions,
which means that the couple (s, ¥as) takes it values in some strict submanifold of R?
These properties are naturally preserved when the scalar functions py, and ¢y, are
convected by a carrier

Remark 10.¢ Similarly to the above 1emarks, if @ M Z = @, one may ask whether the
dynamical equation (4 5) holding in QX Z is sufficient for this equation to hold in Q. If
so0, the assumption @y, € D, (w, M) in Prop. 10 a could be replaced by @), © D(w, M)
By the same sort of upper bounds as in the proof of Prop 10 c, the answer is found to
be yes, if, in addition to (10 ﬂ), (10°5), and (J0.6) it is supposed that u € L., ; X);
but we are unable to assert that some less stringent sufficient condition cannot be found
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