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DYNAMICS AND THE CALCULUS HORIZONTAL VARIATIONS

A horizontal variation is a shîft dcfined in the (1, r,) space or in the (x,} space by a smooth vector field 'P The corresponding laws of transport for vector or tensor fields and for vector or tensor measures are investigated This is used to characterize the (possibly non-smooth) solutions of the dynamical equations of a nonhomogeneous compressible barotropic inviscid fluid, in Euler variables, as the critical points of some real functionals on infinite dimensional manifolds

INTRODUCTION

WHEN LAGRANGE's variables are used in formulating the dynamical equations of an inviscid fluid, some variational characterization of the solutions is easily derived. This simply consists in the adaptation of Han'iilton's principle of least action to what actually constitutes a frictionless mechanical system with infinite degree of freedom (as a standard reference. see [1]) The question is much less clear when the dynamical equations are expressed under the Euler form, though a certain number of studies have been devoted to this subject in recent decades. fhe present paper proposes an answer based on what may be called the calculuî of horizontal variations

Let us first precise the mechanical setting Il is assumed that the conditions under which the fluid evolves allows one to eliminate the temperature in order to obtain a relation between the pressure p, the density p and, possibly, the time t, which holds during any possible motion But homogeneity of the fluid is not assumed: the said relation may be written as j(K,t,p,p)=O (l l) containing a parameter K, of arbitrary mathematical nature, whose value is a constant for each element of the fluid For instance K may refer to the fixed temperalure of the considered element (isothermic evolution) or to the specific entropy (isentropic evolution) but may also account for the chemical nature, possibly diff erent in various parts of the medium fhe distributed extraneous forces arc of the gravity sort, i e the density vector of these forces relative to the fluid mass has the form grad U, where U denotes a given function of the space coordinates x 1 , x 2 , x 3 , possibly dependent also on t Boundary conditions will not be investigated in this paper; one may suppose, for instance, that the fluid is confined by walls with prescribed motion

The above assumptions make the fluid belong to the class of frictionless mechanical systems submitted to, possîbly time-dependent, potential forces Ihis precisely makes sense when Lagrange's description of motions is used; to this end, every particle of the fluid is labelled by a value of the triplet À = (A 1 , A 2 , À 3 ), ranging ovcr some subset A of R 3 A placement of the fluid, relative to the inertial orthonormal frame Ox 1 x 2 x 3 is a 'G 1 mapping 1r : À"""* x, where x stands for the triplet (x1 , x2, x3) E R 1 A motion is a chain t-, 1r 1 of such placements Putting OE = p-1 , one expresses the mass conservation by ' )
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where Dx/DÀ denotes the Jacobian determinant of 1r, andµ; a given function of À, namely the density of the mass measure relative to the Lebesgue measure dA on A For brevity, the ca5e of an incompreHible fluid, where p doe5 not appear explicitly in re l ation (1 1), wi ll be left f or a f urther paper Suppose this relation solvcd under the for rn p = p(t, K, o-) and put P(t, K, iJ) I p(t, K, (J)do-, (l î)

an expression defined up to the addition of an arbitrary fonction of t and K Then the functio nal ( l 4) appears as the (time-dependent) potential of the internai forces of the system; this means that, if an arbitrary smooth chain of placements r-'> 1T 7 is considered at a fixed t, with (r I e!atcd to 77, by (1.2), the corresponding work done by these forces equals the (signed) increase of the real fonction r __,, 91.L; 0 t(t, 1T 7

),

Similarly, the functional figures as the (time-dependent) potential of the extraneous mass-forces There is considered on the other hand the general expression of the kinetic energy ic(t, 1r, i) -:c t ![ i(t, A)] 2 µ�(A)dA [START_REF]Le Calcul des Variations Horizontales et /'Hydrodynamique[END_REF] where i stands for arr/ at, the velocity vector of the particle A In such a framework, easy calculation yields Hamilton's property, namely that the solutions t __,, 1r of the equations of fluid dynamics over some time inter val [t 1 , t 2 J are the extremals of the action functional

(l 7)
Let us pass on now to Euler's description of motion Denoting by u(t, x) = ir(t, 1r-1 (t, r)) the velocity field, with u,(t, x) as components relative to the considered inertial orthonormal frame, we define the differential operator a a d, , Jf + U; [/X

(1 8)

1
acting on diff erentiable fonctions of t and x; it is sometimes called the drag-derivation along u Then the dynamical equations takc the form d ,, u = -cr grad p i grad U, while the conservation of mass is expressed by

d 11 (T �� cr div Il
As for the conservation of K for each particle, it may syrnbolically be written as

d ,., K =Û, ( 1 9) 
(l JO)

( l I l)
even if the mathematical nature of K do nol let the r.h s of (l 8) makc sense These thr ee relations, joined with (1 1), constitute a complete set of equations for the unknown fonctio ns (t, x)-, . u, cr, p, K Assigning a variational meaning to this set of equations has been the subject of so me papers; as typical references, see [I, 2]. where a list of anterior papers may be found; more recently [START_REF] Gouin | Contribution à une étude géométrique et variationnelle der milieux continu1 fhèse Université d'Aix-Marseille l[END_REF] These are mainly developed in the line initiated by J. W Herivel and C C Lin, hy introducing the Lagrange multipliers associated with some relations treated as con strai nts However, Lin's constraint of "the conservation of partic!e" seems somewhat unclear Much light was thrown on the question by Casai f 4] This author expresses Hamilton's principle by taking as the unknown t-dependent element, instead of the placement tr, the inverse mapping 1r•• 1 : x �A; since t and x are usually called the Euler variables, the result may indeed be said a variational statement of the Eulcrian sort. Similar ideas, developed under the assump tion of stationary motions, yie[d variational properties of the classical Kelvin-Bateman type; see in particular [5l A common drawback of ait thcsc approachcs is that they do not properly provide variational characterizations of the velocity field u but of some generalized velocity potential or stream function in the style of Clebsch's representatîon of the flow Apparently, this featme is connccted with the use of the conventional calculus of variations, which cannot directly handle discontinuous fields; in contrast, the possîbility of discontinuous velocity fields is inherent to the absence of viscosity in the fluid The conventional variational procedures consist in adding to the investigated functions somc variations which have to be smooth fonctions of t and x; that leaves invariant the locus of possible discontinuities, while such a locus is preciscly an unknown of the problem

The present study overcomes this faiL thanks to what we propose to cal! the calculu1 of horizontal variation ç Non smooth solutions will be handled so thal our results indude as special cases some variational characterization known to hold for the slipstream surfaces or free boundaries in inviscid flows [6,7]. Recall that the fluid is not supposed homogeneous; one may accept that its density p abruptly drops to zero beyond sorne unknown surface Section 2 introduces horizontal variations as the transport of scalar, vector or tensor fields by some ideal continuous media in motion over the given region of R n Such an abstract continuum, called a carrier, is considered only to take profit of the usual language of kinematics; it is entirely distinct from the proper fluid under study and the real variable r ordering its chain of placements should not be mistaken with the time t of dynamics The reader familiar with differentia! geometry will observe a close connection between our cal culations and the operations called the Lie derivation ç associated with given vector fields (see [START_REF] Hermann | Geometry, Physics, and[END_REF][START_REF] Edelen | Lagrangian Mechanici of Nonholonomic Sy,tems[END_REF]) But it appears that the formalism we use, with the advantage of referring only to the common kinematical background of fluid mechanists, is also better adapted to subsequent practice For instance, in numerical computation, r might order an approximation process and, in such applications, the carrier velocity would usually have to vary with r This is similar to some methods currently used in solving problems of optimal design for unknown domains, possibly arising from quite other subjects than mechanics; these methods amount to make a fini te elements mesh be dragged along by some imagined fluid [ I 0, 11]

The carrier velocity field, denoted by cp, plays a role analogous to that of the "test functions" in Schwartz's theory of distribution This vector field will always be supposed smooth, with compact support in some open subset of W If one is looking for necessary conditions, in order that some fields u, cr, K satisfy the equaiions of hydrodynamics, the strongest assertions will be formulated by taking cp in Y6' 1 ; in what regards sufficient conditions, on the contrary, formulating them by means of i oc test fields constitutes a stronger statement

In contrast with <p, the fluid velocity u, the mass volume ir and the fluid "quality" K may be discontinuous; hence the partial derivatîves involved will be understood in the sense of the theory of distributions To this end, some of the expressions appearing in the equations have to be interpreted as the densities of vector or tensor measures, relatively to the Lebesgue measure

The reader unwilling to enter into the technical matter of vector and tensor measures may refer to 1121, an introductory lecture where only smooth flows are considered

The two fundamental modes of transport of a vector of the Euclidean space !f. by a carrier, called convection and transvection, are investigated in Section 3 From 1P being i 1 and from the classical regularity properties of the integrals of d,;/dr • '" <p(,;(-r)), it results that the carrier may be endowed with the structure of a c.e 1 differential manifold, denoted by A, in such a way that, for every r, the placement mapping 1T' is a c.e 1 diffeomorphism of A into Pt The two modes of trnnsport respectively correspond to the images in Pt of vectors or covectors of this manifold In particular, the gradient of a scalar function which, in a classical sense, is convected by the carrier, constitutes a transvected vector field Scalar or vector (resp covector) Radon measures on A are introduced in Section 4 by the classical duality procedure: these are linear functionals on the respective spaces of the continuous scalar or covector (resp vector) fields, with compact support in A Under the placement mapping 1r', such fields are transformed into r-dependent continuous fields in >f wîth compact support; by transposition are defined the images of scalar, vector or cove cto; measures; thîs yields in particular the concepts of a convected r-dependent scahu measure or of a convected, resp transvected, r-dependent vector measure in Er Using the Radon-Nikodym theorem, one may observe that a r-dependent vector measme in [(' is convected, resp. transvected, by the carrier A if and only if it can be represented (nonunîquely) as the product of a convected nonnegative scalai measure by a convected, resp transvected, vector field The example of the vector measure associated with a convected curve is developed; this also yields a reformulation of the Helmholtz theorem on vorticity in classical fluid dynamics Divergence-free vector measures in zf. ' are of primary importance; it is shown in Section 5 that, for a convected vector measure, this is a r-invariant property Section 6 is dcvoted to second order tensor fields Classically, on the <€ 1 manifold A, there are defined four sorts of such fields, according to the ways of combining covariance and contravariance ln contrast, the Euclidean structure of f!t is conventionally used to identify vectors and covectors, yielding a single sort of second order tensor field If one starts with a r-independent second order tensor field in A, one obtains as its image under the placement mapping 1r' some r-dependent tensor field in 5ft which will be said doubly convected, doubly transvected or transported in some mîxed way by the carrier A, according to the sort of tensor considered in A Symmetrically, the constant second order tensor field g of the Euclidean metric of /lf' (or "unit" tensor field) is the image under 7r 7 of some r-dependent doubly covariant tensor field y" in A; this is the second order tensor field associated with the metric induced on A by its imbedding in 0,{'. Calculating the r-derivative of ')' 7

, then taking the image of this tensor in Ff leads to the strain rate formula of the classical kinematics of continua Thcn cornes in Section 7, the concept of a tenso1 measurc in z:r or in A; in this definition again, the duality procedure is applied, generating by transposition the image under rr' of, say, a doubly contravariant tensor measure in A This is a r-dependent tensor measure in the Euclidean space Fl, said doubly convected by the carrier A The trace of such a Euclidean tensor measure d f is a scalar measure, whose total will be called the trace integral of d T. Proposition 7.1 states what may be viewed as the main formula of the calculus of horizontal va1iations, a corollary of which is the following variational characterization of tensor measures with zero dive1gence in the sense of distribution theory: Let d T be a bounded s ymmetric ten sor meawre in the Euclidean space Jf and let d P denote the r-dependent tensor measure, reducing to d T for r = 0, doubly convected by the carrier with velocity field 'P (a �' 1 vector field, with compact support) The trace integral of d J 7 haï, for ever 1 • cp, a zero r-derivative al T = 0 if and only if the divergence of d T is zero fhere is a formai similarity between this result and some developments of Souriau f 13] in General Relativity; but, instead of what we cal! horizontal variations, this author considers variations of the non-Euclidean spacetîme metric In contrast, the present paper definitely places itself in the framework of classical dynamics. with its immutablc Euclîdean metric; our technique of horizontal variations may be viewed as a natural extension of the conventional virtual work procedure Concerning the expression of the second T-derivative of the trace integral and the condition for it to be nonnegative see [111; this tends to explain, in that connection, the preeminence of measures over other sorts of distributions

As we are to deal with non-smooth flows, the equations of fluid dynamics are first written under a 4-dimensional divergence form in the sense of distributions theory; this is the object of Section 8. where it is recalled that such a writing includes the case of slipstream sUifaces, free surfaces and also shock waves However, realistic shock waves do not fall into the scope of this paper, as the assumptions made preclude any entropy jump fhe expected variational property is established in Section 9 The functional under con-side ration is nothing but the Eulerian 4-dimensional transcript of the action integral (1 7); hence the statement rnay be considered as an adaptation of Hamilton's principle to Euler's variables The relationship with Hamilton's principle is more precisely investigated in [START_REF]Le Calcul des Variations Horizontales et /'Hydrodynamique[END_REF].

The closest analogue in literature to horizontal variations may be seen in what Drobot and Rybarski [START_REF] Drobot | [END_REF] call hydromechanica{ variation ç By this these authors mean sorne infinitesimal altera tions of a <(6' 1 vector field p, which are constructed from infinitesimal shift fields x-, ox similar to our rp. with concomitant infinitesimal variations of p(x) The essential difference from the concepts introduced in the present paper is that, if the differential shift of Drobot and Rybarski is integrated so as to realize a finite evolution of what we call a carrier, the resulting alteration of p is not holonomie, i e the carrier may eventually resume its initial placement without restoring the initial vector field; hence the variational statement in [START_REF] Drobot | [END_REF] is only diff erential In contrast, our Propositions 9 5 and 10 3 make the considered functionals appear as real functions defined on some manifolds; the solutions of hydrodynamical equation are the critical points of these functions From the computational standpoints this may suggest some stepwise processes or "walks" in the manifold, tending to approach the critical points

The final Section 10 is devoted to the variational characterization of the stationary solutions of the equations of inviscid fluids; a variational property of the horizontal sort is shown to hold in that case also, not directly connected with Hamilton's principle

THE CALCUL US Of< HORIZONTAL VARIAffONS

Let us consider, as an introductory example, a standard variational problem By n is denoted an open subset of R"; for every y E <if 1 (cl D, R) (i e y is a continuously differentiable function defined on the closure of n, with real values) satisfying some prescribed boundary conditions and, for unbounded D, some conditions at infinity, there is defined the functional /(}')=f• L(J::,y(x),grady(x))dx;

.n

(2 ]) here x stands for (x i , x 2 , , X n ) and dx for the 11-dimensional Lebesgue measure; L denotes a given element of <if 2 (clû x R x R", R)

The conventional calculus of variations derives necessary conditions for y to make 1 an extremum, by studying the real function ; -, /(y+ roy ); the variable r ranges over a neigh bourhood of zero in R and oy denotes an arbitrary continuously differentiable real function whose support relative to fl is compact In what regards the surface G(O) C R"+ 1 which constitutes the graph of y, this amounts to make it compete with a family of surfaces G( 1); every point (x, y(x) t roy(x)) of G(r) results from the corresponding point (x, y(x)) of G(O) by the "vertical" displacement r 8y( x) For this reason we shall say that the classical algorithm consists in a calculus of vertical variations A more general way of inserting G(O) into a chain of nearhy surfaces would be to define, on some neighbour hood of G(O) in R"' 1 , a vector field <P, and to call G( r) the image of G(O) un der the geometric transform exp r<t> generated by this vector field Here the mechanist will rather use the language of the kinematics of continua: if the real variable ris identified with the time, the mapping exp T<ll represents the displacernent from the instant O to the instant T for every particle of a (n + 1)-dimensional fluid in stationary motion, with <ll as velocity field.' We shalI cal! a carrier such a fluid, imagined only to take advantage of familiar kinematical formulas The classical calculus of variations amounts to choose the vector field <P undèr the special form <P(x, y)= (0, 8y(t)), namely "vertical" in R" x R, and constant relatively to the y coordinate Our calculus of horizontal variations consists in assuming for <P the special form <t>(x, y)= (q;,(x), 0) where ip denotes a 11-dimensional i 1 vector field. The (n + 1)-dimensional carrier defined thereby leaves each hyperplane y cc-const invariant; ils action insîde such a hyperplane consists in the flow of the n-dimensional carrier admitting if> as velocity field The surface G(r) = (exp r<P)G(O) in R" x R is the graph of the functîon y T defined on the subset (exp r<P)(cLQ) of W by the following composition of mappings

y 1 = yu exp ( -np) (2 2)
For a given value of T, this function may be seen as a rearrangement of the function y 0 = v l'he carrier in R" with ,p as velocity field will constantly be considered in the sequel As the definition (2 2) of v r is equivalently expressed by the implication x' = (exp T,p)x::} v 1 (x) = y(x).

(2 î) the interpretation of Tas the time makes v 1 appear as a real function convected by the carrier, i e. to each particle of this carrier corresponds a value of y 1 independent of T As we restrict ourselves to a class of functions y verifying some prescribed boundary conditions, the '6' 1 vector field 1P will in the sequel be chosen with compact rnpport in the open set !1; then exp Tep constitutes a one-parameter group of self-mappings of clO, leaving invariant some neighbourhood of the boundary, and some neighbourhood of infinity if n unbounded For brevity, the corresponding carrier will be said a compact carrier in n A necessary condition for y, satisfying the prescribed boundary conditions, to make / an extremum is that the real function T� J(y 7

) have a zero de1ivative at r = 0 for every 'P chosen in the above manner. The standard way of calculating such a derivative would consist in transforrning the integral /( }' 7 ) by the change of variable (2 3), after which r-derîvation is commuted with x-integration The kînernatical forrnalism makes it casier; sirnilarly to (l 8), let us define, for every differentiable function f of T and x, the symbol

(2 4)
Ihis is the r-derivative of the value that f associates with a particle of the carrier; it is zero in particular when f is convected Let us denote by g[ the components of grad )1 7 relative to our orthonormal frame; if y' is convected by the carrier, a reasoning based on the chain rule allows one to calculate the r-derivative, at T = 0, of the real fonction T-" g[(x '), namely a,p 8 g = --g-= ,p' I éJX;

See [START_REF]Le Calcul des Variations Horizontales et /'Hydrodynamique[END_REF]; actually a more efficient reasoning will be developed in Section 3 Then Finally, applying to the carrier the classical dilatation formula, one has 8 8 . r . L(x,y 7 ,grady

7 )dx = ( UV+Ldiv(f))dx T}u Jn ( 2 5) 
By making r = 0, thus V 7 = Y, we obtain the desired necessary condition for y to extremize J

( (a� cp , -('. L g 1 rJ./Pi + L élq>; ) d x = O ( 2 6 
)

Jn iJX; i!g; i!X; iJX;
Ihis is to hold for every continuously differentiable vector field q>, with compact support in n As usual, one performs an integration by part and finally concludes that, everywhere in fl,

ay [ a (âL)--dL] = O ax; ax 1 ag i ily (2 7)
This was not unexpected: (2 7) means that g satisfies either the classical Euler condition for e xtremality or the condition grad y O In fact in any open set where the latter holds, y is a constant, thus unaltered by the considered rearrangements One reaches a less trivial conclusion if another variational problem is considered: that of extremizing I(y) over a clan of functions rernlting /rom each other b)' convection along isochoric carriers Then (2 6) is to hold only for vector fields with compact support and zero divergence. By a classical reasoning this is equivalent to the existence of a real function q on fî such that the left member in (2 7) equals oq/ ih;

Example

I et us take as / the Dirichlet integral (

The above condition for the extremality of I relative to iwchoric carriers reduces now to 3q: f1 y grad y= grad q

where Li denotes the Laplace operator In the special case n = 2, one recognizes here the dynamical equation satisfied by the 1tream function of an inwmpre1sible, homogeneou1 inviscid fl.uid in 1tationary motion The use of a stream fonction in hydrodynamics is limited to 2-dimensional problems, plane or axisymmetric (a resu!t similar to the above holds for this latter case) But it must be ohserved that the stream fonction y appears in (2 8) by its gradient only, a vector field whose law of tiansport by the carrier is defined in (25) The fluid velocity u, at each point, is the vector deduced from grad v by rotation through 1r/2; in view of ( 2 The condition div u for the fluid flow to be isochoric is introduced a priori as a side constraînt An essential feature is that the transport (2 9), if the carrier is isochoric, pmerves it (see Section 5) Therefore, the considered variational device effectively characterizes the solutions of the dynamical equation as critical points of the real functional (2 10) on a certain infinite dimensional manifold; unlike some would-be variational statements, it does not consist of a merely local play of o symbols Thus, some numerical procedures altering slep by step an initial solenoidal vector field in order to construct by successive approximations a solution of hydrodynamics may be conceived ln that respect, the requirement of using only isochoric caniers may be awkward; removing this drawback will be subject of further papers, where inhomogeneous fluids with discontinuous density and free surfaces will also be considered About lerminology, let us observe that the word "horizontal" is currently used in Iiterature with other meanings; for instance Edelen [START_REF] Edelen | Lagrangian Mechanici of Nonholonomic Sy,tems[END_REF] call hmizontal some vector fields in an event space which, in the terminology of Section 9 , we should refer to as Î50chronouç 3 CONVECIED AND IRANSVECIED VECIORS let us recall that the geometric object to which reference is made, when describing a motion in classical kinematics, is not properly a Cartesian coordinate frame but an equivalence class of such frames, any two of them related in a time-independent way This amounts to say that the reference object actually consists of a tri-dimensional Euclidean point-space, in which the said frames constitute various Cartesian coordinate systems Such a reference space will in the sequel be denoted by ff and its number n of dimensions will possibly differ from 3; in fact, the cases 11 ""2 and 11 = 4 are also of use in the hydrodynamical applications in view lhe coordinates of an clement x of relative to some chosen orthonormal frame are denoted h y x. ,, i = 1, 2, . n The lineai space associated with ?f is denoted by X; to the above frame in 1' corresponds an orthonormal base in X and the components of an element v of X are den oted hy v, If/ is a function defined on some neighbourhood of a point of if. the partial derivatives of J relative to the respective coordinates î; are denoted by f i; the y are the components of the vector grad f E X, the Euclidean gradient of f at the considered point

Let n be an open subset of /t and let <p E: i'1(û, X) be the velocity field of a carrier in the sense of Section 2; one may suppose that <p depends also on the forma! time 1, i e. the carrie r flow need not be stationary, in which case <p will be assumed '{;'' in 1 and x jointly The concep t of a moving vector, associated with a given particle of such a continuous medium as this carrier and convected by it, is classical Roughly speaking, up to a 1-independent infinitely large magnification ratio, such a moving vector v is determined by a pair of infiniteiy close particlcs of the carrier, hence the following rate of change

01)

This is merely the equation of variations associated with the system of differentia[ eqns (3 2) below

Let us place things in a more rigorous setting Writing the general integral of the system of 11 differential equations under the form

X; == 11';( T, À 1 , , À") 0 2) 
Cl 3)

with À 1 , , A 11 as integration constants, amounts to labelling every particle of the carrier by some value of (À 1 , , À") ER" and interpreting (3 3) as the equations of the placement mapping From the assumption q; E � 1 and from the classical facts concerning the dependence of the integrals of a system of differential equations upon initial conditions, it ensues that the values of A 1 , , A" may be assigned to the various integrals of O 2) in such a way that (3 3) is, at least locally, a '61 1 -diffeomorphism We shall finally restate this as follows:

171c carrier mav be endowed with the 5fructure of a n-dimen1ional <{!, 1 -differential manifold in which (A') constitute wme admi1'sible coordinate system Let us denote by A this manifold, with À as general element; then, for every 1 in an open real interval containing zero, (3 3) defines the placement mapping A -,x = 1rC,r, À) In what concerns the Euclidean space ï, its tangent space is X, the same linear space at every point; thus the tangent mapping to 1r( 1, ) at the point A, denoted by 1 Th, A). is a linear isomorphism of Al onto X Saying that the moving element r-,, v(r) of Xis a vector associated with the particle A of the carrier A and convected by it, means in this context that v(r) equals the image under 1 T 1 ( r, A) of some 1-independent element of A:

fo evcry A A also corresponds the cotangent 5pace /\�*, i e the dual of A; Since Xis a Euclid ean linear space, we agree as usual to identify it with its dual. Thus the contragredient rn apping 7T ;( r, A) of 1T 1 (r, A) (i e its inverse transpose) constitutes an isomorphism of A(* onto X We shall say that a moving element 7-'> w( 7) of Xis a tran svected vect01 associated with the particle A of the carrier A, if it equals the image under 7T;(r, A) of a r-independent element of A;.* Equivalently, for every convected v assoeiated with the particle A, the Euclidean scalar pro duct v(r) w( r) is a r-independent real number By cornparison with O l), this easiJy yields the following rate of change

(34}
It must be kept in mind that, here as well as in (3 1 ), the partial derivatives < Pk, of the com ponents of if' are to be eva!uated al the point x c= rr( r, A) of X f'.

A real fonction y of r and x clearly is convected by the carrier. in the sense defined in Sec tion 2, if it equals the image under 7T of a ,-independent real fonction Y/ defined on the manifold A, i.e for every fixed r, y equals the composite mapping r1 ° 7T-i Such image functions are 'f2 1 in rt if and only if ri is '€ 1 in A; in that case the 4b' 1 -differential geometry of A associa tes with r1, at every A E A, the element l.7 rJ(À) of Ar*, the gradient (or differential) of the real function 17 at the point A In other words, the elernent v ri(A) consists in the linear mapping from A; into R, tangent at the point A to the '€ 1 mapping 77: A� R Using the chain rule for tangent mappings and the definition of the inverse transpose, one obtains that the Euclidean gradient of }' at the point x = 1r(r, A) equals the image of v' 77(A) under 7T�(r, A) Thu5, r--i.grad y(r, rr(r, A)) con�titutes a tran1Vected moving vector In view of O 4) this makes a proof of (2 5).

A vector field v defined, for every r E J, on some subset of Pt will be said convected, resp transvectcd, by the carrier if, for every À E A such that rr(7, A) belongs to the domain of v, the moving vector v(T, 7T(r, A)) is convected, resp transvccted. Here again, such moving objects of the geometry of f{ may be considered as the images of r-independent objects of the geometry of A In fact, when dealing with a 4b' 1 -manifold such as A, instead of a Euclidean space, the concept of a vector field splits into two Ihere may be considered a vector field or a covector field; the former is an assignment associating with every A in a certain subset of A, an element of the corresponding tangent space /\ A , the latter an element of the cotangent space A! Visibly, a r-dependent vector field in f t is convected by A, resp transvected, if it is the image of a r-independent vector field, re�p covector field, in A.

As soon as an admissible coordinate system (A 1 ) is chosen in the '0 1 -differential manifold A, some bases are automatically induced in the respective linear spaces A; and A{*; then the above fields may be described by their components, which are real functions of (A 1 ,A 2 ,. ,A") Admissible changes of coordinates in A are, by definition, eontinuously diff erentiable trans forms; this entails that the continuity of a vector, resp covector, field, defined as the continuity of its component fonctions. actually constitutes a property independent of the peculiar choice of admissible coordinates in A The same is truc for the concept of the wpport set of a field, i.e the complement of the greatest open subset throughout which thîs field vanishes

The following will be of use in next Section We shall denote by 'l{(f, A'), resp. Jî:(L the set of the continuous vcctor, resp covector, fields defined on the subset r of A, whose support 1elative to r is compact Under the natural definitions of addition and of the multiplication by scalai constants, these two sets are linear spaccs If K is a compact subset of r, we denote by X(f, K; J\'), resp X(f, K; A'*), the linear subspaces of the above consisting of the fields whose support is contained in K The use of some admissible coordinate system (A;) in/\. permîts to define on each of the linear spaces .'ff(f, K; A') and X(I, K; A'*) the 1upremum norms, which make of them some Banach spaces The definition of these norms is affected by the <{;' 1 changes of coordinates; such changes actually replace them by some topologically equivalent norms This means that, in the setting of the 't' 1 -differential structure of A, the linear space s X(f, K; A') and '.lf(f, K; A'*) are respcctively endowed with some definite "Banachiz able '' topologies, independent of the choice of any coordinate system qne is naturally induced to define for other geometric abjects some laws of transpor t b y a camer First may be considered a T-dependent scalar (unsigned) measure dm', defined on some r-depcndent subset C 7 of ?t This measure will be said convected by the carrier A if it equals the image under 71' of some T-independent measme dµ defined on a subset r of A As a counter-example, such is not in general the case for the Lebesgue measure dx on C 7 ; it equals the image under 71' of a T-dependent measure dC in A Relatively to the Lebe sgu e measure dA associated with the (A;) eoordinates in A, the measure df is known to ad mit a density function il equal to the Jacobian deterrninant of (3 3) A classical calculation yield s the T-derivative of this determinant, for a fixed À; equivalently may be considered the functi on x' of T and i.: defined on C 7 as the image of t fhen the above T-derivative may be viewed as th� drag-derivative of x/ along the carrier A; we shall denote it by o"x;, in accordance with the notation used in the previous Sections, although, in the present case, x� may fail to be a differentiable function of r and x With this notation, the classical result takes the form

(4 l)
T urning back to the measure dm', let us consider the case where it admits a density function m; relatively to the Lebesgue measure of 0t From ( 4 1) one easily deduces that dm 1 is convected by the carrier if and only if

(4 2)
holds almost everywhere. If the carrier is a rnaterial continuum with dm 7 as mass measure, one recognizes here the classical equation of mass conservation Let us consider now a vector mearnre dv; this may be seen as a measure with values in X înstead of R or, equivalently, as a collection of n scalar measures d v i which constitute the components of dv relative to the base chosen in X But the duality way of defining a vector measure serves our pur pose much better From this standpoint [ 171, a vector measure d v on a locally compact subset C of T is, by definition, a linear scalar functional on the linear space . °f{(C, X) of the continuons vector fields with compact support in C, possessing the following continuity property: the restriction of this functional to the (Banach) subspace 'k( C, K; X), consisting of the elements of ':J{(C, X) whose support in contained in the compact rnbset K of C, is cor1tinuou1• for every K The value given to this funclional by a vector field w E 'k(C, X) will indifferently be written as <,; w dv P, or fw dv, or <,; w h dv; '-'>, or f w;dv;, with some natural definition of the n scalar measures dv i , the components of dv relative to the chosen orthonor mal base in X fhe duality definition of vector measures applies as well when it is considered, instead of an Euclidean space, a n-dimensional <e 1 -differential manifold such as the carrier A let r be a locally compact subset of A; a vector measure on f is, by definition, a linear scalar functional on the linear space X(f, A'*) of the continuous covector fields on r with compact support possessing this continuity property: for every compact subset K of r, the restriction of the functional to the subspace °f{(f, K; A'*) is continuous Symmetrically, a covector mearnre consists in a Jinear scalar functional on '.7{(1', A') with the similar continuity property If dijJ is, for instance, a vector measure and /J an element of X(f, A'*), the value gîven by e to the linear functional dt/1 will be denoted <,; /J, dl{!� or f < /J, dlj! >; here the symbol < , > refers to the bilinear duality form of the tangent and cotangent spaces A;, A(* at any point ,\ of A As soon as an admissible coordinate system is chosen in A, the covector field 8 may be described by its component fonctions /J;; on the other hand there may be defined Il scalar measures d1/r;, the components of dijJ, such that the above is also expiessed under the forrn <,; 8 ; , di// ';9 or f < e,, dtf / > For every r in the considered interva!, the placement mapping 1ï(T, ) operates on vector or covectm fields in the way defined in Section 3 This visibly establishes a linear isomorph isrn between X(f', A'), resp X(f, A'*) and the similar space X( C 7 , X), with C = 11'( T, f'); recall that X as a Euclidean linear space, has been identified with its dual For every compact subset K of r, th e subspaces W(I, K; A' *), resp 'X(l, K; A' ), and 'f{(C', 1r(T, K); X) correspond to each other in the above isornorphisrn; rnoreover this con cspondence is bicontinuous. The definition of the image under 1r( r, ) of a vector, resp covector, measure on the subset f of A follows a uto matic atly: this image constitutes a r-dependent vector measure on the subset C T of ;if 11ze r-dependent vector measure.1 in °t rernlting in the ab ove way f rom r-independent vector, re sp. cov ector, mea rnres in Aare said convected, reçp tran rnected, by the carrier A Observ e on the other hand that, in view of some 11-dimensional extension of the Radon Nikod ym theorem[l7], every vector rneasure dif, on the subset r of Amay be represented as fo llows: there exists (nonuniquely) a positive scalar measure dµ. on r and a bounded dµ- m easur able vector field i/<, such that, for every e '7{([, A' *L one has

f < o. dif1 > J < IJ, i/ 1� > clµ ( 4 3 ) 
One writes d!/J = !/ J�dµ. and the vector field iJ!;, (defined up to an arbitrary alteration in a d,_. -neg!igible subset of l') is called the dençity of the vector measure cli/J relatively to the ,calar mear nre cl µ Similarly, every covector measure in A may be represented by a positive scalar meas ure cl µ , together with a bounded dµ-measurable covector field as density Consequently, a r-clependent vector measure d v on the subset 1r( T, f) of i!t is convected, resp. transvected, by A if and only if therc exists (nonuniquely) some convected positive scalar mea sure dm" and some convected, resp transvected, bounded dm T -measurable vector field v�, such that dv = v�1dm T for every r in the considered interval

The representation of a vector or coveclor measure through a positive scalar measure and a density field may be used to make (4. 3) meaningful for more general fields O than the continuous ones with compact support In fact ( 43) makes scnse as soon as the scalar function < e, iJ!;, > is d µ .-integiablc Such fields O wil! be said integrable relatively to dl{! As the components of i/J� belongs to L °'(dµ. ), this amounts to saying that the components of e belong to L 1 (d µ . ) The vector (resp. covector) measure dq, will be said bounded if ail the bounded continuous fields are integrable relatively to it; equivalently the positive scalar measure d µ , is bounded Let us observe, on the other hand, that when a vector measure, such as dv = v�dm is considered in R", this makes sense to w1ite the integral relatively to dv of a scalar fonction/, a symbol whose value is an element of R 11 faking in particular as f the indicator of a dm-measurable subset of R", one defines the d v-measure of this set, with value in R" thereby connecting the present theory with the conventional aspect of measures, namely OE-additive fonctions of sets But it should be stressed that the concepts of the integral of a scalar function or of the measure of a set do not make . se:nse anymore when it is conçidered a vector mearnre in the manifold A. This is connected with the observation that, in such a manifold, there is no possibility of addition for the elements of the tangent spaces at different points

Example I

Let us consider an abwlutely continuous cwve in A, i e a mapping y of some compact real interval [r 1 , r2] into A, defined by n coordinate functions r-+A; = y'(r) which are absolulely continuo us on [r 1 , r 2 J There equivalently exist n Lebesguc-integrable functions r-+ y;;(r) such that y'(r) = -y'(r i )+ { y '�(p)dp. lt may be chccked that thesc properties are preserved under any admissible change of coordinates in A and that the y� i (r) constitute the components of an element y;(r) of A� (rJ , in dependent of the peculiar choice of a coordinate system Let us define the vector mcasure d î' on A as the functional assigning to every BE 'f{( A, A' *) the rea! quantity <;;8,d y l> f 0 <0(y(r)),y;.(r)>dr;

r1 (4 4)
in accordance with our previous notations, this quantity may equivalently be written as f ri (li( y(r))y/(r )dr = r e;( y(r))dy�(r) '"' 1 ri< (!( y(r)), d y(r) > � � � f he image in P l of the vector measure d y under the placement mapping 77( r, ) equa ls the vector measure de' associated in the same way with the absolutely continuous curve c: r-, 77( r, y(r )) For every continuous vector field v on Pl� the value of � v, de r ?> is nothing but the circulation or work of v along c' For r ranging over some real intervaL c' constit utes a moving curve dragged along by the carrier A and de' gives an example of a vector me asure convected by A Equivalently, for evcry continuous vcctor field v which is transvected bv A the said circulation is a constant with respect to r; as a trivial instance, one may take v = gr�d y: where y is a convected scalar function

Remark

It is for brevity that we have restricted ourselves to absolute!y continuous curves; more generally, rectifiable curves may be considered, i e mappings of [r i , r2J into fl{ or into A which are continuous with bounded variation Example 2

Let n = 3 and the carrier consist of an inviscid fluid performing a barotropic motion w i t h velocity field u, supposed '<6 1 ; here T will be the time t of dynamics Classically, a local version of the Kelvin-Helmholtz theorem may be formulated as follows: if p denotes the de111ity of the fluid, a f unction of t and x, and w == curl u, the vector field p 1 w is convec ted Actually, the bearing of p to the situation is only that the mass measure dm = pdx is convectcd The property may equivalently be formulated by saying that the vector measure µ• 1 wpdx = 1vdx is convected This vector measure is simply the curl, in the sense of distribution theory, of the vector measure ud x; e!iminating p from the formulation clarifies the statement

DIVERGENCE-FREE VECTOR MEASURE

Definition

A vector mearnre dv defined in wme open rnb5et 0, of 9' will be rnid divergence-free (or wlenoïdal) in D if f grad f dv = 0 for everr 96 1 (equivalently <'g x ) 1calar function f whoie wpport relative to n is compact.

In other words dv possesses a zero divergence relatively to n in the sense of distribution theory Suppose d v convected by the carrier A; if the scalar fonction f in the above definition is viewed as convected by the carrier, its gradient is transvected, hence yields a r-independent integr al wîth respect to dv Therefore:

Propoïition 5 If a convected vector mearnre is divergence-/ ree for wme value of r, sa il is for everv r

Remark

The same sort of reasoning proves that, if the comected vector measure dv possesses, in the sense of distribution theory, a divergence which happens to be a measure, this measure is convected Incidentally, one could agree to restrict oneself to carriers with cg x velocity fi elds: such a canier may be endowed with the structure of a cg x differential manifold, independent of r, involving the concept of convected di5tributions Then it cornes that every convected vector distribution admits as divergence a convected scalar distribution; this will not be used in the present paper

Erample

Let c denote, as in Section 4, Example l, an absolutely continuous curve For every 0:

1 scalar fonction f, one elementarily has

f gradf de = j(b) f(a)
wit h a'° c(r 1 ) and b = c(r2), the ends of the curve This means that the divergence nf the vector me as ur e de, in the sense of Schwartz's distributions, equals o a -8 1 ,, the difference of the Dirac meas ures at the respective ends. If the curve c is convected by the carrier A, this divergence rneas ure is clearly convected; it is zero if the curve is a cycle, i e a = b. The vector measure de h as also a zero divergence relative to O if the ends of the curve c in f it do not lie in n

IENSOR FIELDS

Vector or covector fields in the CC 1 -differential manifold A are special cases of tensor fieldï: such a field, detined on a subset ICA, is a correspondence assîgning to every À Er an element of som e tensor product space whose factors are copies of the linear spaces A� or A;* f'his may be, for instance, an element of A� 0 A� in which case the tensor field is said doublv co ntravaria nt; a doublv covariant tensor field admits as values some elements of At (x) A�*; tw o sorts of mixed tensor fields of the second order are also to be considered, whose val u es are elem ents of AXS)Al* or M*@A{, respectively For every r in the considered interval, the placement mapping 1r( 7, ) sends A into Pt, while the Jinear isomorphisms 1r'( 7, À) and 1r �( 7, À) maps A� and AI* onto X; this yields the definition of the images under 1r(7, ) of any of •the above second order tensor fields; these images are seco nd order 7-dependent tensor fields in fr. Since the Euclidean linear space X has been id entified with its dual, one finds in (! J;' only one sort of second order tensor field instead of four Such a 7-dependent tensor field in . Cf: is said doublv convected by the carrier if it equals the ima ge, in the above sense, of some doubly contravariant 7-independent tensor field on a subset of A; it is said doub/y tmnwected if it equals the image of some doubly covariant tensor field; two mixed modes of transport could also be considered To give a fondamental example of images of tensor fields, let us start with the constant tensor field g in i'( associated with the Euclîdean metric Relatively to some orthonormal frame, its components equal the Kronecker symbol ô i i but, if arbitrary curvîlinea1 coordinates (l') are used in Pl, this tensor field is represented by doubly covariant components g; i .,., gii which are functîons of ( {1 , /2 , , /") If a CC 1 curve is considered in ff', its length equals the integral f d s, with (6 1) Consider now the carrier A and any of its placements 1r(7, ); let us denote by y'(À) the element of A;*@ A;* whose image equals the element g of X@ X For every 16' 1 curve r in A, the image 1r( 7, f) is a ce 1 curve in ?t, whose Euclidean length could be calculated as above; but equivalently, the placement mappîng may be interpreted as a change of variables, yielding the expression of this length as an integral f du along r, with (6 2)

This expresses the metric induced on the � 1 differential manifold A by its embedding 1r( 7, ) into the Euclidean space Pt A standard problem in the kinematics of continua is to calculate the rate of change of the Euclidean length of the curve 1r( 7, r) when r is a 7-independent curve in A. In view of (6 2), this requires, for every point A of the curve, the expression of the T-derivatives ôy[)87, i e the components of the 7-derivative of the element y'(,l) of the linear space At® Al* To this end. one may consider an arbitrary pair of 7-independent elements a, f3 of Al and the doubly contracted product < IY, y", f3 > = a'r&W (6 1) îhen ;: < a, y, /3 > c--< a, : Classically, for every differcntiable vector field such as cp, the tensor D whosc compone nts. relative to orthonormal Cartesian coordinates. are expressed by D, 1 f( 'Pi ; + rp,;) is denoted by def 1/J By reapproaching (6.3), (64). ( 6 I cnsor measures in the 'fi' 1 -differential manifold Amay be defined by the duality way, as was done in Section 4 for vector measures For brevity. we restrict ourselves to second order doubly contravariant tensor measures Sîmilarly to the notation used in Section 3, let us denote by 7{(f, A' ;, (x) A' *) the linear space consisting of the continuous <loubly covariant tensor fields defined on the (locally compact) subset r of A and whose support relative to r is compact If K is a compact subset of f, let 'Jt(f, K; N* ® A' *) denote the linear subspace of the above consisting of the fields whose support is contained in K Using some admissible coo1dinate system in A, one defines on such a subspace the supremum norm, hence a topology which, similarly to what has been observcd in the case of vector fields, does no! depend on the pecu!iar choice of the coordinate system By definition, a doubly contravariant tensor measure dEl on r is a scalar linear functional on the space W([, A' *® A' *) with the following continuity property: for every compact subset K off, the restriction of this functiona! to 7{(I, K; A' *® A' *) is continuous The value that the functional d0 assigns to some element cfl of ?{(I, N*@ N*) will be denoted by � <P, d6 � or f < <P; d<") > When some admissible coordinate system is chosen in A, one may define n 2 scalar measures d0ii, the components of the tensor mcasure, such that the above value equa!s

(7 1)
As in the case of vector measures, one has the representation property: there exist (non uniquely) on r a positive scalar measure dµ and a bounded dµ-measurable doubly con travariant lensor field (defined up to an arbitrary alteration over any dµ-negligible subset) 0� such that dEl c= 8�dµ Hence one extends the writing (7 l) to more gencral tensor fields <P than the continuous ones with compact support, and one defines boundedness for the tensor measure d0: lhat amounts to the boundedness of d µ

The doubly contravariant tensor measure dEl is said symmetric (resp skew-symmetric) if � <P, dH :,> = 0 as soon as the doubly covariant tcnsor field <P is skew-symmetric (resp symmetric) Equivalently, for every i and j, the scalar measures d(".1; 1 and d0ii as equal (resp are the negative of each other); equivalently also the values of the tensor field 0� are symmctric tensors (resp skew-symmetric) except possibly in a dµ-negligible subset

The same procedure applies to the definition of tensor measures in the Euclidcan space 1, and yields a natural definition for the image in t of every tensor measme in A, under everY placement 1r( r, )

A r-dependent tensor measure cl l' on a T-depcndent subset C' of rt is said doubly onv ecte d by the carrier A if, for every r in the considered interval, it equals the image of a cin de p en dent doubly contravariant tensor measure on some subset of A There equivalenlly :x ist a co nvected scalar positive measure dm T and a doubly convected tensor field I � T such th at d'T' = l �/dm' Le t us recall now that the trace of a second order tensor properly makes sense for a tensor of the rnixe d sort Rut, when one starts with a Euclidean linear space as X, the identification of thi s spac e with its dual enables the four sorts of second or der tensors to mer ge into a single one ; there only remain four ways of representing a given tensor relatively to some base and the se four ways merge into a single one if the base is orthonormal where <p denotes the velocity field of the carrier ?roof Let us introduce, as in Section 6, the doubly covariant symmctric tensor field y' on the carrier A whosc image in ;J; equals the constant tensor field g of the Euclidean metric By assumption, dT T is the image of a r-independent doubly contravariant tensor measure on A, namely d0 = e;,d ,u , where 0� is a T-independent doubly contravariant tensor field and d µ a r-independent positive scalar measure. The definition of images makes that I fr d P � I < g; d I >=<fig, d J;,:, = <fi y', d0;,:, = J < y T ; e� > dµ Provided that the last integration in the above commutes with r-derivation, one has

o f 1 • ôi' 1 • or' -� <y T •H'>dµ=. <--•0'>dµ= < •d0> ÔT , ' 1' . , OT > 1 ' ' , ôT ' ( 7 3) 
(7 4)

In view of Proposition 6, this yields (7 2) In order to justify the commutation of ô/8r with J let us make use of some admissible coordinates (A;) in the manifold A For r ranging through a compact neighbour hood k of zero in R, Proposition 6 entails that the components ôy;/ 8r are conti nuous functions of r, A 1 ,. , A", with compact support in k x R", hence bounded Then som e standard argument applies, involving the mean value theorem for the real functions r-> 'Yij( T, A) and Lebesgue's dominated convergence theorem for the integral of T 1 ( y)j r i ) relatively to the measure (0 : i i d µ .

Corollary 7. 2 Let the ten wr mearnre d T in ab ove Proposition be I ymmetric; the f unction r-. J tr d T T po 5 ïeï s•es at r O a zero derivative for any compact carrier in n if and on/y if d r haï a zero divergence in n in the sen1e of Schwartz's distributions Proof Thanks to the symmetry of d T, the expression (7 2) of the said derivative takes the form Here the notation d T; i ; refers to partial derivatives of the rneasure d I;i in the sense of Schwartz's distributions. Since measures are distributions of order zero, these derivatives are distributions of order one; therefore the last member in the above equality makes sense for evcry cp 1 which is YG 1 , with compact support in n Ihat is zero for every such IPi (or equivalently, for every q>i in the more restricted class of Cf," vector fi elds with compact support ) if and only if the vector distribution in n with components d7; i;, namely the divergence of dT, 1s zero

INVISCID FLUID

When the considered fields are smooth enough, the dynamical equations of an inviscid fluid are classically written under the form Here the orthonormal cartesian frame (x;) is supposed inertial; by , and ; are respeclively denoted the partial derivatives with respect to the time t and the X; coordinate; the vector field f is the volume density of extraneous force

The following 4-dimensional transcription of (81) and ( 82) is similar to what is commonly done in Relativity theory. Let us rename x 0 the variable t and let us agree for ail the sequel that, while Latin rnbscripts range through the set {1, 2, 3}. Greek subscripts range through the set {O, I, 2, 3} We shall denote by t the 4-dimensional Euclidean space where (x a ) constitute the cartesian coordinates of the point denoted by g. relative to some orthonormal frame Let us put the conventions fo = 0 so that (u") and (le,) are the components of some 4-dimensional vector fields u and î (8 ' l) (8 4) By TI�p we denote the components of the "space" projector, i e. I T;i = Ô;1 (Kronecke r symbol) and Il 0,, = Il 00 = 0 Ihen (8 1) and ( 82) arc condensed into the equivalent form (8 5) In the left member appear the components of the 4-dimensional divergence vector of the ten sor field pu@ u + Tip One of the advantages of this writing lies in its possible extension to non-smooth cases; then the divergences or the gradients shall be understood in the sense of distributions More precisely, let us recall that assimilating a real fonction F on sorne open subset \fr of (for instance) R 4 with a Schwartz distribution on '1' is an abuse of language What actuaIIY l co nst itutes a distribution is the scalar measure equal to the product of the Lebesgue measure dS on ' l" by the function F; which has to belong to LL c (dS) The most elementary non-smooth sit uation presents itself when F has the following form: there exists a hypersurface I dividing ,p into two regions ..:v• and ..:v + ; this hypersurface is supposed to admit a continuous normal unit ve ctor �ê, directed from 1V toward 'f'; one assumes that F is rg• in 'f-and 'V', with unilateral lim its V and f' at every point of k Then using <ff' test fonctions, with compact support in 'V, an d p erforming some easy integrations by parts, one obtains:

Lemma 8 The gradient of the scalar meaçure Fd2 in the sense of the distributionç on ..:V e quals the 1um of the two 4-dimensional vector measures grad F d8, diffu,ed in 'V, and ( F'-F )ff ldl (dl: the area measure of : n concentrated on l Equivalently the components constitute the partial derivatives of F dS with respect to the Xa coordinates Let us apply that to fluid dynamics A moving surf ace t-. 2., 1 is considered in the space t an d the hypersurface l in t consists of the points with coordinates (t, X i , x 2 , t 3 ) such that (x i , x 2 , x 3 ) El, The normal unit vector 91 to l at any point is supposed non-parallel to the r 0 axis ; therefore some vector 9ê' parallel to 91, with the same direction, has the components ( --G, n" n 2 , n 1 ), where (n;) denote the three components of the normal unit vector to the correspo nding surface l r in Pt, directed toward the + region; the real number Gis readily found to constitute the normal 5peed of the moving surface k1 at the considered point (counted as positive when l, prog1esses toward the + region) Suppose that ï, is a surface of discontinuity of the fields p, u, p We are to show that inte rpreting (8 5) in terms of distributions accounts at the same time for the equations (8 1) and ( 82), satisfied in the conventional sense in the regions 'V-and 'V + , and for the classical jump conditio111 across l, To that end we introduce the Lebesgue measure dE in q, (i e the time-volume measure dt dx) and, instead of (8 5), we state as dynamical equations (86) where the partial derivatives are to be understood in the sense of Schwartz's distributions in the open subset '{I of t The measures de" with de0 = 0, will be called the components of the extraneous pulsion; we expect them to be the sum of the diffuse measures / a d2, representing the distributed extraneous forces, and possibly of some measures db" concentrated on l, with db 0 = 0

The se eq uations express that, in the open subset 'f of the 4-dimensional Euclidean space '.l:, the second order tensor measure (pu@ u + Ilp )d:3 admits the four dimensional vector measure de as divergence By Lebesgue's decomposition theorem, such an equality of measures is equivalent to the equality of the absolutely continuous parts on one hand, i.e. to (8 5) being satisfied throughout the regions '{ I and 'V", and, on the other hand, to the equality of the singular parts, concentrated on 1 We now explicit these singular parts in two usual situations of fluid dynamics 1 ° Slipstream surface or material boundary One supposes that the moving surface l'., separates two material parts with preser ved identity That means that, in 'f, the 4-dimensional vector lines of u do not cross the hypersurface 1. hence where N 13 denote the components of 9è Then Lemma 8 yields as the singular part of equation (8 6) For oe = 0, both members are essentially zero; for a = i E { 1, 2, 3} this reduccs to (8 8) In the usual case where no extraneous pulsion is concentrated on the scparating surface, th i, cquality simply consists in p + -p •� 0, i c the classical condition of continuit}' of the pre nure acros, a ïlipstream surface Actually the above also applies to the case where all the considered fields vanish in the region "V ; this region may be a vacuum, but such a formalism can also account for the case where the matter possibly contained in ,fr is declared to be no part of the study (i e it constitutes another "system") The meaning of (8 8) is made clearer if one refers to the calculation of any integral relative to the area measure dl of the hypersurface :i, through the cutting of this hypersurface into strips by hyperplanes x0 °� t; this introduces the area measure dl 1 of the surface 1, in the 1-dimcnsional space ){ and, by a classica! use of orthogonal projection, (1 + (; 2 ) id2, = dl,dt; in the more precise setting of the general theory of integration, this is called a de,integration of the measure (1 + G 2 r1dl One may similarly assume that the measure db; admits a desin tegration of the form db; "' dc;dt, where de; is a measure concentrated on 2 1 (such a desintegration involves the assumption that the extraneous actions on 2. 1 are not of the percussion sort} lhen, for the said situation of "nothingness in IJr " , (8 8) becomes equivalent to for every t Ihat is just the property through which the concept of pressure is introduced in the traditional exposition of fluid mechanics By the above development one sees that om mathematical setting, based on Schwartz distributions in some open subset "V of the 4-dimensional space l("l' may be the whole of t or, more usually, some open strip t 1 < x 0 < t 2 ) does not preclude the treatment of boundaries

2 ° Shock waveï
Extracting similarly through Lemma 8, the singular part of (8 6) in the case where the moving surface t � 1 1 is a shock wave, yields for a = 0 which is the classical condition of mass conservation, and for a = i E { 1, 2, 1} i e the momentum conservation

We do not have here to dwell on this case, for realistic shock waves do not fall into the setting of this paper In fact the entropy jump across a shock wave contradicts the assumption of the same relation p = p(K, cr) to hold on the whole of "l'

Remark

Ihe formulation of classical dynamics sketched in this Section may be extended to much more general situations than hydrodynamics, up to include such singular systems as, for instance, discrete systems of mass points Let us recall on the other hand that making n '--" 0 in (8 6), with de 0 = 0, yields the conservation of mass Actua!ly, by removing the assumptio n de 0 = 0, one may account for the excbange of matter between the considered "system" and the extraneous world

IHE VARIAI ION AL SIAfFMENT

The purpose presented in Section I was the variational characterization of the solutions of (1 1), (l 9), (1 IO), (l I 1) As we are to include non-smooth solutions, (1 9) and (l JO) will

  5) and keeping into account the condition div 1P = 0, one obtains the correspondîng law of transport by the carrier The functional (2 8) is now replaced by ""' ) I f . 'd 0{U == 2 0 ux; (29) (2 10) the vanishing of the r-derivative of this functional when u is transported according to (2 9) makes sense for every number of dimensions One finds that it yields the dynamical vector equation for the stationary flow of an incompressible homogeneous inviscid fluid[I6]

  '-diffeomorphism of A into ?f With every A E A is associated the tangent space A: to A at this point, a n-dimensional linear space

( 6 4 )

 64 7 y'(,l ), /3 > Ihe images a' and h' of oe and f-l under the tangent mapping 1T 1 (r, A) are some moving vecto rs convected by the carrier In view of the definition of images. one has <!Y,y',{3>=--<a',g,b'>=a' h' (6 5) where the dot refers to the Euclidean scalar product in X Ihe rate of change of a T and /J 7 in Xis given by (3 I), which involves the use of orthonormal Cartesian coordinates; hence ô ô --(a• h T )-(a,'b;J=(</,' ,j-j cp,,)arbJ OT (6 6)

  5) and (6 6) one obtains the classic al following icsult, which justifies the name of deformation rate given to the tensor D Proposition 6 The image of the element ôy'(A)/ôr of A{ *® A? equafs the value of the tenwr field 2 def ip at the point 1T( r, A) of 1 7 I ENSOR MEAS URES; THE MAIN FORMULA

  When orthonormal coordinates are used in the Euclidean space ?r', the component measures dTij of the tensor measure d T may serve to define the trace measure of d T as the scalar rneasure tr d'J�d[ â =J/dµ=(tr r;)d µ in depc ndent of the peculiar choice of orthonormal coordinates If arbitrary coordinates are used in ft, one has to introduce the metric tensor g, as in Section 6, and write tr d T = g, id [' 1 = < g; d I > where the symbol < ; > refers to the doubly contracted tensor product If, in addition, the tensor measure is bounded, one may consider the trace integral J tr d T "'J < g; d T > Then it cornes what may be seen as the main formula of the calculus of horizontal variations: Proposition 7 1 Let d T be a /Jounded second order ten sor mea wre 011 an open suh set D of 2l. Let d J T denote the ten sor mearnre doubly convected by some compact carrier in n which equals d T for r "-0 The real f unction r--'; f tr d P poHesses al r = 0 a derivative equal to J 2 < def 'P; d T > = 2 � def ip; d J � (7 2)

  to be joined with the equation of mass conservation p 1 + (pu,); '° 0(8 2) 

  

  

  

  

  

  

act ually be replaced by (8 6); recall that, by definition, Uo = J (9 l) ever ywh ere in the given open subset 'V of t For a "' 0, (8 6) expresses the mass conservation an d ma y be read as Div (cr• 1u dE) = 0 (9 2) whe re Div denotes the divergence of the considered 4-dimensional vector measure, and r,""P-1 For a = iE{l,2,3},(8 6) becomes (9 3) since the extraneous pulsion now consists of the gravity-like distributed forces On the other hand, with P defined in (13), the compressibility law (1 1) is taken under the form aP p "'-, (Xo, K, tT) otT (9 4 ) (precluding the case of incompressible fluids) Then, by the elimination of p, (9 3) reduces to

(aPct ,... ) -1u d-a-U;U13 /;:!, f3 + Ôa-:;!, i = OE i /;:!,.

In our 4-dimensional language, (l 11) reads: K is a constant on each vector line of u (9 6) Carriers will be considered, whose 4-dimen. �ional velocity field, with compact rnpport in 'V, satisfies 490 = 0 (9 7)

Such carriers preserve every hyperplane x 0 = const ; hence we call them iwchronous carriers Only (9 5) will properly be the object of the variational property in view, which acquires most of its interest from this preliminary assertion: Proposition 9.1 Suppose that U" is a r-dependent 4-dimensional vector field convected by an isochronous carrier; if condition (9 l) i5 satisfi ed for some value of 7, then it ü satisfied for every r Suppoçe in addition that the r-dependent f unction 1< ', defined in t, with values in an arbitrary set, is convected by the carrier; if conditions (9 6) is safüfied for some 7, then it is satisfied for every 7 Suppose finally that (J"' is a 7-dependent real function related to the carrier in wch a wav that the scalar measure (a-,Y-1 dE is convected (as be/ore, dE denotes the Lebesgue measure in t); if condition (9 2) ü satisfied for some r, then it is satisfied for every r Proof If u' is convected, one has which is zero in view of (9 7); that establishes the first statement

The second statement is made obvious by observing that, if u' is convected, îts vector lines are the images under rr' of r-independent lines in the carrier manifold A; now the assumptîon about 1<' means that this function is the image under 1r' of some function defined on A in a r-independent way If the scalar measure (cr'f 1dE is convected, as well as the vector field u', the vector measurc (tTT 1 dE is convected; then the last statement follows from Proposition 5

Iwo assumptions are now made for ail the sequel: Hypothesis 9 2 It iï wpposed that, in the whole region \JI, the mass density of extrane ou1 force, with components g, , = It r, U e, is hounded fhe above assumption, which holds in practical situations, implies that the function U is Lipschitz in \JI with regard to the variables (x 1 , t 2 , x,), uniformly in Xo On the other hand: Hvpothesis 9 1 It is rnpposed that, for ail the co111idered values of x0, K and (T, the functio n p(x 0 , K, rr) i1 hounded Hence by (9 4) the fonction P is uniformly Lipschitz with regard to the variable rr We should concede that, for realistic compressibility laws, the boundcdness of p only holds under some minorarion of a-Iherefore, Hypothesis 9 1 amounts to assuming that such a minoration holds for the considered solution of the dynamical equations fhe above hypotheses secure the convergence of the integrals to be involved in the sequel, namely:

Proposition 9 4 Let uç considet a compact isochronou, carrier in the open sub\et \JI of t [ et u ', K' and cr T be tran 1ported hy f his• carrier in the wav defined in Propos•ition 9 1

If the integral

makes sen se for r =. 0, then it makes ffn se for everv r in wme neighbourhood of zero in R Under Hypothesis 9 2, the rnme is true fo, the integraf

Under Hvpothesis 9 3, the same is true for the integra! (9 10)

Prooj

The law of transport defined in Proposition 9 1 means that (CT T ) 1 d2 is the image under the placement mapping 1r' of some r-independent nonnegative measure dµ in the carrier manifold A Ihen the three above integrals are identical to the integrals, relative to d µ. , of the functions defined in A by composing the respective integrands with the mapping 1r' Let (A") de note an admissible coordinate system in A and 1r $(, ,\) the Cartesian coordinates of 1r T (À) in t

By assumption, 11' is the image of some r-independcnt vector field tù in A, with components

f hen the assertion concerning the integral (9 8) ensues from the boundedness of rl1r'[/ JA O : in fact this fonction is continuons in A, with compact support As for the integral (99), one makes use of the majoration of U(1r'(A)) resulting from Hypothesis 9 2 and from the fact that the first coordinate 1r 0 of 1r, is a constant with regard to T The assertion concerning the integral (9 1()) is similarly proved by observing that (9 l2) wherc k denotes a r-independent real function in J\, and that r-independent values of x0 and K' correspond to each A E A Now cornes the variational statement: Propo1• ition 9 5 Let a 4-dimenïiona! vector field li, a çca[ar fwution CJ and a function K be defi ned in son1e open wbset 'V of l. suppo, sed to rnti1f y (9 l ). ( 92) and (9 6) and to make the in te gralï (9 8), (9 9) and (9 10) meaningf ul The1e element, constitute a 1ulution of (9 5) in 'V if and on/y if, for every iwchronou, compact cartier in 'Jt, the r-derivative of the following f u n ctionaf va11i1he1 at r ""0 (9 11) where u r , CJ\ K 7 are transported by the carrier in the way defined in Proposition 9 1 and reduce to the above for r 0 Proof As in the proof of Proposition 9 4, let us transform A(r) into an integral on the carrie r manifold A, relative to the r-independent measure d µ Observing that A(r) equals the sum of the integrals (9 8), (9 9) and (9 JO), we shal! perform the r-derivation on these three tenns separately When u r is evaluated at the point rr' (A) of t. with A fixed in A, one has by O 1)

where the partial derivatives 1{}; 1, of the carrier velocity field are evaluated at the point ,r"(A) of .:i: The right hand member is continuous on A with compact support, thus bounded Then the same argument as in the Proof of Proposition 7 l allows one to commute dµ-integration with 1-derivation; by finally expressing the result as an integral in �ir, one obtains

ur. -q. r.:.. 'I' (9 14) Similarly, for every À, the expression 1<' ( rr r (A)) is a constant with regard to r, while the convection of the measure (a-T 1 dS entails (Section 3) 8c r "( 7T 7 (À)) _ , _ , ---� -----c --. ,i, r.f); i der Xo, K , CJ ) :::. Lastly, for every A, f U(;r '(A Jl '" u ,(. 1T 7 (A J-l �zi:H A l u 8ï . é! r ' " ,1, h, thus, due to Hypothesis 9 2, (915)

By assumption, the functions <P;, i E {l, 2, 3}, are <& 1 in '1 1 , with compact support; in view of the definition of the partial derivatives in Schwartz's distributions theory, the derivative of A(r) at , = 0 finally rcads as 8A ( l d ..... ) ---== < --(f u-u ....

8r '13 -13

Its vanishing for every such 1p, is (9 5)

( aP d-)

1 U ()-;; :::, i + (! /, ip; > It is equivalent to restrict the above to the functions ({); belonging to 0l('V), 1 e the Cff' functions with compact support in 'V Remark 9 7

The conditions (9 1), ( 92) and (9 6) imposed in this variational statement do not constitute cons traints in the usual sen se of the calcul us of variations; in fact Proposition 9 1 se cures that these conditions are automatically satisfied by ail the competing elements

The type of calculation used above in expressing the r-derivative of (9 8) could also yield a proof of Proposition 7 l Conversely, the result would directly follow from Proposition 7 l if one additionally assumed that the measure of 'V with respect to (i!"r 1 ctS is finite In fact under the assumptions made in Proposition 9.5, the last integral does not depend on r while the first one on the right side is nothing but the trace integral of the tensor measure u r ® u'(uT 1 d8; since U' is convected, as well as the scalar rneasure (u') 1 d8, this tensor measure is doubly convected Remark 9 9 in [START_REF]Le Calcul des Variations Horizontales et /'Hydrodynamique[END_REF], an introductory Seminar Report which presents the above Proposition in the case of smooth fields, it is developed that this Proposition may be viewed as a transcript of Hamilton's ''principle" of the least action into the language of Euler's variables. But the method of horizontal variation has a much wider scope; in particular, the result of the Section to corne is not directly connected with Hamilton's principle since the concept of a stationary motion does not make sense in the framework of usual analytical dynamics

For a fluid satisfying the same assumptions as in Section 9, let us a priori suppose that the flow is 5fationary in some open subset fl of X, i e the functions u;, u, K, defined in n, are constant with regard to t Of course, the compressibility law (9 14) and the function U are henceforward supposed independent of t We denote by dx the Lebesgue measure on û Instead of (9 2), the mass conservation is expressed by and, instead of (9.5), one has a dynamical equation

The vector lines of u in D are also the trajectories of the fluid particles, hence the conservation of K for each of these particles is now expressed by K is a constant on each vector line of u ( 103)

The foll owing may be proved in the same way as for Proposition 9 l Pro po5ition 1().J Suppose that u' is a r-dependent 3-dimençional vector field convected by s o m e carr ier and that the f unction K\ defined in X with values in an arbitrary ,et iç convected If c onditio n (10 1) is satisjied for rnme value of T, thu5 it is satisfied for ever}' r Sup po,e in addition that (J' T is a r-dependent real function related to the carrier in rnch a wav that the scalar measure (crT 1 d xis convected; if condition (10 l) i, rntisfied for wme value of r, the n it i, satisfied for ever}' r

We make again the Hypotheses 9 2 and 91; similarly to Proposition (9 4), they entai!: Pr opo dtion 10 2 Let us comider a compact carrier in the open rnbset n of X Let u', K T and rr T be tran 1ported by this carrier in the wa}' defined in Proposition 10.1 If the integrals make sen se for r = 0, then they make sen,e for every r in wme neighbourhood of zero Now cornes the variational statement: Prop osition 10 3. Let a vector field u, a scalar function (J and a function K be de/ined in an open rnbset n of X, supp05ed to wfüfy (10 1), (10 1) and to make the three integrals of P r oposition 10 1 meaningful These elements constitute a solution of (10 2) in ü if and on/y if, for every compact carrier in 0, the r-derivative of the following f unctional vanühes at T = 0 where u', (T\ K T are transported by the carrier in the wa}' defined in P roposition 10 1 and reduce t o the above for r = O. The proof runs in the same way as for Proposition 9 5 One should observe that f aU;U,(J 1 dx is nothing but the trace integral of the symmetric tensor measure u @ U(J'-1 d x; hence Pro position 7.1 may directly be applied to calculate its r-derivative