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Fallacies of Agreement: A Critical Review of Consensus
Assessment Methods for Gesture Elicitation

THEOPHANIS TSANDILAS, Inria, Université Paris-Saclay, and Univ Paris-Sud, France

Discovering gestures that gain consensus is a key goal of gesture elicitation. To this end, HCI research has
developed statistical methods to reason about agreement. We review these methods and identify three major
problems. First, we show that raw agreement rates disregard agreement that occurs by chance and do not
reliably capture how participants distinguish among referents. Second, we explain why current recommen-
dations on how to interpret agreement scores rely on problematic assumptions. Third, we demonstrate that
significance tests for comparing agreement rates, either within or between participants, yield large Type
I error rates (> 40% for o = .05). As alternatives, we present agreement indices that are routinely used in
inter-rater reliability studies. We discuss how to apply them to gesture elicitation studies. We also demonstrate
how to use common resampling techniques to support statistical inference with interval estimates. We apply
these methods to reanalyze and reinterpret the findings of four gesture elicitation studies.

CCS Concepts: « Human-centered computing — Interaction design process and methods; Gestural
input; User centered design; HCI theory, concepts and models;
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1 INTRODUCTION

Gesture elicitation is widely used in Human-Computer Interaction (HCI) for identifying gesture
vocabularies that are self-discoverable or easy to learn [Wobbrock et al. 2009]. In a typical gesture
elicitation study, participants are shown the outcome of user interface actions or commands and
are asked to propose gestures that would trigger these actions. While the hope is that consistent
gesture-to-action associations will emerge, participants may also not agree in their proposals. Thus,
analyzing agreement between participants is a key aspect of the method [Vatavu and Wobbrock
2015, 2016; Wobbrock et al. 2009]. Agreement analysis can guide the design of gesture vocabularies
and help understand why some commands or actions naturally map to gestures.

A widely used measure for quantifying agreement in gesture elicitation studies is the index A
introduced by Wobbrock et al. [2005]. The index has been recently superseded by a more accurate
measure of agreement, the agreement rate AR [Findlater et al. 2012; Vatavu and Wobbrock 2015].
Vatavu and Wobbrock [2015] argued for the adoption of the new index and provided guidelines
on how to interpret agreement rates by suggesting ranges of low, medium, high, and very high
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agreement. Furthermore, they proposed the V, 4 significance test for comparing agreement rates
within participants. More recently, Vatavu and Wobbrock [2016] introduced the V}, significance
test for comparing agreement rates between independent groups of participants.

While statistics for analyzing agreement are important for gesture elicitation research, our article
identifies three problems in the methods described by Vatavu and Wobbrock [2015; 2016]:

e The A and AR indices do not take into account that agreement between participants can occur
by chance. We demonstrate that chance agreement can be a problem even when gesture
vocabularies are open-ended and participants choose from a large or infinite space of possible
gestures. The reason is that agreement is often dominated by a small number of very frequent
categories of gestures. We characterize this phenomenon as bias and model it with well-
known probability distribution functions. We then evaluate its effect on chance agreement
through Monte Carlo experiments.

e Guidelines for interpreting agreement rely on problematic assumptions about the probability
distribution of AR values and can lead to overoptimistic conclusions about the level of
agreement reached by participants. We discuss additional reasons why the interpretation of
agreement scores cannot be based on the methodology of Vatavu and Wobbrock [2015].

e The V,; and the V}, statistics rely on probabilistic assumptions that yield extremely high Type
I error rates. Our Monte Carlo experiments show that the average Type I error rate of both
significance tests is higher than 40% for a significance level of & = .05. Our results contradict
the evaluation results reported by Vatavu and Wobbrock [2016] for the Vj, statistical test.

These three problems can encourage an investigator to overestimate or misinterpret the agreement
observed in a study or to conclude that there is agreement when in reality there is little or none. They
can also cause the investigator to falsely assess random differences between agreement values as
“statistically significant” For example, we show that the conclusion of Vatavu and Wobbrock [2016]
that “women and men reach consensus over gestures in different ways”, based on the dataset of Bailly
et al. [2013], is not supported by statistical evidence.

We present solutions to these problems. These solutions build upon a vast literature on inter-rater
reliability that has extensively studied how to assess agreement [Gwet 2014] and has advocated
indices that correct for chance agreement. Chance-corrected indices, such as Cohen’s «, Fleiss’ k,
and Krippendorff’s a, are routinely used in a range of disciplines such as psychometrics, medical
research, computational linguistics, as well as in HCI for content analysis, e.g., for video and user log
analysis [Hailpern et al. 2009] or for the analysis of design outcomes [Bousseau et al. 2016]. These
indices allow us to isolate the effect of bias and understand how participants’ proposals differentiate
among different commands. We also discuss criticisms of these indices and describe complementary
agreement measures. The above literature has also established solid methods to support statistical
inference with agreement indices. In this article, we advocate resampling techniques [Efron 1979;
Quenouille 1949], which are versatile, easy to implement, and support both hypothesis testing and
interval estimation. We conduct a series of Monte Carlo experiments to evaluate these methods.

We illustrate the use of chance-corrected agreement indices and interval estimation by re-
analyzing and re-interpreting the results of four gesture elicitation studies published at CHI: a
study of bend gestures [Lahey et al. 2011], a study of single-hand micro-gestures [Chan et al. 2016],
a study of on-skin gestures [Weigel et al. 2014], and a study of keyboard gestures [Bailly et al. 2013].
Our analyses confirm that current methods regularly cause HCI researchers to misinterpret the
agreement scores obtained from their studies and sometimes lead them to conclusions that are not
supported by statistical evidence.

Previous work has recognized that HCI research often misuses statistics [Kaptein and Robertson
2012]. This has prompted a call for more transparent statistics that focus on fair communication
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and scientific advancement rather than persuasion [Dragicevic 2016; Kay et al. 2016]. Others have
pointed to the lack of replication efforts in HCI research [Hornbzek et al. 2014; Wilson et al. 2012]
and have urged the CHI community to establish methods that build on previous work, improve
results, and accumulate scientific knowledge [Kostakos 2015]. We hope that the critical stance we
adopt in this article will contribute to a fruitful dialogue, encourage HCI researchers to question
mainstream practices, and stress the need for our discipline to consolidate its research methods by
drawing lessons from other scientific disciplines.

2 PRELIMINARIES

We start with background material that will later help us clarify our analysis. We introduce key
concepts of gesture elicitation. We clarify the steps of the process and define our terminology.
Finally, we introduce the main questions that we investigate in this article and summarize the
overall structure of our analysis.

2.1 Referents, Gestures, and Signs

Many of the key concepts of gesture elicitation were introduced by Good et al. [1984], Nielsen et
al. [2004], and Wobbrock et al. [2005; 2009]. Wobbrock et al. [2009] summarize the approach as
follows: participants are prompted with referents, or the effects of actions, and perform signs that
cause those actions.

The analysis of Wobbrock et al. [2009] makes no distinction between gestures and signs. In our
analysis, we distinguish between the physical gestures performed by participants and their signs. A
sign can be thought of as the interpretation of an observed gesture, or otherwise, an identity “label”
that provides meaning. A sign can also be considered as a category that groups together “equal”
or “similar” gestures. For example, a “slide” sign can group together all sliding touch gestures,
regardless of the number of fingers used to perform the gesture.

Classifying gestures into signs is rarely straightforward because their interpretation often relies
on subjective human judgment. It also depends on the scope and the quality of the media used
to record gestures, e.g., a video recording cannot capture a finger’s force as the finger slides on
a table. Data recording and interpretation issues are important for our analysis, as they largely
affect agreement assessment. To account for data recording, we distinguish between the physical
gesture and its recorded gesture description. To account for data interpretation, we then distinguish
between the actual gesture elicitation study and the classification process, which takes place after
the study and is responsible for classifying gesture descriptions into signs.

2.2 Gesture Elicitation and Data Collection

Figure 1 illustrates a gesture elicitation study, where n participants (Ps, P, ..., P,) propose (or
perform) gestures for m referents (R, Ry, ..., R;). Gestures are recorded digitally, e.g., with a video
camera and motion sensors, or manually, e.g., through questionnaires and observation notes. The
output of a gesture elicitation study is a dataset {g;; |i = 1..m, j = 1..n} that describes all the
proposed gestures, where g;; denotes the piece of data that describes the gesture proposed by
participant P; for referent R;. This dataset may combine diverse representations, such as log files,
video recordings, and observation notes.

We take as an example a fictional scenario inspired by a real study [Wagner et al. 2012]. Suppose a
team of researchers seek a good gesture vocabulary for a future tablet device that senses user grasps.
Their specific goal is to determine which grasp gestures naturally map to document navigation
operations such as “scroll down” or “previous page”. To this end, they recruit n = 20 participants
to whom they show m = 10 navigation operations, i.e., referents, in the form of animations on
the tablet. Each participant is asked to propose a grasp gesture for each referent. Suppose data

ACM Transactions on Computer-Human Interaction, Vol. 25, No. 3, Article 18. Publication date: June 2018.



18:4 Tsandilas T.

S o S S

P, P, Pj
AN Gesture Descriptions
data recording (logs, videos, notes )

Gesture Proposals — {gij} i=1...m, j=1...n

- , \
, \

% % l \
Referent

Fig. 1. Overview of a gesture elicitation study. Each participant P; (j = 1...n) proposes a gesture for each
referent R; (i = 1...m). Gestures are recorded digitally, e.g., with a touch device or a video camera, or manually,
e.g., by taking notes. Thus, a gesture description g;; can combine various representations: log files, video
recordings, observation notes, etc.

Classification Process

computer program or human coders . .
( puterprog ) Sign assignments

Gesture Descriptions » {9ij > or | k=1.q}

{9i;}
s-q{g”—)o'k | k=1. q}

Fig. 2. Gesture classification process. Descriptions of proposed gestures are classified either automatically by
a computer program or manually by humans. The result is a set of assignments of gesture descriptions g;; to
signs oy. Here, two different classification processes (C and C”) produce two different sign vocabularies {oy}
and {0]2} and two different sets of assignments.

collection is exclusively based on video recordings that capture (i) how the participants perform
the grasp gestures, and (ii) how they describe them by thinking aloud. The researchers collect a
total of 20 X 10 = 200 grasp descriptions, where each grasp description consists of a distinct video
recording. We use variations of this scenario to explain key issues throughout the article.

2.3 Gesture Classification Process and Sign Vocabularies

To analyze the findings of a gesture elicitation study, the researchers must first interpret their
recorded gesture descriptions by classifying them into signs. Figure 2 illustrates a typical gesture
classification process. We define this process as a function C that takes as input a set of gesture
descriptions {g;;} and produces a set of sign assignments {g;; — oy |k = 1..q }, such that each
gesture description g;; is assigned a sign oy that belongs to a sign vocabulary of size g. In the rest
of the article, we make a distinction between g, which is the total number of possible signs, and
q_ < g, which is the number of signs produced for a specific gesture elicitation study.

Gesture classification is most often performed by humans. However, for well-defined gestural
alphabets such as EdgeWrite [Wobbrock et al. 2005], it can be automated and performed by a
computer program. As shown in Figure 2, a different classification function C’ will generally
produce a different set of assignments over a different sign vocabulary. Gestures are often classified
along multiple dimensions. For example, Weigel et al. [2014] classify on-skin gestures along two
orthogonal dimensions: their on-body location (fingers, wrist, upper arm, etc.) and their input
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Table 1. Data from our fictitious gesture elicitation study

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 || Total
Al O 1 0 1 1 1 0 0 0 1 5
B| 7 2 6 4 10 3 10 3 10 5 60
Cl| o6 5 9 4 5 10 3 10 3 5 60
D| 4 6 2 4 4 4 3 4 4 5 40
E| 3 6 3 7 0 2 4 3 3 4 35

Note: 20 participants each propose a grasp gesture for 10 different referents (R1 - R10). Each grasp gesture is classified
into a sign: “A”, “B”, “C”, “D”, or “E”. Each cell shows the number of sign occurrences for a given referent.

modality (pinch, twist, tap, etc.). Similarly, Bailly et al. [2013] classify separately the key and the
gesture applied to the key of a Métamorphe keyboard. For other studies, gestures are grouped
together into larger classes [Chan et al. 2016; Piumsomboon et al. 2013; Troiano et al. 2014] by
considering a subset of gesture parameters. In this case, different grouping strategies result in
different sign vocabularies.

In the simplest case, a sign vocabulary is defined through a set of discrete signs, where each sign
maps to a unique combination of gesture parameters. In most cases, however, sign vocabularies
are open-ended, i.e., they are not known or fixed in advance. Instead, they are defined indirectly
through an identity or a similarity measure that determines whether any two gestures correspond
to the same or two different signs. For example, Wobbrock et al. [2005; 2009] group “identical” (or
‘equal”) gestures together, while other approaches [Chan et al. 2016; Piumsomboon et al. 2013] have
used less stringent criteria of gesture similarity.

As a consequence, the number of possible signs g is often unknown. Thus, it can be claimed
to be infinite (g — o) such that given a similarity function, one can always find a gesture that is
different (“unequal” or “not similar”) than all currently observed gestures. For example, one can
trivially invent a new sign by taking the sequence of two existing signs. It could be argued that the
assumption of an infinite sign vocabulary is artificial. However, it is an elegant abstraction that
enables us to assess various agreement statistics in the more general case, when sign vocabularies
are large, or at least larger than a small handful of five to ten signs.

2.4 Agreement Assessment

Given a set of assignments of gesture descriptions to signs, one can check which signs are attributed
to each referent and count their occurrences. Consider again our gesture elicitation study on grasp
gestures. Suppose that a human coder reviews the video descriptions produced by the study — she
inspects each video and classifies the proposed grasp gesture into a sign. Table 1 presents some
fictitious results, where five unique signs (“A”, “B”, “C”, “D”, and “E”) are identified. For each referent
(R1, R2 ... R10), the table shows the number of occurrences of each sign. Such tables are known as
contingency tables and can be used to summarize the results of a gesture elicitation study to assess
participants’ agreement. If a sign occurs more than once for a referent, we infer that at least two
participants agree on this sign. Researchers usually seek signs that enjoy wide agreement among
users. The larger the number of occurrences of a sign for a given referent, the greater is considered
to be the evidence that the gesture is intuitive or a good match for that referent. Thus, agreement
assessment has taken a key role in the analysis of gesture-elicitation results [Vatavu and Wobbrock
2015, 2016; Wobbrock et al. 2005, 2009].
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2.5 The Notion of Bias

Imagine that the five signs (g = 5) that emerged from our fictitious study is only a subset of a
much larger sign vocabulary. In this case, how would one explain that fact that only these five signs
appeared? Moreover, why are “B” and “C” so frequent (see Total in Table 1) while “A” is rare? We
refer to this overall tendency of some signs to appear more frequently than others, independently
of the actual referents, as bias.

Research in Linguistics and Cognitive Psychology has extensively studied the role of bias in
the evolution and learning of both human and artificial languages. For example, Markman [1991]
argues that young children acquire biases that help them rule out alternative hypotheses for the
meaning of words and progressively induce the correct mappings between words and referents,
such as objects and actions. Culbertson et al. [2012] characterize as bias universal constraints in
language learning that shape the space of human grammars. Through experiments with artificial
languages, they show that such biases are not simply due to external factors, such as historical or
geographic influences, but instead, they are part of the learners’ cognitive system. In particular, they
show that learners favor grammars with less variation (regularization bias) and prefer harmonic
ordering patterns (harmonic bias) [Culbertson et al. 2012]. Garrett and Johnson [2012] study the
phonetic evolution of languages and identify a range of bias factors that cause certain phonetic
patterns to appear more frequently than others: motor-planning processes, speech aerodynamic
constraints, gestural mechanics, and speech perceptual constraints.

The role of such biases has not been fully understood in the context of gesture elicitation, but we
can name several factors that may lead participants to focus on certain gestures or their properties
and disregard others. Those include usability issues such as the conceptual, cognitive, and physical
complexity of gestures, their discoverability, memorability, etc. Considerations about the social
acceptability of available gestures [Rico and Brewster 2010] can also shape participants’ choices.
The effect of such biases is usually of great interest for a gesture elicitation study, as it can help
researchers understand if certain gestures are more appropriate, e.g., easier to conceive, execute or
socially accept, than others.

Other bias factors, however, can hamper the generalizability or the usefulness of gesture elicitation
results. Morris et al. [2014] argue that “users’ gesture proposals are often biased by their experience
with prior interfaces and technologies” and refer to this type of bias as legacy bias. According to the
authors, legacy bias has some benefits (e.g., participants “draw upon culturally-shared metaphors”)
and increases agreement scores but “limits the potential of user elicitation methodologies.” It is thus
often considered that it hinders the novelty of the gestures produced by a gesture elicitation study.

The elicitation study procedure can also introduce bias. According to Ruiz and Vogel [2015],
time-limited studies bias participants against considering long-term performance and fatigue. Other
sources of procedural bias include the low fidelity of device prototypes presented to participants,
which may prevent or reinforce the execution or detection of certain gestures, or the lack of clarity
in investigators’ instructions. Finally, the classification of gesture proposals into signs can introduce
additional bias. Gesture classification is often performed by the investigators, who also need to
decide on how to differentiate among signs. This process usually relies on a mix of objective and
subjective criteria, and thus, investigators risk adding their own biases.

Usability, social, legacy, procedural, and classification biases are additive, so overall bias will be
observed as an imbalance in the distribution of signs across all referents. This notion of bias has a
central role in our analysis of agreement.
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2.6 Questions and Structure of the Article

A gesture elicitation study can serve a range of design and research goals. The focus of this article
is on questions that concern participants’ consensus on the choice of signs, where these questions
mostly derive from earlier work by Wobbrock et al. [2005; 2009] and more recent work by Vatavu
and Wobbrock [2015; 2016]:

e Do participants agree on their gestures? Is their level of consensus high, either for individual
referents or overall, for the full set of referents?

e How does agreement compare across different referents? Do some referents or groups of
referents lead to lower or higher agreement?

o Do different groups of participants (e.g., novices vs. experts) demonstrate the same level of
agreement? Does agreement vary across different user groups?

A visual inspection of the data in Table 1 reveals a mix of agreement and disagreement. Since
some signs appear multiple times for many referents, one may argue that such patterns demonstrate
agreement. However, given the uncertainty in the sample, is this agreement substantial or high
enough to justify a user-defined vocabulary of gestures? Is it intrinsic or should it rather be attributed
to chance? Furthermore, do all agreements have the same importance? For example, isn’t it easier
to agree when the number of possible or obvious options is small? One may also try to compare
agreement among different referents and conclude that agreement is higher for referents for which
proposals are spread less uniformly (e.g., for R5), revealing one or a few “winning” signs. To what
extent does statistical evidence support this conclusion? Do such patterns reveal real differences or
are they random differences that naturally emerge by chance?

The above are all questions that we try to answer in this article. Specifically, we investigate the
following three problems: (i) how to measure agreement (Sections 3 and 4), (ii) how to assess the
magnitude of agreement (Section 5), and (iii) how to support statistical inference over agreement
measures (Section 6). For each of these three problems, we review existing solutions, focusing on
recent statistical methods introduced by Vatavu and Wobbrock [2015; 2016]. We identify a series of
problems in these methods. Inspired by related work in the context of inter-rater reliability studies
(see Gwet’s [2014] handbook for an overview of this work), we introduce alternative statistical
methods, which we then use to re-analyze the results of four gesture elicitation studies (Section 7). A
key argument of our analysis is that any kind of bias can deceive researchers about how participants
agree on signs. The agreement measures that we recommend remove the effect of bias. We show
how researchers can investigate bias separately with more appropriate statistical tools.

We explained that participants do not directly propose signs. However, in certain sections
(Sections 5 and 6), we will write that participants “propose” and “agree on their signs” or refer to
“participants’ sign proposals.” Although these expressions do not accurately describe how participants
proposals are assigned to signs, they simplify our presentation without impairing the validity of
our analysis.

>

3 MEASURING AGREEMENT

To quantify agreement over a referent R;, a great number of elicitation studies have used the
formula of Wobbrock et al. [2005]:
q 2
n.
A = (_k) 1)
1

where g 1is the total number of signs produced by the gesture classification process, n;i is the
number of occurrences of sign oy for referent R;, and n; is the total number of gesture proposals for
referent R;. Table 2 further explains this notation. In the common situation where all participants are
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Table 2. Contingency table summarizing the results of a gesture elicitation study, where n; is the number of
occurrences of sign oy, for referent R;, and n; is the total number of proposals for this referent.

Referents
Ry .. R; .. Rm
o1 nii nii Nm1
1]
&
&7 Ok nik Nk Nmk
9q_ Mq_ Miq_ "mq_
Total: ny ... n; ... nm

presented with all the referents, n; is the number of participants in the study. For example, for the first
referent in Table 1, we calculate agreement as follows: A = (55)%+(%)2+(5)%+(55)%+(5)* = .275.
To obtain the overall agreement A, Wobbrock et al. [2005] average A; across all referents. For our
example, the overall agreement is A = .302.

Later on, Findlater et al. [2012] refine A; with a slightly different index, which can be written as
follows:

AR, = & nag(na — 1) 9
i= Z Tmn—1) (2)
k=1

Vatavu and Wobbrock [2015] further advocate the use of this index and call it the agreement rate.
They point out that in contrast to A;, the AR; index takes values in the entire interval [0..1] and
has a clear interpretation: AR; is the proportion of participant pairs who are in agreement. AR;
is lower than A; but for large samples, it reduces to A;. As before, Vatavu and Wobbrock [2015]
average AR; across all referents to obtain an overall agreement rate AR. For our example in Table 1,
the overall agreement rate is AR = .265.

It is worth noting that neither AR; nor its approximation A; are new. They have been used in a
range of disciplines as measures of homogeneity for nominal data. They have been independently
reinvented several times in the history of science [Ellerman 2010] and are most commonly referred
to as the Simpson’s [1949] index. The AR index is also well known and is commonly referred to as
the percent agreement [Gwet 2014]. However, it is also widely known to be problematic, as we will
now explain.

3.1 The Problem of Chance Agreement

Consider again our fictitious study of grasp gestures. The overall agreement rate AR = .265 can
be valued as respectable, as it is slightly higher than the average AR reported by Vatavu and
Wobbrock [2015] from 18 gesture elicitation studies. According to their recommendations, it can be
interpreted as a medium level of agreement.

However, the researchers have reasons to be worried. Suppose the study is replicated, but
participants are now blindfolded and cannot see any of the referents presented to them — they are
simply asked to guess. Their grasp proposals will thus be random. Suppose the researchers follow
the same gesture classification process, classifying gestures into five signs (g = 5). If all five signs
are equally likely, they will all appear with a probability of 1/5 = 0.2. Thus, the probability that
any pair of participants “agree” on the same sign is 0.2 X 0.2. Since two participants can agree on
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any of the five signs, the probability of agreement for a pair of participants on any given referent is
5% 0.2 % 0.2 = 0.2. Therefore, the expected proportion of participant pairs who are in agreement —
that is, the expected overall agreement rate AR — is 0.2.

Surprisingly, this value is not far from the previously observed value (AR = .265) and can be
interpreted again as medium agreement [Vatavu and Wobbrock 2015]. However, given that there
is no intrinsic agreement between participants, one would rather expect an agreement index to
give a result close to zero. Furthermore, one would certainly not label such a result as a “medium”
agreement. We should note that the exact same result would emerge if participants were not
blindfolded but, instead, the gesture classification process was fully random.

Arguably, the blindfolded study is purely fictional, and no gesture elicitation study involves
participants who make completely random decisions. Nevertheless, gesture elicitation involves
subjective judgments, where randomness can play a role. A participant may be uncertain about
which gesture is the best, and in some situations, the participant may even respond randomly. Such
situations may arise as a result of highly abstract referents for which there is no intuitive gesture,
poor experimental instructions, gesture options that are too similar, or a lack of user familiarity
with the specific domain or context of use. Due to sources of randomness in participants’ choice of
gestures, any value of AR reflects both intrinsic and spurious agreement. The amount of spurious
agreement depends on the likelihood of chance agreement, which in turn depends on the number
of signs.

The vocabulary of five signs used in our example is rather small. One could argue that if
participants chose from a large space of possible signs, then chance agreement would be practically
zero. However, a large space of possible signs does not eliminate the problem of chance agreement.
We will next show that bias can greatly increase the likelihood of chance agreement and inflate
agreement rates even if the size of a sign vocabulary is large or infinite (g — o).

3.2 Modeling Bias and Showing its Effect on Chance Agreement

We first illustrate the problem of bias with a scenario from a different domain. Suppose two medical
doctors independently evaluate the incidents of death of hospitalized patients. For each case, they
assess the cause of each patient’s death by using the classification scheme of the World Health
Organization!, which includes 132 death cause categories. Suppose information about some patients
is incomplete or missing. For these cases, the two doctors make uncertain assessments or simply
try to guess. How probable is it that their assessments agree by chance?

If one assumes that the doctors equally choose among all 132 categories, the probability of agree-
ment by chance is negligible, as low as 1/132 = 0.76%. However, the assumption of equiprobable
categories is not realistic in this case. Most death causes are extremely rare, while the two most
common causes, the ischaemic heart disease and the stroke, are alone responsible for more of 25%
of all deaths. The ten most frequent ones are responsible for more than 54% of all deaths?. It is not
unreasonable to assume that uncertain assessments of the two doctors will be biased towards the
most frequent diseases. In this case, the problem of chance agreement can be serious, as results
that appear as agreement on frequent categories may hide uncertain or even random assessments.

In the above example, the source of bias is prior knowledge about the frequency of diseases,
where in the absence of enough information, doctors tend to minimize the risk of a false diagnosis by
favoring frequent over rare diseases. In gesture elicitation, bias has other sources — we have already
discussed them in Section 2. To understand how bias affects chance agreement, we mathematically

!World Health Organization: Cause-Specific Mortality. Estimates for 2000-2012 (global summary estimates): http://www.
who.int/healthinfo/global_burden_disease/estimates/en/index1.html
2World Health Organization: The top 10 causes of death. http://www.who.int/mediacentre/factsheets/fs310/en
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(a) Zipf-Mandelbrot Probability Distribution (s=2)
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Fig. 3. Dots represent signs (k = 1..00) ranked by their bias probabilities. We model bias with two probability
distributions: (a) the Zipf-Mandelbrot and (b) the discrete half-normal distribution. Here, each model requires a
single parameter to determine the bias level: B for the Zipf-Mandelbrot and sd for the half-normal distribution.
As bias increases (from right to left), the probability of chance agreement also increases. Chance agreement
values presented at the bottom of the graphs are estimations from Monte Carlo experiments.

describe it as a monotonically-decreasing probability-distribution function b(k), k = 1, 2, ..c0, where
the bias function gives the probability of selecting the k* most probable sign when ignoring or
having no information about the referent. The function is assumed to be asymptotically decreasing
such that b(k) — 0 when k — oo.

We focus on two well-known probability distributions that have the above properties: (i) the
discrete half-normal distribution, and (ii) the Zipf-Mandelbrot distribution [Mandelbrot 1967]. The
first is the discrete version of the well-known normal (Gaussian) distribution when we only consider
its right half. We set its mean to k = 1 and control the bias level by varying the standard deviation
sd (see Figure 3b). The distribution converges to uniform (bias disappears) as sd — oo.

The second is a generalization of Zipf’s [1949] law and is widely used in Computational Linguistics
to model word frequencies in text corpora. Zipfian distributions occur for a diverge range of
phenomena [Newman 2005]. They have also applications in HCI, as several studies have shown
that they are good models for predicting the frequency of command use [Cockburn et al. 2007].
The original explanation given by Zipf [1949] for his law was based on the principle of least effort,
according to which the distribution of word use is due to a tendency to communicate efficiently with
least effort. Mandelbrot [1967], in turn, argued that such distributions may arise from minimizing
information-theoretic notions of cost. Although several other generative mechanisms have been
proposed, the theoretical explanation of Zipf’s law is still an open research problem [Newman
2005]. Interestingly, an early experiment by Piantadosi [2014] shows that Zipfian distributions can
even occur for completely novel words, whose frequency of use could not be explained by any
optimization mechanism of language change. According to the author, a possible explanation of
the law is its link with power-law phenomena in human cognition and memory [Piantadosi 2014].

While the Zipf law has a single parameter s, the Zipf-Mandelbrot distribution has two parameters
s and B, where the latter allows us to control for bias:

constant

b(k) = T+ B0 3)
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The constant is directly calculated through normalization and can be ignored. A typical range of
values for the exponent s in real-world data is between s = 1.5 and s = 3 [Newman 2005]. To
simplify our analysis, we set this parameter to s = 2. This choice may seem arbitrary, but the scope
of our analysis does not require a higher-precision model. We later show (see Section 7) that this
value provides a reasonable approximation for modeling sign frequencies of several past gesture
elicitation studies. Finally, we vary the parameter B to account for the bias level (see Figure 3a).
As B approaches zero (B — 0), the contribution of the power-law component diminishes, the
distribution converges to uniform, and bias disappears.

The two distribution functions are not the only possible alternatives. Nevertheless, they have very
distinct shapes and allow us to experimentally demonstrate the effect of bias on agreement under
two different model assumptions. Notice that we can generate an infinite range of intermediate
probability functions by taking a linear combination of the two base functions: b(k) = ab_;,¢(k) +
(1 = &)bnormai(k), where @ € [0..1]. Finally, we can trivially use the same distributions to describe
non-infinite sign vocabularies by constraining their tails, i.e., by setting b(k) = 0 for k > q.

Experiment 3.1. We demonstrate how bias increases chance agreement with a Monte Carlo
experiment implemented in R. The experiment simulates the situation where participants make
fully random proposals under bias. More specifically, we consider that 20 blindfolded participants
are presented 40 different referents, and for each referent, they are asked to propose a gesture.
Participants’ gestures are then classified into signs, where the number of possible signs is infinite.
We test all the six bias distributions presented in Figure 3. For each, we take 5000 random samples,
and each time we calculate AR. The mean value of AR can be considered as an estimate of chance
agreement, since any agreements occur by chance — participants cannot see any referents presented
to them.

The experiment results in chance agreement scores that are very close to the ones presented
in Figure 3: (i) 20% for the bias distributions z; and ns, (ii) 10% for the bias distributions z; and n;,
and (iii) 5% for the bias distributions z3 and ns3. Such levels of chance agreement are not negligible.
They are also realistic, as we later demonstrate in Section 7. The mean number of unique signs q_
that we observed in our experiment is as follows:

Distribution: H zZ1 n ‘ 29 na ‘ Z3 ns
mean(q ) : || 60.9 9.4 |87.4 17.9 | 1223 33.6

Not surprisingly, higher bias leads to smaller sign vocabularies. Notice that the Zipf-Mandelbrot
distribution clearly leads to a larger number of signs. This is an expected result because Zipfian
distributions are well known to have long tails, i.e., a large portion of occurrences far from the
distribution’s head.

3.3 Chance-Corrected Agreement

A large volume of research has examined the issue of chance agreement in the context of inter-
rater reliability studies, i.e., studies that involve subjective human assessments [Gwet 2014]. Such
assessments are made in studies that involve qualitative human judgments, such as classifying
patients into disease categories, interpreting medical images, annotating speech, or coding open
survey responses. If reliability is of concern, typically two or more people (raters) are asked to
perform the same judgments, and their agreement is used as a proxy for reliability.

Inter-rater reliability studies employ a different terminology from gesture elicitation studies,
but the mapping between the two is straightforward. Study participants become raters (also called
judges or coders), referents become items (also called subjects), and signs become categories [Gwet
2014].
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Work on chance-corrected agreement dates back to the 50 — 60’s. Early on, Jacob Cohen [1960]

proposed the k (Kappa) coefficient to measure the agreement between two raters:

= Pa"Pe (4)

1—pe

where p, is the proportion of items on which both raters agree, and p, is the chance agreement,
i.e., the agreement that would have occurred by chance. According to Cohen [1960], the nominator
captures the observed beyond-chance agreement, while the denominator is a normalizing term
that captures maximum beyond-chance agreement. The quotient k measures “the proportion of
agreement after chance agreement is removed from consideration” [Cohen 1960].

Note that x can take negative values: while a positive value means agreement beyond chance, a
negative value means disagreement beyond chance — although this rarely happens in practice. Also
note that if p, = 1, then k = 1 (provided that p, # 1). Thus, chance correction does not penalize
perfect agreement.

Most chance-corrected agreement indices known today are based on Equation 4. Each index
makes different assumptions and has different limitations [Gwet 2014]. Early indices such as
Cohen’s [1960] x and Scott’s [1955] 7 assume two raters. As gesture elicitation involves more
participants, we will not discuss them further. A widely used index that extends Scott’s 7 to multiple
raters is Fleiss’ [1971] kf coefficient. For the term p, in Equation 4, Fleiss uses the “proportion of
agreeing pairs out of all the possible pairs of assignments” [Fleiss 1971], also called percent agreement.
This formulation for p, has been used in many other indices and is identical to the AR index of
Vatavu and Wobbrock [2015].

For the chance agreement term p,, Fleiss uses:

q_ ) 1 m nix
PeZZﬂ'k, 7Tk=;27 5)
k=1 i=1 !

where m is the total number of items, n;j is the number of ratings for item i having category k,
and n; is the total number of ratings for item i. The term ;. estimates the probability that a rater
classifies an item into category k, based on how many times this category has been used across the
entire study. Thus, it does not assume equiprobable selection of categories, so it takes bias into
account. However, it assumes that all raters share the same preferences for categories. For the data
in Table 1, Fleiss’ chance agreement is p, = .251, and therefore, kp = % = .018, reflecting a
close-to-chance overall agreement.

In gesture elicitation, raters’ (i.e., participants’) proposals are classified into categories (i.e.,
signs) after the end of the study by a separate gesture-classification process. The interpretation
of chance agreement now changes because chance agreement also captures the additional bias
of this higher-level classification process (see Section 2.5). Notice that sign vocabularies can be
open-ended. However, this open-endedness does not affect how Fleiss’ kr coefficient is computed,
because the coefficient requires no prior knowledge or assumption about the number of possible
signs q. Equations 2 and 5 only depend on the number of observed signs ¢ and their frequencies.

An alternative index is the k4 coefficient of Brennan and Prediger [1981], which uses the same
pa but a simpler estimate of chance agreement: p, = 1/q, where g is the total number of cate-
gories. The index assumes equiprobable selection of categories. Under this assumption, the chance
agreement for Table 1 is p, = .200, and thus, x; = .081. However, as we explained earlier, this
assumption is generally not realistic, as it does not account for bias. The index has been further
criticized for giving researchers the incentive to add spurious categories in order to artificially
inflate agreement [Artstein and Poesio 2008]. If one assumes an infinite number of categories, then
pe = 0. For all these reasons, the index is rarely used in practice.
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Another measure of agreement, widely used in content analysis, is Krippendorft’s « [Krippendorff
2013]. Krippendorff’s « uses a different formulation for both p, and p, and can be used for studies
with any number of raters, incomplete data (i.e., not all raters rate all items), and different scales
including nominal, ordinal and ratio. For simple designs, its results are generally very close to Fleiss’
kr, especially when there are no missing data and the number of raters is greater than five [Gwet
2014]. We use both indices in our analyses with a preference for Fleiss’ kp, as it is simpler and
easier to contrast to the AR index.

Experiment 3.2. We repeat the Monte Carlo experiment presented in Section 3.2, but this time,
we also calculate Fleiss’ chance agreement p,, Fleiss’ kr, and Krippendorft’s a. Mean estimates for
each bias distribution (see Figure 3) are presented below:

Distribution: H z1 n 29 ns z3 ns

AR (mean): .201 .200 .100 .100 .050 .050

Fleiss’ p. (mean): 202 .201| .101 .101 | .051  .051

Fleiss’ kr (mean): || —.001 —.001 | —.001 —.001 | —.001 —.001
Krippendorft’s o (mean): .000  .000 [ .000 —.000 | .000  .000

We see that Fleiss’ p, provides a very good estimate of chance agreement for all six distributions.
Thus, it can be considered as a good measure for assessing the effect of bias on agreement, even if
one assumes an infinite number of signs. Both Fleiss’ xr and Krippendorft’s & completely remove
the effect of bias, returning consistent agreement scores that are very close to zero. We have
repeated the experiment with other bias distributions, e.g., by taking the linear combination of the
above distributions with variable weights. Again, results were the same.

The above chance-corrected coefficients do not only work on average. For the 30000 iterations
(6 distributions x5000 iterations) of our experiment, Fleiss’ kr ranged from kg, i, = —.018 to
KF,max = -019, while Krippendorff’s a ranged from a,,;,, = —.017 to amax = .020, which means
that the full range of chance-corrected scores was very close to zero. We expect the spread of values
to increase for experiments with a smaller number of participants (n < 20) or a smaller number of
referents (m < 40).

3.4 Agreement over Individual or Groups of Referents

So far, we have discussed how to correct overall agreement scores. In gesture elicitation studies
though, researchers are often interested in finer details concerning agreement, i.e., situations in
which agreement is high and situations that exhibit little consensus. To this end, the analysis of
agreement scores for individual items (i.e., referents) is a useful and commonly employed method.
The state-of-the art approach in HCI is to use Equation 2, but unfortunately, this method does not
account for chance agreement.

Research on inter-rater agreement has mostly focused on the use of overall agreement scores,
but agreement indices for individual items also exist. For example, O’Connell and Dobson [1984]
introduced an agreement index that can be computed on an item-per-item basis, and Posner et
al. [1990] further explained its calculation. For the most practical cases the we study here, the index
is identical to Fleiss’ xr calculated for individual items, using a pooled p,. Specifically, one can
compute p, for each referent of interest and then use Equation 5 to estimate a common p, across all
referents. The rationale is that, by definition, chance agreement does not depend on any particular
referent. The same method can be employed for assessing agreement over groups of referents.

We apply the approach to the data in Table 1. The observed percent agreement for R5 is p, = .321,
and the overall chance agreement is p, = .251, computed over all referents of the study (see
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Equation 5). Thus, Fleiss’ chance-corrected agreement for this referent is x5 = 3212251 = o4,

1-251
For R10, the agreement is kp, 19 = % = —.082. This negative value may suggest disagreement.

3.5 Is Correction for Chance Agreement always Necessary?

Chance correction is a monotonically decreasing function that scales and offsets all per-referent
pa scores but preserves their order. Thus, if only ordinal information is of interest (e.g., which are
the most and the least consensual referents within a single study?), the use of standard agreement
rates (AR;) as in Equation 2 is acceptable. Similarly, if two different groups share the same chance
agreement p., using AR to compare their difference in agreement is a valid approach. The reason
is that Ap, = pa1 — pa,2 scales Ak = Ky — k3 by a fixed amount (1 — p.) without distorting the
underlying distribution (see Equation 4). So the results of such comparisons should also generalize
to k. Section 6 further discusses this point.

There is a last question to answer. Bias is not necessarily harmful. In particular, it may be largely
due to considerations about the effectiveness or cognitive complexity of different signs, irrespective
of the referent to which these signs apply. Thus, bias may reflect participants’ overall agreement
about which signs are appropriate candidates for a future gesture vocabulary. Since understanding
such bias may be crucial, one could argue that chance-corrected coefficients like Fleiss’ kp or
Krippendorft’s « are not appropriate in this case.

We agree that the analysis of bias is important. However, we argue that bias should be studied
separately. We present three main reasons:

e Researchers need to know how participants distinguish among referents and whether natural
mappings between signs and referents emerge. In the presence of any source of bias, the AR
index provides misleading information about how participants agree or disagree on their
sign assignments.

o The bias distribution can be easily derived from the overall distribution of sign frequencies.
This distribution is enough to fully describe bias and reveals which signs are frequent and
which signs are absent or rare. Therefore, the reasoning behind translating a bias distribution
into an agreement score is unclear. However, if investigators still want to quantify bias as
agreement, a possible measure for this purpose is Fleiss’ chance agreement p., which can be
reported in addition to k.

¢ Distinguishing between different bias factors may not be feasible so the interpretation of
an AR score can be extremely problematic. Participants’ proposals are often dominated by
obvious or “default” signs, e.g., the “top” sign in the study by Bailly et al. [2013], or signs that
represent common gestures in widespread interfaces, e.g., multitouch gestures in the study
by Weigel et al. [2014]. Bias does not only concern participants’ original proposals. As we
discussed, their classification is also subject to bias, and AR gives investigators the incentive
to invent frequent signs to artificially inflate agreement scores.

For all these reasons, correcting for chance agreement is important. However, given that chance-
corrected coefficients have received multiple criticisms (see next section) and the HCI community
has not yet arrived to a consensus, we advice authors to report both chance-corrected and uncor-
rected agreement values. Reporting both values increases transparency and can help researchers
to better interpret their results. A separate investigation of the observed bias distribution is also
recommended for every gesture elicitation study.

4 CRITICISMS OF CHANCE-CORRECTED AGREEMENT INDICES

Chance-corrected agreement coefficients are the norm in inter-rater reliability studies but have also
received criticism. We address two types of criticism: (i) questioning the appropriateness of chance

ACM Transactions on Computer-Human Interaction, Vol. 25, No. 3, Article 18. Publication date: June 2018.



Fallacies of Agreement: A Critical Review of Consensus Assessment Methods for Gesture
Elicitation 18:15

correction for gesture elicitation, and (ii) arguing that chance correction can lead to “paradoxically”
low and unstable values for x. After responding to these criticisms, we discuss some complimentary
agreement measures.

4.1 Criticism 1: Chance Correction Is Not Appropriate for Gesture Elicitation

In a previous report, we recommended the use of chance-corrected agreement indices in addition to
or as a replacement of the AR index [Tsandilas and Dragicevic 2016]. Vatavu and Wobbrock [2016]
included a short discussion about this issue, where they argued that chance-corrected agreement
indices are not appropriate for gesture elicitation studies:

“Unfortunately, the above statistics are not appropriate to evaluate agreement for elici-
tation studies, during which participants suggest proposals for referents without being
offered any set of predefined categories. The particularity of an elicitation study is that
the researcher wants to understand participants’ unconstrained preferences over some
task, which ultimately leads to revealing participants’ conceptual models for that task.
Consequently, the range of proposals is potentially infinite, only limited by participants’
power of imagination and creativity.” [pp. 3391 - 3392]

Gesture elicitation studies have certainly unique features. We agree that most gestures elicitation
studies do not enforce a fixed set of sign categories. However, as we already discussed, the problem
of chance agreement is still present. The argumentation of Vatavu and Wobbrock [2016] overlooks
some key points:

Kappa coefficients do not require choosing from a predefined set of categories. The a-
posteriori classification of items to categories is not unique to gesture elicitation. For example,
medical doctors do not use predefined classification schemes for diagnosis. They usually
write open-ended reports or notes. Later, medical coders translate these reports into medical
codes [O’Malley et al. 2005]. Assessing agreement between diagnosis methods often requires
medical experts with diverse roles to make assessments at multiple steps. For example, psy-
chiatric clinicians prepare a brief psychiatric narrative of each case, and those narratives
are reviewed by independent psychiatrists, who then classify the cases into diagnosis cate-
gories [Deep-Soboslay et al. 2005]. As with gesture elicitation, the classification of cases into
diagnosis categories only happens at the very end of the process and is not performed by
the actual clinicians who evaluate the patients. A k coefficient is again computed over those
top-level categories [Deep-Soboslay et al. 2005].

Sign vocabularies can be limited. In practice, agreement is not assessed over an infinite set
of gesture possibilities. Participants’ gesture proposals are first classified into signs (see
Section 2), and agreement is assessed over the sign vocabulary defined by that specific
classification process. We show in Section 7 that a sign vocabulary can be limited because
investigators may use a particularly small number of signs to classify proposals.

Proposals are often biased towards a small number of signs. Even if one assumes an in-
finite number of signs, chance agreement is still a problem due to various sources of bias
that result in uneven distributions of sign frequencies. A major strength of Fleiss’ kr (and
Krippendorft’s @) is the fact that it corrects for bias by estimating chance agreement based on
the distribution of observed signs. By taking into account this distribution, chance-corrected
indices reward variability in participants’ proposals and highlight methodological problems.

Chance-corrected indices are the norm in content analysis where data are often open-ended and
coders choose from codebooks that contain a large number of codes. According to MacQueen et
al. [1998], “coders can reasonably handle 30 - 40 codes at one time,” while coding with codebooks of
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“more than 40 codes” is common, but the coding process needs to be done in stages. In Computational
Linguistics, vocabularies can be even larger. In their coder’s manual, Jurafsky et al. [1997] report
on language modeling projects involving as many as 220 unique coding tags, where these tags are
later clustered under 42 larger classes. Despite the use of such large vocabularies in these domains,
chance agreement is always taken seriously, because codes typically do not occur with the same
frequency, and coders are often biased towards a small subset of the coding vocabulary.
Arguably, chance agreement does not equally concern all gesture elicitation studies. The issue
can be minor or nonexistent if three conditions are met: (i) participants choose from a large space
of gestures, (ii) their proposals discriminate between many of these gestures with low bias, and (iii)
the gesture classification process differentiates between subtle gesture variations. Nevertheless, the
decision of whether chance correction is needed is best not to be left to the subjective discretion
of each researcher — it is safer to always report chance-corrected agreement indices in addition
to raw agreement rates (percent agreement). As their use is a well-established practice in many
disciplines, there is no reason why gesture elicitation studies cannot benefit from them.

4.2 Criticism 2: Chance Correction Can Lead to Paradoxes

Chance-corrected coefficients such as Cohen’s and Fleiss’ k penalize imbalanced distributions,
where some categories are frequent while others are rare. Feinstein and Cicchetti [1990] argue that
this can lead to “paradoxes”, where (i) k can be particularly low despite the fact that the observed
percent agreement p, is high, and (ii) ¥ can be very sensitive to small changes in the distribution of
marginal totals.

We demonstrate their argument with two fictional datasets (see Table 3), where three participants
propose signs for 10 referents. Participants are almost in full agreement for Dataset 1, and percent
agreement is p, = .93. However, Fleiss applies a high chance correction p, = .76, which results in
kp = .72. Dataset 2 is almost identical to Dataset 1, where the only difference is P3’s proposal for
R7. Percent agreement has only slightly dropped (p, = .87), but Fleiss’ kr has dropped radically
(kp = .28). Why is kF so low even if data suggest high consensus among participants? Furthermore,
why does a small change cause xf to drop so radically?

Feinstein and Cicchetti [1990] explain that the source of such paradoxes is the assumption of
k coefficients that raters are biased, i.e., they have a “relatively fixed prior probability” of making
responses. Referring to their experience in clinical research, the authors argue that there is no
reason to assume that such prior (bias) probabilities are established in advance. They complain that
penalizing observed imbalances as evidence of prior bias and thus chance agreement may not be
fair. The way k coeflicients estimate chance agreement has been criticized by other authors [Gwet
2014; Uebersax 2015] for very similar reasons.

Kraemer et al. [2002] reject the argument that these situations indicate a flaw of k or a paradox.
In response to the above criticism, they argue that “it is difficult to make clear distinctions” between
cases when “those distinctions are very rare or fine. In such populations, noise quickly overwhelms
the signals.” Consider a different scenario where two medical tests are evaluated for the diagnosis
of HIV. Suppose the two tests highly agree (> 98%) on negative results (i.e., HIV is not present)
but demonstrate zero agreement on positive results (i.e., HIV is present). Given the rareness of
positive results (e.g., 1% of all cases), percent agreement will be extremely high. However, a high
agreement score is misleading, since the two tests completely fail to agree on the presence of HIV.
In contrast, Fleiss’ (or Cohen’s) x would be low in this case, since chance agreement is high. In most
cases, this is a desirable behavior rather than a drawback of x coefficients. Whether the two tests
make a deliberate choice when assessing negative cases or whether they make a random choice,
the high chance correction applied by « is justified by the fact that such results are practically not
meaningful and cannot be trusted. As Kraemer et al. [2002] explain, a “k = 0 indicates either that
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Table 3. Two similar datasets used to demonstrate the “paradoxes” of chance-corrected agreement indices

R1 R2 R3 R4 R5 R6 R7 R8 R9 RI10

PL A A A A A A B A A A
Datasetl P2 A A A A A A B A A A
P3 A A A A A A B C A A
P1L A A A A A A B A A A
Dataset2 P2 A A A A A A B A A A
P3 A A A A A A A C A A

Note: Three participants (P1, P2, P3) propose signs for 10 different referents (R1 to R10). The only difference between
the two datasets is P3’s proposal for R7.

the heterogeneity of the patients in the population is not well detected by the raters or ratings, or that
the patients in the population are homogeneous.”

Krippendorff [2011] further discusses the above issues. He explains that in such scenarios, percent
agreement is high but “uninformative” due to the “lack of variability.” In our example in Table 3,
participants have used only three signs, and the “A” sign has highly dominated their preferences.
The fact that they agree on “A” is not informative, as there is very little evidence about consensus
on other signs. The higher Fleiss’ kr that we found for Dataset 1 can be explained by a perfect
consensus on “B”, in addition to a high consensus on “A” In Dataset 2, consensus on “B” decreases
while signs other than “A” become extremely rare, causing Fleiss’ kf to radically drop.

Krippendorff [2011] discusses that chance-corrected agreement indices are more sensitive to
rare than to frequent cases. However, the high sensitivity that we observe in our example is due to
the low number of samples. Using three or two raters is common in inter-rater reliability studies
but very unlikely in the context of gesture elicitation studies, where the number of participants
is typically greater than ten. Furthermore, we argue later that agreement values should not be
reported alone. Interval estimates can capture and communicate the uncertainty or sensitivity of
estimated chance-corrected agreement values.

To increase the amount of information of a study, Krippendorff [2011] suggests that researchers
should try to ensure variability. To paraphrase his statement, unless there is evidence for partici-
pants (“coders”) to have exercised their ability to distinguish among signs (“units”), “the data they
generate are meaningless” [Krippendorff 2011]. In such cases, a high percent agreement can be very
misleading, while a low x must always alarm researchers. For example, did participants focus on
a very small set of signs? Did the researchers in the above example tend to classify proposals as
“A” to artificially inflate agreement? A strong bias towards obvious or “default” signs, inadequate
instructions (e.g., ones that would encourage participants to explore a larger variety of gestures),
bias in the gesture classification process, or a poorly chosen design space are all possible problems,
where each requires a different treatment.

Ensuring variability is especially important for designing rich and meaningful gesture vocab-
ularies. Therefore, establishing measures that encourage variability has very practical design
implications. We further argue that x coefficients are especially appropriate for the analysis of
gesture elicitation results, since the presence of a prior bias probability is a very realistic assumption
(see Sections 2.5 and 3.2). Assuming that participants equally choose among an infinite number of
possible signs by only considering the individual properties of each referent is a naive approach
that, in several situations, could result in suboptimal design solutions.
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4.3 Alternative Measures: Agreement Specific to Categories

Others have argued that a single agreement score cannot fully describe how raters agree with each
other [Cicchetti and Feinstein 1990; Spitzer and Fleiss 1974; Uebersax 2015]. Consider again the
scenario of the two HIV diagnosis tests. Instead of a single measure of agreement, two separate
measures could be used: (i) a measure specific to positive and (ii) a measure specific to negative test
results. In this case, the investigators would aim for high agreement for both result categories. The
advantage of the approach is that one can distinguish between high agreement for one category,
e.g., negative test results, and low agreement for the other, e.g., positive test results. The approach is
analogous to the use of sensitivity, otherwise recall, and specificity measures for the evaluation of
binary classification tasks. Cicchetti and Feinstein [1990] recommended using these two indices in
conjunction with chance-corrected agreement, viewing the approach as a remedy to the paradoxes
of k coefficients.

To deal with multiple agreement categories, which is our focus here, Uebersax [1982] describes a
more generic formulation of agreement specific to categories, or specific agreement:

2 nik(nige — 1)

Sk = =) ©

where we use again the notation of Table 2. SA is the proportion of agreement specific to category
k and is computed by dividing the total number of agreements on category k by the total number
of opportunities for agreement on this category. In the context of gesture elicitation, it can be
interpreted as the conditional probability that a randomly chosen participant assigns a referent to
sign k given that another randomly chosen participant has also assigned the same referent to that
sign.? For the dataset in Table 1, specific agreement is as follows:

Signn A B C D E
Specific Agreement: .00 .34 .32 .17 .18

We observe that specific agreement is higher for the two frequent signs (“B” and “C”). It is zero for
“A”, which appears rarely and with no consensus among participants.

Specific agreement can be used as a complementary measure, as it helps investigators to identify
where low or high agreement occurs. However, its interpretation for more than two categories is
not straightforward. As a general principle, observing high agreement over a few very frequent
signs may indicate a low overall agreement. Spitzer and Fleiss [1974] further argued that specific
agreement itself should be corrected for chance agreement. If the bias distribution is common
across all participants, the proportion of chance agreement specific to a sign k is given by the
term ;. in Equation 5 [Uebersax 1982]. This term represents the occurrence frequency of that sign
across all participants and all referents. Then, we can use Equation 4 to derive the proportion of
chance-corrected agreement specific to each individual sign. For the previous example, results are
as follows:

Signn A B C D E
Specific Chance Agreement: .03 .30 .30 .20 .18
Specific Chance-Corrected Agreement: .00 .06 .03 -.04 .01

After chance correction, specific agreement is close to zero for all four signs.

3 As we explained earlier, participants may not directly propose signs. However, we can make this assumption to simplify
our presentation.
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Fig. 4. The probability distribution of AR values and recommended ranges of agreement (low, medium, high,
and very high) based on the probabilistic reasoning of Vatavu and Wobbrock [2015]. We show it here for
20 participants and a bin size of h = .05. Problem: The distribution is derived based on assumptions of fully
random proposals, which means that medium or higher agreement can simply occur by chance with a very
high probability (= 81%).

For our analyses in Section 7, we report raw, i.e., without chance correction, specific agree-
ment. Nevertheless, our interpretation also considers the observed frequencies of signs. Krippen-
dorff [2011] has proposed additional information measures as companions of chance-corrected
coefficients, but we will not discuss them in this article.

5 INTERPRETING THE MAGNITUDE OF AGREEMENT

How much agreement is sufficient for a vocabulary of user-defined gestures? What criteria can
investigators use to differentiate between low and high consensus? In response to these questions,
Vatavu and Wobbrock [2015] have proposed some generic guidelines on how to interpret the
magnitude of agreement: AR < .100 is low agreement, .100 < AR < .300 is medium, .300 <
AR < .500 is high, and AR > .500 is very high agreement. These guidelines derive from two types
of analysis: (i) a probabilistic reasoning, and (ii) a survey of agreement rates from past gesture
elicitation studies.

In this section, we review the above guidelines. Our analysis indicates that both the probabilistic
reasoning and the survey of past studies can lead to incorrect conclusions. We examine how other
disciplines interpret agreement values and discuss the implication of these practices for gesture
elicitation studies.

5.1 Probabilistic Reasoning

Vatavu and Wobbrock [2015] present an analytical approach to derive the probability distribution
of agreement rates (AR) and use this distribution to identify the low, medium, and high range of
probable agreement rates (see Figure 4). They then use these ranges to interpret the magnitude of
observed agreement rates. For example, they estimate that the probability of obtaining an agreement
rate AR > .500 is less than 1%, so they interpret observed agreement rates of this magnitude as
very high. In contrast, they interpret agreement rates near the middle range of the probability
distribution as medium agreement.
We identify two flaws in this reasoning:
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Table 4. Example showing how Vatavu and Wobbrock [2015] calculate the probability distribution over
possible proposal configurations. For six participants, they identify 11 possible partitions t; and assume
that they all occur with the same probability. Under this assumption, the mean agreement rate (of random
proposals) is calculated by averaging the individual agreement rates AR;.

Proposal Partitions AR; fi
t1: 1+1+1+1+1+1 .000 1
to: 1+1+14+14+2 .067 15
t3: 1+1+1+4+3 .200 20
ta: 1+14+2+2 133 45
t5: 1+1+4 .400 15
te: 1+2+3 267 60
t7: 1+5 .667 6
tg: 24+2+2 .200 15
tg: 2+4 467 15
t10: 3+3 .400 10
t11: 6 1.000 1
Mean: .345

Problem: Assuming equiprobable partitions is incorrect for two reasons: (i) The number f; of alternative ways to create
each partition is not the same, e.g., fo = 60 X fi. Thus, partitions do not all occur with the same frequency. (i) Agreement
and disagreement do not occur with the same probability. For example, full agreement (#11) and full disagreement (¢)
cannot occur with the same probability unless chance agreement is exactly 50%, e.g., if participants choose between
two only signs with no bias.

Flaw 1. It relies on a null distribution, i.e., a probability distribution of agreement rates by
assuming completely random proposals. Yet, the authors’ analysis overlooks this fact and han-
dles the null distribution as a distribution of observed agreement rates under no assumption
of how agreement between participants takes place. Given the use of a null distribution, the
derived interpretation guidelines are absurd. For example, the average of their distribution is
AR = .214 for n = 20 participants and AR = .159 for n = 40 participants. Values close to these
averages are interpreted as medium agreement despite the fact that they correspond to fully
random proposals. According to the authors, values in the interval of medium agreement
(-100 — .300) occur (simply by chance) with a 59% probability. Wouldn’t it make more sense
to look for agreement (low, medium, or high) away from these ranges? Shouldn’t we rather
interpret values in these ranges as “no agreement?”

Flaw 2. To derive the probability distribution, Vatavu and Wobbrock [2015] enumerate all
possible partitions of integer n, where n is the total number of participants. According to this
solution, each partition represents a distinct configuration of sign proposals. For example,
suppose we partition six participants into four groups with one, one, two, and two participants
each: 1+ 1+ 2+ 2 = 6. In this case, there are four distinct signs, and there is one agreement
(i.e., two participants propose the same sign) for two of these signs. The authors assume that
all such partitions occur with the exact same probability. For example, for a study with six
participants (see Table 4), they assume that the probability that all six participants agree
(partition #1;: 6) is equal to the probability that participants completely disagree (partition #;:
1+1+1+1+1+1)oronlyagree in pairs (partition #3: 2 + 2 + 2).

Unfortunately, this assumption is incorrect for two reasons. First, the number of alternative
ways to assign participants to each partition is not the same. As shown in Table 4, there are
fs = 15 different ways to partition six participants into pairs, but there is only f;; = 1 way to
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Fig. 5. Histograms showing the probability distribution of AR (in blue) and kF (in orange) when participants
randomly choose signs for 40 referents under bias. Distributions were generated with Monte Carlo simulations
of 1000 iterations. The bin size of all the histograms is h = .0125.

create a single group of six. As a result, the two partitions f3 and t;; must occur with very
different probabilities. We see later that the analysis of Vatavu and Wobbrock [2016] for their
V}, statistic corrects this mistake.

Second, agreement and disagreement do not generally occur with the same probability.
For example, full agreement (t11: 6) is very unlikely to occur when participants randomly
choose from a very large set of possible signs. Full disagreement (#;: 1 +1+1+1+1+1)1is
far more likely to occur in this case. The authors’ later analysis for the V}, statistic repeats
this second mistake.

Can we correct the above mistakes and still rely on a probabilistic reasoning to interpret the
magnitude of agreement rates? To answer this question, we first need to infer the correct null distri-
bution of agreements. This is not feasible unless we know how participants choose signs. Analytical
solutions to this problem are not trivial. Fortunately, such distributions can be approximated with
Monte Carlo simulations. Specifically, we simulate a gesture elicitation study as a computerized
process, where n participants randomly propose signs for m referents. This process is repeated a
large number of times, and each time, a new agreement score is computed.

As in Section 3.2, we assume that participants choose from an infinite number of signs under
bias. Figure 5 shows six distributions for two sample sizes (n = 10 and n = 20) and three bias levels.
Here, we use the Zipf-Mandelbrot distribution to model bias (see Figure 3), but one can run Monte
Carlo simulations with other prior bias-distribution assumptions. In all cases, the mean agreement
rate approximates the chance agreement p,, and the larger the number of participants, the more
likely it becomes to find agreement rates close to p.. In orange, Figure 5 presents the distributions
of Fleiss’ k. As expected, all these distributions are centered around zero.

Given such distributions, on can visually assess if an observed agreement value is likely to
have occurred by chance. The further the value from the null distribution, the greater are the
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chances that agreement is different than zero. Such distributions are commonly known as sampling
distributions of a statistic and serve as the basis for constructing confidence intervals and significance
tests [Baguley 2012]. However, they say very little about the magnitude of agreement, i.e., whether
an observed agreement value is low, medium, or high. Unfortunately, this is a more complex
problem that solutions based on probabilities and statistics cannot address.

5.2 Survey of Past Studies

In addition to their probabilistic reasoning, Vatavu and Wobbrock [2015] review agreement rates
from a total of 15 papers with gesture elicitation results. They find that average A scores range
from .160 to .468, while average AR scores range from .108 to .430, where the mean value is .261.
They rely on these results to further justify their guidelines.

However, comparing agreement rates across different studies can be misleading because chance
agreement can be high for some studies and low for others (see Section 3). We further show in
Section 7 that a higher AR score does not always translate into a higher chance-corrected agreement.
The approach is problematic for additional reasons. Setting standards based on results from past
studies seems a reasonable approach, but it can discourage efforts to raise our standards. Indeed,
there does not seem to be any valid reason to be satisfied with a gesture agreement rate of .2 or .4.

Gwet [2014] dedicates a full chapter on how to interpret the magnitude of an agreement. Several
authors suggest conventional thresholds to help researchers in this task — Fleiss, for example, labels
Kk < .400 as “poor” and k > .750 as “excellent” Krippendorff [2004] suggests a > .667 and then later
a > .800 as thresholds below which data must be rejected as unreliable. However, he and many
others recognize that such thresholds are largely arbitrary and should be chosen depending on the
application domain and on the “costs of drawing invalid conclusions from these data” [Krippendorff
2004]. It has also been emphasized that the magnitude of an agreement cannot be interpreted if
confidence intervals are not provided [Gwet 2014; Krippendorff 2004].

In gesture elicitation studies, the bar for an agreement score to be considered acceptable is way
lower, even when ignoring chance agreement. As much as we would like to have objective rules to
help us distinguish between acceptable and unacceptable agreement scores, it is wise to refrain from
using any such rule until these can be grounded in cost-benefit analyses that integrate usability
metrics.

6 STATISTICAL INFERENCE

Statistical inference is the process of drawing conclusions about populations by observing random
samples. It includes deriving estimates and testing hypotheses. Vatavu and Wobbrock [2015; 2016]
have proposed two statistical tests to support hypothesis testing: (i) the V,4 statistic for comparing
agreement rates within participants [Vatavu and Wobbrock 2015], and (ii) the V}, statistic for
comparing agreement rates between independent participant groups [Vatavu and Wobbrock 2016].

We explained earlier (see Section 3.5) that comparing raw agreement rates is a valid approach as
long as chance agreement is common across all compared groups. For within-participants designs,
this is a valid assumption. In contrast, when comparing independent participant groups, chance
agreement may vary, particularly when making comparisons across studies that test different sign
vocabularies or employ different setups. Nevertheless, if groups are tested under similar conditions,
and their data are analyzed with identical methods, there is no reason to expect bias differences. In
this case, one can assume that chance agreement is equal for both groups, and therefore, comparing
agreement rates with the V}, statistic could be considered as valid. However, we show that both the
V,-q and the V}, statistic are based on incorrect probabilistic assumptions, and therefore, they should
not be used.
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Fig. 6. Histograms showing the sampling distribution of agreement rate differences (JAR = AR; — AR;) when
20 participants propose signs for two referents R; and Rj and AR = 0. Each distribution corresponds to a
different distribution of sign preferences (common for both referents) and is generated with a Monte Carlo
simulation of 5000 iterations. The bin size of all the histograms is h = .05.

6.1 Modeling Agreement for Individual Referents

Before we examine the significance tests of Vatavu and Wobbrock [2015; 2016], we explore prob-
abilistic models that describe how participants’ sign proposals reach agreement for individual
referents. As with bias, modeling agreement for individual referents will enable us to systematically
evaluate the significance tests through Monte Carlo experiments.

Suppose that n participants propose signs for m referents, and let AR; be the agreement rate for
referent R;. We model sign preferences for this referent as a monotonically-decreasing probability-
distribution function p; (k), k = 1, 2, ...co, which expresses the probability of selecting the k" most
likely sign for referent R;. Note that each referent R; will generally have its own distribution p;, and
the order of preferences over signs may also be different. The distribution function is assumed to
be asymptotically decreasing such that p;(k) — 0 when k — oo. Clearly, the closer the distribution
function to uniform is, i.e., no preferences over particular signs emerge, the lower is expected to be
an observed agreement rate AR;.

The above formulation is very similar to our bias formulation in Section 3.2. As for bias, we
simplify our analysis by focusing on two probability distribution functions: (i) the discrete half-
normal distribution with mean = 1, and (ii) the Zipf-Mandelbrot distribution with s = 2. Given these
distributions, one can generate source populations with a specific AR; by varying their parameters
sd or B. For example, for the half-normal distribution function, we choose sd = 5.42 for AR; = .1,
sd = 0.88 for AR; = .5, and sd = 0.416 for AR; = .9. For the Zipf-Mandelbrot distribution function,
we choose B = 0.306 for AR; = .1, B = 2.25 for AR; = .5, and B = 18.4 for AR; = .9.

Significance tests focus on differences between agreement rates rather than individual agreement
rates. Figure 6 shows the sampling distribution (n = 20) of the difference in agreement (AR =
AR; — AR;) between two referents R; and R;, when sign preferences for those referents follow
the same probability distribution, and AR = 0. We examine six different distributions of sign
preferences, which produce sampling distributions for three agreement levels: .1, .5, and .9. Notice
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Table 5. Example showing how Vatavu and Wobbrock [2015] apply Cochran’s [1950] Q test to test differences
in agreement among referents (R, Rz, ..., Ry)

Referents

=
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Participant pairs
(Pl s PZ)
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Note: Participant pairs (P;, P;j) are handled as independent cases, which are randomly sampled from a population of
participant pairs. For six participants, there is a total of 15 participant pairs. Agreement observations are represented
by binary values, where participants either agree (1) or disagree (0).

(e
—_

that the spread of the sampling distribution is narrower for the half-normal distribution. It becomes
especially narrow, when the agreement level of the source population is low (AR; = .1).

6.2 The V,; Statistic: Testing Within-Participants Effects

The V, 4 statistic [Vatavu and Wobbrock 2015] can be used to compare agreement rates of different
referents (or groups of referents) and test hypotheses such as (i) “there is an effect of the referent
type on agreement” or (ii) “participants demonstrate higher agreement for directional than non-
directional referents”

The test is a direct application of Cochran’s [1950] Q non-parametric test, which is used to
test differences on a dichotomous dependent variable (with values coded as 0 or 1) among u
related groups.* Cochran’s Q test is analogous to the one-way repeated-measures ANOVA but for
a dichotomous rather than a continuous dependent variable. For example, one can test whether
there are differences in student performance (1 = pass or 0 = fail) among three different courses
(e.g., Mathematics, Physics, and Chemistry). A key assumption of Cochran’s Q test is that cases, such
as students in the above example, are randomly sampled from a population, and thus, they are all
independent.

In order to apply Cochran’s Q test, Vatavu and Wobbrock [2015] enumerate all the possible pairs
of participants and handle pairs as independent cases (see Table 5). Then, they consider agreement
as a dichotomous variable that can take two values: 1 for agreement or 0 for disagreement. Given
this approach, applying Cochran’s Q test is straightforward, since the goal is to test differences in
agreement among y referents, or otherwise, y related groups.

“When p = 2, the test is equivalent to McNemar’s test.
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Fig. 7. Example with six participants (P; - Ps) that demonstrates how to use dependencies to derive agreement
pairs. Given the five observations of consecutive agreement pairs in blue (a2, azs,..., as¢), we can infer other
agreement pairs a;; (in red), where a;; = 1if and only if the number of disagreeing pairs between participants
P; and P;j is even. For example, azs = 1 because there are two disagreeing pairs between P; and Ps, while
ags = 0 because there are three disagreeing pairs between P, and Pg.

Unfortunately, this solution is problematic because agreement pairs are highly interdependent,
which is against the independence assumption of Cochran’s Q test. For example, if participant P,
agrees both with participant P, and participant P., we can safely deduce that participants P, and
P, agree with each other. Similarly, if P, agrees with participant P, but disagrees with participant
P., then we can deduce that participants P, and P. disagree. By assuming that agreement pairs
are independent cases, the solution artificially increases the number of independent observations:

1 X n independent observations from n participants are transformed to p X n(n-1)

5— observations. For
the six participants of our example, Figure 7 explains how to infer agreement for all 15 participant
pairs from five only observations.

As this approach greatly overestimates the statistical power of the significance test, one can
predict that the test is too sensitive to observations of random differences, or it rejects the null
hypothesis too often. We demonstrate the problem with two Monte Carlo experiments that estimate

the Type I error rate of the V,.4 test.

Experiment 6.1. We re-implemented the V, 4 statistic by using the implementation of Cochran’s
Q test in coin’s [Hothorn et al. 2008] statistical package for R. Our implementation accurately
reproduces the values reported by Vatavu and Wobbrock [2015] for the study of Bailly et al. [2013].
This confirms that our implementation is correct.

Our simulation experiment is as follows. We repeatedly generate n random samples of proposals
for y1 = 2 referents, where n represents the number of participants in a gesture elicitation study.
We repeat the process by taking samples from nine source populations, where each approximates
a different agreement rate AR, from .10 to .90. To generate populations for each AR level, we use
either the Zipf-Mandelbrot or the discrete half-normal probability distribution, as explained in
Section 6.1.

We estimate Type I error rates for two significance levels: @ = .05 and @ = .01. For each source
population, we run a total of 1600 iterations, where each time, we generate two random samples
of size n. Given that these two samples are randomly generated from the same population, the
percentage of iterations where the statistical test rejects the null hypothesis provides an estimate of
its Type I error rate. Type I error rates should be close to 5% for & = .05 and close to 1% for a = .01.
We test n = 20, which is a typical size for gesture elicitation studies.

Table 6 summarizes our results. All error rates are extremely higher than their nominal values,
reaching an average of 40 to 60% for the Zipf-Mandelbrot distributions. For the discrete half-normal
distributions, error rates are lower but still unacceptably high. We can easily explain the lower
error rates that we observe in this case by considering the narrower spread of the corresponding
sampling distributions in Figure 6. One can test the V,.4 statistic with other prior distributions, e.g.,
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Table 6. Experiment 6.1: Type | error rates for the V,.4 statistical test [Vatavu and Wobbrock 2015]

(a = .05) (¢ =.01)
AR | Zipf-Mandelbrot Half-Normal | Zipf-Mandelbrot Half-Normal
.10 31 11 17 .04
.20 42 .19 31 .07
.30 .51 .22 .40 .13
.40 .56 31 .45 17
.50 .56 .37 .48 .23
.60 .61 .50 .51 .35
.70 .62 .57 .52 47
.80 .67 .66 .50 .51
.90 .67 .69 .53 .54

Note: The test is applied over randomly generated proposals of 20 participants for p = 2 referents (1600 iterations).
The source population of sign proposals follows either a Zipf-Mandelbrot or a discrete half-normal distribution that
approximates the target agreement rate: AR = .10, .20, ... .90.

by taking linear combinations of our two model distributions. Type I error rates will be within the
above ranges of error, where the discrete half-normal distribution serves as a lower bound.

Experiment 6.2. The second experiment is similar to the first, but we now use real data from
Bailly et al. [2013] to generate populations from which we draw random samples. Bailly et al. [2013]
elicited gestures applied to the keys of a keyboard from 20 participants for a total of 42 referents. We
use the sign distribution within each referent to create a large population of 6000 sign proposals by
random sampling with replacement. This process produces a total of 42 populations with agreement
rates, ranging from AR = .12 to AR = .91 (median = .32). Then, for each population, we repeatedly
generate n = 20 random samples of proposals for y = 2 referents. As before, we apply the V,4
statistic to test whether the difference between their agreement rates is statistically significant.
After 1600 iterations, we find the following Type I error rates:

(a = .05) (a =.01)
Average Min  Max ‘ Average  Min  Max
Type I Error Rate: | .41 12 68 | .29 05 .53

These results are consistent with the results of Experiment 6.1. Error rates are extremely high for
all tested populations.

6.3 The V) Statistic: Comparing Agreement between Independent Participant Groups

The Vj, statistic [Vatavu and Wobbrock 2016] can be used to compare agreement rates of independent
participant groups and test hypotheses such as: (i) “women demonstrate higher agreement than men”
or (ii) “touch gestures receive higher agreement than full-body gestures on referents that represent
navigation actions.” Previous work [Vanbelle and Albert 2009] has developed agreement indices to
evaluate agreement between independent rater groups, but these indices answer a different type of
questions, such as “do women agree with men?” Since such questions are out of the scope of the V,,
statistic, we do not discuss them here.

Vatavu and Wobbrock [2016] are inspired by Fisher’s [1954] exact test to construct their test,
but this time, they develop their own probabilistic framework to account for dependencies among
participant pairs (see Figure 7). Their reasoning is similar to the one they previously used [Vatavu
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