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Some Calculative Properties of Linear Viscosity 
Jean Jacques Moreau ,  Ins t i tu t  de Math6mat iques ,  Universi t6 des Sciences et 

Techniques du Languedoc ,  Montpel l ie r ,  F rance  

This note is concerned with incompressible homogeneous fluids. Let u~, i = 1, 2, 3, 
denote the components of  the fluid velocity u, relative to some orthonormal frame, and 
u~,j their partial  derivatives. The classical law of Newtonian viscosity consists in the 
following expression for the viscous stress tensor at every point 

V~j = t~(u~,j + uj,d, (1) 

with/z > 0, the viscosity coefficient. Equivalently, let a port ion of the fluid be limited by a 
smooth surface S, with v as normal unit vector directed toward the said portion; the dis- 
tr ibution of  contact forces exerted, across S, by the fluid port ion upon the material beyond 
admits the surface density 

du 
T(v) = - p v  + / ~  + /x grad v.u;  (2) 

here p denotes the fluid pressure and the grad operation is understood with the vector 
treated as a constant. We shall refer to T as the tension vector at the considered point of 
S. 

However, some textbooks in engineering or elementary physics, starting with the 
simple example of a parallel shear flow, illegitimately induce as general, instead of (2), the 
following expression for the tension on S 

du 
T'(v) = - p v  + /~ -~ .  (3) 

This would involve, for the viscous stress tensor, the expression 

V,; = p.u~,j- (4) 

which violates the principles of mechanics in two respects: this tensor is not symmetric and 
it is related to the fluid motion in a way which depends on the reference frame. 

It happens that this incorrect law of viscosity generates the same Navier-Stokes 
equations as the correct one and yields also correct results in a certain number of topics, 
with the advantage of shorter computation (see e.g. [3]). Our purpose here is to list some of 
these topics; for brevity, the proofs, which are easy, have been omitted; the reader may find 
them, with some other developments, in [10], a Seminar report. 

Meanwhile, another incorrect law of  viscosity will be considered, namely 

T"(~) = - p ~  + /z(curl u) x v (5) 

equivalent to (2) and (3) in the aforesaid case of a parallel shear flow orthogonal to v. The 
corresponding viscous stress tensor would be 

V~'~- =/~(u~.j - uj,,) (6) 

yielding again the exact Navier-Stokes equations. 
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Observe that (cf. R. Berker [1, 2]) 

T(v) = 2T'(v) - T'(v). (7) 

Resultant of  the Tension on a Closed Surface 

Let S denote a closed bounded and oriented surface, with piecewise continuous 
normal. Let the velocity field u and its first order derivatives be defined and continuous, at 
least in a one-side neighborhood of S. Then the three expressions T(v), T'(v) and T'(v) of 
the tension yield the same total on S. Concerning the respective values of the total moment 
of the tensions on S, one has 

f f s x x  T ( v ) d g -  f ~ s X X  T ' ( v ) d g =  j ' s  T " ( v ) d c r -  fj;x• T'(v)dcr 

Observe that S is not supposed to constitute the whole boundary of a domain in which 
u would have to be everywhere defined. In particular, S may enclose some fluid part with 
immersed bodies. 

In the special case where S is the boundary of a rigid body immersed in the fluid, u 
classically equals, at every point of this boundary, the velocity of the corresponding particle 
of the body; finally, the last member of (8) is found equal to -2F"// ' to where ~ denotes the 
volume of the body and oJ its angular velocity vector. 

Local Tension on a Translating Boundary 

Let S be a surface port ion;  we make the same assumption for u as above. If  u has the 
same value at every point of S (for instance, if S is part  of the boundary of a translating 
immersed body), then T(v) = T'(v) = T'(v) at every regular point of  S; the equality T = 
T" under such circumstances has already been pointed out by R. Berker [1, 2]. 

Dissipated Power 

In the correct theory of viscosity the following expression is found for the power 
dissipated by viscosity in a fluid portion D 

f f ~ e,je~jd'r, (9) ~ ( u ) =  

with e~j = �89 + uj,0. If  the incorrect laws (4) and (6) are used, the following expressions 

~'(u) = Fj'f j' D u~.ju,,j 
dr (10) 

(curl u) 2 dr (11) ~"(u) = 

are respectively obtained. In the special case where u vanishes on the boundary of D, these 
three expressions are equal, a fact already observed by J. Serrin [8]. 
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Boundary Value Problem for Stokes Flows 

As the three expressions of the viscous stress yield the same Navier-Stokes equations, 
they lead in particular to the same approximate equations in the case of negligible accelera- 
tion, namely 

/~u~.jj = p,~, u~.~ = 0. (12) 

Flows obeying these equations are called Stokes flows; the most classical boundary 
problem concerning them consists in prescribing the distribution of the values of u on the 
boundary of some domain D; furthermore, if the domain is unbounded, the limit of u at 
infinity is prescribed (see [6] for the precise statement of this condition at infinity). The 
unique solution of this problem is classically characterized by the property that it mini- 
mizes the functional (9) among the vector fields u satisfying the boundary conditions and 
the constraint u~,, = 0. This fact (see e.g. [4, 9]) is of use for the existential study of the 
problem as well as for numerical computation. 

Now we find that the functional ~ '  (and also, with less advantage, 2")  may equi- 
valently be used in this variational statement, bringing noticeable simplification to cal- 
culations and numerical procedures. 

Of course, the replacement of ~ by ~ '  or ~"  is no more valid when boundary problems 
involving free surfaces are considered. 

A Problem of Optimal Design 

Several papers [3, 5, and 7] have been recently devoted to the following: Let B a fixed 
body immersed in an unbounded Stokes flow with velocity V at infinity. If V as well as the 
volume of B are prescribed, the problem is to determine the shape of B in order to mini- 
mize the drag F experienced by this body. Using the asymptotic structure at infinity of the 
fluid velocity u [6], one establishes that 

F .V  = ~(u) = ~ ' (u)  = 2"(u) 

and the problem equivalently amounts to minimizing -~, 2 '  or 2".  The simplest is to make 
use of 2 ' .  

On the other hand it has been found by O. Pironneau [7] that, for the body of optimal 
shape, the scalar expression [du/dvl assumes a constant value at all the regular points of the 
body surface S. We equivalently replace this property by: (i) the norm of the tensor e~j 
assumes a constant value; (ii) the norm of the vector rot u assumes a constant value. The 
latter has been used by J. M. Bourot [3] in some numerical procedures. 
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Abstract 

Several topics are discussed in which the classical law of Newtonian viscosity may equivalently 
be replaced by other relations. 

R~sum6 

On pr6sente plusieurs questions ~ l'6gard desquelles la loi classique de la viscosit6 peut ~tre 
remplac6e par d'autres relations sans alt~rer les r6sultats. 
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