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Nucleation-vs-instability race in strained lms
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Under the generic term Stranski-Krastanov are grouped two dierent growth mechanisms of SiGe quantum dots.

They result from a self-organized Asaro-Tiller-Grinfel'd (ATG) instability at low strain, while at high strain, from a stochastic nucleation. We elucidate here the puzzling dierence between these two pathways thanks to a joint theoretical and experimental work. Nucleation is described within the master equation framework. By comparing the nucleation time scale and ATG characteristic time, we show that the former exhibits a strong exponential divergence at low strain while the latter behaves only algebraically. Consequently, at high/low strain, nucleation/instability occurs faster and inhibits the alternate evolution. The cross-over between the nucleation and ATG instability is found to occur both experimentally and theoretically at a Ge composition around 50%.

Quantum dots are nowadays extensively grown by different techniques and used in a broad range of applications, from high-performance broadband photodiodes 1 to quantum information processing, 2 quantum cryptog- raphy with photon quantum bits (Qbits), 3,4 In Si 1-x Ge x lms on Si, one can taylor the amount of strain by varying the mean Ge concentration x. At low x, see Fig. 1, one nds an instability in connection with self-organized phenomena where dynamics builds long-range structures. 15,16 This instability is nucleationless 17,18 and leads after some coarsening to anisotropic quantum dots. 19 At high x conversely, see Fig. 1, the dots nucleate quickly and randomly without any long range order. 20,21 We develop here a ki- netic model to rationalize the competition between the two mechanisms and to evaluate the cross-over concentration x c that separates them. It incorporates the main ingredients that rule island growth, i.e. the driv- In Fig. 2(a), the morphology roughens on the whole surface as described by the ATG instability. 17,18 The wavelength of this corrugation is conveniently extracted from a ring-like Fourier Transform image, in good agreement with the experimental results for this instability. 17 is

∆E = ∆E surf + ∆E ed + ∆E el , (1) 
with the surface energy contribution ∆E surf , the edge energy ∆E ed and the elastic relaxation ∆E el . Mass conservation enforces the balance h w = h 0 -ρ V /a where a is the lattice parameter (a = 0.27 nm in SiGe) and 1/ρ, the surface available for each island. 

∆E surf = γ (001) Ge η L 2 , (2) 
with the capillary number

η = γ (105) Ge γ (001) Ge 1 cos θ -1 , (3) 
that describes the stability of the (001) surface with respect to faceting to (105). When η > 0, the creation of a (105) facet is overall a cost in energy, so that capillarity is a resistant force. 34 35 We consider in the fol- lowing γ

(001) Ge = 60.5 meV/Å 2 , see 36,37, while γ (105) Ge is given by η as discussed below. Finally, we also include edge energy 25,28,38 to describe the pyramidal shape with a mean edge energy σ ed for the pyramid and pyramid/wetting layer angles, so that

∆E ed = 4H tan θ 2 + 2 + tan 2 θ σ ed . (4) 
As regards elasticity, mechanical equilibrium equations may be solved exactly in the systems under investigation that display small slopes [at most 11 • for the (105) facets]. In the small slope approximation, a lm with a free surface z = h(r) has an elastic energy 39

E el = E 0 dr {h(r) -ζh(r)H ii [h(r)]} , (5) 
with the energy density

E 0 = Y f m 2 /(1 -ν f ) and coe- cient ζ = Y f (1 -ν 2 s )/Y s (1 -ν f )
, where Y and ν are the Young's modulus and Poisson's ratio while subscripts 

∆E el = -ζ p E 0 V , (6) 
for a square base pyramid, with

p = 4( √ 2 -1)[1 + ln(1 + √ 2)] tan θ/π . (7) 
As a whole, the energy barrier ∆E reduces to the 
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dρ n dt = m [f m,n ρ m -f n,m ρ n ] , (9) 
that relates the densities ρ n of clusters with n atoms, with the frequencies f m,n of the transitions from m to n-atoms clusters. When only one-atom events occur, only the frequencies f n = f n,n+1 matter. They may be estimated as

f n = γ n αD s ρ 1 , (10) 
with the attachment coecient γ n , capture coecient α, adatom density ρ 1 (t) and surface diusion coecient D s (T ). In the following, we will use α 1, γ n 1, D s = a 2 ν 0 e -βE dif f with ν 0 10 13 s -1 and the diusion barrier E dif f = 0.83 eV in Si. 42 We also make the approximation ρ 1 = 1 a 2 e -βE2 with the attachment energy E 2 0.3 eV. The master equation has a stationary solution characterized by a ux of nucleation per unit time and surface 23,41

J st = Zf n * ρ n * , ( 11 
)
with f n * , the growth frequency of a critical cluster with n * atoms (corresponding to the critical volume V * ), and the critical cluster density

ρ n * = ρ 1 e -β∆E * . (12) 
In (11), the Zeldovich factor is given by 23,41

Z = - ∂ 2 ∆E ∂n 2 n * 1 2πk B T , (13) 
that reduces here to

Z = 2a 3 √ β tan θ √ πσ 2 γ -γ2 + 3σ p γ2 + 3σ p 1/4 . ( 14 
)
The ux J st is associated with the typical time scale for nucleation

τ nuc = 1 J st λ 2 , ( 15 
)
where we choose to consider nucleation over the typical island zone λ 2 dened by the experimental density λ = 1/ √ ρ, with ρ 10 13 m -2 .

With this time scale in hand, we turn to the ATG morphological instability. 43,44 It may be captured by the continuum description of surface diusion governed by ∂h/∂t = D∆ s µ with the diusion coecient D, surface Laplacian ∆ s and chemical potential µ. 42 The latter includes the capillary term γ∆ s h and the elastic energy density E 0 so that dimensional analysis leads to the instability space and time scales 45

l AT G = γ f 2ζE 0 and t AT G = l 4 AT G Dγ f , (16) 
with the surface energy γ f = γ (001) Ge and the elastic energy density given above that is proportional to m 2 = (0.042 x) 2 . Hence, t AT G is proportional to 1/x 8 . ‡ ‡ We plot in Figure 5 the typical time scales of the ATG instability and of nucleation. The nucleation time τ nuc displays a strong exponential increase at low x, overshooting the rather slow varying t AT G . Hence, we argue
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Figure 5: Typical time scales for nucleation τ nuc (red dark grey line) and ATG instability t AT G (greenlight grey line) as a function of the lm Ge composition x for η = 0.003 and σ ed = 3.3 meV/Å. The red dotted line corresponds to the analytic approximation (17).

that the two pathways (instability vs nucleation) are dictated by kinetics: for large enough x, τ nuc t AT G so that nucleation occurs rst, relaxes partially the elastic strain and prevents the occurrence of the ATG instability. On the contrary, for low enough x, τ nuc t AT G and only the instability has time to occur.

The cross-over between the two time scales may be rationalized by the strong decrease in the critical clusters density ρ n * when x decreases. Indeed, when x decreases, the surface energy contribution is constant while the amplitude of the elastic relaxation decreases as E 0 ∝ x 2 so that the maximum for ∆E, ∆E * , increases. Because this energy barrier enters in a Boltzmann factor in ρ n * , the nucleation rate exponentially decreases with x. To quantify this eect, one may simplify the expression of J st by performing a small-x expansion of ∆E * , with the result

τ nuc ≈ τ nuc 0 e β b γ 3 x 4 + c γσ ed x 2 , (17) 
with some constants τ nuc 0 , b and c. This approximation is shown in Fig. 5 and does indeed match the exact result at low x. With this approximation, it is clear that the capillary-vs-elasticity balance leads to a strong exp(1/x 4 ) divergence of τ nuc at low-x that quickly overshoots the ATG time scale that `only' behaves as 1/x 8 .

The system under study may include extra eects such as: alloying (intermixing, segregation, surface inhomogeneities), surface reconstruction inhomogeneity and evolution, wetting eects, surface stress, inhomogeneous nucleation etc. However, we argue that the main scenario ruling the cross-over between the ATG instability ‡ ‡ we use in the following D = βD 0 c Ω, with the vacancy surface concentration c 1/a 2 , Ω = a 3 and D 0 = 8.45 10 -10 e -βE d m 2 s -1 with E d = 0.83 eV 42 and nucleation is contained in this when x decreases, the elastic driving force decreases, the energy barrier increases so that nucleation occurs over an exponentially divergent time scale.

The data in Fig. 5 are computed with parameters typical of SiGe systems as described above ‡ ‡ . The in- tersection between the two time-scales occurs around x c 0.55 that is consistent with the experimental results but that is dependent on the model parameters as described below. The classical nucleation theory includes dierent parameters that are only approximate (capture zone, etc) but which precise values are not relevant for the existence of the cross-over. The two parameters that prove to be quantitatively important for x c are the capillary number η and edge energy σ ed .

We consider here a positive but small capillary number η = 0.003 that corresponds to γ (105) Ge = 59.5 meV/Å 2 , only 1 meV lower than γ (001) Ge . This value leads to a cross-over x c in the vicinity of 0.55 for σ ed = 3.3 meV/Å. The latter edge energy is lower but comparable with the atomistic estimation in Ref. 46 that is 10 meV/Å. Given the dierent uncertainties of the model, the comparison between theory and experiment is satisfactory.

To go further, we characterize the parameter dependence of the model. The more crucial parameters are η and σ ed . For σ ed =3 and 4 meV/Å, one nds x c = 0.50 and 0.71 respectively for η = 0.003. Also, for η = 0.0046 and 0.0013 (that correspond to γ The surface composition proves also to be important.

By changing x s to 0.9, we nd x c = 0.8 using a Vegard's law for the surface energy with γ Si = 90 meV/Å 2 both for (001) and (105) orientations 36,37 note that in this case η changes signicantly to 0.0053. We also changed the geometric pathway by computing numerically the elastic energy for a truncated pyramid that typically leads to an decrease in ∆E * of 0.1 eV. As a conclusion, given the uncertainties in the dierent parameters (surface concentration, reconstruction, alloying ...), the choice of parameters here is plausible and validates the overall scenario with a cross-over expected to be around 0.5.

As a conclusion, we performed a joint experimental and theoretical work to rationalize the competition between two growth modes in strained lms : the nucleation of islands and the ATG morphological instability, that both eventually lead to quantum dots. We show experimentally in SiGe systems that the instability occurs for a Ge concentration x 0.5 while quantum dots stochastically nucleate at higher x 0.6. We computed the nucleation barrier and time scale τ nuc from rate theory. We show that τ nuc diverges exponentially at low ‡ ‡ As regards elasticity, ν Si = 0.279, ν Ge = 0.273, Y Si = 1.30 10 11 J/m 3 , Y Ge = 1.03 J/m 3 , a = 0.27 nm

x, with a Boltzmann factor exp[α/k B T x 4 ] while the instability time scale evolves only as 1/x 8 . Consequently, the competition between the nucleation and instability pathways is ruled by kinetics : nucleation occurs at large strain but is frozen at small strain, allowing time for the instability to occur. Additional eects such as alloying 47 or patterning 48 could be investigated in future work, e.g. using kinetic Monte-Carlo simulations. 49
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  light emit- ting diodes with photonic QDs crystals in microcavity, 5 QDs transistors, 6 QDs solar cells, 7,8 etc. Many eorts have been devoted to circumvent the low quantum eciency of Si and Ge QDs associated to indirect bandgap issue. Band folding in strained heterostructures was expected to create quasi-direct band structure 911 and to increase radiative recombination. 12 Various con- gurations of self-assembled Si/Ge multiple quantum dots(MQDs), 13 nanopatterned microdisks, 10 nanopat- terned superlattices pyramidal QDs 14 have been elabo- rated to adjust the band structure. Complex design of QDs devices allows to mix dierent signals such as spins and carriers or photons and carriers with a large variety of QDs per chip with multiple functions, whose placement and homogeneity commonly request a combination of nanotechnology and self-organization steps. Devices such as single (or some) electron transistors are also congured with one, two or three QDs closely packed on laterally conned active areas. Nevertheless, most QDs systems fabricated by nanotechnological tools are limited by their intrinsic lack of homogeneity, which reduces to only a small number of relevant dots to be achieved per chip. At the opposite, MOSFET devices require perfectly at, Ge-rich, free of defects and fully strained 2D thin lms epitaxially deposited on ultra-small transistor gate. Whatever the end-use application, ultimate fabrication of devices necessitates a perfect control of the island formation and evolution behavior over a large range of composition. Despite the large number of studies dedicated to the SiGe system, an unied quantitative evolution of the QDs in dierent experimental conditions is still lacking. The outstanding challenge is to allow QDs control and scalability to engineer quantum devices based on QDs located at will. Since the QDs growth signicantly diers in rather similar experiments and is a matter of confusion or controversy by a combination of theory and experiments we give here quantitative insights on the very rst steps of this evolution.

Figure 1 :

 1 Figure 1: Graphical representation and TEM plane view images of the two growth modes at work in SiGe strained lms ; a) at low strain for a typical Si 0.7 Ge 0.3 lm on Si(001) and b) at high strain for a typical Ge lm on Si(001).

Figure 2 :

 2 Figure 2: AFM images of (a) 2nm Si 0.5 Ge 0.5 and (b) 1.3nm Si 0.4 Ge 0.6 lms deposited on Si(001). The im- age sizes are 2µm×2µm and their vertical scale is 7 nm. Images (c) and (d) are lines proles corresponding respectively to (a) and (b).

Figure 3 :

 3 Figure 3: Geometry of the system, each island with a square-base pyramidal geometry, grows on a capture zone 1/ρ on top of a wetting layer of thickness h w .

  The surface energies of the (001) and (105) facets, γ (001) and γ(105) , depend on dierent parameters such as the lm thickness, composition, etc. The surface composition of a SiGe lm deposited on Si is still a matter of experimental investigation. One knows that Ge segregates so that the surface is enriched in Ge. 32 As a simplication, we consider the limiting case of a surface composition x s = 1. It corresponds to experimental results that indicate a full enrichment of the surface in Ge even in deposited alloys. 33 Moreover, we consider lms above their Stranski-Krastanov critical thickness so that wetting interactions do not enter signicantly in the energy barrier. For a pyramid with facet angle θ, volume V and base length L = αV 1/3 [with α = (6/ tan θ) 1/3 ], see Fig.3, one nds
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  and s refer to the lm and substrate. The elastic contribution to the nucleation barrier can be computed exactly, 40 with the result

Figure 4 :

 4 Figure 4: Nucleation barrier ∆E as a function of the pyramid volume V with the parameters described below.
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 2 , one nds x c = 0.73 and 0.37 for σ ed =3.3 meV/Å. Furthermore, by changing the temperature to T = 650 • C, we get x c 0.48. At higher temperatures, intermixing is supposed to play a significant role 19 and will decrease the elastic driving force.
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