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FLUID DYNAMICS AND THE CALCULUS
HORIZONTAL VARIATIONS

J T MOREAU
Institut de Mathématiques, Université des Sciences et Techniques du I.anguedoc, place Eugeéne Bataillon,
34060 Montpellier-Cédex, France

Abstract—A horizontal variation is a shift defined in the {#, x;} space or in the {x;} space by a smooth vector
field ¢ The corresponding laws of transport for vector or tensor fields and for vector or tensor measures
are investigated This is used to characterize the {possibly non-smooth} solutions of the dynamical
equations of a nonhemogeneous compressible barotropic inviscid fluid, in Euler variables, as the critical
points of some real functionals on infinite dimensional manifoids

1 INTRODUCTION

WieN LAGRANGE’S variables are used in formulating the dynamical equations of an inviscid fluid,
some variational characterization of the solutions is easily derived. This simply consists in the
adaptation of Hamilton’s principle of least action to what actually constitutes a frictionless
mechanical system with infinite degree of freedom (as a standard reference, see [1]) The
question is much less clear when the dynamical equations are expressed under the Euler form,
though a certain number of studies have been devoted to this subject in recent decades The
present paper proposes an answer based on what may be called the calculus of horizontal
variations

Let us first precise the mechanical setting, It is assumed that the conditions under which the
fluid evolves allows one to eliminate the temperature in order to obtain a relation between the
pressure p, the density p and, possibly, the time £, which holds during any possible motion But
homogeneity of the fluid is not assumed: the said relation may be written as

(k. t.8,p)=0 (1

containing a parameter «, of arbitrary mathematical nature, whose value is a constant for each
element of the fluid For instance x may refer to the fixed temperature of the considered
element (isothermic evolution) or to the specific entropy (isentropic evolution) but may also
account for the chemical nature, possibly different in various parts of the medium

The distributed extraneous forces are of the gravity sort, ie the density vector of these
forces relative to the fluid mass has the form grad U, where U denotes a given function of the
space coordinates xi, X,, X3, possibly dependent also on ¢

Boundary conditions will not be investigated in this paper; one may suppose, for instance,
that the fluid is confined by walls with prescribed motion

The above assumptions make the fluid belong to the class of frictionless mechanical systems
submitted to, possibly time-dependent, potential forces This precisely makes sense when
Lagrange’s description of motions is used; to this end. every particle of the fluid is labelled by a
value of the triplet A =(A', A%, A), ranging over some subset A of R®> A placement of the fluid,
relative to the inertial orthonormal frame Ox,x,x; is a €' mapping 7 : A - x, where x stands for
the triplet (x,, x,, x;) € R* A motion is a chain { > 7' of such placements Putting o =p"', one
expresses the mass conservation by

where Dx/DA denotes the Jacobian determinant of #, and ¢ a given function of A, namely the
density of the mass measure relative to the Lebesgue measure dA on A
For brevity, the case of an incompressible fluid, where p does not appear explicitly in



relation (1.1), will be left for a further paper Suppose this relation solved under the forp,
p =p(t &, o) and put

Pl ko)= {p(f. k, o)do, (13)
an expression defined up to the addition of an arbitrary function of ¢ and « Then the functiong]
7q-%ﬁam:-[Pu&amxmm (4

+ A

appears as the (time-dependent) potential of the internal forces of the system; this means that,
if an arbitrary smooth chain of placements 7— 7" is considered at a fixed ¢, with ¢ refated to 7
by (1.2), the corresponding work done by these forces equals the (signed) increase of the real
function 7 - U (¢, 77).

Similarly, the functional

Ul )= - [ U, 7)) (1)

figures as the (time-dependent) potential of the extraneous mass-forces
There is considered on the other hand the general expression of the kinetic energy

&t ma)= [A sl (e, V)P i(A)dA (16)

where 7 stands for dn/at, the velocity vector of the particle A

In such a framework, easy calculation yields Hamilton’s property, namely that the solutions
t -» 7 of the equations of fluid dynamics over some time interval [#', #*] are the extremals of the
action functional

,{7
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Let us pass on now to Euler’s description of motion Denoting by u(¢, x) = @ (t, 7 (1, x)) the
velocity field, with u;(#, x) as components relative to the considered inertial orthonormal frame,
we define the differential operator

J d

L‘;g'*“rgg, (18)

. -

acting on differentiable functions of ¢ and x; it is sometimes called the drag-derivation along
Then the dynamical equations take the form

du=-cagradp +grad U, (19

while the conservation of mass is expressed by

do = e divu (110)
As for the conservation of « for each particle, it may symbolically be written as
d.x =0, (110

even if the mathematical nature of « do not let the r.h's of (I18) make sense These three
relations, joined with (1.1), constitute a complete set of equations for the unknown functions
(t,x)->u, o, p, « Assigning a variational meaning to this set of equations has been the subject of



some papers; as typical references, see [1,2], where a list of anterior papers may be found;
more recently [3] These are mainly developed in the line initiated by J. W Herivel and C C
Lin, by introducing the I agrange multipliers associated with some relations treated as con-
straints However, Lin’s constraint of “the conservation of particle” seems somewhat unclear
Much light was thrown on the question by Casal{4] This author expresses Hamilton’s principle
by taking as the unknown ¢-dependent element, instead of the placement s, the inverse
mapping ="' x = A; since ¢ and x are usually called the Fuler variables, the result may indeed
be said a variational statement of the Fulerian sort. Similar ideas, developed under the
assumption of stationary motions. yield variational properties of the classical Kelvin-Bateman
type; see in particular 5]

A common drawback of all these approaches is that they do not properly provide variational
characterizations of the velocity field # but of some generalized velocity potential or stream
function in the style of Clebsch’s representation of the flow Apparently, this feature is
connected with the use of the conventional calculus of variations, which cannot directly handle
discontinuous fields; in contrast, the possibility of discontinuous velocity fields is inherent to
the absence of viscosity in the fluid The conventional variational procedures consist in adding
to the investigated functions some variations which have to be smooth functions of ¢ and x;
that leaves invariant the locus of possible discontinuities, while such a locus is precisely an
unknown of the problem

The present study overcomes this fail, thanks to what we propose to call the calculus of
horizontal variations Non smooth solutions will be handled so that our results include as
special cases some variational characterization known to hold for the slipstream surfaces or
free boundaries in inviscid flows{6.7] Recall that the fluid is not supposed homogeneous; one
may accept that its density p abruptly drops to zero beyond some unknown surface

Section 2 introduces horizontal variations as the transport of scalar, vector or tensor fields
by some ideal continuous media in motion over the given region of ®" Such an abstract
continuum, called a carrier, is considered only to take profit of the usual language of
kinematics; it is entirely distinct from the proper fluid under study and the real variable 7
ordering its chain of placements should not be mistaken with the time ¢ of dynamics The
reader familiar with differential geometry will observe a close connection between our cal-
culations and the operations called the Lie derivations associated with given vector fields (see
[8,9]) But it appears that the formalism we use, with the advantage of referring only to the
common kinematical background of fluid mechanists, is also better adapted to subsequent
practice For instance, in numerical computation, + might order an approximation process and,
in such applications, the carrier velocity would usually have to vary with = This is similar to
some methods currently used in solving problems of optimal design for unknown domains,
possibly arising from quite other subjects than mechanics; these methods amount to make a
finite elements mesh be dragged along by some imagined fluid{10, 11]

The carrier velocity field. denoted by . plays a role analogous to that of the “test
functions” in Schwartz’s theory of distribution This vector field will always be supposed
smooth, with compact support in some open subset of R" If one is looking for necessary
conditions, in order that some fields u, ¢, « satisfy the equations of hydrodynamics, the
strongest assertions will be formulated by taking ¢ in %€'; in what regards sufficient conditions,
on the contrary, formulating them by means of €~ test fields constitutes a stronger statement

In contrast with ¢, the fluid velocity u, the mass volume o and the fluid “quality” « may be
discontinuous; hence the partial derivatives involved will be understood in the sense of the
theory of distributions To this end, some of the expressions appearing in the equations have to
be interpreted as the densities of vector or tensor measures, relatively to the Lebesgue
measure

The reader unwilling to enter into the technical matter of vector and tensor measures may
refer to [12], an introductory lecture where only smooth flows are considered

The two fundamental modes of transport of a vector of the Euclidean space & by a carrier,
called convection and transvection, are investigated in Section 3 From ¢ being ¢’ and from the
classical regularity properties of the integrals of d&/dr = o(&(7)}, it results that the carrier may
be endowed with the structure of a ' differential manifold, denoted by A, in such a way that,
for every 7, the placement mapping #7 is a €' diffeomorphism of A into & The two modes of



transport respectively correspond to the images in 4 of vectors or covectors of this manifold
In particular, the gradient of a scalar function which, in a classical sense, is convected by the
carrier, constitutes a transvected vector field

Scalar or vector (resp covector) Radon measures on A are introduced in Section 4 by the
classical duality procedure: these are finear functionals on the respective spaces of the
continuous scalar or covector (resp vector) fields, with compact support in A Under the
placement mapping 7", such fields are transformed into 7-dependent continuous fields in
with compact support; by transposition are defined the images of scalar, vector or covector
measures; this yields in particular the concepts of a convected 7-dependent scalar measure o
of a convected, resp transvected, v-dependent vector measure in 2. Using the Radon-Nikodym
theorem, one may observe that a 7-dependent vector measure in % is convected, resp.
transvected, by the carrier A if and only if it can be represented (nonuniquely) as the product of
a convected nonnegative scalar measure by a convected, resp transvected, vector field The
example of the vector measure associated with a convected curve is developed; this also yields
a reformulation of the Helmholtz theorem on vorticity in classical fiuid dynamics

Divergence-free vector measures in 2’ are of primary importance; it is shown in Section §
that, for a convected vector measure, this is a 7-invariant property

Section 6 is devoted to second order tensor fields Classically, on the €° manifold A, there
are defined four sorts of such fields, according to the ways of combining covariance and
contravariance In contrast, the Euclidean structure of & is conventionally used to identify
vectors and covectors, yielding a single sort of second order tensor field If one starts with a
r-independent second order tensor field in A, one obtains as its image under the placement
mapping 7" some 7-dependent tensor field in ¥ which will be said doubly convected. doubly
transvected or transported in some mixed way by the carrier A, according to the sort of tensor
considered in A Symmetrically, the constant second order tensor field g of the Euclidean
metric of & (or “unit” tensor field) is the image under 7" of some r-dependent doubly covariant
tensor field v in A; this is the second order tensor field associated with the metric induced on A
by its imbedding in ¥ Calculating the r-derivative of 7, then taking the image of this tensor in
# leads to the strain rate formuta of the classical kinematics of continua

Then comes in Section 7, the concept of a tensor measure in & or in A; in this definition
again, the duality procedure is applied, generating by transposition the image under #7 of, say,
a doubly contravariant tensor measure in A. This is a 7-dependent tensor measure in the
Euclidean space %, said doubly convected by the carrier A The trace of such a Euclidean
tensor measure d I is a scalar measure, whose total will be called the trace integral of dT.
Proposition 7.1 states what may be viewed as the main formula of the calculus of horizontal
variations, a corollary of which is the following variational characterization of tensos measures
with zero divergence in the sense of distribution theory: Let dT be a bounded symmetric tensor
measure in the Euclidean space #° and let dT" denote the r-dependent tensor measure,
reducing to d T for 7=0, doubly convected by the carrier with velocity field ¢ (a €' vector
field, with compact support) The trace integral of dT7 has, for every ¢. a zero t-derivative at
7 =0 if and only if the divergence of dT is zero

There is a formal similarity between this result and some developments of Souriau{]3} in
General Relativity; but, instead of what we call horizontal variations, this author considers
variations of the non-Euclidean spacetime metric In contrast, the present paper definitely
places itself in the framework of classical dynamics, with its immutable Euclidean metric; our
technique of horizontal variations may be viewed as a natural extension of the conventional
virtual work procedure

Concerning the expression of the second +-derivative of the trace integral and the condition
for it to be nonnegative see [13]; this tends to explain, in that connection, the preeminence of
measures over other sorts of distributions

As we are to deal with non-smooth flows, the equations of fluid dynamics are first written
under a 4-dimensional divergence form in the sense of distributions theory; this is the object of
Section 8, where it is recalled that such a writing includes the case of slipstream suifaces. free
surfaces and also shock waves However, realistic shock waves do not fall into the scope of
this paper, as the assumptions made preclude any entropy jump

The expected variational property is established in Section 9 The functional under con-



sideration is nothing but the Eulerian 4-dimensional transcript of the action integral (1 7); hence
the statement may be considered as an adaptation of Hamilton's principle to Euler’s variables
The relationship with Hamilton’s principle is more precisely investigated in [16}.

The closest analogue in literature to horizontal variations may be seen in what Drobot and
Rybarski[15] call Aydromechanical variations By this these authors mean some infinitesimal
alterations of a €' vector field p, which are constructed from infinitesimal shift fields x - 8x
similar to our @, with concomitant infinitesimal variations of p(x) The essential difference from
the concepts introduced in the present paper is that, if the differential shift of Drobot and
Rybarski is integrated so as to realize a finite evolution of what we call a carrier, the resulting
alteration of p is not holonomic, i e the carrier may eventually resume its initial placement
without restoring the initial vector field; hence the variational statement in [15] is only
differential In contrast, our Propositions 9 5 and 10 3 make the considered functionals appear
as real functions defined on some manifolds; the solutions of hydrodynamical equation are the
critical points of these functions From the computational standpoints this may suggest some
stepwise processes or “walks” in the manifold, tending to approach the critical points

The final Section 10 is devoted to the variational characterization of the stationary solutions
of the equations of inviscid fluids; a variational property of the horizontal sort is shown to hold
in that case also, not directly connected with Hamilton’s principle

2 THE CALCULUS OF HORIZONTAL VARIATI®NS

Let us consider, as an introductory example, a standard variational problem By () is
denoted an open subset of R”; for every y € €'(ct Q, R) (ie y is a continuously differentiable
function defined on the closure of €}, with real values) satisfying some prescribed boundary
conditions and, for unbounded §}, some conditions at infinity, there is defined the functional

Ity) = L L(x, y(x),grad y(x)) dx; Qn

here x stands for (x;, x,, . x,) and dx for the n-dimensional I.ebesgue measure; [ denotes a
given element of €%(cIQx R xR", R)

The conventional calculus of variations derives necessary conditions for y to make I an
extremum, by studying the real function 7-»I(y+ 78y); the variable 7 ranges over a neigh-
bourhood of zero in R and 8y denotes an arbitrary continuously differentiable real function
whose support relative to {1 is compact. In what regards the surface G(0)C R"*' which
constitutes the graph of y, this amounts to make it compete with a family of surfaces G(7);
every point (x, y(x) + 76y(x)) of G(r) results from the corresponding point (x, y(x)) of G(0) by
the “vertical” displacement 78y(x) For this reason we shall say that the classical algorithm
consists in a calculus of vertical variations

A more general way of inserting G(0) into a chain of nearby surfaces would be to define, on
some neighbourhood of G(0) in R"*!, a vector field ®, and to call G(7) the image of G(0) under
the geometric transform exp ® generated by this vector field Here the mechanist will rather
use the language of the kinematics of continua: if the real variable 7 is identified with the time,
the mapping exp r® represents the displacement from the instant 0 to the instant r for every
particle of a (n + 1)-dimensional fluid in stationary motion, with & as velocity field. We shall call
a carrier such a fluid, imagined only to take advantage of familiar kinematical formulas The
classical calculus of variations amounts to choose the vector field & undér the special form
®(x, y) = (0, dy(x)), namely “vertical” in R" X R, and constant relatively to the y coordinate

Our calculus of horizontal variations consists in assuming for @ the special form ®(x, y) =
(¢(x), 0) where ¢ denotes a n-dimensional %' vector field. The (n+ I)-dimensional carrier
defined thereby leaves each hyperplane y = const invariant; its action inside such a hyperplane
consists in the flow of the n-dimensional carrier admitting ¢ as velocity field The surface

G(7) = (exp 7®)G(0)

in R"x R is the graph of the function y” defined on the subset (exp 7¢)(c1Q) of R" by the



following composition of mappings
y'=yeexp(— o) 2

For a given value of 7, this function may be seen as a rearrangement of the function y° =y
The carrier in R" with ¢ as velocity field will constantly be considered 1n the scquel As the
definition (2 2) of y” is ecquivalently expressed by the implication

x' =(exp r@)x 2 y(x) = y(x), (23

the interpretation of 7 as the time makes y * appear as a real function convected by the carrie;,
i e to each particle of this carrier corresponds a value of y” independent of 7

As we restrict ourselves to a class of functions y verifying some prescribed boundary
conditions, the €' vector field ¢ will in the sequel be chosen with compact support in the open
set (); then exp 7o constitutes a one-parameter group of self-mappings of c1£2, leaving invariant
some neighbourhood of the boundary, and some neighbourhood of infinity if ) unbounded For
brevity, the corresponding carrier will be said a compact carrier in €}

A necessary condition for vy, satisfying the prescribed boundary conditions, to make I an
extremum is that the real function 7-> I(y7) have a zero derivative at 7 =0 for every ¢ chosen
in the above manner. The standard way of calculating such a derivative would consist in
transforming the integral I(y”) by the change of variable (2 3), after which r-derivation is
commuted with x-integration. The kinematical formalism makes it easier; similarly to (1 8), let
us define, for every differentiable function f of = and x, the symbol

Jif . r?f
bl =5t ey 24)
This is the 7-derivative of the value that f associates with a particle of the carrier; it is zero in
particular when f is convected

Let us denote by g7 the components of grad y” relative to our orthonormal frame; if y" is
convected by the carrier, 4 reasoning based on the chain rule allows one to calculate the
r-derivative, at 7 =0, of the real function 7 - g7(x"), namely

é}‘ : .
N 25)

See [16]; actually a more efficient reasoning will be developed in Section 3 Then

L L aL 4
8, (x, y* =2z ‘» : . 29
(x, v, grad y7) = 5@ + 8¢g ax, @~ 72, —g =t i,

Finally, applying to the carrier the classical dilatation formula, one has
)
&f L(x, vy, grad y")dx ~[ (6L + Ldiv ¢)dx

By making 7 =0, thus y" = y, we obtain the dcsired necessary condition for y to extremize [

ﬁé L do; _
f(ax,-‘“ ng,g X; Iﬁx)dx 0 (26)

This is to hold for every continuously differentiable vector field ¢, with compact support in
As usual, one performs an integration by part and finally concludes that, everywhere in ),

dy [ 4 (oL\ aL]_
ax; {(fk (ﬁg) (’ly] =0 @7



This was not unexpected: (2 7) means that g satisfies either the classical Euler condition for
extremality or the condition grad y == 0 In fact in any open set where the latter holds, y is a
constant, thus unaltered by the considered rearrangements.

One reaches a less trivial conclusion if another variational problem is considered: that of
extremizing 1(y) over a class of functions resulting from each other by convection along
isochoric carriers Then (2 6) is to hold only for vector fields with compact support and zero
divergence. By a classical reasoning this is equivalent to the existence of a real function ¢ on
such that the left member in (2 7) equals dgfdx;

Example
I et us take as [ the Dirichlet integral

I(y)=%[ arad’y dx (28)
4O

The above condition for the extremality of I refative to isochoric carriers reduces now to
dg: Aygrady=gradg

where A denotes the Laplace operator In the special case # =2, one recognizes here the
dynamical equation satisfied by the stream function of an incompressible, homogeneous inviscid
fluid in stationary motion

The use of a stream function in hydrodynamics is limited to 2-dimensional problems, plane
or axisymmetric (a resuft similar to the above holds for this latter case) But it must be ohserved
that the stream function y appears in (2.8) by its gradient only, a vector field whose law of
transport by the carrier is defined in (2.5) The fluid velocity u, at each point, is the vector
deduced from grad y by rotation through #/2; in view of (2 5) and keeping into account the
condition div ¢ =0, one obtains the corresponding law of transport by the carrier

8, = 1y %f—i‘ 2.9)

The functional (2 8) is now replaced by

&(u) :%’ uidx; (210)
Q

the vanishing of the r-derivative of this functional when u is transported according to (29)
makes sense for every number of dimensions One finds that it yields the dynamical vector
equation for the stationary flow of an incompressible homogeneous inviscid fluid{16]

The condition div # for the fluid flow to be isochoric is introduced a priori as a side
constraint An essential feature is that the transport (29), if the carrier is isochoric, preserves it
(see Section 5) Therefore, the considered variational device effectively characterizes the
solutions of the dynamical equation as critical points of the real functional (2 10) on a certain
infinite dimensional manifold; unlike some would-be variational statements, it does not consist
of a merely local play of § symbols Thus, some numerical procedures altering step by step an
initial solenoidal vector field in order to construct by successive approximations a solution of
hydrodynamics may be conceived In that respect, the requirement of using only isochoric
carriers may be awkward; removing this drawback will be subject of further papers, where
inhomogeneous fluids with discontinuous density and free surfaces will also be considered

About terminology, let us observe that the word ‘‘horizontal” is currently used in literature
with other meanings; for instance Edelen{9] calt horizontal some vector fields in an event space
which, in the terminology of Section 9 , we should refer to as isochronous

3 CONVECIED AND TRANSVECIED VECIORS

Let us recall that the geometric object to which reference is made, when describing a motion
in classical kinematics, is not properly a Cartesian coordinate frame but an equivalence class of



such frames, any two of them related in a time-independent way This amounts to say that the
reference object actually consists of a tri-dimensional Euclidean point-space, in which the said
frames constitute various Cartesian coordinate systems Such a reference space will in the
sequel be denoted by # and its number n of dimensions will possibly differ from 3; in fact, the
cases # =2 and # =4 are also of use in the hydrodynamical applications in view The
coordinates of an eclement x of Z, relative to some chosen orthonormal frame are denoted by
i=1,2, .n The linear space associated with # is denoted by X to the above frame in 7
corresponds an orthonormal base in X and the components of an element v of X are dengteq
by v, If f is a function defined on some neighbourhood of a point of . the partial derivatives of
f relative to the respective coordinates x; are denoted by f.; they are the components of the
vector grad f € X, the Euclidean gradient of f at the considered point

Let 2 be an open subset of 2" and let ¢ € €'(Q), X) be the velocity field of a carrier in the
sense of Section 2; one may suppose that ¢ depends also on the formal time 7, ie. the carriey
flow need not be stationary, in which case ¢ will be assumed €' in 7 and x jointly The concept
of a moving vector, associated with a given particle of such a continuous medium as this carrier
and convected by it, is classical. Roughly speaking, up to a r-independent infinitely large
magnification ratio, such a moving vector v is determined by a pair of infiniteiy close particles
of the carrier, hence the following rate of change

50,‘ _ )
B @ikl Gh

This is merely the equation of variations associated with the system of differential eqns (3 2)

below
Let us place things in a more rigorous setting Writing the general integral of the system of 5

differential equations

0x;

S elr, X, %) 32
under the form

;= mln A, A" (33)
with A', , A" as integration constants, amounts to labelling every particle of the carrier by
some value of (A!, ,A")ER" and interpreting (33) as the equations of the placement

mapping From the assumption ¢ € €' and from the classical facts concerning the dependence
of the integrals of a system of differential equations upon initial conditions, it ensues that the
values of A’, ,A" may be assigned to the various integrals of (3 2) in sucha way that (3 3) is,
at least locally, a €'-diffeomorphism We shall finally restate this as follows:

The carrier may be endowed with the structure of a n-dimensional 6'-differential manifold in
which (1) constitute some admissible coordinate system

et us denote by A this manifold, with A as general element; then, for every 7 in an open
real interval containing zero, (3 3) defines the placement mapping

A=>x=7(rA) 34

as a %'-diffeomorphism of A into 27 With every A € A is associated the tangent space Aj to A
at this point, a n-dimensional linear space

In what concerns the Euclidean space % its tangent space is X, the same lincar space at
every point; thus the fangent mapping to #(r, ) at the point A, denoted by #'(7, A). is a linear
isomorphism of A; onto X Saying that the moving element r->v(7) of X is a vector associated
with the particle A of the carrier A and convected by it, means in this context that v(r) equals
the image under (7, A) of some 7-independent element of A,



Toevery A A also corresponds the cotangent space A;*, ie the dual of A Since X is a
Fuclidean linear space, we agree as usual to identify it with its dual. Thus the contragredient
mapping 7(7, A) of #'(7,A) (e its inverse transpose) constitutes an isomorphism of AJ* onto
X We shall say that a moving element 7~ w(7) of X is a transvected vector associated with the
particle A of the carrier A, if it equals the image under 7 (7. A) of a 7-independent element of
A* Equivalently, for every convected v associated with the particle A, the Euclidean scalar
product o(7) w(7) is a r-independent real number By comparison with (3 1), this easily yields
the following rate of change

‘,’ == W (34}

It must be kept in mind that, here as well as in (3 1), the partial derivatives ¢,, of the
components of ¢ are to be evaluated at the point x = 7(7, 1) of #

A real function y of 7 and x clearly is convected by the carrier, in the sense defined in
Section 2, if it equals the image under 7 of a 7-independent real function » defined on the
manifold A, ie for every fixed 7, y edquals the composite mapping ne ="' Such image
functions are ' in 7 if and only if » is €' in A; in that case the €'-differential geometry of A
associates with 7, at every A € A, the element Vx5(A) of A}*, the gradient (or differential) of the
real function 7 at the point A In other words, the element ¥7(A) consists in the linear mapping
from A} into R, tangent at the point A to the €' mapping n: A— R Using the chain rule for
tangent mappings and the definition of the inverse transpose, one obtains that the Euclidean
gradient of y at the point x = w(r,A) equals the image of Vn(A) under w4(7,A) Thus,
r—grad y(7, 7(7, 1)) constitutes a transvected moving vector In view of (3 4) this makes a
proof of (2 3).

A vector field v defined, for every 7 € I, on some subset of & will be said convected, resp
transvected, by the carrier if, for every A € A such that (7, A) belongs to the domain of ¢, the
moving vector »(7, w(7, A)) is convected, resp transvected. Here again, such moving objects of
the geometry of & may be considered as the images of 7-independent objects of the geometry
of A In fact, when dealing with a %'-manifold such as A, instead of a Euclidean space, the
concept of a vector field splits into two There may be considered a wvector field or a covector
field;, the former is an assignment associating with every A in a certain subset of A, an element
of the corresponding tangent space A,, the latter an element of the cotangent space A% Visibly,
a 7-dependent vector field in & is convected by A, resp transvected, if it is the image of a
r-independent vector field, resp covector field, in A.

As soon as an admissible coordinate system (A} is chosen in the ¢'-differential manifold A,
some bases are automatically induced in the respective linear spaces A; and A;*; then the above
fields may be described by their components, which are real functions of (A',A%. ,A")
Admissible changes of coordinates in A are, by definition, continuously differentiable trans-
forms; this entails that the continuity of a vector, resp covector, field, defined as the continuity
of its component functions, actually constitutes a property independent of the peculiar choice
of admissible coordinates in A The same is true for the concept of the suppott set of afield, i.e
the complement of the greatest open subset throughout which this field vanishes

The following will be of use in next Section We shall denote by #(I',A"), resp. #(T.
the set of the continuous vector, resp covector, fields defined on the subset I' of A, whose
support telative to I’ is compact. Under the natural definitions of addition and of the
multiplication by scalar constants, these two sets are linear spaces If K is a compact subset of
I', we denote by ¥(I', K: A), resp #(T, K; A'™*), the linear subspaces of the above consisting of
the fields whose support is contained in K The use of some admissible coordinate system (A*)
in A permits to define on each of the linear spaces #(I', K; A") and ¥(I', K; A'*) the supremum
norms. which make of them some Banach spaces }he definition of these norms is affected by
the €' changes of coordinates; such changes actually replace them by some topologically
equivalent norms This means that, in the setting of the ¢'-differential structure of A, the linear
spaces ¥(I", K; A') and #(I', K; A'*) are respectively endowed with some definite “Banachiz-
able™ topologies. independent of the choice of any coordinate system



4 SCALAR AND VECTOR MEASURES

One is naturally induced to define for other geometric objects some laws of transport by 5
carrier

First may be considered a 7-dependent scalas (unsigned) measure dm”, defined on some
7-dependent subset €7 of 4° This measure will be said convected by the carrier A if it equals
the image under 7 of some 7-independent measure du defined on a subset I of A

As a counter-example, such is not in general the case for the Iebesgue measure dx on (7. it
equals the image under 7 of a 7-dependent measure d¢* in A Relatively to the Iebesgy,
measure dA associated with the (A%} coordinates in A, the measure d¢” is known to admi 5
density function ¢} equal to the Jacobian determinant of (3 3) A classical calculation yields the
7-derivative of this determinant, for a fixed A; equivalently may be considered the function -
of 7 and x defined on C” as the image of &, Then the above r-derivative may be viewed as the
drag-derivative of x," along the carrier A; we shall denote it by 8,x;. in accordance with the
notation used in the previous Sections, although, in the present case, x; may fail 10 be 4
differentiable function of 7 and x With this notation, the classical result takes the form

dxr=x,dive (4mn

Turning back to the measure dm?, let us consider the case where it admits a density function
m} relatively to the Iebesgue measure of % From (4 1) one easily deduces that dm” is
convected by the carrier if and only if

S,my= - nLdiv e 4y

holds almost everywhere. If the carrier is a material continuum with dm™ as mass measure, one
recognizes here the classical equation of mass conservation

Let us consider now a vector measure dv; this may be seen as a measure with values in X
instead of R or, equivalently, as a collection of n scalar measures dv; which constitute the
components of dv relative to the base chosen in X But the duafity way of defining a vector
measure serves our purpose much better From this standpoint[17], a vector measure dv ona
locally compact subset C of % is, by definition, a linear scalar functional on the linear space
H(C, X} of the continuous vector fields with compact support in , possessing the following
continuity property: the restriction of this functional to the (Banach) subspace ¥(C, K; X),
consisting of the elements of #(C, X) whose support in contained in the compact subset K of C,
is continuous for every K The value given to this functional by a vector field w € #(C, X) will
indifferently be written as <w dv>,or fw dv, or <w,dv; >, or [ wdu, with some natural
definition of the n scalar measures dv;, the components of dv relative to the chosen orthonor-
mal base in X

The duality definition of vector measures applies as well when it is considered, instead of an
Fuclidean space, a n-dimensional 4'-differential manifold such as the carrier A Let I be a
locally compact subset of A; a vector measure on I is, by definition, a linear scalar functional
on the linear space #(I', A™) of the continuous covector fields on T with compact support.
possessing this continuity property: for every compact subset K of I', the restriction of the
functional to the subspace %(I', K; A"} is continuous Symmetrically, a covector measure
consists in a linear scalar functional on #(I', A’} with the similar continuity property

If di is, for instance, a vector measure and 4 an element of F#(I", A"*), the value given by #
to the linear functional d¢s will be denoted < #,d¢s > or f < 8,dy > : here the symbol < . >
refers to the bilinear duality form of the tangent and cotangent spaces A, A;* at any point A ¢f
A As soon as an admissible coordinate system is chosen in A, the covector field # may be
described by its component functions &;; on the other hand there may be defined » scalar
measures dif, the components of di. such that the above is also expressed under the form
<@,dy' > or [<@,dy >

For every 7 in the considered interval, the placement mapping #{r, )} operates on vector 0f
covector fields in the way defined in Section 3 This visibly establishes a linear isomorphism
between H(I', A'), resp (", A'*) and the similar space %(C". X), with C7 = #(7,I'); recall thal
X, as a Euclidean linear space, has been identified with its dual For every compact subset K of



[, the subspaces H,K; A #),resp W, K;A'),and %(C’, w(7, K); X) correspond to each
other in the above isomorphism; moreover this cortespondence is bicontinuous. The definition
of the image under 7(7, ) of a vector, resp covector, measure on the subset [ of A follows
aulomatically: this image constitutes a 7-dependent vector measure on the subset {7 of #

The t-dependent vector measures in ¥ resulting in the above way from 7-independent vector,
resp. covector, measures in A are said convected, resp transvected, by the carrier A

Observe on the other hand that, in view of some n-dimensional extension of the Radon-
Nikodym theorem{17], every vector measure d¢ on the subset I of A may be represented as
follows: there exists (nonuniquely) a positive scalar measure dx on I and a bounded dp-
measurable vector field i, such that, for every # € %(I', A’ *).one has

[<a,dq,> :f< 60> du “3)

One writes di¢r = ¢, dp and the vector field ¢, (defined up to an arbitrary alteration in a
dp-negligible subset of I') is called the density of the vector measure dis relatively to the scalar
measure dp Similarly, every covector measure in A may be represented by a positive scalar
measure du, together with a bounded du-measurable covector field as density

Consequently, a r-dependent vector measure dv on the subset (7, T) of % is convected,
resp. transvected, by A if and only if there exists (nonuniquely) some convected positive scalar
measure dm” and some convected, resp. transvected. bounded dm”-measurable vector field v,
such that dv = v, dm" for every 7 in the considered interval

The representation of a vector or covector measure through a positive scalar measure and a
density field may be used to make (43) meaningful for more general fields 6 than the
continuous ones with compact support. In fact (4 3) makes scnse as soon as the scalar function
<@y, > is du-integrable Such fields 4 will be said integrable relatively to diy As the
components of i, belongs to L"(dy), this amounts to saying that the components of # belong
to L'(du) The vector (resp covector) measure d¢ will be said bounded if all the bounded
continuous fields are integrable relatively to it; equivalently the pesitive scalar measure d g is
bounded

Let us observe, on the other hand, that when a vector measure, such as dvo =v,dm is
considered in R", this makes sense to write the integral telatively te dv of a scalar function f, a
symbol whose value is an element of R” Taking in particular as f the indicator of a
dm-measurable subset of R", one defines the dv-measure of this set, with value in R" thereby
connecting the present theory with the conventional aspect of measures, namely e-additive
functions of sets But it should be stressed that the concepts of the integral of a scalar function
or of the measure of a set do not make sense anymore when it is considered a vector measure in
the manifold A. This is connected with the observation that, in such a manifold, there is no
possibility of addition for the elements of the tangent spaces at different points

Example 1

Let us consider an absolutely continuous curve in A, 1e a mapping y of some compact real
interval [r,, r,] into A. defined by n coordinate functions r->A’ = y'(r) which are absolutely
continuous on {r,, ] There equivalently exist n Lebesgue-integrable functions r -y, (r) such
that

Y= v‘(nH[ Yp)dp
Ji
It may be checked that these properties are preserved under any admissible change of
coordinates in A and that the y,(r) constitute the components of an element yj(r) of A},
independent of the peculiar choice of a coordinate system
Let us define the vector measure dy on A as the functional assigning to every 8 € ¥(A, A’ %)
the real quantity

<f.dy> j C< Ay (1)), ydr) = dr; (44)

1



in accordance with our previous notations, this quantity may equivalently be written as

ry

[" ey = [ acemyion = [« o000 >
4l n

The image in # of the vector measure dy under the placement mapping =(7, ) equals the
vector measure dc¢’ associated in the same way with the absolutely continuous curve ¢7: ,_,
7(7, y¥(r)} For every continuous vector field v on &, the value of <wv,de”> is nothing but the
circulation or work of v along ¢’ For 7 ranging over some real interval. ¢” constitutes 5
moving curve dragged along by the carrier A and dc” gives an example of a vector measure
convected by A Equivalently, for every continuous vector field v which is transvected by 4
the said circulation is a constant with respect to 7; as a trivial instance, one may take v = gréd )
where y is a convected scalar function

Remark

It is for brevity that we have restricted ourselves to absolutely continuous curves; more
generally, rectifiable curves may be considered, i e mappings of [7y, r.] into % or into A which
are continuous with bounded variation

Example 2

Let n =3 and the carrier consist of an inviscid fluid performing a barotropic motion with
velocity field «, supposed €'; here 7 will be the time ¢ of dynamics Classically, a local version
of the Kelvin-Helmholtz theorem may be formuiated as follows: if p denotes the density of the
fluid, a function of f and x, and w = curl u, the vector fleld p™'w is convected Actually, the
bearing of p to the situation is only that the mass measure d = pdx is convected The property
may equivalently be formulated by saying that the vector measure p'wpdx = wdx is convected
This vector measure is simply the curl, in the sense of distribution theory, of the vector
measure #dx; eliminating g from the formulation clarifies the statement

5 BIVERGENCE-FREE VECTOR MEASURE

Definition

A vector measure dv defined in some open subset Q) of ¥ will be said divergence-free (o
solenoidal) in Q if [gradf do =0 for every €' (equivalently €¥) scalar function f whose
support relative to Q) is compact

In other words dv possesses a zero divergence relatively to () in the sense of distribution
theory

Suppose dv convected by the carrier A; if the scalar function f in the above definition is
viewed as convected by the carrier, its gradient is transvected, hence yields a r-independent
integral with respect to dv Therefore:

Proposition 5 If a convected vector measure is divergence-free for some value of 1, so it is
for every 7

Remark

The same sort of reasoning proves that, if the convected vector measure dv possesses, in
the sense of distribution theory, a divergence which happens to be a measure, this measure is
convected Incidentally, one could agree to restrict oneself to carriers with %~ velocity fields;
such a cartier may be endowed with the structure of a 4™ differential manifold, independent of
7, involving the concept of convected distributions Then it comes that every convected vecter
distribution admits as divergence a convected scalar distribution; this will not be used in the

present paper
Example

Let ¢ denote, as in Section 4, Example I, an absolutely continuous curve For every 4
scalar function f, one elementarily has

fgradf d¢ = f(b) -~ f(a)



witha = ¢(r;)and b = c(r,), the ends of the curve This means that the divergence of the vector
measure de, in the sense of Schwartz’s distributions, equals §, - 8,, the difference of the Dirac
measures at the respective ends. If the curve ¢ is convected by the carrier A, this divergence
measure is clearly convected; it is zero if the curve is a cycle,ie a = b. The vector measure dc¢
has also a zero divergence refative to Q1 if the ends of the curve ¢ in #"do not lie in ()

6 TENSOR FIELDS

Vector or covector fields in the %'-differential manifold A are special cases of fenser fields:
such a field, defined on a subset I C A, is a correspondence assigning to every A €T an element
of some tensor product space whose factors are copies of the linear spaces A} or Aj* This may
be, for instance, an element of A;® A, in which case the tensor field is said doubly
contravariant; a doubly covariant tensor field admits as values some elements of A}* ) A¥;
two sorts of mixed tensor fields of the second order are also to be considered, whose values are
elements of A;GOA;* or Aj*®A,, respectively

For every 7 in the considered interval, the placement mapping (7, ) sends A into %, while
the linear isomorphisms 7'(7, 1) and (7, A) maps A} and A;* onto X; this yields the definition
of the images under = (7, ) of any of the above second order tensor ficlds; these images are
second order r-dependent tensor fields in # Since the Euclidean linear space X has been
identified with its dual, one finds in 2 only one sort of second order tensor field instead of four
Such a 7-dependent tensor field in & is said doubly convected by the carrier if it equals the
image, in the above sense, of some doubly contravariant 7-independent tensor field on a subset
of A; it is said doubly transvected if it equals the image of some doubly covariant tensor field;
two mixed modes of transport could also be considered

To give a fundamental example of images of tensor fields, let us start with the constant
tensor field g in &, associated with the Euclidean metric. Relatively to some orthonormal frame,
its components equal the Kronecker symbol §; but, if arbitrary curvilinear coordinates (/) are
used in &, this tensor field is represented by doubly covariant components g; = g; which are
functions of (', *, ,{") If a €' curve is considered in &%, its length equals the integral [ ds.
with

d92=gud['dl’ (6 1)

Consider now the carrier A and any of its placements #(z, ); let us denote by y’(A) the element
of Aj*® A* whose image equals the element g of X ® X For every €' curve I in A, the
image w(7,T) is a €' curve in &, whose Euclidean length could be calculated as above; but
equivalently, the placement mapping may be interpreted as a change of variables, yielding the
expression of this length as an integral [ de along I', with

do’ = yidA'dA/ (62)

This expresses the metric induced on the €' differential manifold A by its embedding = (7, )
into the Euclidean space %’

A standard problem in the kinematics of continua is to calculate the rate of change of the
Euclidean length of the curve #(r,I) when I' is a 7-independent curve in A In view of (6 2),
this requires, for every point A of the curve, the expression of the r-derivatives §y}/ér, ie. the
components of the 7-derivative of the element y*(1) of the linear space A* &® A;* To this end,
one may consider an arbitrary pair of 7-independent elements «, 8 of A, and the doubly
contracted product

<a, ¥, B>=a'yip (63)
Then
5~'<a y6>’<cyé~y’(/\)ﬁ> (64)
& 7" 87 ’



The images ¢” and h* of @ and B under the tangent mapping (7, A) are some moving vectorg
convected by the cartier In view of the definition of images, one has

<y B>=<al,g b >=a" bT (6 9)

where the dot refers to the Euclidean scalar product in X Ihe rate of change of @™ and b7 in X jg
given by (3 1), which involves the use of orthonormal Cartesian coordinates; hence

8 T 6 ThT Ynihit .
5;(0‘ b7) ‘*g;(uibi):(‘;ﬁ,,"f @ )aib; (6 6)

Classically, for every differentiable vector field such as ¢, the tensor > whose components,
relative to orthonormal Cartesian coordinates, are expressed by

[)z/ = %( @it

is denoted by def ¢ By reapproaching (6.3), (6.4), (6.5) and (6 6) one obtains the classicy
following result, which justifies the name of deformation rate given to the tensor I

Preposition 6 The image of the element Sy (A} dr of AJ* QA equals the value of the
tensor field 2 def ¢ at the point w(7, A) of %

7 TENSORMEASURES; THE MAIN FORMULA

Tensor measures in the ¢'-differential manifold A may be defined by the duality way, as was
done in Section 4 for vector measures For brevity, we restrict ourselves to second order
doubly contravariant tensor measures

Similarly to the notation used in Section 3, let us denote by %(I, A’ *® A’ *)the linear space
consisting of the continuous doubly covariant tensor fields defined on the (locally compact)
subset T' of A and whose support relative to I is compact If K is a compact subset of T, let
#HI, K; A% ®A"*) denote the linear subspace of the above consisting of the fields whose
support is contained in K Using some admissible coordinate system in A, one defines on sucha
subspace the supremum norm, hence a topology which, similarly to what has been observed in
the case of vector fields, does not depend on the peculiar choice of the coordinate system By
definition, a doubly contravariant tensor measure d® on I" is a scalar linear functional on the
space %(I', A"* ® A’ *)with the following continuity property: for every compact subset K of I,
the restriction of this functional to %(I', K A'* ®A’*) is continuous The value that the
functional d® assigns to some element ® of (T, A () A™*) will be denoted by <®,dO> or
f<d;d0®> When some admissible coordinate system is chosen in A, one may define n* scalar
measures d®Y, the components of the tensor measure, such that the above value equals

~1

<, 407> - j < b, 46 > (

As in the case of vector measures, one has the representation property: there exist (non
uniquely) on I a positive scalar measure dg and a bounded du-measurable doubly con
travariant tensor field (defined up to an arbitrary alteration over any dp-negligible subser) @,
such that d® = ®,dx Hence one extends the writing (7 1) to more general tensor fields ¢ than
the continuous ones with compact support, and one defines boundedness for the tensor measure
d®: that amounts to the boundedness of du

The doubly contravariant tensor measure d® is said symmetric (resp skew-symmetyic) if
<P, dO®> =0 as soon as the doubly covariant tensor field ® s skew-symmetric (resp
symmetric) Equivalently, for every i and j, the scalar measures d®” and d®" as equal (resp
are the negative of each other); equivalently also the values of the tensor field @/ are symmetric
tensors (resp skew-symmetric) except possibly in a du-negligible subset

The same procedure applies to the definition of tensor measures in the Euclidean space #.
and yields a natural definition for the image in # of every tensor measure in A, under every
placement 7 (7, )



A rdependent tensor measure d7° on a 7-depcndent subset (7 of # is said doubly
co,we('ted by the carrier A if, for every 7 in the considered interval, it equals the image of a
T-independem doubly contravariant tensor measure on some subset of A There equivalently
exist @ convected scalar positive measure dm™ and a doubly convected tensor field T,,” such
that dT7 = ITndm’

Let us recall now that the frace of a second order tensor properly makes sense for a tensor
of the mixed sort But, when one starts with a Euclidean linear space as X. the identification of
this space with its dual enables the four sorts of second order tensors to merge into a single
one; there only remain four ways of representing a given tensor relatively to some base and
these four ways merge into a single one if the base is orthonormal

When orthonormal coordinates are used in the Euclidean space %, the component measures
4T of the tensor measure dI” may serve to define the trace measure of dI as the scalar

measure
td? =d7“=T;"du=(tr T))dp

independent of the peculiar choice of orthonormal coordinates. If arbitrary coordinates are
used In Z, one has to introduce the metric tensor g, as in Section 6, and write

trd7 =g, dI"=<g;dTl >

where the symbol < ; > refers to the doubly contracted tensor product
If, in addition, the tensor measure is bounded, one may consider the trace integral

[trdT =f<g;dT>

Then it comes what may be seen as the main formula of the calculus of horizontal
variations:

Proposition 71 Let dT be a bounded second order tensor measure on an open subset ) of
% Let d17 denote the tensor measure doubly convected by some compact carrier in () which
equals dT for v =0 The real function - {trd17 possesses at v =10 a derivative equal to

f2<®f¢dT>=2<dﬁ¢mI> (72)

where ¢ denotes the velocity field of the carrier

Proof Let us introduce, as in Section 6, the doubly covariant symmetric tensor field y* on
the carrier A whose image in & equals the constant tensor field ¢ of the Fuclidean metric By
assumption, d7 is the image of a 7-independent doubly contravariant tensor measure on A,
namely dO® = ©,du, where ©, is a 7-independent doubly contravariant tensor field and dg a
r-independent positive scalar measure. The definition of images makes that

[ndPrI<gMT>=<ng>:<fﬂ®>:]<yﬁm>du 73
Provided that the last integration in the above commutes with r-derivation, one has

S Y 8y :
87.’\7,0“>d#—-f<57,®;L>d#—j<57,d®> (74)

In view of Proposition 6, this yields (72) In order to justify the commutation of §/87 with [
let us make use of some admissible coordinates (A°) in the manifold A For 7 ranging through a
compact neighbourhood & of zero in R, Proposition 6 entails that the components §y,/ér are
continuous functions of 7, A'.. . A", with compact support in k£ X R", hence bounded Then
some standard argument applies, involving the mean value theorem for the real functions



7 v;(r.A) and Lebesgue’s dominated convergence theorem for the integral of 7 (v %)
relatively to the measure ©,” du

Corollary 7.2 Let the tensor measure d1 in above Proposition be symmetric; the function
7—»J trd I possesses at 7= 0 a zero derivative for any compact carrier in () if and only if d1

has a zero divergence in () in the sense of Schwartz’s distributions
Proof Thanks to the symmetry of d7, the expression (7.2) of the said derivative takes the
form

Here the notation d7;; refers to partial derivatives of the measure d7; in the sense of
Schwartz’s distributions. Since measures are distributions of order zero, these derivatives are
distributions of order one; therefore the last member in the above equality makes sense for
every ¢, which is €', with compact support in . That is zero for every such ¢ (or
equivalently, for every ¢; in the more restricted class of €~ vector fields with compact suppert)
if and only if the vector distribution in £} with components d 7;;, namely the divergence of d T,
is zero

& INVISCID FLUID
When the considered fields are smooth enough, the dynamical equations of an inviscid fluid
are classically written under the form

pl twty) = —p i+ f; @81
to be joined with the equation of mass conservation
p.+(pw;); =0 82

Here the orthonormal cartesian frame (x;) is supposed inertial; by , and ; are respectively
denoted the partial derivatives with respect to the time f and the x; coordinate; the vector field f
is the volume density of extraneous force

The following 4-dimensional transcription of (8.1) and (8 2) is similar to what is commonly
done in Relativity theory. Let us rename x, the variable ¢ and let us agree for all the sequel that,
while Latin subscripts range through the set {1,2, 3}, Greek subscripts range through the set
{0,1,2,3} We shall denote by } the 4-dimensional Euclidean space where (x,) constitute the
cartesian coordinates of the point denoted by k, relative to some orthonormal frame Let us put
the conventions

UOZI (8 1)
fo=0 84

so that («,) and (f,) are the components of some 4-dimensional vector fields u and §
By I1,; we denote the components of the “space” projector, i.e. I1; =45, (Kronecker
symbol) and Iy, =11,4=0. Then (8 1) and (8 2) are condensed into the equivalent form

(pu g +11gp) 5 = fo @3

In the left member appear the components of the 4-dimensional divergence vector of the tensor
field pu ® u+IIp

One of the advantages of this writing lies in its possible extension to non-smooth cases; then
the divergences or the gradients shall be understood in the sense of distributions More
precisely, let us recall that assimilating a real function F on some open subset ¥ of (for
instance) R* with a Schwartz distribution on ¥ is an abuse of language What actually



constitutes a distribution is the scalar measure equal to the product of the Lebesgue measure
4= on ¥ by the function F, which has to belong to L{,.(dZ) The most elementary non-smooth
situation presents itself when F has the following form: there exists a hypersurface ¥ dividing
¥ into two regions ¥ and ¥*; this hypersurface is supposed to admit a continuous normal unit
vector N, directed from ¥ toward ¥*; one assumes that F is €' in ¥~ and ¥, with unilateral
limits 7~ and F* at every point of 2 Then using %" test functions, with compact support in ¥,
and performing some easy integrations by parts, one obtains:

Lemma 8 The gradient of the scalar measure FAE in the sense of the distributions on ¥
equals the sum of the two 4-dimensional vector measures grad Fd=, diffused in ¥, and
(F* - F )0dX (dX.: the area measure of L), concentrated on %,

Equivalently the components constitute the partial derivatives of F dE with respect to the
%, coordinates

Let us apply that to fluid dynamics A mowing surface t - %, is considered in the space #
and the hypersurface 3 in % consists of the points with coordinates (, x;, x,, x3) such that
(x), %2, £3) € %, The normal unit vector 3 to 3 at any point is supposed non-parallel to the x,
axis; therefore some vector ' parallel to 9, with the same direction, has the components
(- G, ny, ny, n3), where (n;) denote the three components of the normal unit vector to the
corresponding surface 3., in %, directed toward the + region; the real number G is readily found
to constitute the normal speed of the moving surface 2, at the considered point (counted as
positive when 3, progresses toward the + region)

Suppose that X, is a surface of discontinuity of the fields g, u, p We are to show that
interpreting (8 5) in terms of distributions accounts at the same time for the equations (8 1) and
(82), satisfied in the conventional sense in the regions ¥~ and ¥*, and for the classical jump
conditions across %, To that end we introduce the Lebesgue measure d= in ¥ (ie the
time-volume measure df dx) and, instead of (8.5), we state as dynamical equations

(piugdB + 11, 5pdE) 4 = de, (8.6)

where the partial derivatives are to be understood in the sense of Schwartz’s distributions in the
open subset ¥ of ¥ The measures de, with de,=0, will be called the components of the
extraneous pulsion; we expect them to be the sum of the diffuse measures f,d=E, representing
the distributed extraneous forces, and possibly of some measures db, concentrated on 2., with
db() =0

These equations express that, in the open subset ¥ of the 4-dimensional Euclidean space %,
the second order tensor measure {pit X u + I1p)d= admits the four dimensional vector measure
de as divergence By Lebesgue’s decomposition theorem, such an equality of measures is
equivalent to the equality of the absolutely continuous parts on one hand, ie to (8 5) being
satisfied throughout the regions ¥ and ¥*, and, on the other hand, to the equality of the
singular parts, concentrated on % We now explicit these singular parts in two usual situations
of fluid dynamics

1° Slipstream surface or material boundary

One supposes that the moving surface 3, separates two material parts with preserved
identity That means that, in W, the 4-dimensional vector lines of u do not cross the
hypersurface 2, hence

Ny} = Nyi; =0, 87

where N, denote the components of 9. Then L.emma 8 yields as the singular part of equation
@ 6)

ILs(p*— pINsd3 = db,
For ¢ =0, both members are essentially zero; for @ =i €{1, 2, 3} this reduces to

(1+ Gy p* ~ p7im d3 = db (88)



In the usual case where no extraneous pulsion is concentrated on the separating surface, thjg
equality simply consists in p* —p~ =0, e the classical condition of continuity of the pressyy,
acrass a slipstreant surface

Actually the above also applies to the case where all the considered fields vanish in the
region ¥; this region may be a vacuum, but such a formalism can also account for the cage
where the matter possibly contained in ¥~ is declared to be no part of the study (ie it
constitutes another “system”) The meaning of (88) is made clearer if one refers to the
calculation of any integral relative to the area measure d2, of the hypersurface X, through the
cutting of this hypersurface into strips by hyperplanes x, = ¢; this introduces the area measuse
d3, of the surface X, in the 3-dimensional space X and, by a classical use of orthogonal
projection,

(1+G?) iy = d3.df;

in the more precise setting of the general theory of integration, this is called a desintegration of
the measure (1+G*™2dE One may similarly assume that the measure db; admits a desin-
tegration of the form db; =dcjd¢, where dc! is a measure concentrated on 2, (such j3
desintegration involves the assumption that the extraneous actions on 2, are not of the
percussion sort) Then, for the said situation of ‘“nothingness in ¥~ ™ , (8 8) becomes
equivalent to

D +73:d2: =d¢;

for every t That is just the property through which the concept of pressure is introduced in the
traditional exposition of fluid mechanics

By the above development one sees that our mathematical setting, based on Schwartz
distributions in some oper subset ¥ of the 4-dimensional space ¥(¥ may be the whole of ¥ or,
more usually, some open strip ' < x, < *) does not preclude the treatment of boundaries

2° Shock waves
Extracting similarly through Lemma 8, the singular part of (8 6) in the case where the
moving surface f =Y, is a shock wave, yields for @ =0

p (" n=-Gy=p(u~ n-G)
which is the classical condition of mass conservation, and for & =i £{1,2, 3}
pfutut n-Gy=pu " n-0G)

ie the momentum conservation

We do not have here to dwell on this case, for realistic shock waves do not fall into the
setting of this paper In fact the entropy jump across a shock wave contradicts the assumption
of the same relation p = p(«, ¢) to hold on the whole of ¥

Remark

I'he formulation of classical dynamics sketched in this Section may be extended to much
more general situations than hydrodynamics, up to include such singular systems as, for
instance, discrete systems of mass points. Let us recall on the other hand that making ¢ == # in
(8 6), with dey=0, yields the conservation of mass Actually, by removing the assumption
dey =0, one may account for the exchange of matter between the considered ““system’ and the
extraneous world

9 THE VARIATIONAL STATEMENT

The purpose presented in Section | was the variational characterization of the solutions of
(1), (19), (110), (111) As we are to include non-smooth solutions, (I19) and (1 10} will



actually be replaced by (8 6); recall that, by definition,
uy=1 On

everywhere in the given open subset ¥ of ¥ For a = 0, (8.6) expresses the mass conservation
and may be read as

Div(s'udE)=0 62

where Div denotes the divergence of the considered 4-dimensional vector measure, and
s=p ' Fora=i€{l.2,3},(86)becomes

(o0 " wugdE) , + (pdE), = o 'U dE (973)

since the extraneous pulsion now consists of the gravity-like distributed forces On the other
hand, with P defined in (1.3), the compressibility law (1.1) is taken under the form

aP
p= 7); (X(), K, U) (94)
(precluding the case of incompressible fluids). Then, by the elimination of p, (9 3) reduces to
- Pt (?P -~ - d
(o uugdZ) g + (E(;dz)i: o 'UdE (9.5)

In our 4-dimensional language, (1 11) reads: « is a constant on each vector line of u (9 6)

Carriers will be considered, whose 4-dimensional velocity field, with compact support in ¥,
satisfies

=0 07

Such carriers preserve every hyperplane x, = const.; hence we call them isochronous carriers
Only (9 5) will properly be the object of the variational property in view, which acquires
most of its interest from this preliminary assertion:

Proposition 9.1 Suppose that W is a r-dependent 4-dimensional vector field convected by an
isochronous carrier; if condition (9 1) is satisfied for some value of r, then it is satisfied for
every r.

Suppose in addition that the t-dependent function k', defined in X, with values in an
arbitrary set, is convected by the carrier; if conditions (9.6) is satisfied for some 7, then it is
satisfied for every 1

Suppose finally that o7 is a 7-dependent real function related to the carrier in such a way that
the scalar measure (o7)"'dE is convected (as before, d= denotes the L ebesgue measure in ¥); if
condition (9 2) is satisfied for some 1, then it is satisfied for every T

Proof If ut is convected, one has
5¢u5 = UL(PO a

which is zero in view of (9 7); that establishes the first statement

The second statement is made obvious by observing that, if 4" is convected, its vector lines
are the images under 7" of r-independent lines in the carrier manifold A; now the assumption
about «" means that this function is the image under #™ of some function defined on A in a
r-independent way

If the scalar measure (¢7) 'dZ is convected, as well as the vector field u’, the vector
measure (¢7) 'dE is convected; then the last statement follows from Proposition 5



[wo assumptions are now made for all the sequel:

Hypothesis 92 It is supposed that, in the whole region W. the mass density of extraneoyy
force, with components g, =11 U , is bounded

The above assumption, which holds in practical situations, implies that the function U g
Lipschitz in ¥ with regard to the variables (x,, 13, %), uniformly in x,

On the other hand:

Hypothesis 93 It is supposed that, for ail the considered values of x,, « and o, the function
plxq, K, ) is bounded

Hence by (9 4} the function # is uniformly Lipschitz with regard to the variable = We
should concede that, for realistic compressibility laws, the boundedness of p only holds under
some nunoration of o Therefore, Hypothesis 9 3 amounts to assuming that such a minoration
holds for the considered solution of the dynamical equations

The above hypotheses secure the convergence of the integrals to be involved in the sequel,
namely:

Proposition 94 Let us consider a compact isochronous carrier in the open subset ¥ of ¥
Let W, k” and o be transported by this carrier in the way defined in Proposition 9 |

If the integral

f %u;‘u;’(o’) ' 98)

makes sense for v =8, then it makes sense for every r in some neighbourhood of zero in R

Under Hypothesis 9 2, the same is true for the integral
[ (e7ytUdZ 99)
a4
Under Hypothesis 9 3, the same is true for the integral
[ P(xo, 7, 07)(07) B 910)
W

Proof The law of transport defined in Proposition 9.1 means that (¢7) 'dX is the image
under the placement mapping 7* of some r-independent nonnegative measure dg in the carrier
manifold A Then the three above integrals are identical to the integrals, relative to du, of the
functions defined in A by composing the respective integrands with the mapping == Let (A")
denote an admissible coordinate system in A and 7 (A1) the Cartesian coordinates of 77(A)in }

By assumption, u’ is the image of some 7-independent vector field w in A, with components
w®; hence

) dmi(A)

ui(m(A)) = M—“wn(/\)‘ [CHES)

Then the assertion concerning the integral (9 8} ensues from the boundedness of d#7/34*:in
fact this function is continuous in A, with compact support

As for the integral (99), one makes use of the majoration of L/(#7(x)) resulting from
Hypothesis 9 2 and from the fact that the first coordinate 73 of 7" is a constant with regard to
-

T'he assertion concerning the integral (9 10) is similarly proved by observing that

o (77 A)) = k(4) der%é 9 12)

where k denotes a 7-independent real function in A, and that r-independent values of xqand «”
correspond to each A €A



Now comes the variational statement:

Proposition 9 S Let a 4-dimensional vector field u, a scalar function o and a function « be
defined in some open subset ¥ of ¥, supposed to satisfy (91), (92) and (9.6) and 1o make the
itegrals (98), (99) and (9.10) meaningful These elements constitute a solution of (95) in V¥ if
and only if, for every isochronous compact carrier in VW, the 7-derivative of the following
functional vanishes at =1

A(r) = [ {i uiui+ Plxg, &, 07)+ U](rf’)"ldg, 913)
Juld

where U™, o, k" are transported by the carrier in the way defined in Proposition 91 and reduce to
the above for ()

Proof As in the proof of Proposition 9 4, let us transform A(r) into an integral on the
carrier manifold A, relative to the r-independent measure dp Observing that A(7) equals the
sum of the integrals (9.8), (9.9) and (9.10), we shall perform the r-derivation on these three terms

separately
When u/ i1s evaluated at the point 77(A) of %, with A fixed in A, one has by (3 1)

8 I T T T T
5\; 5“;11,' = @iplgh;

where the partial derivatives ¢;, of the carrier velocity field are evaluated at the point 777(A) of
X The right hand member is continuous on A with compact support, thus bounded Then the
same argument as in the Proof of Proposition 7 1 allows one to commute du-integration with
7-derivation; by finally expressing the result as an integral in ¥, one obtains

5‘@:[ lu{u}(o’)"ldE "j gigttfuHo™) \dE (9 14)
T, z Wy

\}!_
Similarly, for every A, the expression k’(#7(A)) is a constant with regard to 7, while the
convection of the measure (o7) 'dE entails (Section 3)

since the carrier is isochronous; therefore

S , JP
— P(xg, «", 0") = — 07
or (%o ') go O @i

In view of Hypothesis 9 3, that is bounded. allowing again for the commutation of r-derivation
with du-integration Hence

5 ‘ - - — !" N
S;L Plxo, «7, 07 )07) ld::! @i ,P‘(IG.KT. o)

T 9135

1l

Lastly, for every A,

C

dri(A)
(3)7‘“ =U i%i

S

Ul (A) = U (7" (A))
thus, due to Hypothesis 9 2,

2 [ (07 TUdE - [ oo™ U 45 ©16)
d7 Jv S



By assumption, the functions ¢;, { €{1, 2,3}, are €' in ¥, with compact support; in view of
the definition of the partial derivatives in Schwartz’s distributions theory, the derivative of A(r)
at 7 =0 finally reads as

SA P

= < (o uusdE) 5 ~ (5; dE) to Uy >

Its vanishing for every such ¢, is (9 5)

Remark 96
It is equivalent to restrict the above to the functions ¢; belonging to @(\W), 1€ the ¢

functions with compact support in ¥

Remark 97

The conditions (9. 1), (9 2) and (9 6) imposed in this variational statement do not constitute
constraints in the usual sense of the calculus of variations; in fact Proposition 9 1 secures that
these conditions are automatically satisfied by all the competing elements

Remark 9 8

The type of calculation used above in expressing the r-derivative of (9 8) could also yield a
proof of Proposition 7 1. Conversely, the result would directly follow from Proposition 7 1 if
one additionally assumed that the measure of ¥ with respect to (¢7)"'dE is finite In fact

f %ufu{(af)"d: =% uf,uf.((f)"dE“%f (") 'dE:

¥ ¥ LA 4

under the assumptions made in Proposition 9.5, the last integral does not depend on r while the
first one on the right side is nothing but the trace integral of the tensor measure
" ®u(¢7)'dE; since u’ is convected, as well as the scalar measure (¢7) 'dE, this tensor
measuse is doubly convected

Remark 99

in [16}, an introductory Seminar Report which presents the above Proposition in the case of
smooth fields, it is developed that this Proposition may be viewed as a transcript of Hamilton's
“principle” of the least action into the language of Euler’s variables. But the method of
horizontal variation has a much wider scope; in particular, the result of the Section to come is
not directly connected with Hamilton’s principle since the concept of a stationary motion does
not make sense in the framework of usual analytical dynamics

10 STATIONARY MOTION

For a fiuid satisfying the same assumptions as in Section 9, let us a priori suppose that the
flow is sfationary in some open subset () of X, ie the functions u, o, «, defined in {, are
constant with regard to ¢ Of course, the compressibility law (9 14) and the function U are
henceforward supposed independent of ¢ We denote by dx the Lebesgue measure on {) Instead
of (9 2), the mass conservation is expressed by

div(g~ludx)=0 (10 1)
and, instead of (9.5), one has a dynamical equation

(o’"'uiuidx),-+(-g§dx).'—“—zr"U,-dx (102)

The vector lines of u in § are also the trajectories of the fiuid particles, hence the conservation
of « for each of these particles is now expressed by

K is a constant on €ach vector line of i (10 3)



The foliowing may be proved in the same way as for Proposition 9 1

Proposition 10.1. Suppose that u” is a t-dependent 3-dimensional vector field convected by
some carrier and that the function «7, defined in X with values in an arbitrary set is convected If
condition (10 3) is satisfied for some value of 7, thus it is satisfied for every t

Suppose in addition that " is a 7-dependent real function related to the carrier in such a way
that the scalar measure (o) Adx is convected: if condition (10.1) is satisfied for some value of r,
then it is satisfied for every

We make again the Hypotheses 9 2 and 9 3; similarly to Proposition (9 4), they entail:

Proposition 10 2. Let us consider a compact carrier in the open subset € of X' Let u’, x*
and o7 be transported by this carrier in the way defined in Proposition 10.1. If the integrals

[ Fumioy e | ovdr [ P oien dx
. Q 0

0=

make sense for T =0, then they make sense for every t in some neighbourhood of zero

Now comes the variational statement:

Proposition 10 3. Let a vector field u, a scalar function o and a function « be defined in an
open subset ) of X, supposed to satisfy (101), (103) and to make the three integrals of
Proposition 10 1 meaningful These elements constitute a solution of (102) in Q if and only if,
for every compact carrier in €}, the t-derivative of the following functional vanishes at =0

B(n)y= J [% wiul+Pk", o")+ U]((r’)"“dx (104)
a

where u”, o”, k™ are transported by the carrier in the way defined in Proposition 10 1 and reduce
to the above for =0

The proof runs in the same way as for Proposition 95 One should observe that [quuo'dx
is nothing but the trace integral of the symmetric tensor measure u X) uo™'dx; hence Pro-
position 7.1 may directly be applied to calculate its r-derivative
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