
HAL Id: hal-01788659
https://hal.science/hal-01788659v1

Submitted on 9 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Weak Lensing Simulations with Halo Model
Carlo Giocoli, Sandra Di Meo, Massimo Meneghetti, Eric Jullo, Sylvain de La
Torre, Lauro Moscardini, Marco Baldi, Pasquale Mazzotta, R Benton Metcalf

To cite this version:
Carlo Giocoli, Sandra Di Meo, Massimo Meneghetti, Eric Jullo, Sylvain de La Torre, et al.. Fast Weak
Lensing Simulations with Halo Model. Monthly Notices of the Royal Astronomical Society, 2017, 470
(3), pp.3574-3590. �10.1093/mnras/stx1399�. �hal-01788659�

https://hal.science/hal-01788659v1
https://hal.archives-ouvertes.fr


MNRAS 000, 1–17 (2016) Preprint June 6, 2017 Compiled using MNRAS LATEX style file v3.0

Fast Weak Lensing Simulations with Halo Model

Carlo Giocoli1,2,3,4?, Sandra Di Meo5, Massimo Meneghetti3,4, Eric Jullo2, Sylvain de la
Torre2, Lauro Moscardini1,3,4, Marco Baldi1,3,4, Pasquale Mazzotta5, R. Benton Metcalf1
1Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, via Gobetti 93/2, 40129, Bologna, Italy
2Aix Marseille Univ, CNRS, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France
3INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127, Bologna, Italy
4INFN - Sezione di Bologna, viale Berti Pichat 6/2, 40127, Bologna, Italy
5Dipartimento di Fisica, Universitá degli Studi di Roma “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy

June 6, 2017

ABSTRACT
Full ray-tracing maps of gravitational lensing, constructed from N-Body simulations, repre-
sent a fundamental tool to interpret present and future weak lensing data. However the limita-
tion of computational resources and storage capabilities severely restrict the number of real-
izations that can be performed in order to accurately sample both the cosmic shear models and
covariance matrices. In this paper we present a halo model formalism for weak gravitational
lensing that alleviates these issues by producing weak-lensing mocks at a reduced computa-
tional cost. Our model takes as input the halo population within a desired light-cone and the
linear power spectrum of the underlined cosmological model. We examine the contribution
given by the presence of substructures within haloes to the cosmic shear power spectrum and
quantify it to the percent level. Our method allows us to reconstruct high-resolution conver-
gence maps, for any desired source redshifts, of light-cones that realistically trace the matter
density distribution in the universe, account for masked area and sample selections. We com-
pare our analysis on the same large scale structures constructed using ray-tracing techniques
and find very good agreements both in the linear and non-linear regimes up to few percent
levels. The accuracy and speed of our method demonstrate the potential of our halo model for
weak lensing statistics and the possibility to generate a large sample of convergence maps for
different cosmological models as needed for the analysis of large galaxy redshift surveys.

Key words: galaxies: halos - cosmology: theory - dark matter - methods: analytic - gravita-
tional lensing: weak

1 INTRODUCTION

Cosmological surveys - e.g. VVDS, COSMOS, VIPERS, BOSS,
DES (The Dark Energy Survey Collaboration 2005; Sousbie et al.
2008, 2011; Guzzo et al. 2014; Percival et al. 2014; Le Fèvre et al.
2015; Codis et al. 2015) - and observations from long-term space
missions such as the HST telescope, Chandra and XMM are de-
livering to the scientific community a very large quantity of data
which seem to be quite well interpreted by a standard cosmological
model in which two unknown forms of matter and energy - named
dark matter and dark energy - dominate the energy content of our
Universe. However the analyses recently performed by the KiDS
collaboration on the KiDS-450 dataset (Hildebrandt et al. 2017)
have reached results in good agreement with other low redshift
probes of large scale structure (for example the CFHTLenS data
analyses presented by Benjamin et al. 2013; Heymans et al. 2013;
Hildebrandt et al. 2012; Kilbinger et al. 2013; Kitching et al. 2014)

? E-mail:carlo.giocoli@unibo.it

and pre-Planck CMB measurements – like ACT, SPT and WMAP9
(Bennett et al. 2013) – confirming the tension with the 2015 Planck
outcomes (Planck Collaboration 2016). It is interesting to point out
that if the tension between those cosmological probes persists in the
future modification of the current concordance model will become
necessary.

The inhomogeneities and redshift evolution of non-linear
structures in the universe can be evaluated using the statistical mea-
surements of the ellipticity of background galaxies. The determina-
tion of the galaxy shapes and redshifts, in the absence of systematic
errors, can be translated into an unbiased measurement of the shear
(Melchior et al. 2011; Bartelmann et al. 2012), which can be used
to reconstruct the projected matter density distribution along the
line of sight (Kaiser & Squires 1993; Kaiser et al. 1995; Viola et al.
2011). Tomographic reconstruction of the matter density field and
their statistical properties can be then employed to constrain stan-
dard cosmological parameters (as e.g the matter density parameter
Ωm and the initial power spectrum normalization σ8, see Fu et al.
2008; Kilbinger et al. 2013; Hildebrandt et al. 2017) as well as pos-
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sible parameterizations of the dark energy equation of state (Kitch-
ing et al. 2014, 2015; Köhlinger et al. 2016).

For this reason, cosmic shear measurements from weak gravi-
tational lensing effect represent a primary probe for many ongoing
and future wide field surveys (The Dark Energy Survey Collabora-
tion 2005; Flaugher 2005; Spergel et al. 2013; Ivezic et al. 2008,
2009) and in particular for the wide field survey covering 15,000
sq. degrees that will be performed by Euclid (Laureijs et al. 2011).
In this context, it is very important to have the possibility to con-
struct flexible reference models of weak lensing statistics that can
account for finite survey areas, masking and sample selection, as
well as probe high redshift regimes. In particular it is imperative
to be able to perform a large sample of independent simulations of
weak lensing statistics for the need of well sample the covariance
matrix to keep systematics and possible biases that may appear in
the measurements under control. Cosmological numerical simula-
tions of large scale structures, from which we can reconstruct real-
istic past light-cones up to a desired source redshift, represent the
natural reference tools to build weak lensing models (Jain et al.
2000; Vale & White 2003; Sato et al. 2009; Hilbert et al. 2009).
They give the possibility not only to correctly model the structure
formation processes as a function of the cosmic time but also to
include self-consistent recipes to model the baryonic physics: cool-
ing, star formation activities and the various types of feedback pro-
cesses (Hirschmann et al. 2014; Beck et al. 2016). Numerical sim-
ulations also allow for exploration of a large variety of cosmolog-
ical parameter spaces as well as to model the structure formation
mechanisms in non-standard cosmological scenarios. Nonetheless,
all these interesting phenomena that can be studied with numerical
simulations require tuning the numerical setup in order to find the
best compromise between the size of the numerical simulation box
and number of snapshots saved – which set the maximum redshift
up to which a statistically unbiased light cone can be constructed
and the largest modes of the density field that can be probed – and
the particle mass which defines the resolution for the modeling of
small scale signals. Typical analyses performed thus far properly
model the statistical properties of the weak lensing field up (down)
to modes l ≈ 104 (arcminute scales).

Recently Giocoli et al. (2016), within the BigMultiDark col-
laboration, have created lensing maps up to redshift zs = 2.3 for
the two VIPERS fields W1 and W4 and computed their associated
weak lensing covariance matrices for different source redshifts. The
resolution of the grid on which particles have been placed and
through which the light-rays have been shot have been chosen to
be equal to 6 arcsec. This small scale limit of the simulations is
mainly set by the mass and force resolution of the BigMultiDark
simulation (Prada et al. 2016), which allows for trustworthy the
lensing measurements only down to ∼ 1.5 arcmin. Recently de
la Torre et al. (2016) have used as reference the lensing predic-
tions from the BigMultiDark light-cones together with the redshift-
space distortions from the final VIPERS redshift survey dataset and
galaxy-galaxy lensing from CFHTLenS with the aim of measur-
ing the growth rate of structure. The resolution of the analysis per-
formed by Harnois-Déraps et al. (2012) – where the authors have
accurately measured non-Gaussian covariance matrices and set the
stage for systematic studies of secondary effects – is only slightly
higher. In the latter work, a set of 185 high-resolution N-body simu-
lations was performed, and the corresponding past light-cones were
constructed through a ray tracing algorithm using the Born approx-
imation. In a subsequent work, Harnois-Déraps & van Waerbeke
(2015b) – and also Angulo & Hilbert (2015) – have investigated
the importance of finite support – related to the limited box size of

the simulation and possible small field of view when constructing
the lensing light-cones – which may suppress the two-point weak
lensing statistic on large scales. However such issues may be cir-
cumvented by performing lensing simulations consistently with the
limited size and geometry of the observed lensing survey, but in-
cluding large scale modes using approximated methods from linear
theory (Monaco et al. 2013; Tassev et al. 2013; Monaco 2016). Re-
cently also Petri et al. (2016a) have shown that for weak lensing
statistics the full ray tracing simulation is indeed unnecessary and
that simply projecting the lensing planes causes negligible errors
compared to this; in particular Petri et al. (2016b) have re-cycled a
single N-body box as many as 10,000 times generating statistically
independent weak lensing maps with sufficient accuracy.

Particularly interesting is also the possibility to perform weak
lensing simulations in a variety of different cosmological models.
For example in this case the availability of numerical simulations
of structure formation for those models is a fundamental starting
point. In this respect, we mention the analyses performed in non-
standard models with coupling between Dark Energy and Cold
Dark Matter by Giocoli et al. (2015) and Pace et al. (2015), that
showed specific signatures with respect to standard ΛCDM mainly
when performing a tomographic weak lensing analyses. In the same
direction goes the work performed by Tessore et al. (2015) which
have produced weak lensing maps of large scale structure in modi-
fied gravity cosmologies that exhibit gravitational screening in the
non-linear regime of structure formation. Carbone et al. (2016)
have presented a cross-correlation analyses of CMB and weak-
lensing signals using ray-tracing across the gravitational potential
distribution provided in massive neutrinos simulations. These au-
thors find an excess of power with respect to the massless run, due
to free streaming neutrinos, roughly at the transition scale between
the linear and non-linear regime.

The production of a large number of independent light-cones
realizations for different cosmological models is an essential tool
for the interpretation of the large wealth of weak lensing data, that
will become available in the next decades. It is also crucial to go be-
yond the Gaussian assumption in the characterization of the weak
lensing error bars, both in the linear and non-linear regimes to cor-
rectly assess the sensitivity of the weak lensing signal to cosmolog-
ical parameters.

In this context, it is important to stress that weak lensing simu-
lations have to be made consistent with the survey properties; sim-
ulated light-cones in first analysis should mimic the geometry as
well as the masking of the survey area. Usually many light-cone
realizations are needed in order to obtain a precise estimate of the
covariance matrices over a wide range of scales and for sources at
different redshifts, and all such realizations need to be extended to
the various cosmological models we would like to sample. A com-
prehensive program of weak lensing analyses performed based on
full N-body simulations then requires enormous computational re-
sources and huge storage capabilities, which are difficult to access
even at the largest computing centers.

On the other hand, approximate methods are much faster, and
less memory demanding, hence opening the possibility to test vari-
ous cosmological scenarios at a highly reduced computational cost.
In this regard, it is interesting to mention the work by Yu et al.
(2016) who have presented a fast method to generate weak lensing
maps based on the assumption that a lensing convergence field can
be Gaussianized to excellent accuracy by a local transformation.
Even if their constructed maps have a good representation of the
large scale normalization of the cosmic shear power spectrum, they
have larger power at intermediate scales than the simulated refer-
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ence fields and vice versa at small scales. These effects are proba-
bly due to the imperfection of the Gaussian Copula Hypothesis on
which their method is based.

Producing a large sample of realistic weak lensing simulations
is becoming a challenging but necessary task for interpreting the
outcomes of future wide field surveys. Importantly those allow (1)
to mimic the survey geometry and masked regions (2) to consis-
tently sample the expected weak lensing signals from the matter
density distribution along the line of sight and (3) to construct ref-
erence models using the observed source redshift distribution from
a given survey. A large number of light-cones plus weak lensing
measurements is needed to ensure a good sampling of the non-
linear properties of structure formation and to have under control
the Gaussian and the non-Gaussian terms and the cosmic variance
in estimating the covariance matrices (Harnois-Déraps et al. 2015a;
Harnois-Déraps & van Waerbeke 2015b).

In this paper, we use the halo model formalism for weak gravi-
tational lensing, to quickly and accurately generate high-resolution
convergence maps for any desired field of view and source red-
shift distribution in the context of a standard ΛCDM cosmological
scenario. Similarly (Li & Ostriker 2002; Giocoli et al. 2012a, 2016)
have used the lensing halo model formalism for strong lensing stud-
ies while (Kainulainen & Marra 2011; Lin & Kilbinger 2015a,b;
Zorrilla Matilla et al. 2016) have used it for weak lensing predic-
tions. The simulated maps can then be masked and cut to reproduce
the geometry of the observed survey. The weak lensing statistical
properties of the light-cones can also be sampled according to a re-
alistic source sample, their redshift distribution and clustering. The
extension of our method to a variety of non-standard cosmological
models will be investigated in a forthcoming paper.

Our paper is organised as follows: in section 2 we present the
reference numerical simulated light-cones with which we compare
our model and describe the idea of the method, in section 3 we
present our halo model for weak gravitational lensing and in sec-
tion 4 we define the statistical estimators that we apply to our sim-
ulated light-cones to characterise their properties. In section 5, we
summarise and discuss our results.

2 MODEL

In this work we present a fast method to produce weak lensing sim-
ulations using a halo model approach. In our analysis we use the
halo catalogs corresponding to the particle light-cones extracted
from a reference cosmological simulation. The light-cones have
been produced by remapping the simulated snapshots into cuboids
and projecting the particles into lens planes up to a given source
redshift. In this work we will make use of the halo and subhalo
catalogues to reconstruct the weak lensing field, using the halo
model, in a desired field of view and compare it with the predic-
tion obtained using the particles as tracers of the projected density.
In this way, we statistically reconstruct the matter density distri-
bution along the line-of-sight (Giocoli et al. 2015, 2016), avoiding
replicating the same structures and producing gaps. The conver-
gence maps have been computed from the projected lens planes
using the ray-tracing GLAMER pipeline (Metcalf & Petkova 2014)
as described in Petkova et al. (2014).

2.1 The Numerical Simulation

In this section we present the reference numerical simulation we
adopt and stress that our method is very general and ready to be
applied to any halo – and subhalo – catalogue.

The cosmological parameters of our reference simulation have
been set accordingly to the WMAP7 results. In particular, the nu-
merical simulation used here is the ΛCDM run extracted from
the CODECS suite (Baldi 2012), where the initial conditions are
generated using the N-GENIC code1 by displacing particles from
a homogeneous ’glass’ distribution in order to set up a random-
phase realisation of the linear matter power spectrum of the cosmo-
logical model according to Zel’dovich approximation (Zel’Dovich
1970). The particles displacements are then rescaled to the desired
amplitude of the density perturbation field at some high redshift
(zi = 99), when all perturbation modes included in the simula-
tion box are still evolving linearly. This redshift is then taken as
the starting redshift of the simulation, and the corresponding par-
ticle distribution as the initial conditions for the N-body run. In
setting the initial conditions for the simulation we have chosen
ΩCDM = 0.226, Ωb = 0.0451, ΩΛ = 0.729, h = 0.703 and
ns = 0.966, the initial amplitude of the power spectrum at CMB
time (zCMB ≈ 1100)As(zCMB) = 2.42×10−9 which correspond
at z = 0 to σ8 = 0.809.

The simulation has a box size of 1 comoving Gpc/h aside and
include 10243 for both the components CDM and baryon for a total
particle number of approximately 2 × 109. The mass resolution is
mCDM = 5.84 × 1010M�/h for the cold dark matter component
and mb = 1.17 × 1010M�/h for baryons, while the gravitational
softening was set to εg = 20 kpc/h. Despite the presence of bary-
onic particles this simulation does not include hydrodynamics and
is therefore a purely collisionless N-body run.

We stored about thirty snapshots between z = 10 and z = 0 at
each simulation snapshot, halos have been identified using Friends-
of-Friends (FoF) algorithm adopting a linking length parameter
b = 0.2 times the mean inter-particle separation of the CDM parti-
cles as primary tracers of the local mass density, and then attaching
the baryonic particles to the FoF group of their nearest neighbours.
Then, running SUBFIND (Springel et al. 2001b) – on each simula-
tion snapshot, for each FoF-group we compute M200 as the mass
enclosing a sphere with density 200 times the critical density ρc(z)
at that redshift and assuming the particle with the minimum gravita-
tional potential as the halo centre. SUBFIND also searches for over-
dense regions within a FoF group using a local SPH (Smoothed
Particle Hydrodynamics) density estimate, identifying substructure
candidates as regions bounded by an isodensity surface that crosses
a saddle point of the density field. This algorithm is also testing that
these possible substructures are physically bounded with an itera-
tive unbinding procedure. In what follows, we will indicate with
MFoF the mass of the Friends-of-Friends group, with M200 the
mass of the sphere enclosing 200 times the critical density of the
universe and with msub the self-bound mass of substructures.

2.2 Building the past-light-cone with MAPSIM

To build the lensing maps of the light-cone we piled together dif-
ferent slices of the simulation snapshots up to zs = 4. The size
of the light-cone we consider has an angular aperture of 5 deg,
which combined with the comoving size of the simulation box of

1 http://www.mpa-garching.mpg.de/gadget
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Figure 1. Left panel: convergence map (5 × 5 sq. degrees) of a light-cone realization up to zs = 4 constructed using the multi-plane ray-tracing GLAMER

pipeline. Right panel: convergence map with over-plotted the haloes present within the light cone more massive than 5 × 1013M�/h. The various size
coloured circles indicate haloes with different masses, as labelled in the plot. The masses refer to the FoF group definition.

Figure 2. Convergence maps of a light-cone extending up to zs = 4. Top left panel: convergence maps created using ray-tracing in the light-cone constructed
from the particles extracted from the simulation snapshots. Top right, bottom left and bottom right panels: convergence maps constructed using the halo model
formalism based on MFoF, M200 and MFoF +msub catalogs in the light-cone, respectively.

MNRAS 000, 1–17 (2016)
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1 Gpc/h, ensures to uniformly construct the mass density distribu-
tion in redshift without gaps. For this purpose we use the MAPSIM

code (Giocoli et al. 2015; Tessore et al. 2015) that extracts the parti-
cles from the simulation’s snapshot files and assembles them into a
light-cone. The code initialises the memory and the grid size of the
maps reading an input parameter file. This file contains information
about the desired field of view (chosen to be 5 deg on a side), the
highest source redshift (in this case zs = 4) and the locations of
the snapshot files. The number of required lens planes is decided
ahead of time in order to avoid gaps in the constructed light-cones
and the available stored simulation snapshots. We emphasize that
in order to properly statistically sample the evolution of the mat-
ter density distribution as a function of the cosmic time within the
light-cone we collapse in each lens plane the closest snapshot in
redshift. The code, reading each snapshot file at a time from low to
high redshift, extracts only the particle positions within the desired
field of view and is not much memory consuming since it needs
to allocate only a single snapshot file. The lens planes are built by
mapping the particle positions to the nearest pre-determined plane,
maintaining angular positions, and then pixelising the surface den-
sity using the triangular shaped cloud (TSC) method (Hockney &
Eastwood 1988). In constructing the lens planes we try to preserve
as much as possibile the cosmological evolution of the structures
by projecting into planes the snapshot with the closest redshift. The
grid pixels are chosen to have the same angular size on all planes,
equals to 2048× 2048, which allows to resolve approximately 8.8
arcsec per pixel. The lens planes have been constructed each time a
piece of simulation is taken from the stored particle snapshots; their
number and recurrence depend on the number of snapshots stored
while running the simulation. In particular in running our simula-
tion we have stored 17 snapshots from z ∼ 4 to z = 0 reasonably
enough to construct a complete light-cone up to zs = 4 with 22
lens planes. The selection and the randomisation of each snapshot
is done as in Roncarelli et al. (2007) and discussed in more de-
tails in Giocoli et al. (2015). If the light-cone reaches the border
of a simulation box before it reaches the redshift limit where the
next snapshot will be used, the box is re-randomised and the light-
cone extended through it again. Once the lens planes are created the
lensing calculation itself is done using the GLAMER pipeline (Met-
calf & Petkova 2014; Petkova et al. 2014). Considering that at low
redshifts, where many massive haloes are present, we have saved
many snapshots – for example we use twelve snapshots up to red-
shift z = 1.2 from which we produce fourteen lens planes – when
projecting particles into separate lens planes we do not account for
particle clumps in haloes that are located on the slice boundaries
with particles on either side. As discussed by Hilbert et al. (2009)
this effect can eventually produce an over-counting of particles that
may bring a relative difference to the convergence power spectrum
of approximately 0.1%.

Defining θθθ the angular position on the sky and βββ the position
on the source plane (the unlensed position), then a distortion matrix
A can be defined as

A ≡ ∂βββ

∂θθθ
=

(
1− κ− γ1 γ2

γ2 1− κ+ γ1

)
, (1)

where κ represents the convergence and the pseudo-vector γγγ ≡
γ1+iγ2 the shear. In the case of a single lens plane, the convergence
can be written as:

κ(θθθ) ≡ Σ(θθθ)

Σcrit
, (2)

where Σ(θθθ) represents the surface mass density and Σcrit the criti-

cal surface density as:

Σcrit ≡
c2

4πG

Dl
DsDls

, (3)

where c indicates the speed of light, G the Newton’s constant
and Dl, Ds and Dls the angular diameter distances between
observer-lens, observer-source and source-lens, respectively. In
the case of multiple lens planes the situation is slightly different.
After the deflection and shear maps on each plane are calculated,
the light rays are traced from the observers through the lens planes
up to the desired source redshift. The shear and convergence are
also propagated through the planes as detailed in Petkova et al.
(2014). GLAMER performs a complete ray-tracing calculation that
takes into account non-linear coupling terms between the planes as
well as correlations between the deflection and the shear. However,
for this work when running the ray-tracing pipeline we have
adopted the Born approximation, that is following the light-rays
along unperturbed paths. As discussed in Giocoli et al. (2016)
– by performing a full ray-tracing comparison – and in Schäfer
et al. (2012) – by computing an analytic perturbative expansion –
the Born approximation is an excellent approximation for weak
cosmic lensing down to very small scales (l ≥ 104). We underline
that the physical modelling at these very small scales is far from
the purpose of this work and we are aware that it may eventu-
ally need a correct and self-consistent treatment of the baryonic
components (Mohammed et al. 2014; Harnois-Déraps et al. 2015a).

In the left panel of Fig. 1 we show the convergence map of the
first light-cone realisation assuming a source redshift zs = 4. In
order to have various statistical samples, we have created 25 light-
cone realisations. They can be treated as independent since do not
contain the same structures along the line-of-sight, considering the
size of the simulation box 1Gpc/h and the field of view of 5 deg on
a side.

Within the MAPSIM code we have recently implemented also
the possibility to construct a corresponding light-cone of haloes and
subhaloes that resemble the underlying randomisation of the asso-
ciated matter density distribution along the line-of-sight. Friends-
of-Friends groups, M200-haloes and subhaloes are subdivided ac-
cording to the various constructed planes; for each of them we com-
pute the corresponding redshift from their comoving distance from
the observer and their angular position in the sky with respect to
the assumed field of view. In order to avoid edge effects when re-
constructing the lensing properties from virialized structures, we
extracted haloes and subhaloes from a field of view 2.5 deg larger
on each side. This means that haloes and subhaloes are extracted
from a region of 10 × 10 sq. degrees, centered in the same sky
position as the cone from which we extract the particles. Halo and
subhalo catalogues are saved in complementary files with respect
to the corresponding lens planes. We highlight that in order not to
double-count the mass in haloes we do not consider the main sub-
halo within the SUBFIND catalogues which typically account for
the smooth halo component. As an example in the right panel of
Fig. 1 we plot on top the convergence map, the positions of the FoF
groups more massive than 5 × 1013M�/h within the light-cone
from z = 0 to zs = 4. The various size coloured circles refer to
different masses as indicated in the label.

MNRAS 000, 1–17 (2016)
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Figure 3. Left panel: absolute difference between the convergence map computed using particles and the one using FoF-haloes plus subhaloes. Central panel:
pixel by pixel correlation between the two maps. Right panel: probability distribution function of the difference between the two maps.

3 A WEAK LENSING HALO MODEL APPROACH:
WL-MOKA

The different statistical analyses performed in the last twenty-years
on the post-processing data of various numerical simulations have
given the possibility to reconstruct in good details the dark matter
halo structural properties over a wide range of masses (Springel
et al. 2001b; Gao et al. 2004; Giocoli et al. 2008). In particular,
many works seem to converge toward the idea that virialized haloes
tend to possess a well defined density profile (Navarro et al. 1996;
Moore et al. 1998; Rasia et al. 2004). Following the Navarro et al.
(1996) (hereafter NFW) prescription we assume the density profile
of haloes to follow the relation:

ρ(r|Mh) =
ρs

(r/rs)(1 + r/rs)2
, (4)

where rs is the scale radius, defining the concentration ch ≡ Rh/rs
and ρs the dark matter density at the scale radius:

ρs =
Mh

4πr3
s

[
ln(1 + ch)− ch

1 + ch

]−1

, (5)

Rh is the radius of the halo which may varies depending on the
halo over-density definition. In this analysis we will adopt (i) the
mass inside the Virial radius for the FoF groups:

Mvir =
4π

3
R3

vir
∆vir

Ωm(z)
Ω0ρc , (6)

and (ii) the mass inside a sphere enclosing 200 times the critical
matter density ρc(z) of the Universe:

M200 =
4π

3
R3

200200
Ω0

Ωm(z)
ρc , (7)

where Ω0 ≡ Ωm(0) represents the matter density parameter at the
present time and ∆vir is the virial over-density (Eke et al. 1996;
Bryan & Norman 1998), Rvir and R200 symbolise the virial and
the 200 critical radius of the halo, that is the distance from the halo
centre that encloses the desired density contrast; ρc represents the
critical density at the present time.

The halo concentration ch is a decreasing function of the host
halo mass. This relation is explained in terms of hierarchical clus-
tering within CDM-universes and of different halo-formation his-
tories (van den Bosch 2002; De Boni et al. 2016). Small haloes
form first in a denser universe and then merge together forming the
more massive ones: galaxy clusters sit at the peak of the hierarchi-
cal pyramid being the more recent structures to form (Bond et al.
1991; Lacey & Cole 1993; Sheth & Tormen 2004a; Giocoli et al.
2007). This trend is reflected in the mass-concentration relation: at
a given redshift smaller haloes are more concentrated than larger
ones. Different fitting functions for numerical mass-concentration

relations have been presented by various authors (Bullock et al.
2001; Neto et al. 2007; Duffy et al. 2008; Gao et al. 2008). In this
work, we adopt the relation proposed by Zhao et al. (2009) which
links the concentration of a given halo with the time t0.04 at which
its main progenitor assembles 4 percent of its mass. Giocoli et al.
(2012b) have found that this relation works very well for virial-
ized masses Mvir while the parameters of the model need to be
slightly modified for the M200 definition (Giocoli et al. 2013). We
want to underline that the model by Zhao et al. (2009) also fits nu-
merical simulations with different cosmologies; it seems to be of
reasonably general validity within few percents of accuracy. For
the mass accretion history model of the two mass over-density def-
initions (Mvir or M200) we adopt the relations by Giocoli et al.
(2012b) and Giocoli et al. (2013). Those models are quite univer-
sals and give the possibility to generalise the relations eventually
also to non-standard models (Giocoli et al. 2013). In particular, the
concentration mass relation mainly impacts on the behaviour of the
power spectrum at scales below 1h−1Mpc as discussed in details
by Giocoli et al. (2010).

Due to different assembly histories, haloes with same mass at
the same redshift may have different concentrations (Navarro et al.
1996; Jing 2000; Wechsler et al. 2002; Zhao et al. 2003a,b). At
fixed host halo mass, the distribution in concentration is well de-
scribed by a lognormal distribution function with a rms σln c be-
tween 0.1 and 0.25 (Jing 2000; Dolag et al. 2004; Sheth & Tormen
2004b; Neto et al. 2007). In this work we adopt a lognormal distri-
bution with σln c = 0.25.

In our numerical simulation, subhaloes have been identified
using the SUBFIND algorithm. For the mass density distribution in
subhaloes we adopt the truncated Singular Isothermal Sphere (here-
after tSIS) profile. This model accounts for the fact that the subhalo
density profiles are modified by tidal stripping due to close interac-
tions with the main halo smooth component and to close encounters
with other clumps, gravitational heating, and dynamical friction.
Such events can cause the subhaloes to lose mass, and may eventu-
ally result in their complete disruption (Hayashi et al. 2003; Choi
et al. 2007). We model the dark matter density profile in subhaloes
as (Keeton 2003),

ρsub(r) =

 σ2
v

2πGr2
r ≤ Rsub,

0 r > Rsub
(8)

with velocity dispersion σv , and Rsub defined as:

msub =

∫ Rsub

0

4πr2ρsub(r)dr ⇒

Rsub =
Gmsub

2σ2
v

. (9)
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To compute the velocity dispersion we use the same implementa-
tion described in the MOKA code by Giocoli et al. (2012a). The
tSIS profile well represents galaxy density profiles on scales rele-
vant for strong lensing. Previously, different authors have used this
model to characterise the lensing signal by substructures after strip-
ping (Metcalf & Madau 2001).
In Table 1 we summarise the halo model properties which we use
to construct the convergence maps using our algorithm.

Assuming spherical symmetry for the matter density profile in
haloes, we can compute the surface mass density Σ(x1, x2) asso-
ciated with a density profile ρ(r) extending up to the virial radius
Rvir as:

Σ(x1, x2) = 2

∫ Rvir

0

ρ(x1, x2, ζ)dζ, (10)

where x1, x2 and ζ represents the three-dimensional coordinates
and r2 = x2

1 + y2
2 + ζ2; this quantity is then used to define the

convergence as in eq. (2).
As described by Bartelmann (1996) the Navarro-Frank-White

density profile has a well defined primitive for the integral in equa-
tion (10) and its convergence can be derived analytically, as well as
for the tSIS profile.

In Fig. 2, we show 4 convergence maps of the same light-cone
realisation extending up to redshift zs = 4. In the top left panel
(in black scale), we created the convergence map using ray-tracing
in the light-cone constructed from the particles extracted from the
simulation snapshots. In the top right (in red scale) and bottom left
(in blue scale) we present the convergence maps constructed using
the MFoF and the M200 halo catalogues, respectively. By eye it is
possible to spot that using the halo catalogues the overall surface
mass density distribution is quite well traced. However it is notice-
able with more careful analysis that the map constructed using the
Friends-of-Friends catalogue presents much more clustering of low
mass haloes. This is be due (i) to numerical resolution of the simu-
lation: FoF haloes with less than 10 particles within 200 times the
critical density are not well resolved and not stored in the corre-
sponding M200 catalogue and (ii) to the possible non universality
of the mass function defined with M200 haloes (Tinker et al. 2008;
Despali et al. 2016). In general it is interesting to notice that MFoF

and M200 contain typically a different fraction of the total mass in
the simulation. Using the relations calibrated from numerical simu-
lations by Despali et al. (2016), we notice assuming the same mass
resolution – down to ten dark matter particles – and box-size of our
reference run, at z = 0. The mass contained in MFoF haloes is ap-
proximately 30% of the total mass in the simulation, while inM200

haloes it is less than 25%; at z = 1 the two fractions become 15%
and 12%, respectively, while at z = 3 they are both approximately
1.5%, since the two mass over-density definitions get closer and
closer at high redshifts (Eke et al. 1996; Bryan & Norman 1998).

Convergence maps constructed by summing the surface mass
density contribution of all haloes present within the halo cata-
logues, and weighting them with the critical surface density as in
eq. (2), are effective convergence maps and are forced to have an

average value of the convergence κ̄ =

∑Npix

i=1 κi
Npix

= 0. This im-

plies that conservatively each convergence map describes the per-
turbed matter density distribution with respect to an average back-
ground value. We underline also that this point is important when
we construct the effective convergence maps using only haloes or
using both haloes and subhaloes; in order not to over-count the
masses in both cases the average value of the convergence in each
constructed plane is set to be zero. This kind of approach has also

been used in constructing the convergence map implying the full
ray-tracing technique – as in the top left panel of the figure: since
the rays are propagated between planes using the standard distances
in a Robertson-Walker metric which assumes a uniform distribu-
tion of matter the addition of matter on each of the planes will,
in a sense, over-count the mass in the universe. Without correct-
ing for this, the average convergence from the planes will be pos-
itive and will cause the average distance for a fixed redshift to be
smaller than it should be. To compensate for the contained density
between the planes, the ensemble average density on each plane is
subtracted. Each plane then has zero convergence on average and
the average redshift-distance relation is as it would be in a perfectly
homogeneous universe. Finally, the bottom right panel of Fig. 2 (in
green scale) presents the convergence map constructed using the
FoF haloes plus the subhaloes. In this case comparing this map with
respect to the one in red scale, where we use only the FoF haloes,
we notice an increase of small scale perturbations. In Fig. 3 we
display the statistical difference between the maps computed using
particles and FoF-haloes plus subhaloes. In the left panel we show
the absolute difference map between the two cases. The central
panel exhibits the pixel by pixel correlation between the two maps,
while the left panel presents the Probability Distribution Function
(PDF) of the difference ∆κ = κparticles − κMFoF+msub . From the
figures what is mainly appearing is that the effective convergence
map computed using haloes and subhaloes mainly trace the matter
density distribution on small scales where non-linear structures and
clumps are present, however still differences appear mainly due to
projection effects, filamentary structures – as better displayed in the
small panel in the left figure – and sheets.

3.1 Probability Distribution Function of the Convergence
Fields

To quantify the previous discussion, in Fig. 4 we display the Prob-
ability Distribution Function of the convergence maps presented in
Fig. 2. Left, central and right panels show the PDF of the conver-
gence constructed for sources at zs = 0.5, 1.4 and 4, respectively.
Black, red, blue and green coloured histograms show the four cor-
responding cases used to construct the convergence map: particles,
FoF groups, M200-haloes, and FoF groups with subhaloes. From
the panels in the figure, we notice that for zs = 0.5 the four his-
tograms are very similar and that the inclusion of substructures cre-
ates some pixels with larger convergence values which may corre-
spond to the core of clumps. In the central and right panels we
notice that the PDF of the convergence map constructed using the
particles does not present pixels with convergence κ & 0.75, this is
probably due to the numerical and force resolution of the simula-
tion which does not permit to resolve with a reasonable number of
particles the cores of haloes and subhaloes. In addition, the black
histograms display distinct tails with negative convergence. This
is probably due to the sampling of the matter density distribution
that is not bound to haloes – and that we are missing in our halo
modelling formalism. We will discuss more about that in the next
sections.

3.2 Building up the convergence power spectra

Following the halo model formalism, the matter density distribu-
tion in the universe is assumed to be associated to virialized haloes
(Cooray & Sheth 2002). The mean density within the Universe can
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Table 1. Summary of the halo and subhalo properties considered in our models when building the effective convergence maps

Case c-M relation profile

FoF Zhao et al. (2009) NFW
M200 Giocoli et al. (2013) NFW
FoF+Subs Zhao et al. (2009) NFW (haloes)+ tSIS (subhaloes)

Figure 4. Probability Distribution Functions (PDF) of the convergence maps presented in Fig. 2. Left, central and right panels show the PDFs for three different
source redshifts: zs = 0.5, 1.4 and 4, respectively. The black histograms show the PDF for the convergence map constructed using the GLAMER ray-tracing
pipeline, while the blue and red are the ones computed from the M200 and MFoF halo catalogues. The green histograms show the distribution function of the
convergence map where the Friends-of-Friends haloes contain also substructures.

so be computed from the relation:

ρ̄ =

∫
m n(m) dm, (11)

where n(m) represents the halo mass function. The three-
dimensional matter power spectrum can be then decomposed in:

Pδ(k, z) = P1h(k, z) + P2h(k, z), (12)

where P1h(k) represents the power spectrum of the matter den-
sity distribution within one halo, while P2h(k) describes the power
spectrum of the matter density distribution between two distant
haloes. The two terms can be read as:

P1h(k, z) =

∫ (
m

ρ̄

)2

n(m, z)u2(k|m)dm (13)

P2h(k, z) =

∫ (
m1

ρ̄

)
n(m1, z)u(k|m1)dm1 (14)∫ (

m2

ρ̄

)
n(m2, z)u(k|m2)dm2Phh(k|m1,m2),

where u(k|m) represents the Fourier transform of the dark matter
density profile and Phh(k|m1,m2) describes the halo-halo power
spectrum that can be expressed in terms of the halo-matter bias
parameter b(m) and the linear matter power spectrum Pδ,lin(k):

Phh(k|m1,m2) = b(m1)b(m2)Pδ,lin(k). (15)

Including the presence of substructures within haloes adds more
equations to the halo model that can be trivially solved considering
the correlation between the smooth and the clump components both
within the 1-halo and the 2-halo term (Sheth & Jain 2003; Giocoli
et al. 2010).

The convergence power spectrum, to first order, can be ex-
pressed as an integral of the three-dimensional matter power spec-
trum computed from the observer looking at the past lightcone
from the present epoch up to a given source redshift (Bartelmann &
Schneider 2001). In this approximation it is assumed that the light
rays travel along unperturbed paths and all terms higher than first

order in convergence and shear can be ignored. Defining f(w) as
the angular radial function, that depends on the comoving radial
coordinate w given the curvature of the universe, we can write the
convergence power spectrum at a given source redshift zs – with a
corresponding radial coordinate ws – as:

Pκ(l) =
9H4

0 Ω2
m

4c4

∫ ws(zs)

0

f2(ws − w)

f2(ws)a2(w)
Pδ

(
l

f(w)
, w

)
dw.

(16)

Analogously from the constructed effective convergence maps we
can compute the corresponding power spectrum as:

〈κ̂(l)k̂∗(l′)〉 = 4π2δD(l− l′)Pκ(l), (17)

where δ(2)
D represents the Delta Dirac in two dimensions.

In Fig. 5 we present the average power spectrum of 25 dif-
ferent light-cone realisations for three different source redshifts:
zs = 0.5, zs = 1.4 and zs = 4, from left to right respectively.
In each panel, the black curves display the spectra computed us-
ing the ray-tracing pipeline on the particle distribution and the grey
curves show the associated particle shot-noise (Vale & White 2003;
Giocoli et al. 2016). The shaded grey area marks the region where
the shot-noise term of the particles starts to dominate the cosmic
shear measurements, while the yellow shaded region indicates the
part below the angular Nyqvist mode sampled by our field of view.
Red dashed and blue dot-dashed curves show the power spectra
computed using the FoF and the M200 haloes present within the
light-cones. The orange curves describe the contribution of the sub-
haloes while the green solid curves exhibit the total contribution of
the Friends-of-Friends haloes and their associated subhaloes. From
the figure we can observe that the large scale behaviour of our halo
model power spectra manifests less power than expected from lin-
ear theory (dotted light-blue curves). The magenta dashed curves
display the one-halo term contribution of the analytical halo model
as in eq. (13) where we have integrated the theoretical mass func-
tion (Sheth & Tormen 1999) from the minimum halo mass that we
have in the simulationMmin ≈ 2.07×1012M�/h for consistency.
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Figure 5. Convergence power spectra averaged over 25 different realisations of the light-cones considering sources at three fixed source redshifts, from left to
right we have zs = 0.5, zs = 1.4 and zs = 4. The black curves show the power spectra computed from the ray-tracing pipeline including all the particles in
the light-cone extracted from the numerical simulation (as described in Giocoli et al. (2015)). The red dashed and blue dot-dashed curves show the results of
the two considered halo catalogues MFoF and M200, while the solid orange lines present the contribution of the substructures. The solid green curves display
the total convergence power spectra of Friends-of-Friends haloes and subhaloes. The grey curves describe the shot-noise contribution to the power spectra
computed from the ray-tracing simulations using particles.

From the figure we notice that our halo model for weak lensing cap-
tures quite well the 1-halo term plus the one related to the matter
between haloes, but misses the linear contribution of matter dis-
tributed among haloes; that is matter density fluctuations that are
not attached to non-linear structures, and possibly tracing sheets
and filaments.

The relative contribution of subhaloes to the power spectrum
with respect to the smooth component is displayed in Fig. 6. The
green, blue and red curves represent the subhalo contribution for
three different source redshifts. From the figure, we notice that
typically subhaloes contribute to approximately 3% to the conver-
gence power spectrum and that their contribution becomes signifi-
cant for scales below 5 arcmin, which correspond to approximately
is l ≈ 104. In particular those scales are not well resolved within
the numerical simulation due to particle and force limitations while
well described by our halo model formalism. We remind the reader
that in those regimes, a consistent treatment of the baryonic contri-
bution is very critical (Harnois-Déraps et al. 2015a), and this will be
addressed in an upcoming paper (Giocoli, Monaco et al. in prepa-
ration).

3.3 Effective linear contribution to the weak lensing halo
model

As discussed in the previous section, the halo model formalism we
have implemented so far is missing the effective contribution of
the linear matter density distribution presents among the haloes,
which may be tracing sheets and filaments. Recently van Daalen &
Schaye (2015), using a set of cosmological numerical simulations,
discussed how much non-virialized matter contributes to the total
matter power spectrum. In particular they showed that the larger the
region around the virialized haloes that is included, the larger the
halo contribution to the matter power spectrum will be. The matter
power spectrum of haloes for 3 < k < 100hMpc−1 enclosing 200
times the critical density is smaller then that enclosing 200 times
the background and, in turn, of that of the mass residing within the
FoF groups. Going from three to two dimensions it can be noticed
from the panels present in Fig. 5, our model properly reconstructs
the 1-halo term plus a 2-halo-like term but has less power at large
scales with respect to the ray-tracing power spectrum as computed
using particles. Consistent with the results of van Daalen & Schaye
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Figure 6. Relative contribution to the cosmic shear power spectrum of the
subhaloes with respect to the FoF-haloes for three different source redshifts:
zs = 0.5 (green), zs = 1.4 (blue) and zs = 4 (red).

(2015), we notice that the convergence power spectra of the matter
in M200 is smaller than that of the matter within the FoF groups.
However the relative difference between the two depends on the
considered source redshift: M200 has a pseudo-redshift evolution,
as discussed by Diemer et al. (2013), that depends on the evolu-
tion of the Hubble function with the cosmic time. To better clarify
and understand the contribution of the matter in virialized haloes,
in Fig. 7 we display the convergence power spectrum for sources
at redshift zs = 4. The black curve represents the power spectrum
from the ray-tracing simulation using particles for one light-cone
realisation, while the green curve displays our halo model contri-
bution from haloes and subhaloes. The cyan dotted line shows the
convergence power spectrum Pκ,lin(l) computed from the linear
theory assuming zs = 4, while the blue curve displays the power
spectrum of a random Gaussian realisation κlin,r of the theoretical
linear cosmic shear power spectrum Pκ,lin(l) in amplitude with a
random phase – the subscript r stands for random in phase. The
dashed orange curve – almost overlapping the red one – presents
the convergence power spectrum of a map computed by summing
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our halo model convergence map κhm – halo and subhalo contri-
bution – with κlin,r calculated for zs = 4. Computing its power
spectrum, because the cross-terms are zero, we can read:

〈κ̂(l)k̂∗(l′)〉 = 〈
∧

(κhm + κlin,r)(l)

∧

(κhm + κlin,r)
∗(l)〉

= 4π2δD(l− l′)
(
Pκhm(l) + Pκlin,r(l)

)
,(18)

where l ≡ (l1, l2), Pκhm(l) represents the power spectrum us-
ing our halo model formalism and Pκlin,r(l) is the power spec-
trum of the Gaussian realisation of the theoretical linear predic-
tion with random phase. Finally, the light-blue dashed curve shows
the convergence power spectrum of a map computed summing
to κhm the map of a Gaussian realisation of Pκ,lin(l) random in
amplitude but with a phase coherent (indicated with co. in the
figure) with the structures present within κhm. In order to con-
struct a map that is coherent in phase with the convergence map
built from haloes and subhaloes we define the Fourier transform
of κhm as κ̂hm(l1, l2) ≡ Re [κ̃hm(l1, l2)] + i Im [κ̃hm(l1, l2)] ≡
κ̃hm(l1, l2) cos[φ(l1, l2)] + i κ̃hm(l1, l2) sin[φ(l1, l2)]; we then
generate a Gaussian realization of the linear power spectrum with
amplitude ˜κlin(l1, l2) and phase

φ = arctan

(
Im [κ̃hm(l1, l2)]

Re [κ̃hm(l1, l2)]

)
. (19)

This case is considered because we aim to ensure that the matter
present among virialized haloes is consistent with the non-linear
matter density distribution in a way to resemble sheets, filaments
and knots; moreover our aim is to develop a model which is inde-
pendent of the bias between halo and matter. We stress also that
we are aware that adding together two fields that are coherent and
computing the power spectrum as in eq. (17) we obtain:

〈κ̂(l)k̂∗(l′)〉 = 〈
∧

(κhm + κlin)(l)

∧

(κhm + κlin)∗(l)〉 (20)

= 4π2δD(l− l′) (Pκhm(l) + Pκlin(l) + Phm⊗lin) ,

where Pκhm+κlin(l) = Pκhm(l)+Pκlin(l)+Phm⊗lin. Phm⊗lin in-
dicates the cross-spectrum term between the two fields and that by
definition Pκlin(l) = Pκlin,r(l). From the figure we can notice that
the normalisation of Pκhm+κlin(l) is much higher than expected
due to the cross-spectrum term between the two convergence maps
that are in phase with each other where non-linear structures are
present. In order to renormalize the computed power spectrum ac-
cording to the expectation from linear theory, we define an effective
linear power spectrum Pκeff,lin(l), with a phase coherent with the
halo population, but with an amplitude renormalized according to
the following relation:

A(l) =
Pκ,lin(l)

Pκhm+κlin(l)
. (21)

The magenta dot-dashed curve in Fig. 7 shows the power spectrum
of the effective linear map κeff,lin that added to κhm gives our final
result that is the total effective power spectrum displayed in red –
not far from the black curve as we will discuss in the next section.

As an example, in the left panels of Fig. 8 we show nine effec-
tive linear convergence maps κeff,lin for the same light-cone real-
isation as presented in Fig. 2. The amplitude of the corresponding
power spectra has been sampled using a Gaussian random num-
ber generator and adopting Pκ,lin(l) as theoretical reference model
and renormalized according to the relation in eq. (21). In real space,

102 103 104

l

10-6

10-5

10-4

10-3

10-2

l2
P

(l
)

single light-cone realisation as in Fig. 2
zs =4

particles

P , lin

co. Gaussian

rescaled co.  G.

MFoF +msub+co. G.

MFoF +msub

MFoF +msub +G.

total effective map

Figure 7. Convergence power spectrum for sources at zs = 4. The dot-
ted cyan curve shows the predictions using the linear matter power spec-
trum while the blue line shows the power spectrum of a random Gaus-
sian realisation. The green curve displays the contribution to the power
spectrum arising from the haloes Pκhm (l) and the dashed orange displays
Pκhm (l) + Pκlin (l), the sum of the halo contribution and the linear Gaus-
sian realisation power-spectra. The black solid line shows the power spec-
trum of the ray-tracing pipeline using particles from the simulation, while
the light-blue dotted line displays the power spectrum of the convergence
map calculated summing κhm and κlin, a map that is coherent (co.) in
phase with the halo population. The solid red curve shows the effective to-
tal map where the amplitude of κlin is rescaled according to eq. (21) – see
the text for more details.

each effective linear map is in phase with the non-linear structures
present in the field of view and statistically consistent with the mat-
ter density distribution in sheets, filaments and knots. The right pan-
els of the figure show the total effective maps summing the maps in
the left panels with the convergence maps constructed from haloes
and subhaloes as in Fig. 2.

4 STATISTICAL PROPERTIES OF THE
WL-MOKA_HALO-MODEL

The effective total maps reconstructed using our halo model repro-
duce quite well the properties of the maps computed using all the
particles in the simulation that are present within the light-cones up
to a given source redshift zs. The halo and the subhalo catalogues
are used to compute the contributions from non-linear structures
while the linear power spectrum is used to characterise matter not
located in haloes.

In Fig. 9, we display the PDF of the convergence maps
for the first light-cone realisation comparing the effective total
maps (haloes – and subhaloes – plus the effective linear term)
with the maps computed from particles – as in Fig. 4. For the
maps constructed using our WL-MOKA_HALO-MODEL (where
MOKA stands for Matter density distributiOn Kode for gravita-
tionAl lenses) we have generated 64 random realisations of the am-
plitude of the effective linear contribution. Left, central and right
panels show the results for zs = 0.5, 1.4 and 4, respectively. Again
we notice that the PDF of the maps constructed using FoF haloes
and subhaloes has a more extended tail toward larger values of the
convergence with respect to the maps from simulation: this is due to
the fact that they resolve much better the centre of haloes and sub-
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Figure 8. Left panels: nine reconstructed effective linear convergence maps built from the theoretical linear predictions rescaled in amplitude as in eq. (21).
Their phase is consistent with the non-linear structures present in the field. Right panels: total effective convergence maps: κhm + κlin.

Figure 9. PDF of the convergence maps constructed at three source redshifts. As in Fig. 4 the black histograms present the distribution of the convergence
maps built from the ray-tracing pipeline. The green and the red histogram refer to the effective convergence maps build from the FoF groups and the FoF plus
subhaloes including also the effective Gaussian linear contribution. Here we show the same light-cone realisation as in Fig. 2 for which we have created 64
different realisations of the Gaussian linear power spectrum – as an example we have displayed nine of them in Fig. 8.

haloes that may suffer from finite mass and force resolution when
using particles. Our halo model runs are only limited by the size
of the κ map we set equal to 2048 × 2048. This corresponds to
approximately 8.8 arcsec per pixel.. Comparing the green and the
red histograms we can notice that including subhaloes the maps
present pixels with larger values of the convergence which corre-
spond to the clump cores within FoF groups. From the figure we
can also see that the distributions for κ < 0 presents a different
sampling of the convergence field: the black histograms are well
described by a lognormal tail. In Fig. 10 we show the correspond-
ing convergence power spectra of the same light-cone realisation
and source redshifts. Black lines are the measured quantities from
the convergence maps computed using particles while green, blue
and red curves the corresponding predictions using FoF and sub-
haloes plus effective Gaussian linear term. As it can be seen in the
bottom panel convergence power spectra agree within five percents
for angular modes between the Nyquist frequency and l ≈ 104. It
is interesting to notice that for zs = 0.5 the particle shot-noise term
starts to dominate already at l ≈ 2× 103.

A more detailed comparison between our WL-
MOKA_HALO-MODEL and the ray-tracing analysis can be
observed in Fig. 11, where we show the convergence power spectra
at three different source redshifts, from top to bottom zs = 4, 1.4
and 0.5, respectively. The black solid curves show the average re-

sults of 25 light-cone realisations from the ray-tracing simulations,
the dashed red lines the average cosmic shear power spectrum of
our halo model using only the Friends-of-Friends groups while
the green curves show the average using FoF with subhaloes.
The light-green shaded regions display the rms corresponding to
the average measurement of the WL-MOKA_HALO-MODEL

including haloes and subhaloes. The cyan curves are the pre-
dictions from CAMB using the prescription of Takahashi et al.
(2012) for the non-linear modeling. We would like to underline
that possible small departures at small angular modes between
our WL-MOKA_HALO-MODEL predictions and the results from
the ray-tracing simulation may be due to the fact that while we
generally produce a large sample of Gaussian random realisations
of the linear theoretical predictions, in the simulation we have only
one random realisation of the initial density field as computed at
zi = 99.

Using cosmic shear measurements to estimate cosmological
parameters requires a good knowledge of the covariance matrix,
this means information about the correlation and cross-correlation
of the lensing measurements between different angular scales, or
modes. Typically to have a good sampling of the covariance ma-
trix, we need thousands of independent light-cone realisations of
the same field of view and for different initial conditions for the
same cosmological model (Taylor & Joachimi 2014). Using nu-
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Figure 10. Top panel: convergence power spectra at three different source
redshifts of a single light-cone realisation. The black curves show the mea-
surement computed from the ray-tracing using particles while the green, red
and blue display the prediction from our halo model algorithm – including
FoF haloes and subhaloes – plus the effective linear contribution to resem-
ble the matter density distribution not present in haloes. For the effective
linear contribution we have generated 64 different random Gaussian maps
in amplitude all with the same phase and measured the average. Bottom
panel: relative difference of the power spectra, the corresponding shaded
regions enclose the variance of the power spectra on 64 different random
Gaussian realisation of the effective linear contribution.

merical simulations and full ray-tracing analyses, the production of
these light-cones requires an enormous amount of computational
time and huge storage disk spaces. On the other hand our approxi-
mated halo model approach is much faster, not too much demand-
ing in terms of CPU time and little memory consuming, and only
requires as input the halo and subhalo catalogues present within the
field of view up to the required source redshift plus the linear power
spectrum.

From the different light-cones realizations we can write the
covariance matrix in Fourier space as:

M(l, l′) = 〈Pκ(l)− P̄κ(l)〉〈Pκ(l′)− P̄κ(l′)〉 (22)

where 〈P̄κ(l)〉 represents the best estimate of the power spectrum
at the mode l obtained from the average of all the corresponding
light-cone realisations and Pκ(l) represents the measurement of
one realisation. The matrix can be then normalised as follows to
obtain the correlation matrix

m(l, l′) =
M(l, l′)√

M(l, l)M(l′, l′)
. (23)

For comparison with the 25 independent light-cones generated
from the ray-tracing simulation using particles in the top panels
of Fig. 12 we show the correlation matrices of the cosmic shear
power spectrum of those different realisations assuming zs = 0.5,

102 103 104

l

10-7

10-6

10-5

10-4

10-3

l2
P

(l
)

particles

MFoF

MFoF +msub

non− lin CAMB

Figure 11. Reconstructed non-linear convergence power spectrum at three
different source redshifts: zs = 4, zs = 1.4 and zs = 0.5, from top to
bottom, respectively. The black solid lines represent the prediction using the
ray-tracing pipeline on the particles within the light-cones. Red dashed lines
show the results using Friends-of-Friends haloes, while the green solid lines
show the case of FoF haloes plus subhaloes. Shaded green regions enclose
the rms of the 25 light-cones realisations, for each we created 64 different
realisations of the effective linear Gaussian contribution. The cyan curves
exhibit the non-linear predictions obtained from CAMB (Lewis et al. 2000),
which implements the Takahashi et al. (2012) version of HALOFIT (Smith
et al. 2003).

1.4 and 4, from left to right, respectively. We remind the reader that
this is presented here only for comparison. On the second row of the
figure (in green scale), the three panels show the correlation matri-
ces computed using our WL-MOKA_HALO-MODEL formalism.
We have computed the halo and subhalo contributions from the 25
different light-cone realisations and for each of them we have gen-
erated 64 effective linear term contribution to represent the matter
density distribution that is not in haloes. From the figure, we no-
tice that our halo model reconstructs with very good accuracy the
halo sampling properties of the non-linear structures and the con-
tribution from linear theory typically dominant for small values of l
within the field of view realization. This sets the basis for the capa-
bility of our approach to create self-consistent covariance matrices
that can be easily extended to much larger field of view, accounting
for a uniform or masked fields of view and considering different ge-
ometries and determining how these properties propagate into the
lensing measurements and subsequently into the covariance matri-
ces (Harnois-Déraps & van Waerbeke 2015b).

Before concluding this section we would like to discuss the
performance of our halo model-based weak lensing methods in
comparison to the full ray-tracing simulation using particles. The
first bottle neck in making convergence maps using particles is the
construction of the lensing planes and reading the simulation snap-
shot files. Typically for a 10243 dark matter particle simulation the
construction of a plane resolving a field of view of 5×5 sq. degrees
with 20482 pixels takes 2.5 min that for 22 lens planes up to red-
shift z = 4 translates in approximately 60 min. While the construc-
tion of the corresponding halo and subhalo catalogues, reading and
projecting the SUBFIND catalogues within the same field of view,
takes slightly less then 1.5 min. The full ray-tracing simulation with
GLAMER on 22, 14 and 8 lens planes, which are needed to con-
struct the convergence maps and measure the convergence power
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Figure 12. Correlation matrices at three different source redshifts. From left to right zs = 0.5, zs = 1.4 and zs = 4. On the first row, the panels show the
correlation matrices of 25 different light-cone realisations of the ray-tracing pipeline while in the second row are displayed the matrices from the FoF haloes
populated with subhaloes plus the effective Gaussian linear contribution. In this case for each light-cone created using the halo model realisation we have
generated 64 random Gaussian effective maps to account for the matter density distribution that is not in haloes.

spectrum at zs = 4, zs = 1.4 and zs = 0.5, consumes 70, 65 and
62 min (8 threads process), respectively while our halo model code
(single thread process) takes 75 min on haloes in a 5×5 sq. degrees.
This time almost doubles when we want to account also for a buffer
region of 2.5 degrees on a side. On a single light cone simulation
our fast halo model method is approximately 90% faster than the
full ray-tracing simulation using particles. However, it should be
stressed that a N-body run from z = 99 to the present time us-
ing the GADGET2 code (Springel 2005) takes around 50.000 CPU
hours, while a run with an approximate method like PINOCCHIO2

(Monaco et al. 2013) takes approximately 750 hours to generate
also the past light-cone up to the desired maximum redshift z = 4
with our same aperture using a 5123 grid – on which we can run our
fast weak lensing method – while it spends 1550 CPU hours for the
same simulation but using a finer grid of 10243 3. To summarise,
we notice that our fast weak lensing simulation plus an approximate
N-body method for the halo catalogue are much faster than the full-
ray tracing simulation plus an N-body solver, but still reaching the
same level of accuracy in the convergence power spectrum.

5 SUMMARY & CONCLUSIONS

In this paper we have presented a self-consistent halo model for-
malism to construct convergence maps with statistical properties
compatible with those derived from the full ray-tracing pipeline.

From the ΛCDM run of the CoDECS suite we have produced
catalogues of haloes and subhaloes present within the constructed
matter density light-cones of a field of view of 5× 5 sq. degrees up

2 In particular a run at galileo@cineca (32 core) 10243 takes 15 min.
3 All the CPU times given here have been computed and tested in a 2.3
GHz workstation.

to zs = 4. To avoid border effects, we stored the information about
the haloes and the subhaloes present in a field of view of 10×10 sq.
degrees. In the following points we summarise the main ingredients
and results of our analyses:

• the mass density distribution in haloes is modelled using the
NFW profile. For concentration, we adopt the model by Zhao et al.
(2009) for the Friends-of-Friends groups while the Giocoli et al.
(2013) function for the M200 mass definition;
• the positive part of the one point statistic of the convergence

field is quite well reconstructed using the halo model formalism,
however using only the matter present in haloes and subhaloes we
are missing the linear matter density field not attached to virialized
structures – this means in particular filaments and sheets of the cos-
mic web;
• the power spectrum of the density field reconstructed with

haloes reflects the absence of matter outside haloes, and present
less power at large scale than as expected from linear theory;
• the subhalo contribution, using truncated Singular Isothermal

Sphere profile, enhances the convergence power spectrum by ap-
proximately 3% up to l ≈ 104. At smaller scales, this contribution
increases dramatically;
• the effective linear contribution on large scales is included by

creating a Gaussian field from the theoretical linear cosmic shear
power spectrum coherent in phase with the distribution of haloes
present in the simulated field of view, renormalizing it in amplitude
in order to match the linear prediction on large scales;
• the total effective maps are statistically similar to the ray-

tracing ones constructed using the particle density field.

To summarise, our WL-MOKA_HALO-MODEL formalism
self-consistently reconstructs the statistical properties of matter
density distribution within light-cones only using the halo and sub-
halo properties plus the linear power spectrum of the considered
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cosmological model. When compared with a full ray-tracing simu-
lation using particles for each single realisation, we find an agree-
ment on average within 5% with the reconstructed convergence
power spectra for different source redshifts. This highlights the ca-
pability of our halo model pipeline in reconstructing the non-linear
properties of weak-lensing fields in a much faster way than ray-
tracing simulations. Future tests will be dedicated to the capabil-
ity of extend our method to non-standard cosmologies (Giocoli et
al. in preparation) in the light of the recent results presented by
(Narikawa et al. 2011; Zhang et al. 2013; Massara et al. 2014; Lom-
briser et al. 2015; Mead et al. 2016) and also to the possibility to
self-consistently develop general models for the cross-correlation
between clustering and weak-lensing signals (de la Torre et al.
2016).

Our formalism opens the capacity to create coherent covari-
ance matrices for a given cosmological model and any field of
view geometry and masking, allowing a more complete and self-
consistent cosmological inspection of realistic lensing data over a
wider range of cosmological parameters (de Jong et al. 2013; The
Dark Energy Survey Collaboration 2005; LSST Science Collabo-
ration et al. 2009; Laureijs et al. 2011).
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APPENDIX A: PROBABILITY DISTRIBUTION
FUNCTION OF THE CONVERGENCE MAPS

As discussed in the text, and more in particular displayed in Fig. 9,
the comparison of Probability Distribution Function (PDF) be-
tween our WL-MOKA_HALO-MODEL predictions and those us-
ing ray-tracing with particles shows some difference that varies as
a function of the source redshift. In the discussion we have stressed
that this may be due to numerical resolution limits both in force and
particle mass that do not allow for resolving well the central part
of the haloes and clumps where typically high convergence val-
ues appear. However different authors (Taruya et al. 2002; Hilbert
et al. 2011; Clerkin et al. 2016; Patton et al. 2016; Xavier et al.
2016) have discussed that the properties of the convergence one
point statistic may be characterized by a Gaussian or lognormal

distribution. Das & Ostriker (2006) have discussed that small per-
turbations with resolution of θ ∼ 10 arcsec and zs = 1 account
for most of the strong lensing cases and that the PDF is far supe-
rior to the Gaussian or the lognormal. They also emphasize that for
zs = 4 about 12% of the strong-lensing cases will result from the
contribution of a secondary clump of matter along the line of sight,
introducing a systematic error in the determination of the surface
density of clusters, typically overestimating it by about some per-
cents.

In this appendix we discuss the properties of the PDF of
the convergence resampling the characteristics of the reconstructed
fields in order to have a well defined distribution for the amplitude
in the Fourier space κ̃ and conserving both the power spectra and
the phases to be consistent with non-linear structures. In the left
panel of Fig. A1 we display the convergence map reconstructed up
to source redshift zs = 4 using our WL-MOKA_HALO-MODEL

algorithm, the map contains the contributions from haloes, sub-
haloes and effective linear power spectrum. The central and right
panels show two maps that possess the same power spectra and co-
herent in phase with the left one. However, while in the first (orange
framed, termed resampled1) the amplitude of the convergence in
the Fourier space κ̃(l) is drawn from a Gaussian distribution with
rms σ(l), in the second (blue framed, termed resampled2) the am-
plitude of ln(κ̃+ 1) is drawn from a Gaussian distribution with the
rms that can be read as:

σ2
ln(l) = ln(σ2(l) + 1) (A1)

where σ2(l) = Pκ(l) and Pκ(l) the convergence power spectrum
of the map on the left panel. We then convert the logarithm of the

convergence plus one ˜ln(κ+ 1) field in the real space and obtain
the convergence as

κ = exp [ln(κ+ 1)]− 1 . (A2)

we emphasize that this transformation does generate by construc-
tion a lognormal field in real space (Hilbert et al. 2011; Xavier et al.
2016), and we present this case since it produces in real space a map
whose PDF is close to the PDF of the case MFoF +msub.

In the three top panels of Fig. A2 we exhibit the PDF of the
convergence fields for three different source redshifts, as labelled
in the panels. The black histograms show the PDF of the con-
vergence field computed using particles and the GLAMER pipeline
while the green ones the PDF of 64 realization of the same field us-
ing WL-MOKA_HALO-MODEL: haloes, subhaloes and effective
linear power power spectrum contributions. The orange and blue
histograms show the Probability Distribution Function of the con-
vergence maps resampled in amplitude in the Fourier space as de-
scribed above. From the figures we notice that while for low source
redshifts the predictions from numerical simulation are quite close
to the blue histograms for zs = 4 the black shaded histogram is
very well described by the orange one.

In the three bottom panels we degrade the resolution of the
maps to 64 × 64 pixels which correspond to approximately 281
arcsec (l ≈ 4.6 × 103) in order to remove the particle noise con-
tributions. In all panels the red dashed curves show a lognormal
distribution with amplitude equal to half of the first quartile of the
black histograms. In those low resolution maps the one point dis-
tribution function of the convergence is quite well sampled by the
orange histogram, the field is characterized in the Fourier space to
have a Gaussian distribution with average zero and variance at a
given scale given by the square-root of the predicted convergence
power spectrum by our model.

In Figure A3 we display the power spectra of the resampled

MNRAS 000, 1–17 (2016)



Fast Weak Lensing Simulations 15

Figure A1. Convergence maps of the light-cone constructed considering sources located at zs = 4. While the left panel displays the convergence map
produced using our WL-MOKA_HALO-MODEL algorithm, central and right panel show the same realization of the structures with equal phases but forced
to have the modulus of the convergence field in the Fourier space κ̃ randomly drawn from a Gaussian (central orange framed) and a lognormal (right blue
framed) distribution with an identical power spectrum.

maps normal and lognormal as discussed above in the text, the or-
ange and the blue curves display the two cases, respectively. From
the figure we can notice that since the power spectrum is small
compared to unity the differences between the normal and the one
that ensures the correct power spectrum for lognormal field is neg-
ligible. The curves from top to bottom display the power spectra
considering sources at zs = 4, zs = 1.4 and zs = 0.5, respec-
tively.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A2. Probability Distribution Function of the convergence field for the three considered source redshifts, zs = 0.5, 1.4 and 4 from left to right,
respectively. Top and bottom panels show the PDF of the map resolved with 2048 and 64 pixels by side, respectively. In the top panel the pixel size has a
resolution of 8.8 arcsec while in the bottom 281 arcsec, which correspond to a angular mode of approximately 1.5× 105 and 4.6× 103, respectively.
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Figure A3. Convergence power spectra for sources at three different red-
shifts, zs = 0.5, 1.4 and 4 from bottom to top, respectively. Black curves
show the power spectrum of the convergence map computed using particles,
the green ones using our model which includes FoF-haloes and subhaloes,
the dashed orange and blue curves display the power spectra of the resam-
pled maps as discussed in the text.
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