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Conferences WORDS, years 1997-2017:

Open Problems and Conjectures

Jean Néraud, litis, Université de Rouen, France ∗

Abstract

In connection with the development of the field of Combinatorics on

Words, we present a list of open problems and conjectures which were

stated in the context of the eleven international meetings WORDS, which

held from 1997 to 2017.
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Foreword

The first international conference WORDS was organized in 1997 in Rouen,
France. Since then, a series of eleven meetings held: in [61, 62], we provided a
summary of the contributions which were presented at the ten first of them, in
connection with the development of the field of Combinatorics on Words.

The aim of the present paper is to bring some noticeable complementary
information, with two key objectives:

- Beforehand, we provide a nomenclature of some of the challenging con-
jectures and problems which were stated at the occasion of the conferences
WORDS.

- In another hand, with regards to the the state-of-the-field, we hardly wish
to continually update the present study by including the most recent advances
in the framework of the listed questions.

With regards to their corresponding scientific thematics, all the open ques-
tions and the conjectures which were stated, refer to the classification that we
introduced in [61, 62]. To be more precise, according to the frequency of their
presentations, questions and conjectures have been classified in three main do-
mains: the topic of Patterns, that of Complexity and the one of Factorization.
From a practical point of view, each statement is nomenclatured by referencing
to its topic and to the year of the corresponding meeting WORDS; names of
speakers, bibliographic references, and short introductions to the problematics
are also provided.

The present document should be gradually updated: in view of this, please
contact its author; clearly, some bibliographic references, if any, would be wel-
come.

Evidently, each of the numerous results, questions and conjectures which
were presented during these eleven conferences WORDS plays a noticeable part
in the state-of-the-field. From this point of view, we wish that our study will
bring some valuable information to the researchers from the community.

1 The topic of patterns

Let Σ, A be two finite alphabets and let p ∈ Σ∗, w ∈ A∗ ∪ Aω. We say that
the word w encounters p if a non-erasing morphism h : Σ∗ −→ A∗ exists such
that w ∈ A∗h(p)(A∗ ∪Aω); otherwise the word w avoids p or, equivalently said,



is p-free. In this context p is refered as a pattern, moreover we impose that
the morphism h satisfies h(a) = a for any letter a ∈ Σ ∩ A. The pattern p is
k-avoidable if an infinite word avoiding p exists over a k-letter alphabet. From
this point of view, it is well known that, on the alphabet A = {0, 1}, the infinite
word of Thue-Morse have the fundamental property that it avoids any pattern
of type dXdXd, for each letter d ∈ A and any X ∈ Σ∗.

1.1 Avoidance of patterns

In the topic, avoidance of patterns is a central question: it has inspired lots of
problems:

–WORDS 1997:

Authors: Roman Kolpakov, Gregory Kucherov and Yuri Tarannikov [58, 161–
175].
For a natural n ≥ 2, a word is nth power-free if it does not contain any nth
power of a non-empty word as a factor. Given A = {0, 1}, denote by PF(n)
the corresponding set of such words and set ρ(n) = lim k→∞( 1

k
·min{|w|1 : w ∈

PF (n) ∩ Ak}) (the minimal density of the letter 1 in the words of PF (n)).
In their paper, the authors prove that:

(∀n ≥ 3) (∃C > 0) ρ(n) ≤ 1

n
+

1

n3
+

1

n4
+
C

n5
.

The mapping ρ can be extended to real arguments: given a real x ∈ R, denote
by PF(x) the set of the binary words that do not contain a factor of exponent
not smaller than x. Actually, the authors proved that ρ is discontinuous to the
right in each point of {7/3}∪{n ∈ N|n ≥ 3}, moreover, they asked the following
questions:

• Question 1.1.97.1: Does ρ has other discontinuity? What are they? Is
ρ piece-wise constant?

• Question 1.1.97.2: If a pattern is not k-avoidable, but is (k + 1)-
avoidable, what is the minimal frequency of a letter in an infinite word
over k + 1 letters that avoids that pattern?

• Question 1.1.97.3: Kirby Baker, Georges F. McNulty and Walter
Taylor have shown that the pattern abXbcY caZbaTac is 4-avoidable, but
not 3-avoidable [8]. What is the minimal proportion of the fourth letter
needed to avoid that pattern?

–WORDS 2003:

Author: James Currie [30, 7–18].
The author reviews some results concerning words avoiding pattern. He recall
a lot of open problems. Let’s begin by two purely algorithmic questions:



• Question 1.1.03.1: Is it decidable whether p is k-avoidable, given a
pattern p and an integer k?

• Question 1.1.03.2: Given a pattern p, what is the complexity of decid-
ing whether p is avoidable?

With regard to k-avoidability itself, three open problems were stated:

• Question 1.1.03.3: Is there a patten that is 6-avoidable but not 5-
avoidable?

• Question 1.1.03.4: Is aabaacbaab 3-D0L-avoidable (i.e. is there a
ternary morphism g such that gω(a) avoids aabaacbaab)?

• Conjecture 1.1.03.5: If a pattern is k-avoidable then it is k-HD0L-
avoidable (i.e. are there morphisms f : Σ∗ −→ A∗, g : Σ∗ −→ Σ∗, with
|Σ| = k such that f(gω(a)) avoids p)?

The so-called probabilistic method is often use in tackling many problems in
discrete mathematics [3, 3–5]. When trying to prove that a structure with
certain properties exists, such a method consists in constructing a convenient
probability space of structures and then, in showing that the desired properties
hold in this space with a non-zero probability.

• Question 1.1.03.6: Explore the applications of the probabilistic method
in the scope of pattern avoidance.

The so-called circular words were also concerned by some conjectures:

• Conjecture 1.1.03.7: If p is k-avoidable, then there are arbitrary long
circular words on k letters that avoid p.

• Conjecture 1.1.03.8: If p is k-avoidable then there are circular words
with length |p| on k letters that avoid p.

• Conjecture 1.1.03.9: Let p be k-avoidable.

1. If the number of p-free words on k letters of length n grows exponen-
tially with n, then an integer N0 exists such that, for every n > N0,
there are circular p-free words with length n on k letters.

2. If the number of p-free words on k letters of length n grows poly-
nomially with n, then the set of possible lengths for circular p-free
words on k letters has density 0 in the set N \ {0}.

• Question 1.1.03.10: The number of k-power-free binary words of length
n grows polynomially with n for k ≤ 7/3, but exponentially for k > 7/3
[39]. Examine analogous results for alphabets of arbitrary size.

• Conjecture 1.1.03.11: Extension of a result from [8]: the set of circular
words over {0, 1, 2, 3} avoiding the pattern abXbcY caZbaTac has density
0 in the set N \ {0}.



Given an alphabet Σ and w ∈ Σ∗, the word w is maximal p-free if p encounters
any word in Σw ∪ wΣ. The three following conjectures were stated:

• Conjecture 1.1.03.12: Let Σ be an alphabet and let w ∈ Σ∗ be p-free.
Then w is a factor of some maximal p-free word over Σ.

Advances in problem solving:
In [11], Conjecture 1.1.03.12 was solved for a pattern of type p = Xk.

• Conjecture 1.1.03.13: Given an alphabet Σ and a pattern p, a maximal
p-free word over Σ exists.

• Conjecture 1.1.03.14: Let Σ be an alphabet, k ∈ [1, 2], and w ∈ Σ∗

be a k-power-free word. Then, in any case, w is a factor of some maximal
k-power-free word over Σ.

–WORDS 2007:

Authors: Inna Mikhailova and Mikhail Volkov [6, 212–221].
The authors proved that every avoidable pattern can be actually avoided by an
infinite sequence of palindromes over a fixed alphabet.

• Question 1.1.07.1: Is it possible to avoid an arbitrary pattern p by an
infinite sequence of palindromes over each alphabet on which p is avoid-
able?

–WORDS 2011:

Authors: Helena Petrova and Arseny Shur [5, 168–178].
With respect to the prefix (suffix) order, any repetition-free language can be
viewed as a poset whose diagram is a tree, each node generating a subtree and
being a common prefix (suffix) of its descendants. The authors asked the three
following questions:

• Question 1.1.11.1: Does a given word generate a finite or infinite
subtree?

Advances in problem solving:
- In the case of a single word, in [11] it is shown that for all k-th power-free
languages, the subtree generated by any word has at least one leaf.
- It has been shown in [20] that Question 1.1.11.1 is decidable for some power-
free languages.

• Question 1.1.11.2: Are the subtrees generated by two given words
isomorphic?

Actually, the authors proved that, in the langage of cube-free words, arbitrarily
large finite subtrees may be generated.

• Question 1.1.11.3 ([2, Problem 1.10.9] generalized to arbitrary
words): Can words generate arbitrarily large finite subtrees?



–WORDS 2013:

Authors: Tero Harju, Mike Müller [37, 154–160], [40, 29–38].
Let u0, u1 be two words over an alphabet A, and let β ∈ {0, 1}∗, called the
conducting sequence, such that |β| = |u0| + |u1|, and such that the number of
occurrences of the letter i ∈ {0, 1} in β is the length of the word ui: |β|i = |ui|.
While forming the shuffle w = u0 �β u1 at step i (i ∈ [1, |u0| + |u1|]), the
sequence β will choose the first unused letter from u0 if β(i) = 0, or the first
unused letter from u1 if β(i) = 1 that is, the ith letter of w is w(i) = uβ(i)(j),
where j = card{k ∈ [1, i] | β(k) = β(i)} (1 ≤ k ≤ i). This definition can
be extended to infinite words in a natural way (one requires that β contains
infinitely many occurrences of both 0 and 1).
The authors proved that a ternary infinite square-free word exists, in such a
way that it can be shuffled with itself to produce an infinite square-free word.
They asked for the following questions:

• Question 1.1.13.1: Which square-free words u can be shuffled to obtain
a square-free word u�β u?

• Question 1.1.13.2: Which words u can be shuffled to obtain a unique
square-free word u�β u?

• Question 1.1.13.3: Which words w can be obtained in more than one
way from a single word u using different conducting sequences?

• Question 1.1.13.4: Which square-free words w are themselves shuffles
of square-free words: w = u� u?

• Question 1.1.13.5 (due to I. Petrykiewicz): For any infinite ternary
square-free word u, is there an infinite ternary square-free word w such
that u = u�β w for some infinite β?

• Question 1.1.13.6: Is there an infinite square-free word w such that
w = w�β w for some infinite β?

• Question 1.1.13.7: For each n ≥ 3, is there a square-free word u of
length n such that u�β u is square free for some β?

–WORDS 2015:

Authors: Helena Petrova and Arseny Shur [52, 223–236].
As mentionned above, the set of square-free words over a given alphabet may
be represented by a prefix tree T whose nodes are these square-free words. At
WORDS 2015 the authors stated the following conjecture:

• Conjecture 1.1.15.1: In the tree T , the size of any minimal subtree of
index n is O(log n).



1.2 The repetition threshold

The repetition threshold for k letters, commonly denoted by RT (k), is the small-
est rational number α such that there exists an infinite word whose finite factors
have exponent at most α. For instance, every power in the Thue-Morse sequence
has exponent at most 2, thus we have RT (2) = 2.
In the seventies, Françoise Dejean conjectured that, for every k > 2, the follow-
ing holds:

RT (k) =











7/4 if k = 3

7/5 if k = 4

k/k − 1 otherwise.

Dejean’s conjecture was partially solved by different authors. The final proof
was completed in 2009 by James Currie and Narad Rampersad, for 15 ≤ n ≤ 26,
and independently by Michaël Rao, for 8 ≤ k ≤ 38 [17, 3010–3018].

–WORDS 2005:

Author: Pascal Ochem [16, 388–392].
A word is α-free (resp. α+-free) if it contains no factor that is an α′-power, for
any rational α′ ≥ α (α′ > α).

• Question 1.2.05.1 (stronger version of Dejean’s conjecture):

– For every k ≥ 5, there is an infinite (k/k − 1)+-free word over k
letters with letter frequency 1/k + 1.

– For every k ≥ 6, there is an infinite (k/k−1)+-free word over k-letter
with letter frequency 1/k − 1.

Advances in problem solving:
- A partial solution, for 9 ≤ k ≤ 38, was given by Michaël Rao [17, 3010–3018].
- The conjecture has been completely solved by Rao (private communication at
WORDS 2015, see also [66]).

–WORDS 2011:

Authors: Golnaz Badkobeh and Maxime Crochemore [4, 37–43].
Starting with RT (k), the definition of FRT(k), the finite repetition threshold for
k letters, stipulates that only a finite number of factors with exponent α may
exist in the corresponding infinite word. In 2008, Jeffrey Shallit proved that
FRT(2) = 7/3. In their presentation of WORDS 2011, Golnaz Badkobeh and
Maxime Crochemore proved that FRT(3) = RT (3) = 7/4.

• Conjecture 1.2.11.1: We have FRT(4) = RT (4) = 7/5.

Advances in problem solving:
Conjecture 1.2.11.1 has been solved by Golnaz Badkobeh, Maxime Crochemore
and Michaël Rao. In addition they proved that FRT(k) = RT (k), for k ≤ 6
(private communication at WORDS 2015).



1.3 On the number of different squares in a finite word

A natural question consists in examining the number of patterns that may ap-
pear in a finite word. From this point of view, Aviezri S. Fraenkel and Jamie
Simpson focused on dictinct squares, defined as patterns of different shapes (not
just translated of each other). At WORDS 1997, in the case of the sequence of
Fibonacci words (fn)n≥0, they showed that the exact number of such squares
is 2(fn−2 − 1), for any integer n ≥ 5 [58, 95–106]. In [27] they proved that the
number of distinct squares in an arbitrary word of length n is bounded by 2n.

–WORDS 2005:

Author: Lucian Illie [16, 373–376].
With regards to the number of distinct squares in a word, the author provided
a refinement of 2n−O(log n); in addition, he recalled the following conjecture:

• Conjecture 1.3.05.1 (Square conjecture, due to A.S. Fraenkel and
J. Simpson, [27]): The number of different squares in a word of length
n is bounded by n.

Advances in problem solving
- In the case of a binary alphabet in [36], the authors stated a stronger conjec-
ture regarding the number of distinct squares in a binary word: the number of
distinct squares is upper bounded by 2k−1

2k+2n, where k is the least of the number
of occurrences of each letter, the bound being tight.
- The best bound known so far is 11n

6 [21].

–WORDS 2015:

Authors: Florin Manea and Shinnosuke Seki [52, 160–169].
Given a word w, define its square density by:

ρsq(w) = |w|−1 · card{x2 ∈ Σ+|x2is a factor of w}.
In their contribution to WORDS 2015, the authors proved that binary words
have the largest square density; moreover, they asked the question of construct-
ing a “square-density” amplifier:

• Question 1.3.15.1: Can we compute a mapping f : Σ∗ −→ Σ∗ for
which a constant c > 1 exists such that, for all w ∈ Σ∗, if ρsq(w) ≥ 1 then
we have ρsq(f(w)) ≥ cρsq(w)?

1.4 The “runs” conjecture

A run may be defined as some occurrence of a repetition of exponent at least 2
that is maximal, in the sense where it cannot be extended from left or right to
obtain the same type pattern. Such objects play an important role in a lot of
string matching algorithms.

–WORDS 2009:

Authors: Maxime Crochemore, Lucian Ilie and Liviu Tinta [17, 2931–2941].



These authors showed that, given a word of length n, the number of its runs is
not greater than 1.029n. This is a noticeable step in the proof of the so-called
“runs” conjecture:

• Conjecture 1.4.09.1 (“runs” conjecture, due to Kolpakov and
Kucherov, [42]): For a binary alphabet, given word of length n the
number of its runs is bounded by n.

–WORDS 2015:

Authors: Štěpán Holub [53, 43–52].
Denote by ρ(n) the maximal number of runs in a (binary) word of length n.
The concept of “lost positions” is a recently introduced tool for counting the
number of runs in binary words. By investigating the frequency of lost positions
[35, 277–286] in prefixes of words, and by making use of an extensive computer
search, the author proved that the asymptotic density of runs in binary words is
less than 183/193 ≈ 0.9482; in addition, he formulated the following conjecture:

• Conjecture 1.4.15.1: The asymptotic upper bound of ρ(n)/n is never
reached.

1.5 The prefix-suffix square completion

–WORDS 2015:

Authors: Marius Dumitran and Florin Manea [52, 147–159].
The so-called suffix-square duplication allows to derive, from a word w, any word
wx such that x is a suffix of w. The suffix-square completion, in turn, derives
from w a word wx such that w has a suffix of type yxy. Prefix-square duplication
(completion) may be defined in a similar way. In their talk at WORDS 2015,
Marius Dumitran and Florin Manea made use of such operations for generating
an infinite word that does not contain any repetition of exponent greater than
2. With regards to combinatorics properties of words, they asked the following
questions:

• Question 1.5.15.1: What is the minimum exponent of a repetion which
is avoidable by an infinite word constructed by iterated (prefix)-suffix du-
plication?

• Question 1.5.15.2: By applying prefix-suffix completion, can we con-
struct words that avoid cubes, and every word containing squares?

• Question 1.5.15.3: Starting with a single word, does the language
of finite words constructed by iterating prefix-suffix square completion
remains semi-linear?

• Question 1.5.15.4: Draw studies of languages of finite words which
are constructed by iterating prefix-suffix square completion, starting with
special sets of initial words such as singleton sets, finite sets, regular sets,
etc.



• Question 1.5.15.5: What is the minimum number of steps of square
completion that are required to obtain a word from one of its factors?

1.6 Abelian patterns

An abelian square consists in a pattern which is obtained by applying a permu-
tation on the letters of a square. Clearly, with every pattern, a corresponding
abelian one can be associated.
In 1992, by constructing an abelian square free word over a four-letter alphabet,
Veikko Keränen solved a famous open problem that was initially formulated by
Erdös in 1961 [26, 41]. At WORDS 2007, he presented new abelian square-free
morphisms and a powerful substitution over 4 letters [6, 190–200].

–WORDS 2003:

Author: James Currie [30, 7–18].

• Question 1.6.03.1: Which of the following patterns are avoidable in
the abelian sense?
01020312, 01020321, 01021303, 01023031, 010203013, 010213020.

• Conjecture 1.6.03.2: The number of abelian cube-free ternary words
grows exponentially with length.

Given a n-letter alphabet, define the sequence Zn recursively by: Z1 = 1 and
Zn = Zn−1nZn−1, for every n > 1.

• Conjecture 1.6.03.3: Let p be any pattern over a n-letter alphabet.
Then p is abelian avoidable iff Zn is p-free in the abelian sense.

• Question 1.6.03.4: Given pattern p and integer n, what is the com-
plexity of deciding whether Zn encounters p in the abelian sense?

Define respectively the abelian repetitive threshold function, and the dual abelian
repetitive threshold function on (1, 2] by:

ART(n) = inf{s : ys is avoidable on n letters in the abelian sense}
DART(r) = min{n ∈ N : yr is avoidable in the abelian sense on a n-letter

alphabet}.

• Question 1.6.03.5: What are the values of ART(n) and DART(r)?

–WORDS 2013:

Two papers were concerned by open questions:

Authors: Mari Huova and Aleksi Saarela [37, 161–168].
Two words u, v are k-abelian equivalent if, for any string of length at most k,
this word occurs as a factor in u as many times as in v. A word is a strongly
k-abelian nth-power if it is k-abelian equivalent to some nth-power. In their



contribution to WORDS 2013, the authors proved that strongly k-abelian nth-
powers are unavoidable on any alphabet, moreover they formulated the following
questions:

• Question 1.6.13.1: How many k-abelian equivalence classes of words
of a given length contain an nth power?

• Question 1.6.13.2: How many words of a given length are strongly
k-abelian nth powers?

• Question 1.6.13.3: What is the length of the longest word avoiding
strongly k-abelian nth powers?

• Question 1.6.13.4: How many words avoid strongly k-abelian nth
powers?

• Question 1.6.13.5: How many words of a given length contain a
strongly k-abelian nth power?

• Question 1.6.13.6: How many words of a given length are strongly
k-abelian nth powers?

Author: Michaël Rao [40, 39–46].
Given an integer n ≥ 2, a word u is a k-abelian-n-power if we have u =
u1u2 · · ·un, where ui and ui+1 are k-abelian equivalents for every i ∈ {1, · · ·n−
1}.

• Question 1.6.13.7: Is there a pure morphic binary word avoiding 2-
abelian cubes?

• Question 1.6.13.8: Can we avoid abelian-cubes of the form uvw, with
|u| = |v| = |w| ≥ 2, over a binary alphabet?

• Question 1.6.13.9: Is there a natural integer k such that 2-abelian-
squares of period at least k can be avoided over a binary alphabet?

• Question 1.6.13.10: Is there a natural integer k such that abelian
cubes of period at least k can be avoided over a binary alphabet?

The so-called additive powers consist in a generalization of abelian powers: given
an alphabet Σ ⊆ N , an additive kth power is a word p1 · · · pk ∈ Σ∗ such that
|p1| = · · · = |pk| and

∑

(p1) = · · · = ∑

(pk), where
∑

(pi) stands for the sum
of the digits of the word pi (1 ≤ i ≤ k). In 2011, Cassaigne, Currie, Schaeffer
and Shallit proved that additives cubes are avoidable on {0, 1, 2, 3, 4} [18]. At
WORDS 2013, Rao asked the following question:

• Question 1.6.13.11: Are there infinite additive-cube-free words on the
following alphabets: {0, 1, 2, 3}, {0, 1, 4} and {0, 2, 5}?



–WORDS 2015:

Open questions were asked in the following contributions:

Authors: Gabriele Fici, Filippo Mignosi [52, 122–134], Gabriele Fici, Filippo
Mignosi and Jeffrey Shallit [53, 29–42].
The authors focused of the maximum number of abelian squares that a word
may contain. Actually, a word of length n which contains O(n2) distinct abelian
squares exists [43]. At Words 2015, the authors stated the following conjectures:

• Conjecture 1.6.15.1: Assume that a word with length n, and contain-
ing k many distinct abelian-square factors, exists. Then a binary word of
length n containing at least k many distinct abelian-square factors exists.

Two abelian squares are inequivalent if their Parikh vectors are different [28].

• Conjecture 1.6.15.2 (due to T. Kosciumaka, J. Radoszewski, W.
Rytter and T. Waleń [43]): A word of length n contains Θ(n

√
n)

inequivalent abelian-squares.

Author: Michaël Rao [66].
Erdös formulated two fundamental problems:
(1) (1957,1961): Is there arbitrarily long abelian-square-free words over a finite
alphabet?
(2) (1961): Is it possible to avoid long squares over a binary alphabet?

R.C. Entringer, D.E. Jackson and J.A. Schatz gave a positive answer to the
second question [25]. In 2002 Mäkelä put similar questions with regards to
the abelian squares or cubes over binary or ternary alphabets [51]. In his talk
at WORDS 2015, Rao presented technics for deciding whether a morphic word
avoids abelian and k-abelian repetitions: in particular, this allowed him to prove
that long abelian squares are avoidable over a ternary alphabet. Then he asked
the following questions:

• Question 1.6.15.3: Can we avoid long abelian cubes over two letters?

• Question 1.6.15.4: How to decide whether a morphic word avoids
(long) abelian power?

• Question 1.6.15.5 (due to S. Mäkelä): Let h be the morphism onto
{0, 1, 3, 4}∗ defined by h(0) = 03, h(1) = 43, h(3) = 1, h(4) = 01. Is there
a morphism g : {0, 1, 3, 4}∗ −→ {0, 1}∗ such that g(h∞(0)) has no long
abelian cubes?

• Question 1.6.15.6: Find good heuristics to compute candidates for
question 1.6.15.5.

• Question 1.6.15.7: Find a morphism avoiding abelian square on four
letters which should be simpler than that of Keränen ?



• Question 1.6.15.8: What is the minimum k such that abelian squares
of period at least k over three letters can be avoided (2 < k < 6)?

• Question 1.6.15.9: What is the minimum k such that 2-abelian squares
of period at least k over two letters can be avoided (2 < k < 60)?

With regards to the so-called notion of templates, we refer the reader to [1].
From this point of view, Rao and M. Rosenfeld proved that it is possible to
decide whether h∞(a) realizes t, for any primitive morphism h whose matrix
has no eigenvalue of norm 1, and for any template t. They formulated the
following problems:

• Question 1.6.15.10: Is there a morphism over 5 letters with two eigen-
values of norm smaller than 1 and an abelian-square-free fixed point?

• Question 1.6.15.11: Is there a morphism on 3 letters with one eigen-
value of norm smaller than 1, and an abelian-cube-free fixed point?

• Question 1.6.15.12: How to decide whether eigenvalues of norm 1 may
be allowed in the result that was mentioned above?

2 Complexity issues

In the literature, with a word several notions of complexity can be associated,
the most famous one being the factor complexity: given a word w, this measure
counts the number pw(n) of different factors of length n occuring in w. The
famous characterization of Morse-Hedlund for ultimately periodic words led to
introduce the infinite Surmian words, whose complexity is pw(n) = n + 1, the
best known example of them being certainly the famous Fibonacci word [54, 55].

2.1 The recurrence quotient

The recurrence function has been introduced by M. Morse and G.A. Hedlund
[55]: given a factor u, with every non-negative integer n it associates the size
Ru(n) of the smallest window that contains every factor of length n of u.

–WORDS 1997:

Author: Julien Cassaigne [58, 3-12].

The recurrence quotient is defined as ρ(u) = lim supn→∞
Ru(n)

n
.

For a sturmian sequence of slope α, denote the recurrence quotient by ρ(α); the
spectrum of values of ρ is the set S of the values taken by ρ(α) when α spans
[0, 1] \Q.

• Question 2.1.97.1: What is the Hausdorff dimension (see e.g. [31]) of
S (or that of each of its intervals S ∩ [a, a+ 1])?

• Question 2.1.97.2: Draw a study of the recurrence quotients for other
families of infinite words than sturmian words, such as words of complexity
2n+ 1, or infinite words in general.



2.2 The ratio p(n)/n

Alex Heinis proved that if p(n)/n has a limit, then this limit is either equal to
1, or highter than and equal to 2 [32, 33]).

–WORDS 2001:

Author: Ali Aberkane [60, 31-46].
By using the so-called Rauzy graphs, at WORDS 2001 the author presented
characterizations of the words such that the limit is 1.

• Question 2.2.01.1: Transform the preceding characterization into an-
other one which makes use of a finite set of substitutions associated with
rules governing their composition (i.e. S-adic system of representation).

• Question 2.2.01.2: Give a characterization of infine words whose com-
plexity satisfies limn p(n)/n = 2.

2.3 The balance function

–WORDS 2001:

Author: Boris Adamczewski [60, 47-75].
Boris Adamczewski defines the balance function by maxa∈A maxu,v∈F (w){||u|a−
|v|a|}. With regards to the so-called primitive substitutions, the author investi-
gated the connections between the asymptotic behavior of the balance function
and the incidence matrices of such substitutions. Moreover, he showed that the
Thue-Morse sequence is an example for which, the spectrum of the substitutions
of order two is different of the spectrum of the initial substitutions.

• Question 2.3.01: Give an example of sequence for which the men-
tionned change of spectrum is really significant for the balance properties.

–WORDS 2013:

Author: Julien Cassaigne [37, 1–2].
A words is balanced if, for any pairs (u, v) of its factors with same length, and
for any letter a, we have ||u|a − |v|a| ≤ 1 (where |u|a stands for the number of
occurrences of the letter a in u). A classical characterization of Sturmian words
is that they are the aperiodic 1-balanced sequences. For Arnoux-Rauzy words
[7], whose complexity is (|A| − 1)n+1, the following question can be asked (see
also [12]):

• Question 2.3.13: Give characterizations of Arnoux-Rauzy words with
a given balance.

2.4 Palindromic complexity, palindromic defect

The palindromic complexity of an (in)finite word is the function which counts
the number P (n) of different palindromes of length n that occur as factors of



this word. Given a finite word w of length n, we have P (n) ≤ n + 1 [22]: this
leads to define the corresponding palindromic defect as D(w) = n+ 1 − P (n).
In the case of an infinite word u, set D(u) = sup{D(w)|w ∈ F (u)}.

–WORDS 2005:

Authors: Peter Baláži, Zuzana Maskóvá and Edita Pelantovà [16, 266-275].
The authors provide an estimate of P (n) for uniformly recurrent words; de-
noting by p(n) the classical factor complexity, this estimation is based on the
equation: P (n) + P (n+ 1) = p(n+ 1)− p(n) + 2.

• Question 2.4.05: Describe the structure of the Rauzy graphs of words
reaching the mentioned supremum.

–WORDS 2017:

Authors: Edita Pelantovà and Štěpán Starosta [14, 59–71].
A morphism ψ is of Class P if we have ψ(a) = ppa for any letter a, where p, pa
are both (possibly empty) palindromes; morphisms of Class P ′ are defined as
being conjugate of morphisms of Class P . Recall that, given a morphism, with
fixed point u, their common corresponding language consists in the set of all
finite factors of u. The main motivation for studying the preceding morphisms
lays upon the following conjecture:

• Conjecture 2.4.17.1 (Zero defect conjecture, due to
Blondin-Massé, Brlek, Garon and Labbé, [13]): Let u be an
aperiodic fixed point of a primitive morphism whose language is closed
under reversal. Then either we have D(u) = 0 or we have D(u) = +∞.

A counterexample was given in [10]; however, in [46] the authors proved that
the conjecture is true for some special class of the so-called marked morphism,
which were defined as follows:

Given a morphism h, it is marked if two morphisms h1, h2 exist, both
being conjugate to h, such that the set of the first (last) letters of the images
of letters by h1 (h2) is the whole alphabet.
With regards to the general case, the authors suggest that a refinement of
Conjecture 2.4.17.1 could be valid.

Words with zero palindromic defect are usually called rich words: with regards
to this notion, some open problems were put in the presentation:

• Question 2.4.17.2: What is the number of rich words of a given
length?

• Question 2.4.17.3: Can we decide whether two rich words are factors
of a common rich word?

• Conjecture 2.4.17.4 (Class P conjecture, due to A. Hof, O.
Knill and B. Simon, [34]): Let u be a fixed point of a primitive
morphism. If u has infinitely many palindomic factors (u is palindromic,



for short), then a morphism of class P ′ exists, whose fixed point has the
same language as the word u.

Advances in problems solving:
- Conjecture 2.4.17.4 was solved in the binary case ([67]).
- In [44], the authors proved that a ternary word w exists such that, it is a
palindromic fixed point of a primitive morphism, although it is neither fixed
by any morphism of class P ′.
- The conjecture has been confirmed for the so-called marked morphisms [45].
- In [56], the conjecture has been confirmed for morphisms fixing a coding of a
non-degenerate exchange of 3 intervals.

• Conjecture 2.4.17.5: Let u be a fixed point of a primitive morphism.
Then the language of u is closed under reversal if and only if u is
palindromic.

Advances in problems solving:
Conjecture 2.4.17.5 is true for marked morphisms [45].

2.5 Sets of sequences of a given complexity

The famous Arnoux-Rauzy words consist in a generalization of Sturmian
sequences on a three-letter alphabet: they are in fact those of infinite
sequences of complexity 2n+ 1 that satisfy the following condition: exactly
one left and one right factor exist for each length [7]. For any letter frequency,
sequences of factor complexity 2n+ 1 can be constructed by making use of
coding some 3-interval exchange transformation. As shown in [68], such
sequences are unbalanced and the question of finding balanced ternary
sequences of complexity 2n+ 1 for all letter frequency remains open.

–WORDS 2017:

Authors: Julien Cassaigne, Sébastien Labbé, and Julien Leroy [14, 144–156].
In 2015, based on the structure of Arnoux-Rauzy graphs, Julien Cassaigne
introduced on R3

≥0 a bidimensional continued fraction algorithm, such as:
FC(x1, x2, x3) = (x1 − x3, x3, x2) if x1 ≥ x3
FC(x1, x2, x3) = (x2, x1, x3 − x1) otherwise.
Some important properties of FC were described at WORDS 2017: in
particular the associated substitutions lead to obtain S-adic words with
complexity 2n+ 1 (S stands for a set of morphisms).

• Question 2.5.17: Can we find an analogue of FC in dimension d ≥ 4,
generating S-adic sequences with complexity (d− 1)n+ 1 for almost
every vector of letter frequencies?

2.6 Abelian complexity

Let A = {a1, · · · , aq} be an alphabet and w ∈ A∗. Recall that the Parikh
vector of w is ψ(w) = (|w|a1

, · · · , |w|aq
) [63]. Given an infinite word u, denote



by Ψn(u) the set of such vectors for the factors of length n of u. The abelian
complexity of u is the application onto N that is defined by ρab(n) = |Ψn(u)|.
Denote by |u|v the number of occurrences of a given word v as a factor of u.
Given a positive integer ℓ, two words x and y are ℓ-abelian equivalent if |x|v =
|y|v for all words v of length |v| ≤ ℓ.

–WORDS 2017:

Authors: Idrissa Kaboré, Boukaré Kientéga [14, 132–143].
The so-called ternary Thue-Morse word is the infinite word t3 which is
generated by the morphism µ3 defined by µ3(0) = 012, µ3(1) = 120,
µ3(2) = 201. The authors studied some properties of this words; in particular
they proved that t3 satisfies the following conjecture:

• Conjecture 2.6.17 (due to A. Parreau, M. Rigo, E. Rowland
and E. Vandomme [64]): Any k-automatic word admits a ℓ-abelian
complexity function which is k-automatic.

3 Factorization of words. Equations

Some further important information can be obtained by decomposing a word
into a convenient sequence of consecutive factors: w = w1 · · ·wn.

3.1 F-factorization

The so-called F -factorization has been introduced in [38]; it corresponds to the
case where the preceding sequence (w1, · · · , wn) satisfies some given property
F , which is formally defined as follows:
Let I = {1, · · · , k} and Σ be two disjoint alphabets. Set F = (L,L1, · · · , Lk),
with L ⊆ I∗ and L1, · · · , Lk ⊆ Σ∗. We say that the sequence of factors
(wi, · · · , wn) is a F -factorization if for all j ∈ [1, n] we have wj ∈ Lij and
i1 · · · in ∈ L. The factorization F is regular (context-free) if the languages
L,L1, · · · , Lk are regular (context-free).

–WORDS 1997:

Authors: Juhani Karhumäki, Wojciech Plandowski and Wojciech Rytter [58,
123–133].
Three fundamental properties of F -factorizations were examined, namely
completeness, uniqueness and synchronization.

• Question 3.1.97.1: Find efficient algorithms for the polynomial time
solvable problems which were discussed in the paper.

• Question 3.1.97.2: Given a word, can its minimal and maximal
regular F -factorization (in the sense of the length of the sequence of
indices) be found in polynomial time?



• Question 3.1.97.3: Could better algorithms be designed for the
problems discussed in the paper if, in regular F -factorizations, only finite
languages are considered?

• Question 3.1.97.4: Is the completeness or the uniqueness
undecidable, when context-free F -factorizations are given by
deterministic automata or by linear context-free grammars?

• Question 3.1.97.5: What is the complexity of the problem of
determining whether a regular F -factorization possesses synchronization
property, when the parameters of the synchronization are not given?
What about this problem for context-free F -factorizations?

3.2 Periodicity

With the preceding notation, if for an integer n ≥ 2, all the words
w1, · · · , wn−1 are equal, the word wn being one of their prefixes, we say that
the length of w1 is a period of w.

–WORDS 2007:

Author: Kalle Saari [6, 273-279].
The author proved that the least period of a non-empty factor of the infinite
Fibonacci word is a Fibonacci number. With regards to Sturmian words of a
given slope, say α, the set Π(α) is defined as follows:

Let [d0 = 0, d1 = 1, d2, d3, · · · ] the continued fraction expansion of α.
Set q1 = q0 = 1, qn+1 = dn+1qn + qn−1 (n ≥ 1) and :

Π(α) =
⋃

n≥0

{iqn + qn−1 : i = 0, 1, · · · , dn}

• Conjecture 3.2.07: Let t denote a Sturmian word with slope α. If a
word is a nonempty factor of t, then its least period belongs to Π(α).

3.3 Quasiperiodicity

A word w is quasiperiodic if another word x exists such that any position in w
falls within an occurrence of x as a factor of w (informally, w may be
completely “covered” by some set of occurrences of the factor x).

–WORDS 2013:

Authors: Florence Levé and Gwenaël Richomme [37, 181–192].
A morphism is strongly (resp. weakly) quasiperiodic if it maps any (at least
one) non-quasiperiodic word to some quasiperiodic word. The authors
provided algorithms for deciding whether a morphism is strongly quasiperiodic
on finite and infinite words; in addition, they put the following questions:

• Question 3.3.13.1: Given a morphism f and a letter a such that a is
the initial letter of f(a), is it decidable that fω(a) is quasiperiodic?



• Conjecture 3.3.13.2: Let f be an morphism generating a
quasiperiodic infinite word. If f(a) is not a power of a then f is weakly
quasiperiodic on any infinite word.

The authors define weakly quasiperiodic morphisms as those that map at least
one non-quasiperiodic word to a quasiperiodic one (some partial answers are
given in the paper).

• Question 3.3.13.3: Can we decide whether given a morphism, it is
weakly quasiperiodic on finite (infinite) words?

3.4 Defect effect and independent systems of equations

The combinatorial rank of a set of words X , that we denote by r(X), is the
smallest number of words needed to express all strings of X as products of
those words [57]. As a direct consequence of the famous theorem of defect
[47, 50, 23, 48], if X is a not a code (that is, if the words of X satisfy a
nontrivial equation) then we have r(X) ≤ |X | − 1.

–WORDS 1999:

Authors: Juhani Karhumäki and Ján Maňuch [59, 81–97].
Unformally, the so-called X-factorization of a bi-infinite word w consists in
any sequence of words from X yielding w as their product. The authors stated
the three following problems, which are connected to the famous critical
factorization theorem [48, Chap. 8]:

• Question 3.4.99.1: Let X be a finite set of words, and w be a
non-periodic bi-infinite word. Assume that w possesses k disjoint
X-factorizations, with k ≤ |X |. Is it true that we have
r(X) ≤ |X | − k + 1?

• Question 3.4.99.2: Let X be a code, and let w be a bi-infinite word.
Assume that for k ≤ |X |, w possesses k disjoint X-factorizations, such
that at least one of them is non-periodic. Is it true that we have
r(X) ≤ |X | − k + 1?

• Question 3.4.99.3: Denote by p(w) the smallest period of an word
w ∈ Σ+. Let X ⊆ Σ+ satisfying p(x) < p(w) for all x ∈ X . Is it true
that w has at most |X |+ 1− r(X) disjoint X-factorizations?

–WORDS 2001:

Authors: Tero Harju and Dirk Nowotka [60, 139–172].
Defect effect is strongly connected to independent systems of equations. Given
an equation in three variables, say x, y, z, a solution α is non-periodic if
α(x), α(y), α(z) are not powers of the same word [48, Chapt. 9]. A system of
equations is independent if it is not equivalent to any of its proper subsets. An
equation is balanced if the number of occurrences of each variable on the left-



and the right-hand side is the same. In their presentation at WORDS 2001,
the authors proved that every independent system of equations in three
variables, with at least two equations and a non-periodic solution, actually
consists in a balanced equation. They asked the following question, which was
actually implicitely raised in 1983 by Culik II and Karhumäki [19]:

• Question 3.4.01: Does an independent system of three equations in
three variables with a non-period solution exists?

–WORDS 2005:

Authors: Štěpán Holub and Juha Kortelainen [16, 363–372].
The authors studied the infinite system (S) of words equations :

{x0ui1x1ui2x2 · · ·uimxm = y0v
i
1y1v

i
2y2 · · · vinyn : i ≥ 0}

They stated the following questions:

• Question 3.4.05.1: Is there a positive integer k such that the system
(S) is equivalent to one of its subsystems induced by k equations?

• Question 3.4.05.2: Is the system {ui1 = vi1v
i
2 · · · vin : i ≥ 0}

equivalent to one of its subsystems induced by three equations?

3.5 The Post Correspondence Problem

The famous Post Correspondence Problem (PCP for short) consists in asking,
given two morphisms h, g, whether or not the equation h(x) = g(x) has a
solution distinct of the empty word.
In the most general case, it is well known that this problem is undecidable
[65]. In another hand, many studies were devoted to special cases of instances
(eg. [24]).

–WORDS 2005:

Authors: Vesa Halava, Tero Harju, Juhani Karhumäki and Michel Latteux [16,
355-352].
The authors start from the following definitions: a morphism h is marked if for
any pair of different letters a, b, the initial letters of the words h(a) and h(b)
are different; two words u, v are comparable (denoted by u ⊲⊳ v) is either u is a
prefix of v, or v is a prefix of u. With such notions, special types of instances
(h, g) may be defined: in particular (h, g) is called a unique equality
continuation instance if, for any word u and any pair of different letters a, b,
both the two conditions h(ua) ⊲⊳ g(ua) and h(ub) ⊲⊳ g(ub) imply h(u) = g(u),
At WORDS 2005, the authors put the two following questions:

• Question 3.5.05.1: Is PCP decidable for unique equality continuation
instances?

• Question 3.5.05.2: Is it decidable whether or not an instance of PCP
satisfies the property of unique equality continuation instances?



3.6 The Palindromic Length

The so-called palindromic length of a word x is defined as the smallest number
n such that x can be written as the concatenation of n palindromes.

–WORDS 2017:

Author: Aleksi Saarela [14, 203–213].
At WORDS 2017, the author firstly reminded the following conjecture:

• Conjecture 3.6.17.1 (due to Frid, Puzynina and Zamboni, [29,
p. 738]): Every aperiodic infinite word has factors of arbitrarily high
palindromic length.

Then, he proved that this conjecture is in fact equivalent to the following one:

• Conjecture 3.6.17.1a: Every aperiodic infinite word has prefixes of
arbitrarily high palindromic length.

Next, he put the two following questions:

• Question 3.6.17.2: Are there words such that all of their prefixes
have palindromic length at most n, but some of their factors have
palindromic length 2n?

• Question 3.6.17.3: In the binary case, give an improvement of the
result of Lemma 10 in the paper.

In a classical way, the free monoid Σ∗ can be extended to a free group, namely
(Σ ∪ Σ−1)∗. This leads to introduce the so-called FG-palindromes and the
FG-palindromic length of a word. As an example the palindromic length of the
word abca is 4, however this word is the product of three FG-palindromes:
abca = aba · a−2 · aca. Actually, Aleksi Saarela proved that the
FG-palindromic length of a word can be much smaller that its palindromic
length itself. This led him to state the following questions:

• Question 3.6.17.4: Does an aperiodic infinite word exists such that
the FG-palindromic lengths of its factors are bounded by a constant?

• Question 3.6.17.5 (due to V.G. Bardakov, V. Shpilrain and V.
Tolstykh [9, Problem 2, p. 576]): Find an algorithm for computing
the FG-palindromic length.

3.7 Permutation on Words

They are lots of manners to construct permutations onto A∗, the best-known
of them being automorphism or anti-automorphisms.

–WORDS 2017:

Authors: Niccolò Castruonovo, Robert Cori and Sébastien Labbé [14,
240–251].



Let A = {a, b}, and An = {w ∈ A∗ : |w|a = n, |w|b = n+ 1} (|w|a denotes the
number of occurrences of the letter a in w). At WORDS 2017, the authors
proved that any word in A∗ may be factorized as
u1bu2b · · ·upbwavqavq−1 · · ·av1, where w and ui, vj are Dyck words
(1 ≤ i ≤ p, 1 ≤ i ≤ q). Let j = |u1bu2b · · ·upb|, and θ be the morphism that is
generated by θ(a) = b, θ(b) = a. Consider the map Γn onto An which, with
each word w = w1 · · ·w2n+1 (wi ∈ A, 1 ≤ i ≤ 2n+ 1), associates the word
θ(w1 · · ·wj−1)bθ(wj+1 · · ·w2n+1).
The permutation Γn has particularly interesting combinatorial properties. In
particular it can be extended into a permutation of A∗ itself, as indicated in
the following:
With the preceding notation let w = u1bu2b · · ·upbtavqavq−1 · · ·av1. If p > q
(q < p) then call pivot each of the p− q (q − p) occurrences of b appearing just
after (before) the words up−q+1, up−q+2, · · · , up (vq−p+1, vq−p+2, · · · , vq); if
p = q there are no pivots. The word Γ(w) is obtained by substituting θ(c) to c
for each occurrence of c ∈ {a, b} that is not a pivot.

• Conjecture 3.7.17: The cycles of Γ containing words of odd lengths
are also of odd lengths. Those containing words of even lengths, with an
odd number of occurrences of a, are also of even lengths. Those
containing words of even lengths, with an even number of occurrences of
a, may have either odd or even length.
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Combinatorics on Words, 9th International Conference, WORDS 2013,
Turku, Finland, September 2013, Proceedings, Lect. N. in Comput. Sci.
(lncs) 8079 (2013) 1–263.
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[40] Juhani Karhumäki and Luca Zamboni (Eds.), Words 2013, Theoret.
Comput. Sci. 601 (2015) 1–72.

[41] Keränen V., Abelian squares are avoidable on 4 letters, International
Colloquium on Automata, Languages, and Programming, ICALP’92,
Proceedings, Lect. N. in Comput. Sci. (lncs) 623 (1992) 41–52.

[42] Kolpakov R., Kucherov G., Finding maximal repetitions in a word in
linear time, in: FOCS’99, 40th Annual Symposium on Foundations of
Computer Science, October 17-18, 1999, Proceedings, IEEE Computer
Society Press, New York (1999) 596–604.

[43] Kosciumaka T., Radoszewski J., Rytter W. and T. Waleń: Maximum
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