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Fallacies of Agreement: A Critical Review of Consensus
Assessment Methods for Gesture Elicitation

THEOPHANIS TSANDILAS, Inria, Université Paris-Saclay, and Univ Paris-Sud, France

Discovering gestures that gain consensus is a key goal of gesture elicitation. To this end, HCI research has
developed statistical methods to reason about agreement. We review these methods and identify three major
problems. First, we show that raw agreement rates disregard agreement that occurs by chance and do not
reliably capture how participants distinguish among referents. Second, we explain why current recommen-
dations on how to interpret agreement scores rely on problematic assumptions. Third, we demonstrate that
significance tests for comparing agreement rates, either within or between participants, yield large Type
I error rates (> 40% for α = .05). As alternatives, we present agreement indices that are routinely used in
inter-rater reliability studies. We discuss how to apply them to gesture elicitation studies. We also demonstrate
how to use common resampling techniques to support statistical inference with interval estimates. We apply
these methods to reanalyze and reinterpret the findings of four gesture elicitation studies.
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1 INTRODUCTION
Gesture elicitation is widely used in Human-Computer Interaction (HCI) for identifying gesture
vocabularies that are self-discoverable or easy to learn [Wobbrock et al. 2009]. In a typical gesture
elicitation study, participants are shown the outcome of user interface actions or commands and
are asked to propose gestures that would trigger these actions. While the hope is that consistent
gesture-to-action associations will emerge, participants may also not agree in their proposals. Thus,
analyzing agreement between participants is a key aspect of the method [Vatavu and Wobbrock
2015, 2016; Wobbrock et al. 2009]. Agreement analysis can guide the design of gesture vocabularies
and help understand why some commands or actions naturally map to gestures.
A widely used measure for quantifying agreement in gesture elicitation studies is the index A

introduced by Wobbrock et al. [2005]. The index has been recently superseded by a more accurate
measure of agreement, the agreement rate AR [Findlater et al. 2012; Vatavu and Wobbrock 2015].
Vatavu and Wobbrock [2015] argued for the adoption of the new index and provided guidelines
on how to interpret agreement rates by suggesting ranges of low, medium, high, and very high
agreement. Furthermore, they proposed the Vrd significance test for comparing agreement rates
within participants. More recently, Vatavu and Wobbrock [2016] introduced the Vb significance
test for comparing agreement rates between independent groups of participants.
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While statistics for analyzing agreement are important for gesture elicitation research, our article
identifies three problems in the methods described by Vatavu and Wobbrock [2015; 2016]:
• TheA andAR indices do not take into account that agreement between participants can occur
by chance. We demonstrate that chance agreement can be a problem even when gesture
vocabularies are open-ended and participants choose from a large or infinite space of possible
gestures. The reason is that agreement is often dominated by a small number of very frequent
categories of gestures. We characterize this phenomenon as bias and model it with well-
known probability distribution functions. We then evaluate its effect on chance agreement
through Monte Carlo experiments.
• Guidelines for interpreting agreement rely on problematic assumptions about the probability
distribution of AR values and can lead to overoptimistic conclusions about the level of
agreement reached by participants. We discuss additional reasons why the interpretation of
agreement scores cannot be based on the methodology of Vatavu and Wobbrock [2015].
• TheVrd and theVb statistics rely on probabilistic assumptions that yield extremely high Type
I error rates. Our Monte Carlo experiments show that the average Type I error rate of both
significance tests is higher than 40% for a significance level of α = .05. Our results contradict
the evaluation results reported by Vatavu and Wobbrock [2016] for the Vb statistical test.

These three problems can encourage an investigator to overestimate or misinterpret the agreement
observed in a study or to conclude that there is agreement when in reality there is little or none. They
can also cause the investigator to falsely assess random differences between agreement values as
”statistically significant.” For example, we show that the conclusion of Vatavu and Wobbrock [2016]
that ”women and men reach consensus over gestures in different ways”, based on the dataset of Bailly
et al. [2013], is not supported by statistical evidence.

We present solutions to these problems. These solutions build upon a vast literature on inter-rater
reliability that has extensively studied how to assess agreement [Gwet 2014] and has advocated
indices that correct for chance agreement. Chance-corrected indices, such as Cohen’s κ, Fleiss’ κ,
and Krippendorff’s α , are routinely used in a range of disciplines such as psychometrics, medical
research, computational linguistics, as well as in HCI for content analysis, e.g., for video and user log
analysis [Hailpern et al. 2009] or for the analysis of design outcomes [Bousseau et al. 2016]. These
indices allow us to isolate the effect of bias and understand how participants’ proposals differentiate
among different commands. We also discuss criticisms of these indices and describe complementary
agreement measures. The above literature has also established solid methods to support statistical
inference with agreement indices. In this article, we advocate resampling techniques [Efron 1979;
Quenouille 1949], which are versatile, easy to implement, and support both hypothesis testing and
interval estimation. We conduct a series of Monte Carlo experiments to evaluate these methods.
We illustrate the use of chance-corrected agreement indices and interval estimation by re-

analyzing and re-interpreting the results of four gesture elicitation studies published at CHI: a
study of bend gestures [Lahey et al. 2011], a study of single-hand micro-gestures [Chan et al. 2016],
a study of on-skin gestures [Weigel et al. 2014], and a study of keyboard gestures [Bailly et al. 2013].
Our analyses confirm that current methods regularly cause HCI researchers to misinterpret the
agreement scores obtained from their studies and sometimes lead them to conclusions that are not
supported by statistical evidence.

Previous work has recognized that HCI research often misuses statistics [Kaptein and Robertson
2012]. This has prompted a call for more transparent statistics that focus on fair communication
and scientific advancement rather than persuasion [Dragicevic 2016; Kay et al. 2016]. Others have
pointed to the lack of replication efforts in HCI research [Hornbæk et al. 2014; Wilson et al. 2012]
and have urged the CHI community to establish methods that build on previous work, improve

ACM Transactions on Computer-Human Interaction, Vol. 25, No. 3, Article 18. Publication date: June 2018.



Fallacies of Agreement: A Critical Review of Consensus Assessment Methods for Gesture
Elicitation 18:3

results, and accumulate scientific knowledge [Kostakos 2015]. We hope that the critical stance we
adopt in this article will contribute to a fruitful dialogue, encourage HCI researchers to question
mainstream practices, and stress the need for our discipline to consolidate its research methods by
drawing lessons from other scientific disciplines.

2 PRELIMINARIES
We start with background material that will later help us clarify our analysis. We introduce key
concepts of gesture elicitation. We clarify the steps of the process and define our terminology.
Finally, we introduce the main questions that we investigate in this article and summarize the
overall structure of our analysis.

2.1 Referents, Gestures, and Signs
Many of the key concepts of gesture elicitation were introduced by Good et al. [1984], Nielsen et
al. [2004], and Wobbrock et al. [2005; 2009]. Wobbrock et al. [2009] summarize the approach as
follows: participants are prompted with referents, or the effects of actions, and perform signs that
cause those actions.

The analysis of Wobbrock et al. [2009] makes no distinction between gestures and signs. In our
analysis, we distinguish between the physical gestures performed by participants and their signs. A
sign can be thought of as the interpretation of an observed gesture, or otherwise, an identity ”label”
that provides meaning. A sign can also be considered as a category that groups together ”equal”
or ”similar” gestures. For example, a ”slide” sign can group together all sliding touch gestures,
regardless of the number of fingers used to perform the gesture.

Classifying gestures into signs is rarely straightforward because their interpretation often relies
on subjective human judgment. It also depends on the scope and the quality of the media used
to record gestures, e.g., a video recording cannot capture a finger’s force as the finger slides on
a table. Data recording and interpretation issues are important for our analysis, as they largely
affect agreement assessment. To account for data recording, we distinguish between the physical
gesture and its recorded gesture description. To account for data interpretation, we then distinguish
between the actual gesture elicitation study and the classification process, which takes place after
the study and is responsible for classifying gesture descriptions into signs.

2.2 Gesture Elicitation and Data Collection
Figure 1 illustrates a gesture elicitation study, where n participants (P1, P2, ..., Pn) propose (or
perform) gestures form referents (R1,R2, ...,Rm ). Gestures are recorded digitally, e.g., with a video
camera and motion sensors, or manually, e.g., through questionnaires and observation notes. The
output of a gesture elicitation study is a dataset {дi j | i = 1..m, j = 1..n} that describes all the
proposed gestures, where дi j denotes the piece of data that describes the gesture proposed by
participant Pj for referent Ri . This dataset may combine diverse representations, such as log files,
video recordings, and observation notes.

We take as an example a fictional scenario inspired by a real study [Wagner et al. 2012]. Suppose a
team of researchers seek a good gesture vocabulary for a future tablet device that senses user grasps.
Their specific goal is to determine which grasp gestures naturally map to document navigation
operations such as “scroll down” or “previous page”. To this end, they recruit n = 20 participants
to whom they showm = 10 navigation operations, i.e., referents, in the form of animations on
the tablet. Each participant is asked to propose a grasp gesture for each referent. Suppose data
collection is exclusively based on video recordings that capture (i) how the participants perform
the grasp gestures, and (ii) how they describe them by thinking aloud. The researchers collect a
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Referents

Participants
P1 PnPj

RiR1 RmR2

…

P2

…

… …

data recording
Gesture Descriptions 
( logs, videos, notes ) 

Gesture Proposals {gij} i=1...m, j=1...n

Fig. 1. Overview of a gesture elicitation study. Each participant Pj (j = 1...n) proposes a gesture for each
referent Ri (i = 1...m). Gestures are recorded digitally, e.g., with a touch device or a video camera, or manually,
e.g., by taking notes. Thus, a gesture description дi j can combine various representations: log files, video
recordings, observation notes, etc.

Classification Process
( computer program or human coders )

Gesture Descriptions 
Sign assignments 

{gij}
C

C 0 {gij ! �0
k | k = 1..q0}

{gij ! �k | k = 1..q }

Fig. 2. Gesture classification process. Descriptions of proposed gestures are classified either automatically by
a computer program or manually by humans. The result is a set of assignments of gesture descriptions дi j to
signs σk . Here, two different classification processes (C and C ′) produce two different sign vocabularies {σk }
and {σ ′k } and two different sets of assignments.

total of 20 × 10 = 200 grasp descriptions, where each grasp description consists of a distinct video
recording. We use variations of this scenario to explain key issues throughout the article.

2.3 Gesture Classification Process and Sign Vocabularies
To analyze the findings of a gesture elicitation study, the researchers must first interpret their
recorded gesture descriptions by classifying them into signs. Figure 2 illustrates a typical gesture
classification process. We define this process as a function C that takes as input a set of gesture
descriptions {дi j } and produces a set of sign assignments {дi j → σk | k = 1..q_}, such that each
gesture description дi j is assigned a sign σk that belongs to a sign vocabulary of size q. In the rest
of the article, we make a distinction between q, which is the total number of possible signs, and
q_ ≤ q, which is the number of signs produced for a specific gesture elicitation study.

Gesture classification is most often performed by humans. However, for well-defined gestural
alphabets such as EdgeWrite [Wobbrock et al. 2005], it can be automated and performed by a
computer program. As shown in Figure 2, a different classification function C ′ will generally
produce a different set of assignments over a different sign vocabulary. Gestures are often classified
along multiple dimensions. For example, Weigel et al. [2014] classify on-skin gestures along two
orthogonal dimensions: their on-body location (fingers, wrist, upper arm, etc.) and their input
modality (pinch, twist, tap, etc.). Similarly, Bailly et al. [2013] classify separately the key and the
gesture applied to the key of a Métamorphe keyboard. For other studies, gestures are grouped
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Table 1. Data from our fictitious gesture elicitation study

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Total
A 0 1 0 1 1 1 0 0 0 1 5
B 7 2 6 4 10 3 10 3 10 5 60
C 6 5 9 4 5 10 3 10 3 5 60
D 4 6 2 4 4 4 3 4 4 5 40
E 3 6 3 7 0 2 4 3 3 4 35

Note: 20 participants each propose a grasp gesture for 10 different referents (R1 – R10). Each grasp gesture is classified
into a sign: ”A”, ”B”, ”C”, ”D”, or ”E”. Each cell shows the number of sign occurrences for a given referent.

together into larger classes [Chan et al. 2016; Piumsomboon et al. 2013; Troiano et al. 2014] by
considering a subset of gesture parameters. In this case, different grouping strategies result in
different sign vocabularies.

In the simplest case, a sign vocabulary is defined through a set of discrete signs, where each sign
maps to a unique combination of gesture parameters. In most cases, however, sign vocabularies
are open-ended, i.e., they are not known or fixed in advance. Instead, they are defined indirectly
through an identity or a similarity measure that determines whether any two gestures correspond
to the same or two different signs. For example, Wobbrock et al. [2005; 2009] group ”identical” (or
’’equal” ) gestures together, while other approaches [Chan et al. 2016; Piumsomboon et al. 2013]
have used less stringent criteria of gesture similarity.
As a consequence, the number of possible signs q is often unknown. Thus, it can be claimed

to be infinite (q → ∞) such that given a similarity function, one can always find a gesture that is
different (”unequal” or ”not similar”) than all currently observed gestures. For example, one can
trivially invent a new sign by taking the sequence of two existing signs. It could be argued that the
assumption of an infinite sign vocabulary is artificial. However, it is an elegant abstraction that
enables us to assess various agreement statistics in the more general case, when sign vocabularies
are large, or at least larger than a small handful of five to ten signs.
2.4 Agreement Assessment
Given a set of assignments of gesture descriptions to signs, one can check which signs are attributed
to each referent and count their occurrences. Consider again our gesture elicitation study on grasp
gestures. Suppose that a human coder reviews the video descriptions produced by the study – she
inspects each video and classifies the proposed grasp gesture into a sign. Table 1 presents some
fictitious results, where five unique signs (”A”, ”B”, ”C”, ”D”, and ”E”) are identified. For each referent
(R1, R2 ... R10), the table shows the number of occurrences of each sign. Such tables are known as
contingency tables and can be used to summarize the results of a gesture elicitation study to assess
participants’ agreement. If a sign occurs more than once for a referent, we infer that at least two
participants agree on this sign. Researchers usually seek signs that enjoy wide agreement among
users. The larger the number of occurrences of a sign for a given referent, the greater is considered
to be the evidence that the gesture is intuitive or a good match for that referent. Thus, agreement
assessment has taken a key role in the analysis of gesture-elicitation results [Vatavu and Wobbrock
2015, 2016; Wobbrock et al. 2005, 2009].

2.5 The Notion of Bias
Imagine that the five signs (q_ = 5) that emerged from our fictitious study is only a subset of a
much larger sign vocabulary. In this case, how would one explain that fact that only these five signs
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appeared? Moreover, why are ”B” and ”C” so frequent (see Total in Table 1) while ”A” is rare? We
refer to this overall tendency of some signs to appear more frequently than others, independently
of the actual referents, as bias.
Research in Linguistics and Cognitive Psychology has extensively studied the role of bias in

the evolution and learning of both human and artificial languages. For example, Markman [1991]
argues that young children acquire biases that help them rule out alternative hypotheses for the
meaning of words and progressively induce the correct mappings between words and referents,
such as objects and actions. Culbertson et al. [2012] characterize as bias universal constraints in
language learning that shape the space of human grammars. Through experiments with artificial
languages, they show that such biases are not simply due to external factors, such as historical or
geographic influences, but instead, they are part of the learners’ cognitive system. In particular, they
show that learners favor grammars with less variation (regularization bias) and prefer harmonic
ordering patterns (harmonic bias) [Culbertson et al. 2012]. Garrett and Johnson [2012] study the
phonetic evolution of languages and identify a range of bias factors that cause certain phonetic
patterns to appear more frequently than others: motor-planning processes, speech aerodynamic
constraints, gestural mechanics, and speech perceptual constraints.

The role of such biases has not been fully understood in the context of gesture elicitation, but we
can name several factors that may lead participants to focus on certain gestures or their properties
and disregard others. Those include usability issues such as the conceptual, cognitive, and physical
complexity of gestures, their discoverability, memorability, etc. Considerations about the social
acceptability of available gestures [Rico and Brewster 2010] can also shape participants’ choices.
The effect of such biases is usually of great interest for a gesture elicitation study, as it can help
researchers understand if certain gestures are more appropriate, e.g., easier to conceive, execute or
socially accept, than others.

Other bias factors, however, can hamper the generalizability or the usefulness of gesture elicitation
results. Morris et al. [2014] argue that ”users’ gesture proposals are often biased by their experience
with prior interfaces and technologies” and refer to this type of bias as legacy bias. According to the
authors, legacy bias has some benefits (e.g., participants ”draw upon culturally-shared metaphors” )
and increases agreement scores but ”limits the potential of user elicitation methodologies.” It is thus
often considered that it hinders the novelty of the gestures produced by a gesture elicitation study.
The elicitation study procedure can also introduce bias. According to Ruiz and Vogel [2015],

time-limited studies bias participants against considering long-term performance and fatigue. Other
sources of procedural bias include the low fidelity of device prototypes presented to participants,
which may prevent or reinforce the execution or detection of certain gestures, or the lack of clarity
in investigators’ instructions. Finally, the classification of gesture proposals into signs can introduce
additional bias. Gesture classification is often performed by the investigators, who also need to
decide on how to differentiate among signs. This process usually relies on a mix of objective and
subjective criteria, and thus, investigators risk adding their own biases.

Usability, social, legacy, procedural, and classification biases are additive, so overall bias will be
observed as an imbalance in the distribution of signs across all referents. This notion of bias has a
central role in our analysis of agreement.

2.6 Questions and Structure of the Article
A gesture elicitation study can serve a range of design and research goals. The focus of this article
is on questions that concern participants’ consensus on the choice of signs, where these questions
mostly derive from earlier work by Wobbrock et al. [2005; 2009] and more recent work by Vatavu
and Wobbrock [2015; 2016]:
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• Do participants agree on their gestures? Is their level of consensus high, either for individual
referents or overall, for the full set of referents?
• How does agreement compare across different referents? Do some referents or groups of
referents lead to lower or higher agreement?
• Do different groups of participants (e.g., novices vs. experts) demonstrate the same level of
agreement? Does agreement vary across different user groups?

A visual inspection of the data in Table 1 reveals a mix of agreement and disagreement. Since
some signs appear multiple times for many referents, one may argue that such patterns demonstrate
agreement. However, given the uncertainty in the sample, is this agreement substantial or high
enough to justify a user-defined vocabulary of gestures? Is it intrinsic or should it rather be attributed
to chance? Furthermore, do all agreements have the same importance? For example, isn’t it easier
to agree when the number of possible or obvious options is small? One may also try to compare
agreement among different referents and conclude that agreement is higher for referents for which
proposals are spread less uniformly (e.g., for R5), revealing one or a few ”winning” signs. To what
extent does statistical evidence support this conclusion? Do such patterns reveal real differences or
are they random differences that naturally emerge by chance?

The above are all questions that we try to answer in this article. Specifically, we investigate the
following three problems: (i) how to measure agreement (Sections 3 and 4), (ii) how to assess the
magnitude of agreement (Section 5), and (iii) how to support statistical inference over agreement
measures (Section 6). For each of these three problems, we review existing solutions, focusing on
recent statistical methods introduced by Vatavu and Wobbrock [2015; 2016]. We identify a series of
problems in these methods. Inspired by related work in the context of inter-rater reliability studies
(see Gwet’s [2014] handbook for an overview of this work), we introduce alternative statistical
methods, which we then use to re-analyze the results of four gesture elicitation studies (Section 7). A
key argument of our analysis is that any kind of bias can deceive researchers about how participants
agree on signs. The agreement measures that we recommend remove the effect of bias. We show
how researchers can investigate bias separately with more appropriate statistical tools.
We explained that participants do not directly propose signs. However, in certain sections

(Sections 5 and 6), we will write that participants ”propose” and ”agree on their signs” or refer to
”participants’ sign proposals.” Although these expressions do not accurately describe howparticipants’
proposals are assigned to signs, they simplify our presentation without impairing the validity of
our analysis.

3 MEASURING AGREEMENT
To quantify agreement over a referent Ri , a great number of elicitation studies have used the
formula of Wobbrock et al. [2005]:

Ai =

q_∑
k=1

(
nik
ni

)2
(1)

where q_ is the total number of signs produced by the gesture classification process, nik is the
number of occurrences of sign σk for referent Ri , and ni is the total number of gesture proposals for
referent Ri . Table 2 further explains this notation. In the common situation where all participants are
presentedwith all the referents,ni is the number of participants in the study. For example, for the first
referent in Table 1, we calculate agreement as follows:A1 = ( 0

20 )
2+( 7

20 )
2+( 6

20 )
2+( 4

20 )
2+( 3

20 )
2 = .275.

To obtain the overall agreement A, Wobbrock et al. [2005] average Ai across all referents. For our
example, the overall agreement is A = .302.
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Table 2. Contingency table summarizing the results of a gesture elicitation study, where nik is the number of
occurrences of sign σk for referent Ri , and ni is the total number of proposals for this referent.

Referents

R1 . . . Ri . . . Rm

Si
gn

s

σ1 n11 ni1 nm1
...

...
. . .

...
. . .

...

σk n1k nik nmk
...

...
. . .

...
. . .

...

σq_ n1q_ niq_ nmq_

Total: n1 . . . ni . . . nm

Later on, Findlater et al. [2012] refine Ai with a slightly different index, which can be written as
follows:

ARi =

q_∑
k=1

nik (nik − 1)
ni (ni − 1)

(2)

Vatavu and Wobbrock [2015] further advocate the use of this index and call it the agreement rate.
They point out that in contrast to Ai , the ARi index takes values in the entire interval [0..1] and
has a clear interpretation: ARi is the proportion of participant pairs who are in agreement. ARi
is lower than Ai but for large samples, it reduces to Ai . As before, Vatavu and Wobbrock [2015]
average ARi across all referents to obtain an overall agreement rate AR. For our example in Table 1,
the overall agreement rate is AR = .265.

It is worth noting that neither ARi nor its approximation Ai are new. They have been used in a
range of disciplines as measures of homogeneity for nominal data. They have been independently
reinvented several times in the history of science [Ellerman 2010] and are most commonly referred
to as the Simpson’s [1949] index. The AR index is also well known and is commonly referred to as
the percent agreement [Gwet 2014]. However, it is also widely known to be problematic, as we will
now explain.

3.1 The Problem of Chance Agreement
Consider again our fictitious study of grasp gestures. The overall agreement rate AR = .265 can
be valued as respectable, as it is slightly higher than the average AR reported by Vatavu and
Wobbrock [2015] from 18 gesture elicitation studies. According to their recommendations, it can be
interpreted as a medium level of agreement.
However, the researchers have reasons to be worried. Suppose the study is replicated, but

participants are now blindfolded and cannot see any of the referents presented to them — they are
simply asked to guess. Their grasp proposals will thus be random. Suppose the researchers follow
the same gesture classification process, classifying gestures into five signs (q = 5). If all five signs
are equally likely, they will all appear with a probability of 1/5 = 0.2. Thus, the probability that
any pair of participants ”agree” on the same sign is 0.2 × 0.2. Since two participants can agree on
any of the five signs, the probability of agreement for a pair of participants on any given referent is
5 × 0.2 × 0.2 = 0.2. Therefore, the expected proportion of participant pairs who are in agreement —
that is, the expected overall agreement rate AR — is 0.2.
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Surprisingly, this value is not far from the previously observed value (AR = .265) and can be
interpreted again as medium agreement [Vatavu and Wobbrock 2015]. However, given that there
is no intrinsic agreement between participants, one would rather expect an agreement index to
give a result close to zero. Furthermore, one would certainly not label such a result as a “medium”
agreement. We should note that the exact same result would emerge if participants were not
blindfolded but, instead, the gesture classification process was fully random.
Arguably, the blindfolded study is purely fictional, and no gesture elicitation study involves

participants who make completely random decisions. Nevertheless, gesture elicitation involves
subjective judgments, where randomness can play a role. A participant may be uncertain about
which gesture is the best, and in some situations, the participant may even respond randomly. Such
situations may arise as a result of highly abstract referents for which there is no intuitive gesture,
poor experimental instructions, gesture options that are too similar, or a lack of user familiarity
with the specific domain or context of use. Due to sources of randomness in participants’ choice of
gestures, any value of AR reflects both intrinsic and spurious agreement. The amount of spurious
agreement depends on the likelihood of chance agreement, which in turn depends on the number
of signs.
The vocabulary of five signs used in our example is rather small. One could argue that if

participants chose from a large space of possible signs, then chance agreement would be practically
zero. However, a large space of possible signs does not eliminate the problem of chance agreement.
We will next show that bias can greatly increase the likelihood of chance agreement and inflate
agreement rates even if the size of a sign vocabulary is large or infinite (q → ∞).

3.2 Modeling Bias and Showing its Effect on Chance Agreement
We first illustrate the problem of bias with a scenario from a different domain. Suppose two medical
doctors independently evaluate the incidents of death of hospitalized patients. For each case, they
assess the cause of each patient’s death by using the classification scheme of the World Health
Organization1, which includes 132 death cause categories. Suppose information about some patients
is incomplete or missing. For these cases, the two doctors make uncertain assessments or simply
try to guess. How probable is it that their assessments agree by chance?

If one assumes that the doctors equally choose among all 132 categories, the probability of agree-
ment by chance is negligible, as low as 1/132 = 0.76%. However, the assumption of equiprobable
categories is not realistic in this case. Most death causes are extremely rare, while the two most
common causes, the ischaemic heart disease and the stroke, are alone responsible for more of 25%
of all deaths. The ten most frequent ones are responsible for more than 54% of all deaths2. It is not
unreasonable to assume that uncertain assessments of the two doctors will be biased towards the
most frequent diseases. In this case, the problem of chance agreement can be serious, as results
that appear as agreement on frequent categories may hide uncertain or even random assessments.
In the above example, the source of bias is prior knowledge about the frequency of diseases,

where in the absence of enough information, doctors tend to minimize the risk of a false diagnosis by
favoring frequent over rare diseases. In gesture elicitation, bias has other sources – we have already
discussed them in Section 2. To understand how bias affects chance agreement, we mathematically
describe it as a monotonically-decreasing probability-distribution functionb (k ), k = 1, 2, ..∞, where
the bias function gives the probability of selecting the kth most probable sign when ignoring or

1World Health Organization: Cause-Specific Mortality. Estimates for 2000-2012 (global summary estimates): http://www.
who.int/healthinfo/global_burden_disease/estimates/en/index1.html
2World Health Organization: The top 10 causes of death. http://www.who.int/mediacentre/factsheets/fs310/en
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(a) Zipf-Mandelbrot Probability Distribution (s=2)

sd = 2.58 sd = 5.42 sd = 11.02 

(b) Discrete Half-Normal Probability Distribution (mean = 1)
Increasing bias 

20% 10% 5%chance agreement: 

z1 z2 z3

n1 n2 n3

Fig. 3. Dots represent signs (k = 1..∞) ranked by their bias probabilities. We model bias with two probability
distributions: (a) the Zipf-Mandelbrot and (b) the discrete half-normal distribution. Here, eachmodel requires a
single parameter to determine the bias level: B for the Zipf-Mandelbrot and sd for the half-normal distribution.
As bias increases (from right to left), the probability of chance agreement also increases. Chance agreement
values presented at the bottom of the graphs are estimations from Monte Carlo experiments.

having no information about the referent. The function is assumed to be asymptotically decreasing
such that b (k ) → 0 when k → ∞.
We focus on two well-known probability distributions that have the above properties: (i) the

discrete half-normal distribution, and (ii) the Zipf-Mandelbrot distribution [Mandelbrot 1967]. The
first is the discrete version of the well-known normal (Gaussian) distribution when we only consider
its right half. We set its mean to k = 1 and control the bias level by varying the standard deviation
sd (see Figure 3b). The distribution converges to uniform (bias disappears) as sd → ∞.

The second is a generalization of Zipf’s [1949] law and is widely used in Computational Linguistics
to model word frequencies in text corpora. Zipfian distributions occur for a diverge range of
phenomena [Newman 2005]. They have also applications in HCI, as several studies have shown
that they are good models for predicting the frequency of command use [Cockburn et al. 2007].
The original explanation given by Zipf [1949] for his law was based on the principle of least effort,
according to which the distribution of word use is due to a tendency to communicate efficiently with
least effort. Mandelbrot [1967], in turn, argued that such distributions may arise from minimizing
information-theoretic notions of cost. Although several other generative mechanisms have been
proposed, the theoretical explanation of Zipf’s law is still an open research problem [Newman
2005]. Interestingly, an early experiment by Piantadosi [2014] shows that Zipfian distributions can
even occur for completely novel words, whose frequency of use could not be explained by any
optimization mechanism of language change. According to the author, a possible explanation of
the law is its link with power-law phenomena in human cognition and memory [Piantadosi 2014].

While the Zipf law has a single parameter s , the Zipf-Mandelbrot distribution has two parameters
s and B, where the latter allows us to control for bias:

b (k ) =
constant

(1 + Bk )s (3)

The constant is directly calculated through normalization and can be ignored. A typical range of
values for the exponent s in real-world data is between s = 1.5 and s = 3 [Newman 2005]. To
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simplify our analysis, we set this parameter to s = 2. This choice may seem arbitrary, but the scope
of our analysis does not require a higher-precision model. We later show (see Section 7) that this
value provides a reasonable approximation for modeling sign frequencies of several past gesture
elicitation studies. Finally, we vary the parameter B to account for the bias level (see Figure 3a).
As B approaches zero (B → 0), the contribution of the power-law component diminishes, the
distribution converges to uniform, and bias disappears.

The two distribution functions are not the only possible alternatives. Nevertheless, they have very
distinct shapes and allow us to experimentally demonstrate the effect of bias on agreement under
two different model assumptions. Notice that we can generate an infinite range of intermediate
probability functions by taking a linear combination of the two base functions: b (k ) = αbzipf (k ) +
(1 − α )bnormal (k ), where α ∈ [0..1]. Finally, we can trivially use the same distributions to describe
non-infinite sign vocabularies by constraining their tails, i.e., by setting b (k ) = 0 for k > q.
Experiment 3.1. We demonstrate how bias increases chance agreement with a Monte Carlo
experiment implemented in R. The experiment simulates the situation where participants make
fully random proposals under bias. More specifically, we consider that 20 blindfolded participants
are presented 40 different referents, and for each referent, they are asked to propose a gesture.
Participants’ gestures are then classified into signs, where the number of possible signs is infinite.
We test all the six bias distributions presented in Figure 3. For each, we take 5000 random samples,
and each time we calculate AR. The mean value of AR can be considered as an estimate of chance
agreement, since any agreements occur by chance – participants cannot see any referents presented
to them.
The experiment results in chance agreement scores that are very close to the ones presented

in Figure 3: (i) 20% for the bias distributions z1 and n1, (ii) 10% for the bias distributions z2 and n2,
and (iii) 5% for the bias distributions z3 and n3. Such levels of chance agreement are not negligible.
They are also realistic, as we later demonstrate in Section 7. The mean number of unique signs q_
that we observed in our experiment is as follows:

Distribution: z1 n1 z2 n2 z3 n3

mean(q_) : 60.9 9.4 87.4 17.9 122.3 33.6

Not surprisingly, higher bias leads to smaller sign vocabularies. Notice that the Zipf-Mandelbrot
distribution clearly leads to a larger number of signs. This is an expected result because Zipfian
distributions are well known to have long tails, i.e., a large portion of occurrences far from the
distribution’s head.

3.3 Chance-Corrected Agreement
A large volume of research has examined the issue of chance agreement in the context of inter-
rater reliability studies, i.e., studies that involve subjective human assessments [Gwet 2014]. Such
assessments are made in studies that involve qualitative human judgments, such as classifying
patients into disease categories, interpreting medical images, annotating speech, or coding open
survey responses. If reliability is of concern, typically two or more people (raters) are asked to
perform the same judgments, and their agreement is used as a proxy for reliability.
Inter-rater reliability studies employ a different terminology from gesture elicitation studies,

but the mapping between the two is straightforward. Study participants become raters (also called
judges or coders), referents become items (also called subjects), and signs become categories [Gwet
2014].

ACM Transactions on Computer-Human Interaction, Vol. 25, No. 3, Article 18. Publication date: June 2018.



18:12 Tsandilas T.

Work on chance-corrected agreement dates back to the 50 – 60’s. Early on, Jacob Cohen [1960]
proposed the κ (Kappa) coefficient to measure the agreement between two raters:

κ =
pa − pe
1 − pe

(4)

where pa is the proportion of items on which both raters agree, and pe is the chance agreement,
i.e., the agreement that would have occurred by chance. According to Cohen [1960], the nominator
captures the observed beyond-chance agreement, while the denominator is a normalizing term
that captures maximum beyond-chance agreement. The quotient κ measures “the proportion of
agreement after chance agreement is removed from consideration” [Cohen 1960].

Note that κ can take negative values: while a positive value means agreement beyond chance, a
negative value means disagreement beyond chance — although this rarely happens in practice. Also
note that if pa = 1, then κ = 1 (provided that pe , 1). Thus, chance correction does not penalize
perfect agreement.
Most chance-corrected agreement indices known today are based on Equation 4. Each index

makes different assumptions and has different limitations [Gwet 2014]. Early indices such as
Cohen’s [1960] κ and Scott’s [1955] π assume two raters. As gesture elicitation involves more
participants, we will not discuss them further. A widely used index that extends Scott’s π to multiple
raters is Fleiss’ [1971] κF coefficient. For the term pa in Equation 4, Fleiss uses the “proportion of
agreeing pairs out of all the possible pairs of assignments” [Fleiss 1971], also called percent agreement.
This formulation for pa has been used in many other indices and is identical to the AR index of
Vatavu and Wobbrock [2015].

For the chance agreement term pe , Fleiss uses:

pe =

q_∑
k=1

π 2
k , πk =

1
m

m∑
i=1

nik
ni

(5)

wherem is the total number of items, nik is the number of ratings for item i having category k ,
and ni is the total number of ratings for item i . The term πk estimates the probability that a rater
classifies an item into category k , based on how many times this category has been used across the
entire study. Thus, it does not assume equiprobable selection of categories, so it takes bias into
account. However, it assumes that all raters share the same preferences for categories. For the data
in Table 1, Fleiss’ chance agreement is pe = .251, and therefore, κF = .265−.251

1−.251 = .018, reflecting a
close-to-chance overall agreement.
In gesture elicitation, raters’ (i.e., participants’) proposals are classified into categories (i.e.,

signs) after the end of the study by a separate gesture-classification process. The interpretation
of chance agreement now changes because chance agreement also captures the additional bias
of this higher-level classification process (see Section 2.5). Notice that sign vocabularies can be
open-ended. However, this open-endedness does not affect how Fleiss’ κF coefficient is computed,
because the coefficient requires no prior knowledge or assumption about the number of possible
signs q. Equations 2 and 5 only depend on the number of observed signs q_ and their frequencies.
An alternative index is the κq coefficient of Brennan and Prediger [1981], which uses the same

pa but a simpler estimate of chance agreement: pe = 1/q, where q is the total number of cate-
gories. The index assumes equiprobable selection of categories. Under this assumption, the chance
agreement for Table 1 is pe = .200, and thus, κq = .081. However, as we explained earlier, this
assumption is generally not realistic, as it does not account for bias. The index has been further
criticized for giving researchers the incentive to add spurious categories in order to artificially
inflate agreement [Artstein and Poesio 2008]. If one assumes an infinite number of categories, then
pe = 0. For all these reasons, the index is rarely used in practice.
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Another measure of agreement, widely used in content analysis, is Krippendorff’s α [Krippendorff
2013]. Krippendorff’s α uses a different formulation for both pa and pe and can be used for studies
with any number of raters, incomplete data (i.e., not all raters rate all items), and different scales
including nominal, ordinal and ratio. For simple designs, its results are generally very close to Fleiss’
κF , especially when there are no missing data and the number of raters is greater than five [Gwet
2014]. We use both indices in our analyses with a preference for Fleiss’ κF , as it is simpler and
easier to contrast to the AR index.
Experiment 3.2.We repeat the Monte Carlo experiment presented in Section 3.2, but this time,
we also calculate Fleiss’ chance agreement pe , Fleiss’ κF , and Krippendorff’s α . Mean estimates for
each bias distribution (see Figure 3) are presented below:

Distribution: z1 n1 z2 n2 z3 n3
AR (mean): .201 .200 .100 .100 .050 .050

Fleiss’ pe (mean): .202 .201 .101 .101 .051 .051
Fleiss’ κF (mean): −.001 −.001 −.001 −.001 −.001 −.001

Krippendorff’s α (mean): .000 .000 .000 −.000 .000 .000

We see that Fleiss’ pe provides a very good estimate of chance agreement for all six distributions.
Thus, it can be considered as a good measure for assessing the effect of bias on agreement, even if
one assumes an infinite number of signs. Both Fleiss’ κF and Krippendorff’s α completely remove
the effect of bias, returning consistent agreement scores that are very close to zero. We have
repeated the experiment with other bias distributions, e.g., by taking the linear combination of the
above distributions with variable weights. Again, results were the same.
The above chance-corrected coefficients do not only work on average. For the 30000 iterations

(6 distributions ×5000 iterations) of our experiment, Fleiss’ κF ranged from κF ,min = −.018 to
κF ,max = .019, while Krippendorff’s α ranged from αmin = −.017 to αmax = .020, which means
that the full range of chance-corrected scores was very close to zero. We expect the spread of values
to increase for experiments with a smaller number of participants (n < 20) or a smaller number of
referents (m < 40).

3.4 Agreement over Individual or Groups of Referents
So far, we have discussed how to correct overall agreement scores. In gesture elicitation studies
though, researchers are often interested in finer details concerning agreement, i.e., situations in
which agreement is high and situations that exhibit little consensus. To this end, the analysis of
agreement scores for individual items (i.e., referents) is a useful and commonly employed method.
The state-of-the art approach in HCI is to use Equation 2, but unfortunately, this method does not
account for chance agreement.
Research on inter-rater agreement has mostly focused on the use of overall agreement scores,

but agreement indices for individual items also exist. For example, O’Connell and Dobson [1984]
introduced an agreement index that can be computed on an item-per-item basis, and Posner et
al. [1990] further explained its calculation. For the most practical cases the we study here, the index
is identical to Fleiss’ κF calculated for individual items, using a pooled pe . Specifically, one can
compute pa for each referent of interest and then use Equation 5 to estimate a common pe across all
referents. The rationale is that, by definition, chance agreement does not depend on any particular
referent. The same method can be employed for assessing agreement over groups of referents.

We apply the approach to the data in Table 1. The observed percent agreement for R5 is pa = .321,
and the overall chance agreement is pe = .251, computed over all referents of the study (see
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Equation 5). Thus, Fleiss’ chance-corrected agreement for this referent is κF ,5 = .321−.251
1−.251 = .094.

For R10, the agreement is κF ,10 = .190−.251
1−.251 = −.082. This negative value may suggest disagreement.

3.5 Is Correction for Chance Agreement always Necessary?
Chance correction is a monotonically decreasing function that scales and offsets all per-referent
pa scores but preserves their order. Thus, if only ordinal information is of interest (e.g., which are
the most and the least consensual referents within a single study?), the use of standard agreement
rates (ARi ) as in Equation 2 is acceptable. Similarly, if two different groups share the same chance
agreement pe , using AR to compare their difference in agreement is a valid approach. The reason
is that ∆pa = pa,1 − pa,2 scales ∆κ = κ1 − κ2 by a fixed amount (1 − pe ) without distorting the
underlying distribution (see Equation 4). So the results of such comparisons should also generalize
to κ. Section 6 further discusses this point.

There is a last question to answer. Bias is not necessarily harmful. In particular, it may be largely
due to considerations about the effectiveness or cognitive complexity of different signs, irrespective
of the referent to which these signs apply. Thus, bias may reflect participants’ overall agreement
about which signs are appropriate candidates for a future gesture vocabulary. Since understanding
such bias may be crucial, one could argue that chance-corrected coefficients like Fleiss’ κF or
Krippendorff’s α are not appropriate in this case.
We agree that the analysis of bias is important. However, we argue that bias should be studied

separately. We present three main reasons:
• Researchers need to know how participants distinguish among referents and whether natural
mappings between signs and referents emerge. In the presence of any source of bias, the AR
index provides misleading information about how participants agree or disagree on their
sign assignments.
• The bias distribution can be easily derived from the overall distribution of sign frequencies.
This distribution is enough to fully describe bias and reveals which signs are frequent and
which signs are absent or rare. Therefore, the reasoning behind translating a bias distribution
into an agreement score is unclear. However, if investigators still want to quantify bias as
agreement, a possible measure for this purpose is Fleiss’ chance agreement pe , which can be
reported in addition to κ.
• Distinguishing between different bias factors may not be feasible so the interpretation of
an AR score can be extremely problematic. Participants’ proposals are often dominated by
obvious or ”default” signs, e.g., the ”top” sign in the study by Bailly et al. [2013], or signs that
represent common gestures in widespread interfaces, e.g., multitouch gestures in the study
by Weigel et al. [2014]. Bias does not only concern participants’ original proposals. As we
discussed, their classification is also subject to bias, and AR gives investigators the incentive
to invent frequent signs to artificially inflate agreement scores.

For all these reasons, correcting for chance agreement is important. However, given that chance-
corrected coefficients have received multiple criticisms (see next section) and the HCI community
has not yet arrived to a consensus, we advice authors to report both chance-corrected and uncor-
rected agreement values. Reporting both values increases transparency and can help researchers
to better interpret their results. A separate investigation of the observed bias distribution is also
recommended for every gesture elicitation study.

4 CRITICISMS OF CHANCE-CORRECTED AGREEMENT INDICES
Chance-corrected agreement coefficients are the norm in inter-rater reliability studies but have also
received criticism. We address two types of criticism: (i) questioning the appropriateness of chance
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correction for gesture elicitation, and (ii) arguing that chance correction can lead to ”paradoxically”
low and unstable values for κ. After responding to these criticisms, we discuss some complimentary
agreement measures.

4.1 Criticism 1: Chance Correction Is Not Appropriate for Gesture Elicitation
In a previous report, we recommended the use of chance-corrected agreement indices in addition to
or as a replacement of the AR index [Tsandilas and Dragicevic 2016]. Vatavu and Wobbrock [2016]
included a short discussion about this issue, where they argued that chance-corrected agreement
indices are not appropriate for gesture elicitation studies:

”Unfortunately, the above statistics are not appropriate to evaluate agreement for elici-
tation studies, during which participants suggest proposals for referents without being
offered any set of predefined categories. The particularity of an elicitation study is that
the researcher wants to understand participants’ unconstrained preferences over some
task, which ultimately leads to revealing participants’ conceptual models for that task.
Consequently, the range of proposals is potentially infinite, only limited by participants’
power of imagination and creativity.” [pp. 3391 - 3392]

Gesture elicitation studies have certainly unique features. We agree that most gestures elicitation
studies do not enforce a fixed set of sign categories. However, as we already discussed, the problem
of chance agreement is still present. The argumentation of Vatavu and Wobbrock [2016] overlooks
some key points:

Kappa coefficients do not require choosing from a predefined set of categories. The a-
posteriori classification of items to categories is not unique to gesture elicitation. For example,
medical doctors do not use predefined classification schemes for diagnosis. They usually
write open-ended reports or notes. Later, medical coders translate these reports into medical
codes [O’Malley et al. 2005]. Assessing agreement between diagnosis methods often requires
medical experts with diverse roles to make assessments at multiple steps. For example, psy-
chiatric clinicians prepare a brief psychiatric narrative of each case, and those narratives
are reviewed by independent psychiatrists, who then classify the cases into diagnosis cate-
gories [Deep-Soboslay et al. 2005]. As with gesture elicitation, the classification of cases into
diagnosis categories only happens at the very end of the process and is not performed by
the actual clinicians who evaluate the patients. A κ coefficient is again computed over those
top-level categories [Deep-Soboslay et al. 2005].

Sign vocabularies can be limited. In practice, agreement is not assessed over an infinite set
of gesture possibilities. Participants’ gesture proposals are first classified into signs (see
Section 2), and agreement is assessed over the sign vocabulary defined by that specific
classification process. We show in Section 7 that a sign vocabulary can be limited because
investigators may use a particularly small number of signs to classify proposals.

Proposals are often biased towards a small number of signs. Even if one assumes an in-
finite number of signs, chance agreement is still a problem due to various sources of bias
that result in uneven distributions of sign frequencies. A major strength of Fleiss’ κF (and
Krippendorff’s α ) is the fact that it corrects for bias by estimating chance agreement based on
the distribution of observed signs. By taking into account this distribution, chance-corrected
indices reward variability in participants’ proposals and highlight methodological problems.

Chance-corrected indices are the norm in content analysis where data are often open-ended and
coders choose from codebooks that contain a large number of codes. According to MacQueen et
al. [1998], ”coders can reasonably handle 30 - 40 codes at one time,” while coding with codebooks of
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”more than 40 codes” is common, but the coding process needs to be done in stages. In Computational
Linguistics, vocabularies can be even larger. In their coder’s manual, Jurafsky et al. [1997] report
on language modeling projects involving as many as 220 unique coding tags, where these tags are
later clustered under 42 larger classes. Despite the use of such large vocabularies in these domains,
chance agreement is always taken seriously, because codes typically do not occur with the same
frequency, and coders are often biased towards a small subset of the coding vocabulary.
Arguably, chance agreement does not equally concern all gesture elicitation studies. The issue

can be minor or nonexistent if three conditions are met: (i) participants choose from a large space
of gestures, (ii) their proposals discriminate between many of these gestures with low bias, and (iii)
the gesture classification process differentiates between subtle gesture variations. Nevertheless, the
decision of whether chance correction is needed is best not to be left to the subjective discretion
of each researcher — it is safer to always report chance-corrected agreement indices in addition
to raw agreement rates (percent agreement). As their use is a well-established practice in many
disciplines, there is no reason why gesture elicitation studies cannot benefit from them.

4.2 Criticism 2: Chance Correction Can Lead to Paradoxes
Chance-corrected coefficients such as Cohen’s and Fleiss’ κ penalize imbalanced distributions,
where some categories are frequent while others are rare. Feinstein and Cicchetti [1990] argue that
this can lead to ”paradoxes”, where (i) κ can be particularly low despite the fact that the observed
percent agreement pa is high, and (ii) κ can be very sensitive to small changes in the distribution of
marginal totals.

We demonstrate their argument with two fictional datasets (see Table 3), where three participants
propose signs for 10 referents. Participants are almost in full agreement for Dataset 1, and percent
agreement is pa = .93. However, Fleiss applies a high chance correction pe = .76, which results in
κF = .72. Dataset 2 is almost identical to Dataset 1, where the only difference is P3’s proposal for
R7. Percent agreement has only slightly dropped (pa = .87), but Fleiss’ κF has dropped radically
(κF = .28). Why is κF so low even if data suggest high consensus among participants? Furthermore,
why does a small change cause κF to drop so radically?

Feinstein and Cicchetti [1990] explain that the source of such paradoxes is the assumption of
κ coefficients that raters are biased, i.e., they have a ”relatively fixed prior probability” of making
responses. Referring to their experience in clinical research, the authors argue that there is no
reason to assume that such prior (bias) probabilities are established in advance. They complain that
penalizing observed imbalances as evidence of prior bias and thus chance agreement may not be
fair. The way κ coefficients estimate chance agreement has been criticized by other authors [Gwet
2014; Uebersax 2015] for very similar reasons.

Kraemer et al. [2002] reject the argument that these situations indicate a flaw of κ or a paradox.
In response to the above criticism, they argue that ”it is difficult to make clear distinctions” between
cases when ”those distinctions are very rare or fine. In such populations, noise quickly overwhelms
the signals.” Consider a different scenario where two medical tests are evaluated for the diagnosis
of HIV. Suppose the two tests highly agree (> 98%) on negative results (i.e., HIV is not present)
but demonstrate zero agreement on positive results (i.e., HIV is present). Given the rareness of
positive results (e.g., 1% of all cases), percent agreement will be extremely high. However, a high
agreement score is misleading, since the two tests completely fail to agree on the presence of HIV.
In contrast, Fleiss’ (or Cohen’s) κ would be low in this case, since chance agreement is high. In most
cases, this is a desirable behavior rather than a drawback of κ coefficients. Whether the two tests
make a deliberate choice when assessing negative cases or whether they make a random choice,
the high chance correction applied by κ is justified by the fact that such results are practically not
meaningful and cannot be trusted. As Kraemer et al. [2002] explain, a ”κ = 0 indicates either that

ACM Transactions on Computer-Human Interaction, Vol. 25, No. 3, Article 18. Publication date: June 2018.



Fallacies of Agreement: A Critical Review of Consensus Assessment Methods for Gesture
Elicitation 18:17

Table 3. Two similar datasets used to demonstrate the ”paradoxes” of chance-corrected agreement indices

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Dataset 1
P1 A A A A A A B A A A
P2 A A A A A A B A A A
P3 A A A A A A B C A A

Dataset 2
P1 A A A A A A B A A A
P2 A A A A A A B A A A
P3 A A A A A A A C A A

Note: Three participants (P1, P2, P3) propose signs for 10 different referents (R1 to R10). The only difference between
the two datasets is P3’s proposal for R7.

the heterogeneity of the patients in the population is not well detected by the raters or ratings, or that
the patients in the population are homogeneous.”

Krippendorff [2011] further discusses the above issues. He explains that in such scenarios, percent
agreement is high but ”uninformative” due to the ”lack of variability.” In our example in Table 3,
participants have used only three signs, and the ”A” sign has highly dominated their preferences.
The fact that they agree on ”A” is not informative, as there is very little evidence about consensus
on other signs. The higher Fleiss’ κF that we found for Dataset 1 can be explained by a perfect
consensus on ”B”, in addition to a high consensus on ”A.” In Dataset 2, consensus on ”B” decreases
while signs other than ”A” become extremely rare, causing Fleiss’ κF to radically drop.

Krippendorff [2011] discusses that chance-corrected agreement indices are more sensitive to
rare than to frequent cases. However, the high sensitivity that we observe in our example is due to
the low number of samples. Using three or two raters is common in inter-rater reliability studies
but very unlikely in the context of gesture elicitation studies, where the number of participants
is typically greater than ten. Furthermore, we argue later that agreement values should not be
reported alone. Interval estimates can capture and communicate the uncertainty or sensitivity of
estimated chance-corrected agreement values.

To increase the amount of information of a study, Krippendorff [2011] suggests that researchers
should try to ensure variability. To paraphrase his statement, unless there is evidence for partici-
pants (”coders” ) to have exercised their ability to distinguish among signs (”units” ), ”the data they
generate are meaningless” [Krippendorff 2011]. In such cases, a high percent agreement can be very
misleading, while a low κ must always alarm researchers. For example, did participants focus on
a very small set of signs? Did the researchers in the above example tend to classify proposals as
”A” to artificially inflate agreement? A strong bias towards obvious or ”default” signs, inadequate
instructions (e.g., ones that would encourage participants to explore a larger variety of gestures),
bias in the gesture classification process, or a poorly chosen design space are all possible problems,
where each requires a different treatment.

Ensuring variability is especially important for designing rich and meaningful gesture vocab-
ularies. Therefore, establishing measures that encourage variability has very practical design
implications. We further argue that κ coefficients are especially appropriate for the analysis of
gesture elicitation results, since the presence of a prior bias probability is a very realistic assumption
(see Sections 2.5 and 3.2). Assuming that participants equally choose among an infinite number of
possible signs by only considering the individual properties of each referent is a naive approach
that, in several situations, could result in suboptimal design solutions.

ACM Transactions on Computer-Human Interaction, Vol. 25, No. 3, Article 18. Publication date: June 2018.



18:18 Tsandilas T.

4.3 Alternative Measures: Agreement Specific to Categories
Others have argued that a single agreement score cannot fully describe how raters agree with each
other [Cicchetti and Feinstein 1990; Spitzer and Fleiss 1974; Uebersax 2015]. Consider again the
scenario of the two HIV diagnosis tests. Instead of a single measure of agreement, two separate
measures could be used: (i) a measure specific to positive and (ii) a measure specific to negative test
results. In this case, the investigators would aim for high agreement for both result categories. The
advantage of the approach is that one can distinguish between high agreement for one category,
e.g., negative test results, and low agreement for the other, e.g., positive test results. The approach is
analogous to the use of sensitivity, otherwise recall, and specificity measures for the evaluation of
binary classification tasks. Cicchetti and Feinstein [1990] recommended using these two indices in
conjunction with chance-corrected agreement, viewing the apporach as a remedy to the paradoxes
of κ coefficients.

To deal with multiple agreement categories, which is our focus here, Uebersax [1982] describes a
more generic formulation of agreement specific to categories, or specific agreement:

SAk =

∑m
i=1 nik (nik − 1)∑m
i=1 nik (ni − 1)

(6)

where we use again the notation of Table 2. SAk is the proportion of agreement specific to category
k and is computed by dividing the total number of agreements on category k by the total number
of opportunities for agreement on this category. In the context of gesture elicitation, it can be
interpreted as the conditional probability that a randomly chosen participant assigns a referent to
sign k given that another randomly chosen participant has also assigned the same referent to that
sign.3 For the dataset in Table 1, specific agreement is as follows:

Sign: A B C D E
Specific Agreement: .00 .34 .32 .17 .18

We observe that specific agreement is higher for the two frequent signs (”B” and ”C”). It is zero for
”A”, which appears rarely and with no consensus among participants.

Specific agreement can be used as a complementary measure, as it helps investigators to identify
where low or high agreement occurs. However, its interpretation for more than two categories is
not straightforward. As a general principle, observing high agreement over a few very frequent
signs may indicate a low overall agreement. Spitzer and Fleiss [1974] further argued that specific
agreement itself should be corrected for chance agreement. If the bias distribution is common
across all participants, the proportion of chance agreement specific to a sign k is given by the
term πk in Equation 5 [Uebersax 1982]. This term represents the occurrence frequency of that sign
across all participants and all referents. Then, we can use Equation 4 to derive the proportion of
chance-corrected agreement specific to each individual sign. For the previous example, results are
as follows:

Sign: A B C D E
Specific Chance Agreement: .03 .30 .30 .20 .18

Specific Chance-Corrected Agreement: .00 .06 .03 -.04 .01

After chance correction, specific agreement is close to zero for all four signs.

3As we explained earlier, participants may not directly propose signs. However, we can make this assumption to simplify
our presentation.
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Fig. 4. The probability distribution of AR values and recommended ranges of agreement (low, medium, high,
and very high) based on the probabilistic reasoning of Vatavu and Wobbrock [2015]. We show it here for
20 participants and a bin size of h = .05. Problem: The distribution is derived based on assumptions of fully
random proposals, which means that medium or higher agreement can simply occur by chance with a very
high probability (≈ 81%).

For our analyses in Section 7, we report raw, i.e., without chance correction, specific agree-
ment. Nevertheless, our interpretation also considers the observed frequencies of signs. Krippen-
dorff [2011] has proposed additional information measures as companions of chance-corrected
coefficients, but we will not discuss them in this article.

5 INTERPRETING THE MAGNITUDE OF AGREEMENT
How much agreement is sufficient for a vocabulary of user-defined gestures? What criteria can
investigators use to differentiate between low and high consensus? In response to these questions,
Vatavu and Wobbrock [2015] have proposed some generic guidelines on how to interpret the
magnitude of agreement: AR < .100 is low agreement, .100 < AR < .300 is medium, .300 <
AR < .500 is high, and AR > .500 is very high agreement. These guidelines derive from two types
of analysis: (i) a probabilistic reasoning, and (ii) a survey of agreement rates from past gesture
elicitation studies.

In this section, we review the above guidelines. Our analysis indicates that both the probabilistic
reasoning and the survey of past studies can lead to incorrect conclusions. We examine how other
disciplines interpret agreement values and discuss the implication of these practices for gesture
elicitation studies.

5.1 Probabilistic Reasoning
Vatavu and Wobbrock [2015] present an analytical approach to derive the probability distribution
of agreement rates (AR) and use this distribution to identify the low, medium, and high range of
probable agreement rates (see Figure 4). They then use these ranges to interpret the magnitude of
observed agreement rates. For example, they estimate that the probability of obtaining an agreement
rate AR > .500 is less than 1%, so they interpret observed agreement rates of this magnitude as
very high. In contrast, they interpret agreement rates near the middle range of the probability
distribution as medium agreement.

We identify two flaws in this reasoning:
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Table 4. Example showing how Vatavu and Wobbrock [2015] calculate the probability distribution over
possible proposal configurations. For six participants, they identify 11 possible partitions ti and assume
that they all occur with the same probability. Under this assumption, the mean agreement rate (of random
proposals) is calculated by averaging the individual agreement rates ARi .

Proposal Partitions ARi fi
t1: 1 + 1 + 1 + 1 + 1 + 1 .000 1
t2: 1 + 1 + 1 + 1 + 2 .067 15
t3: 1 + 1 + 1 + 3 .200 20
t4: 1 + 1 + 2 + 2 .133 45
t5: 1 + 1 + 4 .400 15
t6: 1 + 2 + 3 .267 60
t7: 1 + 5 .667 6
t8: 2 + 2 + 2 .200 15
t9: 2 + 4 .467 15
t10: 3 + 3 .400 10
t11: 6 1.000 1

Mean: .345
Problem: Assuming equiprobable partitions is incorrect for two reasons: (i) The number fi of alternative ways to create
each partition is not the same, e.g., f6 = 60× f1. Thus, partitions do not all occur with the same frequency. (ii) Agreement
and disagreement do not occur with the same probability. For example, full agreement (t11) and full disagreement (t1)
cannot occur with the same probability unless chance agreement is exactly 50%, e.g., if participants choose between
two only signs with no bias.

Flaw 1. It relies on a null distribution, i.e., a probability distribution of agreement rates by
assuming completely random proposals. Yet, the authors’ analysis overlooks this fact and han-
dles the null distribution as a distribution of observed agreement rates under no assumption
of how agreement between participants takes place. Given the use of a null distribution, the
derived interpretation guidelines are absurd. For example, the average of their distribution is
AR = .214 for n = 20 participants and AR = .159 for n = 40 participants. Values close to these
averages are interpreted as medium agreement despite the fact that they correspond to fully
random proposals. According to the authors, values in the interval of medium agreement
(.100 − .300) occur (simply by chance) with a 59% probability. Wouldn’t it make more sense
to look for agreement (low, medium, or high) away from these ranges? Shouldn’t we rather
interpret values in these ranges as ”no agreement?”

Flaw 2. To derive the probability distribution, Vatavu and Wobbrock [2015] enumerate all
possible partitions of integer n, where n is the total number of participants. According to this
solution, each partition represents a distinct configuration of sign proposals. For example,
suppose we partition six participants into four groups with one, one, two, and two participants
each: 1 + 1 + 2 + 2 = 6. In this case, there are four distinct signs, and there is one agreement
(i.e., two participants propose the same sign) for two of these signs. The authors assume that
all such partitions occur with the exact same probability. For example, for a study with six
participants (see Table 4), they assume that the probability that all six participants agree
(partition t11: 6) is equal to the probability that participants completely disagree (partition t1:
1 + 1 + 1 + 1 + 1 + 1) or only agree in pairs (partition t8: 2 + 2 + 2).

Unfortunately, this assumption is incorrect for two reasons. First, the number of alternative
ways to assign participants to each partition is not the same. As shown in Table 4, there are
f8 = 15 different ways to partition six participants into pairs, but there is only f11 = 1 way to
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Fig. 5. Histograms showing the probability distribution of AR (in blue) and κF (in orange) when participants
randomly choose signs for 40 referents under bias. Distributions were generated with Monte Carlo simulations
of 1000 iterations. The bin size of all the histograms is h = .0125.

create a single group of six. As a result, the two partitions t8 and t11 must occur with very
different probabilities. We see later that the analysis of Vatavu and Wobbrock [2016] for their
Vb statistic corrects this mistake.

Second, agreement and disagreement do not generally occur with the same probability.
For example, full agreement (t11: 6) is very unlikely to occur when participants randomly
choose from a very large set of possible signs. Full disagreement (t1: 1 + 1 + 1 + 1 + 1 + 1) is
far more likely to occur in this case. The authors’ later analysis for the Vb statistic repeats
this second mistake.

Can we correct the above mistakes and still rely on a probabilistic reasoning to interpret the
magnitude of agreement rates? To answer this question, we first need to infer the correct null distri-
bution of agreements. This is not feasible unless we know how participants choose signs. Analytical
solutions to this problem are not trivial. Fortunately, such distributions can be approximated with
Monte Carlo simulations. Specifically, we simulate a gesture elicitation study as a computerized
process, where n participants randomly propose signs form referents. This process is repeated a
large number of times, and each time, a new agreement score is computed.
As in Section 3.2, we assume that participants choose from an infinite number of signs under

bias. Figure 5 shows six distributions for two sample sizes (n = 10 and n = 20) and three bias levels.
Here, we use the Zipf-Mandelbrot distribution to model bias (see Figure 3), but one can run Monte
Carlo simulations with other prior bias-distribution assumptions. In all cases, the mean agreement
rate approximates the chance agreement pe , and the larger the number of participants, the more
likely it becomes to find agreement rates close to pe . In orange, Figure 5 presents the distributions
of Fleiss’ κF . As expected, all these distributions are centered around zero.
Given such distributions, on can visually assess if an observed agreement value is likely to

have occurred by chance. The further the value from the null distribution, the greater are the
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chances that agreement is different than zero. Such distributions are commonly known as sampling
distributions of a statistic and serve as the basis for constructing confidence intervals and significance
tests [Baguley 2012]. However, they say very little about the magnitude of agreement, i.e., whether
an observed agreement value is low, medium, or high. Unfortunately, this is a more complex
problem that solutions based on probabilities and statistics cannot address.

5.2 Survey of Past Studies
In addition to their probabilistic reasoning, Vatavu and Wobbrock [2015] review agreement rates
from a total of 15 papers with gesture elicitation results. They find that average A scores range
from .160 to .468, while average AR scores range from .108 to .430, where the mean value is .261.
They rely on these results to further justify their guidelines.

However, comparing agreement rates across different studies can be misleading because chance
agreement can be high for some studies and low for others (see Section 3). We further show in
Section 7 that a higherAR score does not always translate into a higher chance-corrected agreement.
The approach is problematic for additional reasons. Setting standards based on results from past
studies seems a reasonable approach, but it can discourage efforts to raise our standards. Indeed,
there does not seem to be any valid reason to be satisfied with a gesture agreement rate of .2 or .4.

Gwet [2014] dedicates a full chapter on how to interpret the magnitude of an agreement. Several
authors suggest conventional thresholds to help researchers in this task – Fleiss, for example, labels
κ < .400 as “poor” and κ > .750 as “excellent.” Krippendorff [2004] suggests α > .667 and then later
α > .800 as thresholds below which data must be rejected as unreliable. However, he and many
others recognize that such thresholds are largely arbitrary and should be chosen depending on the
application domain and on the “costs of drawing invalid conclusions from these data” [Krippendorff
2004]. It has also been emphasized that the magnitude of an agreement cannot be interpreted if
confidence intervals are not provided [Gwet 2014; Krippendorff 2004].

In gesture elicitation studies, the bar for an agreement score to be considered acceptable is way
lower, even when ignoring chance agreement. As much as we would like to have objective rules to
help us distinguish between acceptable and unacceptable agreement scores, it is wise to refrain from
using any such rule until these can be grounded in cost-benefit analyses that integrate usability
metrics.

6 STATISTICAL INFERENCE
Statistical inference is the process of drawing conclusions about populations by observing random
samples. It includes deriving estimates and testing hypotheses. Vatavu and Wobbrock [2015; 2016]
have proposed two statistical tests to support hypothesis testing: (i) the Vrd statistic for comparing
agreement rates within participants [Vatavu and Wobbrock 2015], and (ii) the Vb statistic for
comparing agreement rates between independent participant groups [Vatavu and Wobbrock 2016].

We explained earlier (see Section 3.5) that comparing raw agreement rates is a valid approach as
long as chance agreement is common across all compared groups. For within-participants designs,
this is a valid assumption. In contrast, when comparing independent participant groups, chance
agreement may vary, particularly when making comparisons across studies that test different sign
vocabularies or employ different setups. Nevertheless, if groups are tested under similar conditions,
and their data are analyzed with identical methods, there is no reason to expect bias differences. In
this case, one can assume that chance agreement is equal for both groups, and therefore, comparing
agreement rates with the Vb statistic could be considered as valid. However, we show that both the
Vrd and theVb statistic are based on incorrect probabilistic assumptions, and therefore, they should
not be used.
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Fig. 6. Histograms showing the sampling distribution of agreement rate differences (δAR = ARi −ARj ) when
20 participants propose signs for two referents Ri and Rj and δAR = 0. Each distribution corresponds to a
different distribution of sign preferences (common for both referents) and is generated with a Monte Carlo
simulation of 5000 iterations. The bin size of all the histograms is h = .05.

6.1 Modeling Agreement for Individual Referents
Before we examine the significance tests of Vatavu and Wobbrock [2015; 2016], we explore prob-
abilistic models that describe how participants’ sign proposals reach agreement for individual
referents. As with bias, modeling agreement for individual referents will enable us to systematically
evaluate the significance tests through Monte Carlo experiments.

Suppose that n participants propose signs form referents, and let ARi be the agreement rate for
referent Ri . We model sign preferences for this referent as a monotonically-decreasing probability-
distribution function pi (k ), k = 1, 2, ...∞, which expresses the probability of selecting the kth most
likely sign for referent Ri . Note that each referent Ri will generally have its own distribution pi , and
the order of preferences over signs may also be different. The distribution function is assumed to
be asymptotically decreasing such that pi (k ) → 0 when k → ∞. Clearly, the closer the distribution
function to uniform is, i.e., no preferences over particular signs emerge, the lower is expected to be
an observed agreement rate ARi .
The above formulation is very similar to our bias formulation in Section 3.2. As for bias, we

simplify our analysis by focusing on two probability distribution functions: (i) the discrete half-
normal distribution withmean = 1, and (ii) the Zipf-Mandelbrot distribution with s = 2. Given these
distributions, one can generate source populations with a specific ARi by varying their parameters
sd or B. For example, for the half-normal distribution function, we choose sd = 5.42 for ARi = .1,
sd = 0.88 for ARi = .5, and sd = 0.416 for ARi = .9. For the Zipf-Mandelbrot distribution function,
we choose B = 0.306 for ARi = .1, B = 2.25 for ARi = .5, and B = 18.4 for ARi = .9.

Significance tests focus on differences between agreement rates rather than individual agreement
rates. Figure 6 shows the sampling distribution (n = 20) of the difference in agreement (δAR =
ARi − AR j ) between two referents Ri and R j , when sign preferences for those referents follow
the same probability distribution, and δAR = 0. We examine six different distributions of sign
preferences, which produce sampling distributions for three agreement levels: .1, .5, and .9. Notice
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Table 5. Example showing how Vatavu and Wobbrock [2015] apply Cochran’s [1950] Q test to test differences
in agreement among referents (R1,R2, ...,Rµ )

Referents
Participant pairs R1 R2 R3

(P1, P2) 1 1 0
(P1, P3) 0 1 0
(P1, P4) 1 1 0
(P1, P5) 1 1 0
(P1, P6) 0 0 0
(P2, P3) 0 1 1
(P2, P4) 1 1 1
(P2, P5) 1 1 1
(P2, P6) 0 0 1
(P3, P4) 0 1 1
(P3, P5) 0 1 1
(P3, P6) 1 0 1
(P4, P5) 1 1 1
(P4, P6) 0 0 1
(P5, P6) 0 0 1

Note: Participant pairs (Pi , Pj ) are handled as independent cases, which are randomly sampled from a population of
participant pairs. For six participants, there is a total of 15 participant pairs. Agreement observations are represented
by binary values, where participants either agree (1) or disagree (0).

that the spread of the sampling distribution is narrower for the half-normal distribution. It becomes
especially narrow, when the agreement level of the source population is low (ARi = .1).

6.2 The Vrd Statistic: Testing Within-Participants Effects
The Vrd statistic [Vatavu and Wobbrock 2015] can be used to compare agreement rates of different
referents (or groups of referents) and test hypotheses such as (i) ”there is an effect of the referent
type on agreement” or (ii) ”participants demonstrate higher agreement for directional than non-
directional referents.”
The test is a direct application of Cochran’s [1950] Q non-parametric test, which is used to

test differences on a dichotomous dependent variable (with values coded as 0 or 1) among µ
related groups.4 Cochran’s Q test is analogous to the one-way repeated-measures ANOVA but for
a dichotomous rather than a continuous dependent variable. For example, one can test whether
there are differences in student performance (1 = pass or 0 = fail) among three different courses
(e.g.,Mathematics, Physics, and Chemistry). A key assumption of Cochran’s Q test is that cases, such
as students in the above example, are randomly sampled from a population, and thus, they are all
independent.

In order to apply Cochran’s Q test, Vatavu and Wobbrock [2015] enumerate all the possible pairs
of participants and handle pairs as independent cases (see Table 5). Then, they consider agreement
as a dichotomous variable that can take two values: 1 for agreement or 0 for disagreement. Given
this approach, applying Cochran’s Q test is straightforward, since the goal is to test differences in
agreement among µ referents, or otherwise, µ related groups.

4When µ = 2, the test is equivalent to McNemar’s test.
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P1 P2 P3 P4 P5 P6

a26 = 0

a25 = 1

a12 = 1 a45 = 1a23 = 0 a34 = 0 a56 = 0

aij = 1 (agreement)

aij = 0 (disagreement)

Fig. 7. Example with six participants (P1 - P6) that demonstrates how to use dependencies to derive agreement
pairs. Given the five observations of consecutive agreement pairs in blue (a12, a23,..., a56), we can infer other
agreement pairs ai j (in red), where ai j = 1 if and only if the number of disagreeing pairs between participants
Pi and Pj is even. For example, a25 = 1 because there are two disagreeing pairs between P2 and P5, while
a25 = 0 because there are three disagreeing pairs between P2 and P6.

Unfortunately, this solution is problematic because agreement pairs are highly interdependent,
which is against the independence assumption of Cochran’s Q test. For example, if participant Pa
agrees both with participant Pb and participant Pc , we can safely deduce that participants Pb and
Pc agree with each other. Similarly, if Pa agrees with participant Pb but disagrees with participant
Pc , then we can deduce that participants Pb and Pc disagree. By assuming that agreement pairs
are independent cases, the solution artificially increases the number of independent observations:
µ ×n independent observations from n participants are transformed to µ × n (n−1)

2 observations. For
the six participants of our example, Figure 7 explains how to infer agreement for all 15 participant
pairs from five only observations.
As this approach greatly overestimates the statistical power of the significance test, one can

predict that the test is too sensitive to observations of random differences, or it rejects the null
hypothesis too often. We demonstrate the problem with two Monte Carlo experiments that estimate
the Type I error rate of the Vrd test.
Experiment 6.1.We re-implemented the Vrd statistic by using the implementation of Cochran’s
Q test in coin’s [Hothorn et al. 2008] statistical package for R. Our implementation accurately
reproduces the values reported by Vatavu and Wobbrock [2015] for the study of Bailly et al. [2013].
This confirms that our implementation is correct.

Our simulation experiment is as follows. We repeatedly generate n random samples of proposals
for µ = 2 referents, where n represents the number of participants in a gesture elicitation study.
We repeat the process by taking samples from nine source populations, where each approximates
a different agreement rate AR, from .10 to .90. To generate populations for each AR level, we use
either the Zipf-Mandelbrot or the discrete half-normal probability distribution, as explained in
Section 6.1.

We estimate Type I error rates for two significance levels: α = .05 and α = .01. For each source
population, we run a total of 1600 iterations, where each time, we generate two random samples
of size n. Given that these two samples are randomly generated from the same population, the
percentage of iterations where the statistical test rejects the null hypothesis provides an estimate of
its Type I error rate. Type I error rates should be close to 5% for α = .05 and close to 1% for α = .01.
We test n = 20, which is a typical size for gesture elicitation studies.

Table 6 summarizes our results. All error rates are extremely higher than their nominal values,
reaching an average of 40 to 60% for the Zipf-Mandelbrot distributions. For the discrete half-normal
distributions, error rates are lower but still unacceptably high. We can easily explain the lower
error rates that we observe in this case by considering the narrower spread of the corresponding
sampling distributions in Figure 6. One can test the Vrd statistic with other prior distributions, e.g.,
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Table 6. Experiment 6.1: Type I error rates for the Vrd statistical test [Vatavu and Wobbrock 2015]

(α = .05) (α = .01)
AR Zipf-Mandelbrot Half-Normal Zipf-Mandelbrot Half-Normal
.10 .31 .11 .17 .04
.20 .42 .19 .31 .07
.30 .51 .22 .40 .13
.40 .56 .31 .45 .17
.50 .56 .37 .48 .23
.60 .61 .50 .51 .35
.70 .62 .57 .52 .47
.80 .67 .66 .50 .51
.90 .67 .69 .53 .54

Note: The test is applied over randomly generated proposals of 20 participants for µ = 2 referents (1600 iterations).
The source population of sign proposals follows either a Zipf-Mandelbrot or a discrete half-normal distribution that
approximates the target agreement rate: AR = .10, .20, ... .90.

by taking linear combinations of our two model distributions. Type I error rates will be within the
above ranges of error, where the discrete half-normal distribution serves as a lower bound.
Experiment 6.2. The second experiment is similar to the first, but we now use real data from
Bailly et al. [2013] to generate populations from which we draw random samples. Bailly et al. [2013]
elicited gestures applied to the keys of a keyboard from 20 participants for a total of 42 referents. We
use the sign distribution within each referent to create a large population of 6000 sign proposals by
random sampling with replacement. This process produces a total of 42 populations with agreement
rates, ranging from AR = .12 to AR = .91 (median = .32). Then, for each population, we repeatedly
generate n = 20 random samples of proposals for µ = 2 referents. As before, we apply the Vrd
statistic to test whether the difference between their agreement rates is statistically significant.

After 1600 iterations, we find the following Type I error rates:
(α = .05) (α = .01)

Average Min Max Average Min Max
Type I Error Rate: .41 .12 .68 .29 .05 .53

These results are consistent with the results of Experiment 6.1. Error rates are extremely high for
all tested populations.

6.3 The Vb Statistic: Comparing Agreement between Independent Participant Groups
TheVb statistic [Vatavu andWobbrock 2016] can be used to compare agreement rates of independent
participant groups and test hypotheses such as: (i) ”women demonstrate higher agreement thanmen”
or (ii) ”touch gestures receive higher agreement than full-body gestures on referents that represent
navigation actions.” Previous work [Vanbelle and Albert 2009] has developed agreement indices to
evaluate agreement between independent rater groups, but these indices answer a different type of
questions, such as ”do women agree with men?” Since such questions are out of the scope of theVb
statistic, we do not discuss them here.
Vatavu and Wobbrock [2016] are inspired by Fisher’s [1954] exact test to construct their test,

but this time, they develop their own probabilistic framework to account for dependencies among
participant pairs (see Figure 7). Their reasoning is similar to the one they previously used [Vatavu
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Table 7. Example on how Vatavu and Wobbrock [2016] calculate the probability of proposal partitions

Proposal Partitions ai fi πi
t1: 1 + 1 + 1 + 1 + 1 + 1 + 1 0 1 .0011
t2: 1 + 1 + 1 + 1 + 1 + 2 1 21 .0239
t3: 1 + 1 + 1 + 1 + 3 3 35 .0399
t4: 1 + 1 + 1 + 2 + 2 2 105 .1197
t5: 1 + 1 + 1 + 4 6 35 .0399
t6: 1 + 1 + 2 + 3 4 210 .2395
t7: 1 + 1 + 5 10 21 .0239
t8: 1 + 2 + 2 + 2 3 105 .1197
t9: 1 + 2 + 4 7 105 .1197
t10: 1 + 3 + 3 6 70 .0798
t11: 1 + 6 15 7 .0080
t12: 2 + 2 + 3 5 105 .1197
t13: 2 + 5 11 21 .0239
t14: 3 + 4 9 35 .0399
t15: 7 21 1 .0011

Total: 877 1.0000
Note: For seven participants, there are 15 possible partitions, where each partition ti appears with a different frequency fi .
Each probability πi is calculated by dividing fi by all 877 possible proposal configurations. Each partition ti corresponds
to a different number ai of agreeing pairs.
Problem:We highlight the two extreme cases in purple: full agreement (t15) and full disagreement (t1). Their probabilities
are always assumed as equal (π15 = π1). Unfortunately, this assumption is not justified.

and Wobbrock 2015] to derive the probability distribution of ARi values (see Section 5.1). They
generate all possible proposal partitions ti and estimate their probabilities πi (see Table 7). Then,
they use these partial probabilities to estimate the overall probability of agreement. Here, we
focus on how the authors derive the probabilities πi of individual partitions. For further details
about the full test construction, we refer the reader to its original presentation by Vatavu and
Wobbrock [2016].

As discussed in Section 5 (see Table 4), different partitions do not generally appear with the
same frequency fi . Table 7 shows how Vatavu and Wobbrock [2016] calculate the probability πi of
all 15 possible partitions for seven participants, where frequencies fi are now taken into account.
However, this solution still does not consider how difficult or how easy it is to reach agreement.
For example, it relies again on the assumption that full agreement (i.e., all participants propose the
same sign) and full disagreement (i.e., each participant proposes a different sign) always occur with
the same probability. This assumption is unfortunately not realistic.

The authors’ own evaluation of the Vb statistic demonstrate extremely low Type I error rates for
AR ≥ .200. As shown in Table 8 (grey columns), Vatavu and Wobbrock [2016] report error rates
that are orders of magnitude lower than their nominal significance levels. Such error rates are
problematic, and one could suspect that the test is too conservative. Nevertheless, the authors also
present results from a number of case studies, where the Vb test is shown to be powerful enough
to reject the null hypothesis for many comparisons of practical interest. To clarify this issue, we
re-evaluated the Type I error rate of the test with two simulation experiments.
Experiment 6.3. We re-implemented the Vb statistic and the authors’ original algorithm that
derives the probability distribution for two independent participant groups. Our implementation
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Table 8. Experiment 6.3: Type I error rates for the Vb test statistic

(α = .05) (α = .01)
AR author estim. Zipf-Mandelbrot Half-Normal author estim. Zipf-Mandelbrot Half-Normal
.10 .190 .13 .03 .103 .06 .003
.20 .041 .40 .15 .017 .22 .05
.30 .004 .54 .26 .002 .38 .14
.40 .000 .59 .36 .000 .45 .21
.50 .000 .62 .40 .000 .50 .25
.60 .003 .62 .52 .000 .52 .39
.70 .001 .64 .56 .000 .51 .48
.80 .002 .72 .61 .000 .43 .45
.90 .000 .68 .66 .000 .25 .26

Note: The significance test is applied on two independent groups of 20 participants for 1600 iterations. The source pop-
ulation of sign proposals follows either a Zipf-Mandelbrot or a discrete half-normal distribution that approximates the
target agreement rate:AR = .10, .20, ... .90. Estimations of Type I error rates reported by Vatavu andWobbrock [2016]
(copied from page 3396) are shown in grey.

accurately reproduces p-values reported by Vatavu and Wobbrock [2016] for their case studies,
which confirms that our implementation is correct.5 Our simulation method is similar to the one
reported by the authors. We repeatedly generate populations of 100 participants, from which we
draw two samples of equal size (20 participants each). We repeat this process for nine populations,
where each population approximates a different agreement rate, from .10 to .90.

Vatavu and Wobbrock [2016] do not explain how they generate populations with controlled
agreement rates, so we use again the Zipf-Mandelbrot and the discrete half-normal probability
distribution functions. For each, we run a total of 1600 iterations and estimate the Type I error rate
for two significance levels: α = .05 and α = .01.

Table 8 summarizes our evaluation results. Type I error rates are again extremely high for both
distribution functions. Surprisingly, with the exception of AR = .10, our estimations are orders of
magnitude higher than the ones reported by Vatavu and Wobbrock [2016] (see grey columns).
Experiment 6.4. As for Experiment 6.2, we use the dataset of Bailly et al. [2013] to generate
populations, from which we draw random samples. We first generate a large population of 6000
users by random sampling with replacement from the sign proposals of the 20 participants of
the original study. This process produces a total of 42 referent populations with agreement rates
ranging fromAR = .12 toAR = .91 (median = .33). We then repeatedly sample from this population
to create two groups of 20 participants, and each time, we apply the Vb statistic to test whether the
agreement rates of the two independent groups are different for each of the 42 referents.

After 1600 iterations, we find the following Type I error rates:

(α = .05) (α = .01)
Average Min Max Average Min Max

Type I Error Rate: .42 .05 .70 .27 .02 .56

5However, we found that the authors’ calculations for their own example (p. 3396) are incorrect. The probability for two
groups of size 7, with 10 and 6 pairs of agreement (AR1 = .476 andAR1 = .285), is Π10,6|21,21 = .171. Since Π10,6|21,21 > .05,
the null hypothesis should not be rejected.
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Results are consistent with the results of Experiment 6.3. Error rates are again unacceptably high
for nearly all tested populations – only 2 out of 42 referent populations lead to Type I error rates
that are close to their nominal levels.

6.4 Alternative Inference Methods: Jackknifing and Bootstrapping
Inventing new statistics can be dangerous, as the HCI community lacks the expertise to validate
them and check their correctness. Other research disciplines have long established methods to
support statistical inference for agreement indices [Gwet 2014; Hayes and Krippendorff 2007; Wood
2005]. These are the methods that we present in this section.
The sampling distribution of an agreement index can be hard to approximate with analytical

methods. However, resampling methods such as jackknifing [Quenouille 1949] and bootstrap-
ping [Efron 1979] can be used to produce variance estimates, standard errors and confidence
intervals for almost any agreement index, including agreement rates, κ coefficients, and agreement
specific to categories. Confidence intervals can be used both to communicate uncertainty and to
test hypotheses [Dragicevic 2016]. We show how to use such methods to (i) provide an interval
estimate of an agreement score, (ii) compare agreement between two groups of referents, and (iii)
compare agreement between two independent participant groups.

6.4.1 Estimating Agreement Scores. To draw samples, it is crucial to first determine what is
randomly sampled and what is not. In gesture elicitation studies, referents are fixed: any conclu-
sion typically only applies to these referents. Participants, in contrast, are chosen randomly, and
investigators may need to generalize their conclusions to the entire population of potential users.
Gwet [2014] explains how to use the jackknife method to derive estimates of agreement indices in
such situations, when raters are randomly chosen, while rated items are fixed.

Given observations from n participants, estimation is based on n subsamples, where each time, a
subsample i is produced by leaving out all the observations from the ith participant. The confidence
interval of an agreement index κ is constructed by first estimating the variance of its sampling
distribution:

υjack =
n − 1
n

n∑
i=1

(κ̂i − κ̂)
2 (7)

where κ̂ is an estimate based on the full set of observations, and κ̂i is an estimate when leaving out
the ith participant. The square root of this variance gives the standard error: SEjack =

√
υjack .

Assuming that κ coefficients follow a normal distribution, the (1 − α )% confidence interval is
κ̂±SEjack ×q, where q = q(1− α

2 ,n−1) is the (1−
α
2 )–quantile of Student’s t-distribution with n−1

degrees of freedom. Gwet [2008] shows that normality is a reasonable assumption as long as the
number of raters (i.e., participants) and items (i.e., referents) are reasonable high, and the agreement
score is not close to its boundary values. Our evaluation further examines this assumption.

6.4.2 Comparing Agreement Scores of Related Samples. The same technique can be used to com-
pare agreement scores obtained from the same participants between different groups of referents,
i.e., for within-participants estimation and hypothesis testing. To this end, a jackknife confidence
interval is computed on their difference ∆κ = κR1 − κR2 , where κR1 and κR2 are the agreement
scores of the two referent groups. Alternatively, one can use the bootstrap method [Hayes and
Krippendorff 2007; Wood 2005], which does not make any assumption about normality but uses a
larger number of resampling iterations, e.g., more than 3000 bootstrap samples are typically used
to estimate a 95% confidence interval. The method relies on random sampling with replacement: at
each iteration, it generates a new random sample of size n, where each sign proposal can re-appear
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multiple times. For our analyses, we will focus on the jackknife technique because it is considerably
faster and thus easier to evaluate through Monte Carlo simulations.6

6.4.3 Comparing Agreement Scores of Independent Samples. In contrast, we use bootstrapping
for between-participants estimation and hypothesis testing, as we found no jackknife technique
to apply to this case. The bootstrap method is applied as follows. At each iteration, the two
participant groups are resampled independently, and their difference is computed: ∆κ = κG1 − κG2 ,
where κG1 and κG2 are the agreement scores of the two groups. We then use the percentile bootstrap
method [Carpenter and Bithell 2000], which takes the α

2 and the (1− α
2 ) percentile of the distribution

of computed differences to construct the (1 − α )% confidence interval.

6.5 Evaluation
We ran a series of Monte Carlo experiments to evaluate the above techniques.
Experiment 6.5. The goal of the first experiment is to compare the jackknife method with theVrd
statistic under the same experimental conditions. As our experimental method is identical to the
one for Experiment 6.1, we omit any further details here. To derive Type I error rates, we construct
the jackknife confidence interval of the difference (95% for α = .05 and 99% for α = .01), and reject
the null hypothesis if the interval does not include zero.
Table 9 (top) presents our results, where error rates can be compared to the ones of the Vrd

test in Table 6. For α = .05, error rates are generally close to their nominal values. However, they
are not uniform across all AR levels. Error rates are lower near the extremes and the lower range
of agreement rates. Fluctuations are stronger for α = .01, which implies a lower accuracy of the
technique at this significance level.
Experiment 6.6. The goal of the second experiment is to compare the bootstrap method with the
Vb statistic. The experimental method is identical to the one used for Experiment 6.2. Again, we
construct the bootstrap confidence interval of the difference, and reject the null hypothesis if the
interval does not include zero.
Error rates are presented in Table 9 (bottom) and can be contrasted to the ones of the Vb test

in Table 8. We observe that the discrete half-normal distribution results in more conservative
confidence intervals. Again, error rates are higher near the middle range of agreement rates.
Experiment 6.7. The third experiment provides a more holistic evaluation of the jackknife tech-
nique. In particular, we evaluate the coverage probability of its confidence intervals when using
Fleiss’ κF to assess agreement. As for Experiment 6.2, we randomly sample with replacement from
the dataset of Bailly et al. [2013] to generate a large population of 6000 sign proposals, from which
we then draw random samples.

We conduct a number of different tests. First, we estimate the coverage of the intervals for the
overall κF (≃ .28) estimated over the full set of referents. We also divide the 42 referents into three
equal groups of 14 referents, where each corresponds to a different κF level: lowest (κF ≃ .12),
medium (κF ≃ .20), and highest (κF ≃ .49). We estimate coverage for all these groups. After 1600
iterations, results are as follows:

Conf. Level = 95% (α = .05) Conf. Level = 99% (α = .01)
Groups: All Lowest Medium Highest All Lowest Medium Highest

Coverage (%): 96.3 95.3 95.8 95.9 99.0 99.1 99.1 98.8

6See our supplementary material for early comparisons between the two techniques.
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Table 9. Experiments 6.5 and 6.6: Type I error rates for the jackknife (related samples of 20 participants) and
bootstrap (independent samples from two groups of 20 participants) techniques applied to agreement rates
of individual referents

(α = .05) (α = .01)
AR Zipf-Mandelbrot Half-Normal Zipf-Mandelbrot Half-Normal

[R
el
at
ed
]J
ac
kk

ni
fe

.10 .011 .008 .000 .000

.20 .019 .014 .001 .003

.30 .039 .016 .004 .003

.40 .051 .030 .009 .007

.50 .048 .028 .012 .003

.60 .065 .046 .019 .013

.70 .059 .064 .018 .020

.80 .053 .089 .016 .018

.90 .019 .056 .003 .003

[In
de
pe
nd

en
t]
Bo

ot
st
ra
p .10 .030 .004 .004 .000

.20 .041 .016 .011 .001

.30 .056 .016 .014 .004

.40 .064 .027 .016 .006

.50 .071 .025 .018 .004

.60 .064 .039 .023 .006

.70 .053 .042 .026 .011

.80 .044 .038 .011 .012

.90 .007 .014 .002 .002
Note: Estimations are based on 1600 iterations. Source populations follow a Zipf-Mandelbrot or a discrete half-normal
distribution that approximates the target agreement rate: AR = .10, .20, ... .90.

Overall, coverage probabilities are close to their confidence levels, although one can notice that the
technique may produce conservative confidence intervals.

Second, we evaluate the technique on Fleiss’ κF for individual referents (see Section 3.4), where
we test all 42 referents of the study. We also evaluate it with random groups of referents. We test
a total of 200 random groups, where half contain five referents, and the other half contain ten
referents. After 1600 iterations, results are as follows:

Conf. Level = 95% (α = .05) Conf. Level = 99% (α = .01)
Num of Referents: Single Five Ten Single Five Ten

Coverage (%): 93.0 95.3 95.6 97.5 99.0 99.2
(sd=2.6) (sd=0.7) (sd=0.6) (sd=1.1) (sd=0.3) (sd=0.3)

Each estimate is based on many samples, so we also report standard deviations. We observe that
confidence intervals for individual referents are less precise, resulting in lower coverage probabilities
with a larger variance. This is possibly due to larger deviations from the normality assumption as
the number of referents becomes too low.

Finally, we evaluate the jackknife technique for differences in Fleiss’ κF within the same group
of participants. We test differences between individual references and between equal groups of four
or eight referents. We run a total of 3 × 50 = 150 tests, and for each test, we compute the coverage
probability of the jackknife confidence intervals for 1600 iterations:
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Conf. Level = 95% (α = .05) Conf. Level = 99% (α = .01)
Num of Referents per Group: Single Four Eight Single Four Eight

Coverage (%): 95.4 95.7 95.7 97.7 99.1 99.2
(sd=2.9) (sd=0.6) (sd=0.6) (sd=3.8) (sd=0.2) (sd=0.3)

We observe again that confidence intervals may be less precise when comparing differences between
individual referents.
Experiment 6.8. Evaluating the bootstrap method on populations generated by sampling with
replacement is less appropriate because bootstrap confidence intervals are produced with the exact
same approach. Furthermore, the method relies on a large number of resampling iterations so
running large-scale Monte Carlo simulations on κ coefficients requires significant computation
resources. Therefore, we run a smaller experiment on the original dataset of Bailly et al. [2013].
Our method is as follows. We randomly divide the 20 participants of the study into two equal

groups and count the number of referents for which the bootstrap confidence interval of their
difference ∆κF does not include zero. We repeat this process a large number of times and calculate
the mean error. This allows us to produce an estimate of the technique’s Type I error rate. Due
to computational constraints, we focus on a significance level of α = .05 and limit the number of
bootstrap iterations to 1000. We also set the number of times that we randomly partition participants
into groups to 100. Themean number of referents for which the technique rejects the null hypothesis
is 1.8, which corresponds to a Type I error rate of 1.8/42 = .043.

6.6 Summary
The significance tests of the Vrd and Vb statistics yield large Type I errors. The jackknife technique
is a good alternative for estimating within-participants agreement differences, while differences
between independent groups of participants can be estimated with bootstrapping methods. The
jackknife can be further used to construct confidence intervals for the overall κ of a study and for
the κ of smaller groups of referents.

To the best of our knowledge, these techniques are the only viable solutions. However, they also
have limitations. Depending on the source population, they may produce conservative confidence
intervals or inflate Type I error rates when applied to agreement scores of individual referents. HCI
researchers should be attentive to such limitations, in particular when they use small sample sizes
and rely on statistical significance to draw conclusions.

7 REANALYSIS OF PAST GESTURE ELICITATION STUDIES
We reanalyze the results of four gesture elicitation studies, all published in the proceedings of
CHI. Through our analyses, we demonstrate the use of chance-corrected coefficients and specific
agreement. For estimation and hypothesis testing, we apply the resampling methods discussed in
Section 6. We discuss how our analyses affect the authors’ original interpretation of their findings.

7.1 Bend Gestures for Flexible Displays – Lahey et al. [2011]
The gesture elicitation study by Lahey et al. [2011] explored a vocabulary of bend gestures for
flexible portable displays. The investigators identified symmetrical pairs of actions (e.g., ”open-close”
and ”play-pause”) and then looked for appropriate matchings with bend gesture pairs. Thus, signs
represented gesture pairs rather than individual gestures.

The study involved 10 participants and was divided into three sessions. In Session 1, participants
were asked to define eight unique bend gesture pairs. In Session 2, participants were presented

ACM Transactions on Computer-Human Interaction, Vol. 25, No. 3, Article 18. Publication date: June 2018.



Fallacies of Agreement: A Critical Review of Consensus Assessment Methods for Gesture
Elicitation 18:33

Table 10. Agreement indices for the elicitation study by Lahey et al. [2011]

A AR Fleiss’ κF Krippendorff’s α
Session 2 .326 [.186, .466] .251 [.093, .408] .040 [−.064, .144] .054 [−.049, .156]
Session 3 .368 [.269, .467] .298 [.186, .409] .043 [−.056, .141] .052 [−.045, .149]

Note: Brackets indicate 95% jackknife CIs. Lahey et al. [2011] (in Table 4) report an Ai = .66 for the referent Contacts:
Open-Close (Session 3). The correct value is .54, which results in a slightly lower average for A.

0
.2
.4
.6

AB CD CE DF EF AF AD BC BH AC’ CH BG Z

S
A

AB CD CE EF GH AC DF AD AC’ CH AG EH Z’ 
37.1  24.3  11.4    5.7     4.3     4.3     2.9     2.9     1.4   1.4      1.4     1.4     1.4    35         33        18        4           2         1           1          1          1          1          1           1         1    FREQ (%)

SESSION 2 SESSION 3

Fig. 8. Specific agreement (not corrected for chance) calculated for the observed signs in the study of Lahey
et al. [2011]. Error bars represent 95% jackknife CIs. The value below each sign shows its % frequency in
participants’ proposals. Z and Z’ stand for the codes of two non-identifiable signs.

seven action pairs, and for each, they had to propose a preferred bend gesture pair. Finally, in Section
3, they proposed a preferred gesture pair for a total of 10 action pairs of five mobile applications.
The investigators calculated agreement scores for both Session 2 and Session 3. Their average

scores were A = .326 and A = .368, respectively, which correspond to AR = .251 (Session 2) and
AR = .298 (Session 3). According to Vatavu and Wobbrock [2015], these values can be interpreted
as medium agreement. However, Lahey et al. [2011] reached a different conclusion and argued that
”the consensus on the mapping of those bend gestures to actions was overall low, showing that each
participant had his or her own preference.” Given this assessment, the investigators did not propose
any consensus gesture set. Is the investigators’ conclusion justified?
Table 10 presents chance-corrected agreement indices for Sessions 2 and 3. Both Fleiss’ κF

and Krippendorff’s α are low, and their 95% CIs range from negative to positive values. These
results are in line with the investigators’ assessment: there is no evidence that participants have
reached agreement. How can one explain this large discrepancy between agreement rates and
chance-corrected indices? How did the investigators reach the right conclusion despite the fact
that their A scores were similar or higher than representative averages of older gesture-elicitation
studies [Wobbrock et al. 2005, 2009]?
We conduct a more detailed analysis to answer these questions. Results show that participants

reused a surprisingly small number of signs, i.e., gesture pairs. Three signs (”AB”, ”CD”, and ”CE”)
accounted for 73% of proposals in Session 2 and for 86% of proposals in Session 3. We further
analyze the number of agreement pairs for individual signs and find that these three signs alone
explain 96% of observed agreements for Session 2 and 99% of observed agreements for Session
3. Although additional signs emerged during the study (a total of 15 additional signs for both
sessions), those were used sporadically and with no coherence among participants. Furthermore,
preferences over the three most frequent signs were still very divided for most referents, showing
a highly arbitrary assignment of signs to referents. Our analysis of specific agreement confirms
these trends. Figure 8 shows that specific agreement is either zero or extremely low for all but three
very frequent signs (”AB”, ”CD”, and ”CE”). As A and AR do not account for such bias, they result
in misleading agreement scores. Here, the investigators relied on intuition and common sense to
reach the right conclusion.
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Table 11. Polarity of bend gestures [Lahey et al. 2011]: agreement indices for the full set of referents and for
directional only referents

Referents A AR Brennan-Prediger’s κq
Session 2 All .662 [.540, .783] .619 [.475, .763] .238 [−.050, .527]

Directional .752 [.568, .936] .720 [.499, .940] .439 [−.002, .881]
Session 3 All .622 [.533, .711] .576 [.474, .677] .151 [−.052, .355]

Directional .669 [.557, .780] .626 [.497, .756] .252 [−.007, .511]
Note: Brackets indicate 95% jackknife CIs.

Table 12. Polarity of bend gestures [Lahey et al. 2011]: difference in agreement scores between directional
and non-directional referents

A AR Brennan-Prediger’s κq
Session 2 .157 [−.035, .350] .176 [−.053, .404] .351 [−.105, .808]
Session 3 .051 [−.074, .176] .053 [−.092, .197] .105 [−.183, .394]

Note: Brackets indicate 95% jackknife CIs.

Despite these results, the authors still characterize bias as agreement: "participants express strong
agreement when designing individual bend gestures as well as bend gesture pairs" [Lahey et al. 2011].
To reach this conclusion, they observe the frequency distribution of gestures produced in Session
1, where this distribution demonstrates a clear overall preference for a few gesture pairs. As we
discussed in Section 3.5, inspecting the frequency distribution of observed signs is possibly the best
approach for identifying overall preferences. Agreement rates and κ coefficients are not suitable
for this type of analysis.
Polarity of Bend Gestures. Lahey et al. [2011] further explored how participants agreed on the
polarity of proposed bend gestures, where polarity is ”either up (towards the user) or down (away
from the user)." They reported that ”for actions with a strong directional cue, we found strong consensus
on the polarity of the bend gestures.” They also claimed that for Session 3, ”the majority of the bend
gesture pair/action pair mappings were consistent in terms of their polarity.”

However, these conclusions were not justified by using formal statistics. Agreement indices can
help us assess to what extent statistics support them. We re-analyzed the data by first removing
proposals for which polarity did not conform to the above definition. We removed 8.6% of proposals
for Session 2 and 6.0% of proposals for Session 3. Table 11 presents our results for the full set of
referents and, separately, for directional referents only: Next/Previous, Left/Right, Up/Down, and
Zoom In/Out. Fleiss’κF and Krippendorff’s α are not useful in this case, as the two polarity categories
always appear in pairs with the same frequency. Instead, we use Brennan-Prediger’s κq with q = 2,
which calculates chance agreement as pe = .5. This high (50%) probability that pairs of participants
agreed by chance explains the large discrepancy between AR scores and Brennan-Prediger’s κq .
Overall, the results do not support the investigators’ conclusions or at least, they are non-

conclusive. The low statistical power of the study (10 only participants) results in wide confidence
intervals for Brennan-Prediger’s κq , which means that estimations are highly uncertain. Table 12
presents differences in agreement scores between directional and non-directional referents. Again,
these results do not show any clear difference between the two referent groups.
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Table 13. Agreement indices for the elicitation study by Chan et al. [2016]

A AR Fleiss’ κF Krippendorff’s α

.242 [.137, .347] .191 [.079, .304] .091 [.000, .182] .093 [.002, .183]
Note: Brackets indicate 95% jackknife CIs.
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Fig. 9. Fleiss’ κF calculated for individual referents for single-hand micro-gestures [Chan et al. 2016]. Error
bars represent 95% jackknife CIs.

7.2 Single-Hand Micro-Gestures – Chan et al. [2016]
Chan et al. [2016] conducted a gesture elicitation study to explore the design of single-hand micro-
gestures (SHMGs). This study is one of the first to report AR (instead of A) and to closely follow
the interpretation of agreement rates proposed by Vatavu and Wobbrock [2015]. Specifically, Chan
et al. [2016] reported an average AR = .191 and interpreted this value as medium agreement. This
allowed them to define a consensus gesture set, consisting of eight unique signs for a total of 35
referents. They then extended this set to 16 unique signs based on variations of those signs.

The interpretation given by Chan et al. [2016] does not consider the problem of chance agreement.
During their analysis, the investigators observed that participants frequently mixed up the number
of fingers used. To deal with this issue, they separated ”gestures that used two or less fingers from
those with three or more fingers.” By relaxing the constraints on how signs were classified as similar
or different, the investigators succeeded in increasing agreement rates, as agreement now reflected
a smaller number of gesture parameters. However, as this strategy constrains the vocabulary of
active signs, it may as well increase chance agreement.

We re-analyzed the 560 gesture proposals (16 participants × 35 referents) as identified by Chan et
al. [2016]7. Table 13 presents estimates of overall agreement scores. Chance-corrected coefficients
are particularly low, while Fleiss’κF 95% CI includes zero. These agreement values are slightly higher
than ones calculated for the previous study of Lahey et al. [2011], and proponents of significance
tests could argue that chance-corrected agreement is (at least marginally) significantly higher than
zero. However, statistical significance by itself provides very little information about the level of
observed agreement. A closer look into the results of the study shows that participants tended to
prefer tap-like micro-gestures for referents that represent discrete actions such as ”select single”,
and swipe-like micro-gestures for referents that represent continuous actions such as ”scrolling”.
Yet, apart from those two referents, results do not clearly show that participants reached consensus
(see Figure 9). For example, for referents that represented discrete but directional actions, e.g.,
”previous” and ”next”, preferences were highly divided between swipe and tap-like micro-gestures.
7Chan et al. [2016] present a total of 35 referents but incorrectly count only 34 referents and 544 proposals. In addition, we
found 46 unique signs, instead of 47 unique signs reported in their paper.
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Fig. 10. Specific agreement (not corrected for chance) for observed sign categories in the study of Chan et
al. [2016]. Error bars represent 95% jackknife CIs. Signs are sorted by their frequencies.

Our analysis further indicates that there was a bias towards a small number of signs. Among
the 46 unique signs defined by the investigators, a single sign (”tap thumb with two or less
fingers”) represented alone 23% of all proposals and accounted for 38% of all observed agreements.
Moreover, the four most frequent signs represented 59% of all proposals and accounted for 82% of
all agreements. Figure 10 further shows that specific agreement is spread over a small number of
signs. For less frequent signs, agreement is generally low, with two notable exceptions: the 12th sign
(”tap two or less fingers”) and the 15th sign (”tap thumb and more than two fingers”). Agreement
over these two signs is relatively high despite their low frequency. In such cases, agreement is less
likely to have occurred by chance.

Bias towards a small number of signs can also produce conflicts. In particular, the most popular
proposal for 30 out of 35 referents was within four only signs. To resolve such conflicts, the
investigators re-examined their data to identify recurring patterns in participants’ use of individual
fingers. Based on such patterns, they produced new gesture variations. This approach allowed the
investigators to combine observations from real data and their own design skills to give a solution
to a rather complex design problem. Yet, agreement scores only partially reflect the final consensus
gesture set where such variations are present. We discuss methodological issues related to the
analysis of sign vocabularies in Section 8.

7.3 On-Skin Gestures – Weigel et al. [2014]
Weigel et al. [2014] conducted a gesture elicitation study to explore a vocabulary of on-skin gestures.
The study investigated a large, open-ended design space that involved diverse input modalities
(multitouch, grab, pull, press, scratch, shear, squeeze, twist) and several locations on the upper limb
(fingers, wrist, back of the hand, palm, forearm, elbow, upper arm). 22 volunteers participated in
the study and proposed gestures for a total of 40 referents, where 33 referents represented common
commands and seven referents represented expressions of emotions. The investigators calculated
individual per-referent Ai agreement scores, which ranged from .08 to .69. The overall average was
A = .25, which corresponds to AR = .21. As those values were close to the ones of other related
gesture elicitation studies [Lee et al. 2010; Wobbrock et al. 2009], Weigel et al. [2014] argued: ”scores
are comparable with those in prior work [...], despite the larger input space of our study.”

However, a larger input space does not always lead to lower chance agreement because partici-
pants may disregard the extra input modalities and only agree on a small set of obvious gestures.
For example, the five highest agreement scores that Weigel et al. [2014] report for command
gestures correspond to common direct-manipulation gestures dedicated to content rotation and
resizing actions. As these gestures are widely available on today’s multitouch devices, the authors
acknowledge: ”these findings show that participants transferred conventional multitouch gestures
to on-skin input”. For the rest of the commands, agreement scores (Ai ) were considerably lower,
with a highest value of .31, where again, agreement was largely due to the use of conventional
multitouch gestures. Furthermore, agreement depends on the strategy that investigators follow
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Table 14. Agreement indices for the elicitation study by Weigel et al. [2014]

A AR Fleiss’ κF Krippendorff’s α

On-Body Location .328 [.252, .404] .296 [.216, .376] .004 [−.016, .024] .005 [−.015, .025]

Input Modality .336 [.297, .375] .304 [.263, .345] .119 [.085, .154] .120 [.086, .155]
Note: Brackets indicate 95% jackknife CIs. A scores are not consistent with the ones reported by Weigel et al. [2014]
because we follow a different approach to classify proposals into signs.

to classify gesture descriptions to signs. The higher the granularity of the classification process,
the harder it is to reach agreement, since participants need to agree on a larger number of gesture
parameters. Our following analysis attempts to account for these issues.
Weigel et al. [2014] identify three dimensions that describe an on-skin gesture: (i) the body

location on which the gesture takes place, e.g., fingers, palm, and forearm, (ii) its input modality,
e.g., multitouch, grab, and twist, and (iii) other gesture properties, e.g., number of fingers, direction,
and movement dynamics.
On-Body Location.We first investigate if participants agreed on the on-body location of gestures
by considering eight basic locations (upper arm, elbow, forearm, back of the hand, palm, fingers,
wrist, and shoulder), as well as combinations of multiple locations (e.g., palm + fingers). After
inspecting Fleiss’ κF and Krippendorff’s α in Table 14, we conclude that participants did not reach
consensus. Again, the A and AR indices provide very misleading information about the level of
intrinsic agreement.
Input Modality + Other Gesture Properties. The original agreement analysis of Weigel et
al. [2014] disregarded the on-body gesture location and focused on the input modality of the gesture
in combination with individual gesture properties. For example, all the ”pinch” gestures were
classified as identical, regardless of whether they were executed on the palm or the forearm. To
assess if different gesture proposals belonged to the same unique sign, the investigators considered
various movement properties, such as the gesture direction or its force and intensity, e.g., tapping
with force versus tapping gently. However, other properties, such as the number of fingers, were
generally not considered. Unfortunately, the classification strategy that the investigators followed
is not fully known.
For our analysis, we relied on textual gesture descriptions, i.e., textual tags provided by the

authors in a spreadsheet. These textual tags were used by the investigators to describe individual
gesture proposals. They principally represent input modalities, but for some modalities, the touch
modality in particular, they describe additional variations. Representative examples of such tags are:
tap, slide, slide/swipe, poke, scratch, squeeze+shake, tap+twist, etc. We extracted these tags directly
from the spreadsheet and handled them as signs. Unfortunately, these signs do not coincide with
the actual signs considered by the investigators to calculate agreement. As a result, our analysis
does not reproduce the actual agreement scores reported by Weigel et al. [2014].

Overall, we counted 65 unique signs, but only 21 of those signs had at least one agreement. Table 14
(Input Modality) presents agreement scores calculated over the full set of referents. Interestingly, our
averageA is considerably higher than the one (A = .25) reported by Weigel et al. [2014]. The reason
is that our gesture classification is less stringent, causing agreement to happen more easily. At the
same time, this approach increases the probability of agreement by chance, which explains the large
discrepancy between the overall agreement rate and chance-corrected coefficients. A more detailed
analysis shows that the slide sign alone represented 43% of all proposals and was responsible for
80% of all observed agreements. Tap was the second most popular sign (14%), while twist was
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study of Weigel et al. [2014]. We only show signs for which at least two proposals were observed. Error bars
represent 95% jackknife CIs. Signs are sorted by their frequencies.
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Fig. 12. Participants’ agreement on the input modality of on-skin gestures. We calculate Fleiss’ κF for
individual referents, following the ordering of Weigel et al. [2014]. Error bars represent 95% jackknife CIs.

the most popular (4%) skin-specific sign. Figure 11 shows how the slide sign and its variations
dominated participants’ proposals and agreement scores. There was little or no consensus for other
signs, where poke-tap and punch are the only skin-specific signs for which there is evidence of
agreement. Figure 12 presents Fleiss’ κF for individual referents by preserving the authors’ original
presentation order. Notice that κF is particularly high for five referents that correspond to direct
content-manipulation actions (”enlarge”, ”shrink”, ”rotate”, ”zoom-in”, ”zoom-out”).
The gesture classification approach can greatly affect agreement scores. For example, for the

”sympathy” referent, we decided to discriminate between the slide-rub and slide-stroke modalities,
as they appear as different in the investigators’ spreadsheet. In contrast, Weigel et al. [2014] most
likely grouped them under a common sign, and this resulted in a higher agreement score. If we
follow their approach, the Fleiss’ κF for this referent will be .41, 95% CI = [.06, .77]. More generally,
agreement scores have little value by themselves. In order to interpret them, one needs to know
exactly what participants agree upon, i.e., know how signs are defined and how proposals are
classified into these signs. We further discuss this issue in Section 8.

7.4 Keyboard Gestures – Bailly et al. [2013]
Bailly et al. [2013] investigated gestural shortcuts for their Métamorphe keyboard. Métamorphe is
a keyboard with actuated keys that can sense user gestures, such as pull, twist, and push sideways.
The study was later re-analyzed by Vatavu and Wobbrock [2015; 2016], thus it provides a good
basis for comparisons.
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Table 15. Agreement indices for the elicitation study by Bailly et al. [2013]

A AR Fleiss’ κF Krippendorff’s α

Keys .320 [.213, .427] .284 [.172, .397] .260 [.148, .371] .261 [.149, .372]

Gestures .370 [.323, .417] .336 [.287, .386] .240 [.192, .289] .241 [.193, .289]
Note: Brackets indicate 95% jackknife CIs.
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Fig. 13. Specific agreement (not corrected for chance) for the observed signs of key gestures in the study of
Bailly et al. [2013]. Error bars represent 95% jackknife CIs. Signs are sorted by their frequencies.

In this study, 20 participants suggested a keyboard shortcut for 42 referents on a Métamorphe
mockup. Proposing a shortcut required choosing (i) a key and (ii) the gesture applied to the key.
Bailly et al. [2013] treated shortcuts as a whole but also analyzed keys and gestures separately.
Here, we analyze keys and gestures separately. Participants produced a total of 71 different signs
for keys and 27 different signs for gestures.8

Table 15 shows overall agreement scores for keys and for gestures. An investigator who uses the
A or AR measures may infer that participants’ consensus was higher for gestures than for keys.
However, chance-corrected coefficients reveal that this difference is most likely due to chance
agreement. As the number of signs was lower for gestures than for keys and participants exhibited a
strong bias for the “top push” sign, agreement was more likely to occur by chance. Overall, the “top
push” sign represented 28% of proposals and was alone responsible for 37% of observed agreements.
Figure 13 presents the specific agreement for individual gestures. Although the ”top push” sign
dominated participants’ proposals, the distribution of specific agreement is more uniform across
signs than in our previous case studies. Furthermore, the evidence that agreement is above zero is
high for most signs of interest. These trends explain the higher chance-corrected agreement scores
that we found for this study.
We can also use confidence intervals to back up the authors’ claim on the effect of directional

referents on agreement: “highly directional commands [...] tended to have a high gesture agree-
ment” [Bailly et al. 2013]. The difference in Fleiss’ κF between the eight directional referents
containing the terms top, bottom, left, right, previous or next and all other referents is ∆κF = .41,
95% CI = [.24, .58], so the evidence supporting this claim is overwhelming.
Women vs. Men. Bailly et al. [2013] collected proposals from 11 women and 9 men. Vatavu and
Wobbrock [2016] reanalyzed their dataset to test differences in agreement between genders but
8Bailly et al. [2013] considered only 15 signs for gestures by grouping uncommon signs into “combo” and “other”. We kept
all 27 signs to be consistent with the analysis of Vatavu and Wobbrock [2015], but results are very similar.
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observed similar overall agreement rates between women and men (.353 vs. .322). If we use Fleiss’
κF to estimate this difference, we find that ∆κF = .06, 95% CI = [−.11, .16], where we use the
bootstrap method to construct the confidence interval. Vatavu and Wobbrock [2016] continued
their analysis and used the Vb statistic to compare agreement differences between genders for
individual referents. They found9 ”significant differences (p < .05) for 7 referents.” Based on this
finding, they concluded: ”these results show that women and men reach consensus over gestures in
different ways that depend on the nature of the referent [...]”
We showed, however, that the Type I error rate of the Vb test is unacceptably high (see Section

6), thus such differences may be random, rather than the result of a gender effect. To verify the
conclusion of Vatavu and Wobbrock [2016], we run a simulation experiment over the original
dataset of Bailly et al. [2013]. The experiment draws inspiration from permutation tests [Hesterberg
et al. 2005]. It evaluates theVb test on participant groups that are randomly chosen from the pool of

the 20 participants of the original study. There are
(
20
9

)
= 167960 ways to partition 20 participants

into two independent groups of 9 and 11 participants. Since testing all these partitions can be
extremely long, we randomly create 1000 such partitions. We then apply theVb test to each random
partition and count the number of referents for which the difference between the AR of the two
groups is significantly different than zero (α = .05).

The results confirm our concerns. The mean number of referents per partition for which the null
hypothesis is rejected is 8.8 (sd = 2.6). Therefore, the 7 referents that Vatavu and Wobbrock [2016]
report when comparing agreement between women and men is a well-expected result, below the
average number of significant differences observed for fully random partitions. The Type I error
rate of the Vb test for this dataset can be estimated as 8.8/42 = .21, which is again very high, more
than four times higher than its nominal value.

For comparison purposes, we re-evaluate the bootstrap method with the exact same procedure.10
We produce 95% confidence intervals by using 3000 bootstrap samples, and for each confidence
interval, we reject the null hypothesis if the interval does not include zero (α = .05). The mean
number of referents per partition for which the method rejects the null hypothesis is 1.94, which
gives a Type I error rate of 1.94/42 = .046. This error rate is very close to the one we found in
Experiment 6.8 and further confirms the good behavior of the bootstrap method.

Can we then use the method to test gender differences for individual referents? We discourage
such practices for several reasons. Making comparisons between women and men was out of the
scope of the original study of Bailly et al. [2013]. The size of the two groups was particularly low,
while the study did not control for confounding variables, such as computer skills or experience
with novel input devices, which might highly correlate with gender. We argue against making
unplanned post-hoc comparisons over uncontrolled samples of such small sizes, as those can result
in misleading conclusions. Furthermore, jackknife and bootstrap confidence intervals for individual
referents may not be precise, especially when sample sizes are low. As a result, using them to test
such hypotheses may not be appropriate.

7.5 Synthesis of Findings
Results from the four case studies confirm that the AR index is problematic. In several cases, it
provides misleading information about the level of consensus reached by participants. Table 16
combines the results of Tables 10, 13, 14, and 15. We observe that similar AR scores can result in
very different chance-corrected values.
9Vatavu and Wobbrock [2016] did not account for multiple comparisons for this case study.
10Notice that in Experiment 6.8, we applied fewer iterations to evaluate the bootstrap method because calculating κ is
considerably slower than calculating AR , which is the case here.
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Table 16. Summary of agreement scores for all four case studies

Case Study A AR Fleiss’ κ Krippendorff’s α

Lahey et al. [2011] .326 [.186, .466] .251 [.093, .408] .040 [−.064, .144] .054 [−.049, .156]
.368 [.269, .467] .298 [.186, .409] .043 [−.056, .141] .052 [−.045, .149]

Chan et al. [2016] .242 [.137, .347] .191 [.079, .304] .091 [.000, .182] .093 [.002, .183]

Weigel et al. [2014] .328 [.252, .404] .296 [.216, .376] .004 [−.016, .024] .005 [−.015, .025]
.336 [.297, .375] .304 [.263, .345] .119 [.085, .154] .120 [.086, .155]

Bailly et al. [2013] .320 [.213, .427] .284 [.172, .397] .260 [.148, .371] .261 [.149, .372]
.370 [.323, .417] .336 [.287, .386] .240 [.192, .289] .241 [.193, .289]

Note: Brackets indicate 95% jackknife CIs.

The source of such discrepancies is the difference in size of different sign vocabularies or,
more generally, bias in the frequency distribution of signs. Figure 14 presents the observed bias
distribution for each study. For each bias distribution, the figure also presents our closest model
of bias based on a Zipf-Mandelbrot or a half-normal probability distribution (see Section 3.2). We
experimentally determined the bias parameters (B or sd) of these functions such that the chance
agreement they produce approximates Fleiss’ pe . Notice that chance agreement can be particularly
high. For example, chance agreement is over 20% for the studies of Lahey et al. [2011] and Weigel
et al. [2014]. In contrast, bias for keys was very low in the study of Bailly et al. [2013]. Chance
agreement was very low (pe = .03) in this case, despite the fact that the number of keys in a physical
keyboard is hard-constrained.
We already discussed that bias may reveal overall preferences over highly usable gestures and

help investigators disregard gestures that participants seem to avoid. For example, Lahey et al. [2011]
did not find clear mappings between referents and signs, but the study helped them identify strong
preferences for a small set of bend-gesture pairs. In other cases, bias may not be a desired artifact.
In the study of Weigel et al. [2014], participants’ proposals were highly dominated by signs that
correspond to common multi-touch gestures, thus bias was partly due to legacy bias [Morris et al.
2014]. Finally, in the study of Bailly et al. [2013], bias was largely due to the frequent use of the
obvious ”top push” as a default sign, which might have happened when participants could not
think of meaningful associations between commands and key gestures.

Regardless of the source of bias, chance-corrected agreement indices allow researchers to isolate
its effect on agreement and analyze it independently from agreement that considers the semantics
of referents. When participants cannot differentiate among referents, so clear mappings between
signs and referents do not emerge, chance-corrected agreement is expected to be low. In such cases,
it may be wiser to investigate gesture customization approaches [Oh and Findlater 2013], instead
of insisting on unique mappings that cannot be characterized as ”user-defined.”

In addition to bias, we analyze how sign preferences are distributed in the proposals of individual
referents in all four studies. To this end, we collect proposals for a total of 156 referents. For the
study of Bailly et al. [2013], we count proposals for both gestures and keys. For the study of Lahey
et al. [2011], we count proposals for both Session 2 and Session 3. We then group referents into four
ranges of agreement according to their observed agreement rate ARi , where ARi ∈ [.1, .3], [.3, .5],
[.5, .7] or [.7, .9]. For each referent, we rank the proposed signs based on their relative frequencies
and then aggregate these frequencies over all the referents of each agreement range to produce an
overall probability distribution of sign preferences (see Section 6.1).
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Fig. 14. Observed bias distributions (in orange) for our four case studies. In blue, we show the closest model
of bias distribution (Zipf-Mandelbrot or discrete half-normal) by choosing the bias parameter (B or sd) with
respect to the observed chance agreement pe . We only show the 12 most frequent signs (k = 1, 2..12) – the
contribution of additional signs to chance agreement can be considered as negligible.

Figure 15 summarizes our results, where for each observed distribution, we also show the Zipf-
Mandelbrot model that approximates the mean ARi of the group. The bottom part of the figure
shows the same distributions with log-log plots. Such plots are commonly used to illustrate how
well observed frequencies follow a power-law model [Newman 2005]. Although we only vary a
single model parameter, the observed sign frequencies are generally close to our Zipf-Mandelbrot
models. This is clearer for the highest frequency ranks that dominate agreement. We acknowledge
that the probability estimation for lower ranks is more noisy and uncertain, but the contribution of
rare signs to agreement is negligible. More precise power-law models require the analysis of larger
participant samples. This is out of the scope of this article, but it is an interesting future direction.

8 METHODOLOGICAL ISSUES
Agreement largely depends on the process investigators follow to classify participant proposals.
This process requires first defining a sign vocabulary and then using this vocabulary to classify
observed gestures. We discuss methodological issues that HCI researchers should consider when
they carry out these tasks.

8.1 Defining a Sign Vocabulary
An agreement value cannot be interpreted unless a clear frame of reference is provided because
one needs to know what participants agree upon. Therefore, sign vocabularies need to be well
defined, e.g., through an identity or a similarity measure that clearly determines if any two gesture
descriptions belong to the same or two distinct signs.
Defining a sign vocabulary is rarely a straightforward process. For their key gestures, Bailly et

al. [2013] started with a closed set of 10 distinct gesture signs, but several participants invented
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Fig. 15. Observed distributions (in orange) of sign proposals for individual referents. We analyze proposals
for 156 referents from all case studies, where referents are grouped into four agreement ranges: ARi ∈ [.1, .3],
[.3, .5], [.5, .7] or [.7, .9]. In blue, we show the Zipf-Mandelbrot distribution for each range of agreement.
Log-log plots for the same distributions are shown at the bottom. We only show the top frequency ranks for
which at least a single proposal was made.

additional signs during the study, where most were combinations or variations of the original
set. The investigators included them in their analysis, but as many of them appeared rarely,
they classified them under larger groups (”combo” and ”other”). Chan et al. [2016] faced a more
challenging problem as they studied an open-ended vocabulary, where gesture variations was the
result of a complex combination of different parameters, such as the number and type of active
fingers, their poses, their relative movements, and compound gestures. To deal with this complexity,
the investigators simplified their gesture classification criteria by reducing the number of gesture
parameters. This approach helped the authors focus on gesture properties for which consistent
behavior, i.e., some reasonable level of consensus, among participants was observed. Weigel et
al. [2014] followed a similar approach. However, we could not reproduce the agreement values
that the authors reported because the similarity criteria that they used to classify gestures were
ill-defined. Since their agreement values do not have a clear frame of reference, they are hard to
interpret.
In the above examples, the investigators construct the sign vocabulary a-posteriori, often by

inspecting the entire dataset. This approach raises some questions. Is the vocabulary definition
general enough to apply to a different collection of gesture descriptions? Does it inform design or
is it simply conceived to maximize agreement? An in-depth discussion of these questions is out of
the scope of this article, but there are strategies that could partially address them. For example, a
good practice is to specify the sign vocabulary prior to the data analysis based on existing theory,
previous evidence, or pilot studies. Creating a gesture taxonomy [Wobbrock et al. 2009] to explore
the design space of possible gestures and identify their dimensions and categories could help to this
direction. Another strategy is to assign the task to multiple investigators or ask external experts to
verify the sign definition approach.
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Table 17. Verifying the reliability of the data analysis for our fictitious study on grasps

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Total
A 0 0 0 0 0 0 0 0 0 0 0
B 3 0 3 0 0 0 0 3 0 2 11
C 0 3 0 0 3 0 3 0 0 1 10
D 0 0 0 2 0 1 0 0 2 0 5
E 0 0 0 1 0 2 0 0 1 0 4

Note: Three independent coders classify a sample of 10 random grasp descriptions (G1 – G10) through video analysis.
Each cell gives the number of coders who classify a grasp into a specific sign. For those 10 grasp descriptions, the three
coders have made use of four unique signs (”B”, ”C”, ”D”, ”E”).

Finally, we recommend that investigators inspect gesture descriptions in a random order by
hiding their referents. Given this approach, any bias in the sign-definition and classification process
will appear as overall referent-independent bias, and chance-corrected indices will eliminate its
effect on agreement. The approach may also discourage data-analysis strategies that artificially
optimize agreement.

8.2 Classifying Participants’ Proposals into Signs
Gesture classification is typically performed by humans. Since this process can rely on subjective
criteria, its reliability needs to be verified. In the previous sections, we investigated agreement
indices for assessing consensus among participants. However, the exact same indices can be used
to verify the reliability of gesture classification results. We explain the approach with our fictitious
study on user-elicited grasps (see Section 2). Imagine that three independent coders review the
video recordings of a random sample of 10 grasp proposals (G1 – G10) and classify them into unique
signs. Suppose Table 17 summarizes their results.

To verify the reliability of this classification, we assess how the three coders agree with each other.
To this end, we calculate Fleiss’ κF : the percent agreement is pa = .733, the chance agreement is
pe = .291, and therefore,κF = .624. ThisκF value is a measure of reliability. A low score may require
the investigators to update their sign definitions and rerun the classification process. For example,
the investigators may decide to group the signs ”D” and ”E” together because distinguishing between
them seems to be difficult or highly random.
Notice that κF is calculated over the exact same sign vocabulary that we used to calculate

agreement among the participants of the study (see Table 1). As before, one may assume an infinite
vocabulary of signs (q → ∞) fromwhich coders choose, and bias has the exact same effect on chance
agreement. Here, the role of chance-corrected coefficients is to ensure that coders differentiate
among cases – they do not simply assign the most prevalent signs in random. Although we use the
same indices, the assumptions for constructing their confidence intervals are now different. Coders
are shown gesture descriptions (not referents), and those should not be considered as fixed. For a
detailed explanation of how to construct confidence intervals in this case, we refer the reader to
Gwet’s [2014] handbook.
Gesture elicitation studies that have used κ coefficients to verify the reliability of their gesture

classification results, either fully or for part of their analysis, include the studies of Micire et
al. [2009], Gleeson et al. [2013], Weigel et al. [2014], and Troiano et al. [2014]. Classifying proposals
to signs can be especially tedious and time-consuming, but previous work [Grijincu et al. 2014] has
developed crowdsourcing methods to facilitate this task.
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9 LIMITATIONS AND FUTUREWORK
There are issues that this article has not addressed. We discuss limitations of our analysis and
identify directions for future work.

9.1 Complex Gesture Elicitation Designs
Gesture elicitation can employ complex design features that are not well supported by the statistics
that we discussed in this article. For example, previous work [Morris 2012] has examined experi-
mental protocols that allow participants to propose multiple gestures per referent. Such designs
are not unique to gesture elicitation. For example, Gwet [2014] discusses similar scenarios in the
field of medical coding, where coders assign multiple codes to each item, sometimes by order of
priority. In these scenarios, inter-coder agreement can be assessed by re-organizing the data and
using weighted κ coefficients [Gwet 2014], where weights express varying degrees of agreement or
disagreement. Gwet [2014] also discusses indices that measure agreement with respect to a gold
standard. In the context of gesture elicitation, such indices could be used to assess how participants’
proposals agree with a state-of-the-art vocabulary or, alternatively, with a vocabulary specified by
a design expert.

Other study designs may violate certain assumptions of standard agreement indices. In particular,
the use of non-overlapping gestures sets and semantic grouping [Bailly et al. 2013; Piumsomboon
et al. 2013] may affect the way chance agreement is estimated, as the gestures proposed by par-
ticipants for different referents may not be assumed as independent. Future work needs to study
alternative probabilistic models that account for inter-referent relationships and constraints.

9.2 Symbolic Gestures vs. Direct-Manipulation Actions
The four gesture elicitation studies that we reanalyzed focus on vocabularies of symbolic or abstract
gestures, which usually serve as shortcuts to discrete, non-contextual operations. However, several
studies [Piumsomboon et al. 2013; Wobbrock et al. 2009] have investigated contextual, direct-
manipulation gestures. In such studies, the problem of chance agreement may be lower because
direct-manipulation operations such as selection, manipulation, and transformation, have unique
constraints (e.g., continuous vs. discrete control and spatial constraints), which may make bias and
conflicts across different referents less likely to happen.

This hypothesis remains to be verified. Although Piumsomboon et al. [2013] provided access to
their gesture classification spreadsheet, we could not use it to assess chance-corrected (or specific)
agreement. The reason is that their classification approach compares gestures on a per-referent
basis but does not result in a common sign vocabulary for all referents. Since gestures are not
comparable for similarity across referents, we cannot produce a contingency table as in Table 2 to
compute chance-corrected (Equation 5) or specific agreement (Equation 6).

9.3 Characterizing Low or High Agreement
The article does not provide any guidelines about which levels of chance-corrected agreement
can be considered as high or low. We acknowledge, however, that interaction designers and HCI
researchers may need to use such guidelines in order to take concrete design decisions. For example,
which levels of κ justify the definition of user-defined mappings between referents and signs?
When should designers opt for a customization-based approach? These questions require further
research effort and a more systematic evaluation of the costs and benefits of user-defined gestures
(e.g., see the study by Morris et al. [2010]) under various agreement levels. We thus leave this
direction as future work.
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10 CONCLUSIONS
We reviewed statistical methods for agreement assessment in gesture elicitation studies. We investi-
gated three major questions: (i) how to measure agreement; (ii) how to interpret agreement values;
and (iii) how to support statistical inference. Our conclusions can be summarized as follows:

• The agreement rate AR [Vatavu and Wobbrock 2015] and its approximation A [Wobbrock
et al. 2005] do not account for chance agreement and can lead to overoptimistic conclusions
about the true level of consensus reached by participants. We recommend the use of AR in
combination with Fleiss’ κF or Krippendorff’s α . These indices can be complemented with
indices of agreement specific to signs [Spitzer and Fleiss 1974; Uebersax 1982]. A careful
analysis of the observed bias distribution is also highly recommended.
• The recommendations of Vatavu and Wobbrock [2015] for assessing the magnitude of agree-
ment rates can lead authors to incorrectly interpret their agreement scores. Unfortunately,
objective measures for assessing what levels of agreement are high, or sufficient to justify the
selection of user-defined gesture vocabularies do not currently exist. This is a challenging
future direction.
• The Vrd and Vb significance tests [Vatavu and Wobbrock 2015, 2016] rely on problematic
probabilistic assumptions and yield extremely high Type I error rates. We recommend instead
the use of confidence intervals for estimation and hypothesis testing. Confidence intervals
can be constructed with well-known jackknifing and bootstrapping methods.

In addition to the above questions, we discussed methodological issues concerning the gesture
classification process. Gesture elicitation studies are extremely useful but can be complex to set
up and analyze. The proper methodology that can ensure reliability and scientific rigor largely
remains to be developed. To this end, the HCI community can gain a lot by considering lessons
learned in other disciplines where similar issues have been addressed, instead of attempting to
develop its own solutions in isolation.
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