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1. INTRODUCTION 

Let E denote a Euclidean linear space with dimension Y; in mechanical 
applications v  = 2 or 3. Strictly speaking, the space of elementary geometry 
and classical physics has no proper linear structure; it is rather an u@ze or 
Izomogeneous Euclidean space; but the choice of an artificial origin allows to 
identify it with the associated Euclidean linear space E, bringing notational 
simplification. The notation S,(E), or shortly S, , will refer to the second 
symmetric power of E, i.e. the subspace of E @ E consisting of the symmetric 
tensors. 

Let Q be an arbitrary open subset of E. I f  u E V(Q, E), i.e. u is a continuously 
differentiable vector field on Q, let us denote by ui the components of u relative 
to some orthonormal basis of E and, calling xj the components of the generic 
point x of Q, let us write as u$,~ the partial derivative au,/&, . Classically, the 
tensor field e E g”(G’, Sa) with components 

is called the deformation of IA; notation e = def u. When u constitutes the velocity 
Jield of a continuous medium occupying at the considered instant, the region Q, 
this tensor is the time-rate of deformation of the medium. The same mathematics 
are used in the approximate treatment of the small deviations of a continuous 
medium from some reference state; then u(x) represents the injinitesimal dis- 
placement of the element of the medium which, in the reference state, occupies 
the position x and, at this point, the tensor def u measures the infinitesimal 
strain of the medium. 

Classically, in order that a given e E GP(Q, Sa) derive in the above way from 
some vector field u, certain compatibility conditions are required; a well known 
necessary condition is 

eii.kl + %z,ij = eil,d + kik . 
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This condition is sufficient when Q is simply connected but, for a multiply 
connected Q, the nullity of some line integrals involving e, relative to a system 
of fundamental circuits of 9 must be written in addition. 

Let us observe now that, according to the common trend in the modern 
theory of partial differential equations, the solutions of boundary value problems 
in continuum mechanics, are looked for in such functional spaces that e does 
not belong to v2(52, S,) anymore; e is allowed instead to be a class of equivalent 
locally integrable tensor fields, relative to some measure, or it is a priori treated 
as a measure or even more generally as an element of 9’(52, S,) the space of 
symmetric tensor distributions on Q. Then the aforementioned line integrals 
become meaningless. 

The purpose of this paper is to characterize the symmetric tensor distributions 
(resp. the symmetric tensor fields) which have the form def u, by some orthogo- 

nality property in the sense of the duality between the space 9’ of Schwartz’s 
distributions on Q and the space 9 of the GZffi functions whose support relative 
to Q is compact. The scalar product of this duality is denoted by (., .j; in the 
case where e is properly a tensor field, i.e. when its components eij are real 
functions instead of distributions, the same brackets will be used to denote the 
scalar product relative to the Lebesgue measure dw of &?, namely, for s E C@(Q, S,) 

(eij , sij) = S, eijsij dw 

with the usual sommation convention. 
For s E B(Q, S,), the divergence is the vector field div s E B(Q, E) with 

components 

(div s)~ = sii,j . 

THEOREM 1. Let e E 9(!2, S,) (resp. e E W(.Q, S2)); for the existence of 
u E 9’(Q, E) (t-esp. u E V(.Q, E)) such that e = def u it is necessary and su+$nt 
that, for every s E B(Q, S,) with zero divergence, one has (e,, , sij) = 0. 

In the particular case of a simply connected Q and e E V2(Q, S,) the same 
characterization is established in [l] under the name of Donati’s theorem. 

We shall base the proof of Theorem 1 on the following, which refers to a more 
common situation. 

THEOREM 0. Let g E B’(Q, E) (resp. g E V”(Qn, E)); for the existence of 
f  E 9’(Q, R) (resp. f  E W(Q, E)) such that g = grad f ,  it is necessary and suficient 
that, for every v  E 9(sZ, E) with zero divergence, one has (gi , vi) = 0. 

The version g E go@ E) of this statement is of current use in the Calculus of 
Variations or in Hydrodynamics (see some proofs in [2], [3] or [4]). According to 
a remark of J. L. Lions reported in [5], the case g E B’(Q, E) may be related 
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to De Rham’s theory of the homology of cuwents on a differential manifold [6]. 
For the reader’s convenience, we give an original proof of Theorem 0 in the 
Annex. Since we do not make use of polyhedral decompositions of Q, this proof 
makes actually Theorem 0 stand apart from De Rham’s deep results about the 

homology of currents of arbitrary order. 
An early state of the present study was inserted in the multigraphed seminar 

report [4]. Similar methods are also used in [7] to establish the following result 
whose main mechanical relevance lies in the theory of plates (then v  = 2): for 
e E W(fl, S,) to be a tensor of second derivatives, i.e. ei9 == f,ij with f E %:‘(Q, R), 
it is necessary and suficient that (eij , sij) = 0 for every s E 9(Q, S,) such that 
div div s == 0. 

Remark. The formulation of Theorem 1, in its version concerning a proper 
tensor field e, assumes e E V(Q, S,); this is another improvement on Donati’s 

theorem which was restricted to e E V(Q, 8,). But, by comparison with Theorem 
0, where g E V”(Qn, E), this raises the question of the regularity properties of the 
distribution u when the distribution e = def u is a V” tensor field. As a part 
of some regularity study made in [S], it is established that such an u is a continu- 

ous vector field; but to the difference with the situation of Theorem 0, the 
assumption def u E V(Q, S,) is not found to imply the differentiability of U, 
which would allow to understand the writing e = def u in the sense of the 
elementary partial derivatives. 

2. ORTHOGONALITY AND CLOSEDNESS 

Elementarily, if v  E a(Q, E), the condition div v  = 0 is equivalent to the fact 
that (gi , ~1~) = 0 holds for every g = gradf, f E .G@‘(Q, R) (a connected remark 
is that the linear mappings grad: g’(Q, R) + L-@‘(Q, E) and -div: L3(52, E) + 

g(Q, R) are the transpose of each other). Therefore, Theorem 0 expresses that 
the range of the linear mapping grad: L3’(52, R) + Z@‘(Q, E) is a subset of 
9’(Q, E) equal to its biorthogonal in the sense of the dual pair %(a, E), 53(L), E); 
this equivalently means that the considered range is a closed linear subspace of 
L&(52, E). Consequently, for the proof of Theorem 0, one cannot expect to 
reduce the case g E P(sZ, E) to the elementary situation g E %?Oo(G, E) by any 
approximation or regularization technique, since the use of approximations 
would precisely rest on this closedness. 

Similarly, Theorem 1, expresses that the mapping def: W(Q, E) ---f g’(sZ, SJ 
has a closed range. 

Mechanically, such orthogonality properties are meaningful in the framework 
of the virtual work, or virtual power, method. A modern formalization of this 
method consists in the following (cf. [9], [lo], [ll]): with every possible position 
of the mechanical system under consideration are associated two linear spaces 
V and 9; the elements of the former constitute, in a general sense, the possible 
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values of the velocity of the system if it happens to pass through the considered 
position; the elements of the latter constitute, formally, the values of the various 
forces that the system may experience in that position. These spaces are placed 
in duality by the bilinear form power, denoted (., .). Such a mathematical 
pattern may usually be applied in several different ways to a given mechanical 
situation; they correspond to different ways of expressing the information about 
physical forces in term of elements of the linear space fl (cf. [9], Sect. 3.j). 
In particular, when dealing with a continuous medium filling the open set Q 
as above, it may be convenient to make V consist of strain tensor fields (resp. 
tensor distributions). Then g consists of stress tensor fields, with the known 
expression of the power (optionally the pairing bilinear form may be taken as the 
negative of this power to avoid some minus signs in solid mechanics). In such a 
framework, the fact that only the elements of Y” with the form e = def u are 
feasible has to be treated as a constraint; the kinematical condition of it may be 
written e E I, where I is a linear subspace of V. In existential studies it is usually 
important that I be exactly the orthogonal of the subspace J of F consisting of 
the self-equilibrated stress fields; in other words the constraint e E I may be 
formally described as frictionless, some element of J being considered as the 
associated reaction. As Theorem 1 makes use of the smallest reasonable space of 
self-equilibrated stresses, namely the @? symmetric tensor fields with compact 
supports and zero divergence, this Theorem appears as a general tool for checking 
that a pair 1, J of mutually orthogonal linear subspaces of V” and s has effect- 
ively been constructed, In fact V is practically always a subspace of $@‘(a, &‘a) 
(frequently some Sobolev space). 

Remark. Results similar to Theorem 0 and Theorem 1 may easily be obtained 
by replacing the space LB’ of the distributions in Q, by the algebraic dual g* 
of 9. This consists in straightforward algebraic arguments (cf. [4]) but does not 
seem to have any mechanical relevance. 

3. PROOF OF THEOREM 1 

The definition of the derivatives of a distribution (resp. an integration by 
parts) immediately yields that if e = def u, u E CB’(L?, E) (resp. u E V2(.Q, E)), 
the element e of 52’(Q, Ss) (resp. of ‘@(Q, S,)) possesses the property: 

(P) For every s E 9(Q, S,) with zero divergence one has (eij , sij) = 0. 

To prove the converse implication we first establish two lemmata. 

LEMMA 1. If the element e of ZY(Q, S,) (resp. of W(S2, S,)) possesses the 
property P, one has, for every v  c B(Q, E) with zero divergence and for every 
values of i and k 

<eij.lc - ejk,i , q> = O- (3.1) 
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Proof. Equality (3.1) is equivalent to 

<eij , Vj.k> - (ejk , vi,i> = 0. (3.2) 

Using Kronecker’s 8 one has 

(eij , vi,k) = (eh , 8i~h.k) 

feik ) vj.i> = <ez, , skmvZ,i>- 

As ezm is symmetric, the left member of (3.2) may then be written as 

iKezm 3 siZvm.k + hnvZ,* - 8knVz.i - ~kz%a.i). 

For fixed i and k, let us denote by szm. the second factor in this bracket; this 
defines the components of an element s of QQ, Sa) whose divergence is 

LEMMA 2. Let xj denote the components of the generic point of E relative to 
the chosen orthonormal basis. I f  the element e of 9’(Q, S,) (resp. of @(s2, S,)) 
possesses the property P, one has, for every v  E 9(Q, E) with zero divergence, and 
for every value of i 

(Xj(eij,k -k eik,i - f&j.& Vd = 0. (3.3) 

Proof. Equality (3.3) is equivalent to 

<eij 7 (Xjvk),k) + (eik 3 (xjvk),j) - cekj 9 (xjvk),i) = 0 

whose left member may also be written as (recall that v denotes the dimension 
of E) 

<eij 3 6jkvk + xjvk,k> + <eik 7 6jjvk + xjvk,j> - <ekj P 6jivk + xjvk,i> 

= <eij , Vj> + <eik , wk + xjvk,j) - ceki , vk> - cekj , XjVk.i) 

= <e Zm 7 sZismk(mk + xjvk,j) - sZksmjxjvk,i~ 

zzz <ezm , VsZivm + sZixjvrn,j - xrnvZ,i)* 

As elm is symmetric, the second factor in the latter bracket may be replaced by 
the symmetrized expression (disregarding the factor 4) 

VSZiV, + V&&Z + sZiXjVm,j + 8miXjVZ.j - xmvZ,i - xZvm,i * 
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For a fixed i let us denote by slln this expression; it defines the components of an 
element s of 9(Q, Ss) whose divergence may be calculated as follows: 

Let us now complete the proof of Theorem 1. We suppose that e E 9(Q, Se) 
possesses the property P. Then, by Lemma 1 and Theorem 0, for every i and K, 
there exists fik E 9’(Q, R), defined up to an additive constant in every connected 
component of Q, such that 

f&j = eiLk - ejk,i f (3.4) 

This implies 

(fik +fki),i = eiLk - ejk,i + ekj.i - eji,k = 0. 

Thus the distribution fik + fki equals a constant in every connected component 
of Sz; let us take profit of the arbitrary constants in the construction of fik to 
make that 

fik + fki = 0 (3.5) 

Then the proof of Theorem 1 consists in establishing the existence of 
u E: 9(Q, E) such that 

Now 

%.k = eik + fik . 

eik +fik = (4% +fij)).k - xj(%,k + fij,k); (3.6) 

the first term in the right hand member constitutes in fact the ik component of a 
tensor distribution deriving from some element of .9’(Q, E) in the required way; 
it remains to show the same for the second term, i.e. in view of Theorem 0, to 
prove that for every v E 9(sZ, E) with zero divergence 

(Xj(%j,t + fij,kh vk) = 0. 

This results from Lemma 2, since, in view of (3.4) 

eij.k -t fij.k = %j,k + eik.j - ekj,i . 

Let us finally adapt this reasoning to the alternative assumption e E V(Q, Se). 
In that case Lemma 1 and Theorem 0 imply the existence of file E W(52, R) 
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satisfying (3.4) and (3.5). L emma 2 and Theorem 0 ensure that eiK +fik as it is 
written in (3.6) has the form u~,~, with u E W(52, E); actually, since eik and fik 
belong to W(Q, E) one has u G V2(Q, E). 1 

4. DEGREE OF INDETERMINATION OF u 

The study of the degree of indetermination of u corresponding to some e 
satisfying the conditions of Theorem 1 consists in describing the kernel of the 
linear mapping def. 

THEOREM 2. Let u E W(Q, E); the distribution def u E 9(Q, S,) is zero if and 

only if, for every connected component of Q, there exist some constant V E E and 
F E E A E (i.e. F is an antisymmetric tensor of order two) such that the restriction of u 
to this component equals the restriction of the vector Jield x M w(x) defined by 

w&J = V, + F,wxj . (4.1) 

Proof. Clearly (4.1) implies def w = 0. Conversely, let u E SP(52, E) such that 

defu =O. (4.2) 

By partial derivation this yields 

U$,jk + uj,ik = 0 

%.ki + uk,ji = 0 

uk,ij $- Ui,kj = 0. 

Adding the two last equalities and substracting the first one, one obtains 
2ukSij = 0. Hence the restriction of the distribution u~,~ to a connected compo- 
nent w of Sz is a constant Fki , and Fki + Fik = 0 by (4.2). Interpreting the 
function x w Fkjxj as a distribution on w, one has 

(Uk - FkiXj),i = Uk,i - Fki = 0. 

Therefore the restriction to w of the distribution uk - FkjX, equals a constant, 

say vk. 1 

5. ANNEX: PROOF OF THEOREM 0 

Clearly the theorem concerns each connected component of Q separately. 
Hence we suppose in all the sequel that D is a connected open subset of E. 

Let c denote an integration path in Q, i.e. a continuous mapping t ++ f(t) 
of the real interval [0, I] into Q, with bounded variation. For every 9) E %O(Q, R) 
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and every coordinate xi of the generic element x of Q, one classically defines the 
integral SC 9) dxi . Equivalently may be written the vector integral SC 9 dx, an 
element of E independent of the choice of the basis in E. The functional 

ci:9,t+ vdxi 
I e 

is a fortiori defined for every v E 9(Q, R) and constitutes a distribution on 52 
(actually a measure). We shall use the same symbol c to denote the path and the 
vector functional 

this functional is an element of 9’(52, E) whose the ci E 9’(Q, R) are the com- 
ponents relative to the chosen basis. The support of the distribution c is con- 
tained in the image of [0, I] under the mapping 5, thus it is a compact subset of 
9. Then c may trivially be extended as a distribution on the whole of E, with the 
same support; we shall also denote by c this element of 9(E, E). 

Let us put E(O) = a, t( 1) = b, respectively called the origin and the extremity 
of C: If a = b we shall say that c is a circuit. 

LEMMA 3. Denoting by E, and Ed the Dirac measures at the points a and b, one 

has 
div c = E, - Ed . (5.1) 

In particular, if c is a circuit, its divergence is zero. 

Proof. Using an orthonormal basis in E, we have, for every q~ E B(Q, R), 

LEMMA 4. If an element g of 9(!2, E) yields (gi , vi) = 0 for every 

v  c 9(L?, E) with zero divergence, one has 

Proof. For every I~I E B(Q, R) 

<i?d,j 9 V> - <gi.i 9 P> = -(gi 7 5O.i) + h?i 9 9.i) 

= <L?k 3 --Gleiv.j + GkPP,ih 

Now, for fixed i and j, the vector field v with components 

vk = -8kiv,i f ‘kjp,i 

(5.2) 
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has the divergence 

LEMMA 5. Let II denote an open parallelotope in E; if g E 9‘(Il, E) satisjies 
(5.2), there exists f  c B’(II, R) such that g = grad f. 

Proof. The reasoning used in [13] for R” also holds for an open parallelo- 
tope. 1 

LEMMA 6. Let w be an open subset of E and let c be an integration path in w, 
with origin a and extremity b. Let p > 0 be strictly less than dist(supp c, E\o) and 

let p denote the open ball with center at the zero of E, with radius p. For every 
LY E .9(E, R) with support contained in 8, the convolution products E, -C ar, q, * CY 
(i.e. the junctions deduced from 01 by the translations of vectors a and b) and ci + CY 

define elements of 9(w, R). For every Jo S(w, R) one has 

(5.3) 

Proof. As supp c is a compact subset of w, there exists p > 0 agreeing with 
the statement. The functions E, * 01 and eb * a: are P with supports respectively 
contained in /3 + a and /3 + b, open balls in W. In defining ci L 01, one interprets 
ci as an element of 9(E, R); the support of ci c oi is contained in supp c + cl /I, 
a compact subset of w. Let y  E 9(E, R) with support contained in w and taking 

the value 1 at every point of supp c + cl p. The product y f  is a distribution on 
w with compact support; let f” denote its extension as an element of 9(E, R) 
with the same support. Denoting by (., .)E the pairing between 9’(E, R) and 
9(E, R), and using Lemma 3, one writes the left member of (5.3) under the form 

which equals the right member. I 

In the sequel such tricks as the replacement of j by f’will be implicit and, when 
writing a pairing bracket, we shall omit the mention of the concerned open set. 

LEMMA 7. With the same notations as in the above lemma, let us suppose that c 

is a circuit. I f  g E a’(Q, E) yields (gi , vi) = 0 for every v  E 9(w, E) with zero 

divergence, one has 

(gi , ci * a) = 0. 

Proof. In fact c * a is an element of 9( W, E) whose divergence c~,~ * CI is zero 

by Lemma 3. fl 
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Let us now complete the proof of Theorem 0. For notational simplicity, 
suppose a translation made, such that the origin of E belongs to Q. 

Let g E Q’(Q, E) yielding (gi , vi) = 0 for every ZJ E 9(&I, E) with zero 
divergence. 

In view of Lemmata 4 and 5, there exists an open ball UJO with center 0, 
whose closure is contained in Q, and a distribution f” E 9(w”, R) such that 
grad f” equals the restriction of g to w”. 

As 52 is an open connected set of E, it is also arcwise connected (see e.g. [12]). 
With every x E Sz let us associate an integration path cx in .Q with origin 0 and 
extremity X. Let us choose p” less than or equal to the radius of ~0, and satisfying 

0 < p5 < dist(supp c5, E\Q). 

Denoting by wZ the open ball with center x and radius pZ, let fZ E B’(w”, R) 
be defined as follows: for every p E B(w 5, R) the translate function 01 = l -Z * v 
has its support contained in w”; put 

(f x? v,> = (fO, a> + cgi , cim * a>. 

This in fact defines f x as a distribution on ~5, since q h a is a continuous linear 
mapping from SB(uP, R) into 9(w”, R) and since 01++ ci5 * 01 is a continuous 
linear mapping from G(uJO, R) into GB(Q, R). 

Let us prove that grad f  z equals the restriction of g to OP. 

cf.: > y,> = -<f ‘> 9).k) = -(f ‘9 OL,k) - <gi > ciz * ff,k) 

Lemma 4 shows that gi,k = gk,i, hence, using Lemma 3, one has 

(g&k 9 %’ * a> = (gk,i , cix * a> = -(gk , & * a> 

= <gk 3 (% - <O) * a> = <gk > ‘p> - (gk Y  a>. 

As the restriction of g, to ~0 is f  .k by construction, this yields the expected 
result. 

It remains to invoke the piecing theorem (see e.g. [13]) to prove the existence 
off E 9(Q, R) whose restriction to wz is fZ for every x G Sz. We have to check 
that for any two points x and x’ of 52, if the intersection wx n wx’ is nonempty, 
f  x and f  2’ have the same restriction to this intersection. This amounts to check 
that if y E UP n w2’ and if /3 is an open ball, with center 0, such that ,8 + y C 
W= n ~5’) the distributions f  Z and f  %’ have the same restriction to p + y, or in 
other words that for every 01 E 9(/I, R) on has 

<fX, Ey *cd> = (f”‘, Ey * Cx). (5.4) 
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By applying Lemma 6 to a rectilinear path (J with origin x and extremity y  in 
w = d) one obtains, since fix = gi in CO”, 

<f",Q *,> = (f",%*a) + <gi,oi*a). 

Similarly, denoting by (2’ a rectilinear path with origin x’ and extremity y, 

(f"', El * a> = (f"', Ez, * a> + (gi , u; * m> 

By the definition off D one has 

(f", % * a> = (f", a> + (Si, cim* a> 

and similarly for f z’. Then equality (5.4) follows from Lemma 7 applied to the 
circuit cx + 0 - u’ - P’. I 
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