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SOME PROBLEMS OF ARITHMETIC ORIGIN IN

RATIONAL DYNAMICS

by

Romain Dujardin

Abstract. — These are lecture notes from a course in arithmetic dynamics given in

Grenoble in June 2017. The main purpose of this text is to explain how arithmetic
equidistribution theory can be used in the dynamics of rational maps on P1. We first

briefly introduce the basics of the iteration theory of rational maps on the projective
line over C, as well as some elements of iteration theory over an arbitrary complete

valued field and the construction of dynamically defined height functions for rational

functions defined over Q. The equidistribution of small points gives some original
information on the distribution of preperiodic orbits, leading to some non-trivial rigid-

ity statements. We then explain some consequences of arithmetic equidistribution to

the study of the geometry of parameter spaces of such dynamical systems, notably
pertaining to the distribution of special parameters and the classification of special

subvarieties.
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Introduction

In the recent years a number of classical ideas and problems in arithmetics have
been transposed to the setting of rational dynamics in one and several variables. A
main source of motivation in these developments is the analogy between torsion points
on an Abelian variety and (pre-)periodic points of rational maps. This is actually
more than an analogy since torsion points on an Abelian variety A are precisely the
preperiodic points of the endomorphism of A induced by multiplication by 2. Thus,
problems about the distribution or structure of torsion points can be translated to
dynamical problems. This analogy also applies to spaces of such objects: in this way
elliptic curves with complex multiplication would correspond to post-critically finite
rational maps. Again one may ask whether results about the distribution of these
“special points” do reflect each other. This point of view was in particular put forward
by J. Silverman (see [39, 40] for a detailed presentation and references).

Our goal is to present a few recent results belonging to this line of research. More
precisely we will concentrate on some results in which potential theory and arithmetic
equidistribution, as presented in this volume by P. Autissier and A. Chambert-Loir
(see [2, 11]), play a key role. This includes:

– an arithmetic proof of the equidistribution of periodic orbits towards the equi-
librium measure as well as some consequences (Section 6);

– the equidistribution of post-critically finite mappings in the parameter space of
degree 2 (Section 7) and degree d ≥ 3 polynomials (Section 8);

– the classification of special curves in the space of cubic polynomials (Section 9).

A large part of these results is based on the work of Baker-DeMarco [4, 3] and Favre-
Gauthier [21, 22].

These notes are based on a series of lectures given by the author in a summer
school in Grenoble in June 2017, which were intended for an audience with minimal
knowledge in complex analysis and dynamical systems. The style is deliberately
informal and favors reading flow against precision, in order to arrive rather quickly
at some recent advanced topics. In particular the proofs are mostly sketched, with
an emphasis on the dynamical parts of the arguments. The material in Part I is
standard and covered with much greater detail in classical textbooks: see e.g. Milnor
[35] or Carleson-Gamelin [10] for holomorphic dynamics, and Silverman [39] for the
arithmetic side. Silverman’s lecture notes [40] and DeMarco’s 2018 ICM address [13]
contain similar but more advanced material.
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PART I. BASIC HOLOMORPHIC AND ARITHMETIC DYNAMICS
ON P1

1. A few useful geometric tools

Uniformization

Theorem (Uniformization Theorem). — Every simply connected Riemann sur-
face is biholomorphic to the open unit disk D, the complex plane C or the Riemann
sphere P1(C).

See [14] for a beautiful and thorough treatment of this result and of its historical
context. A Riemann surface S is called hyperbolic (resp. parabolic) if its universal
cover is the unit disk (resp. the complex plane). Note that in this terminology,
an elliptic curve E ' C/Λ is parabolic. In a sense, “generic” Riemann surfaces are
hyperbolic, however, interesting complex dynamics occurs only on parabolic Riemann
surfaces or on P1(C).

Theorem. — If a, b, c are distinct points on P1(C), then P1(C) \ {a, b, c} is hyper-
bolic.

Proof. — Since the Möbius group acts transitively on triples of points, we may assume
that {a, b, c} = {0, 1,∞}. Fix a base point ? ∈ C \ {0, 1}, then the fundamental
group π1(C \ {0, 1} , ?) is free on two generators. Let S → C \ {0, 1} be a universal
cover. Since C \ {0, 1} is non-compact, then S is biholomorphic to D or C. The
deck transformation group is a group of automorphisms of S acting discretely and
isomorphic to the free group on two generators. The affine group Aut(C) has no
free subgroups (since for instance its commutator subgroup is Abelian) so necessarily
S ' D.

Corollary. — If Ω is an open subset of P1(C) whose complement contains at least
3 points, then Ω is hyperbolic.

Recall that a family F of meromorphic functions on some open set Ω is said normal
if it is equicontinuous w.r.t. the spherical metric, or equivalently, if it is relatively
compact in the compact-open topology. Concretely, if (fn) is a sequence in a normal
family F , then there exists a subsequence converging locally uniformly on Ω to a
meromorphic function.

Theorem (Montel). — If Ω is an open subset of P1(C) and F is a family of
meromorphic functions in Ω avoiding 3 values, then F is normal.

Proof. — By post-composing with a Möbius transformation we may assume that F
avoids {0, 1,∞}. Pick a disk D ⊂ Ω and a sequence (fn) ∈ FN. It is enough to
show that (fn|D) is normal. A first possibility is that (fn|D) diverges uniformly in
C \ {0, 1}, that is is converges to {0, 1,∞}, and in this case we are done. Otherwise
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there exists t0 ∈ D, z0 ∈ Ω and a subsequence (nj) such that fnj (t0) → z0. Then if
ψ : D→ C\{0, 1} is a universal cover such that ψ(0) = z0, lifting (fnj ) under ψ yields

a sequence f̂nj : D → D such that f̂nj (t0) → 0. The Cauchy estimates imply that

(f̂nj ) is locally uniformly Lipschitz in D so by the Ascoli-Arzela theorem, extracting

further if necessary, (f̂nj ) converges to some f̂ : D → D. Finally, fnj converges to

ψ ◦ f̂ and we are done.

The hyperbolic metric. — First recall the Schwarz-Lemma: if f : D→ D is a
holomorphic map such that f(0) = 0, then |f ′(0)| ≤ 1, with equality if and only if f
is an automorphism, which must then be a rotation.

More generally, any automorphism of D is of the form f(z) = eiθ z−α1−ᾱz , for some

θ ∈ R and |α| < 1, and the inequality in the Schwarz Lemma can then be propagated

as follows: let ρ be the Riemannian metric on D defined by the formula ρ(z) = 2|dz|
1−|z|2 ,

i.e. if v is a tangent vector at z, v ∈ TzD ' C, then ‖v‖ρ = 2|v|
1−|z|2 . This metric is

referred to as the hyperbolic (or Poincaré) metric and the Riemannian manifold (D, ρ)
is the hyperbolic disk.

Theorem (Schwarz-Pick Lemma). — Any holomorphic map f : D → D is a
weak contraction for the hyperbolic metric. It is a strict contraction unless f is an
automorphism.

If now S is any hyperbolic Riemann surface, since the deck transformation group
of the universal cover D→ S acts by isometries, we can push ρ to a well-defined hy-
perbolic metric on S. As before any holomorphic map f : S → S′ between hyperbolic
Riemann surfaces is a weak contraction, and it is a strict contraction unless f lifts to
an isometry between their universal covers.

2. Review of rational dynamics on P1(C)

Let f : P1(C) → P1(C) be a rational map of degree d, that is f can be written
in homogeneous coordinates as [P (z, w) : Q(z, w)], where P and Q are homogeneous

polynomials of degree d without common factors. Equivalently, f(z) = P (z)
Q(z) in some

affine chart. It is an elementary fact that any holomorphic self-map on P1(C) is
rational. In particular the group of automorphisms of P1(C) is the Möbius group
PGL(2,C).

We consider f as a dynamical system, that is we wish to understand the asymptotic
behavior of the iterates f ◦ · · · ◦ f =: fn. General references for the results of this
section include [35, 10]. Throughout these notes, we make the standing assumption
that d ≥ 2.

Fatou-Julia dichotomy. — The Fatou set F (f) is the set of points z ∈ P1(C) such
that there exists a neighborhood N 3 z on which the sequence of iterates (fn|N ) is
normal. It is open by definition. A typical situation occurring in the Fatou set is that
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of an attracting orbit: that is an invariant finite set A such that every nearby point
converges under iteration to A. The locus of non-normality or Julia set J(f) is the

complement of the Fatou set: J(f) = F (f){. When there is no danger of confusion
we feel free to drop the dependence on f .

The Fatou and Julia sets are invariant (f(X) ⊂ X, where X = F (f) or J(f))
and even totally invariant (f−1(X) = X). Since d ≥ 2 it easily follows that J(f) is
nonempty. On the other hand the Fatou set may be empty.

If z ∈ J(f) and N is a neighborhood of z, it follows from Montel’s theorem that⋃
n≥0 f

n(N) avoids at most 2 points. Define

Ez =
⋂
N3z

P1(C) \
⋃
n≥0

fn(N)

 .

Proposition 2.1. — The set E := Ez is independent of z ∈ J(f). Its cardinality is
at most 2 and it is the maximal totally invariant finite subset. Furthermore:

– If #E = 1 then f is conjugate in PGL(2,C) to a polynomial.
– If #E = 2 then f is conjugate in PGL(2,C) to z 7→ z±d.

The set E(f) is called the exceptional set of f . Note that it is always an attracting
periodic orbit, in particular it is contained in the Fatou set.

Proof. — It is immediate that f−1(Ez) ⊂ Ez and by Montel’s Theorem #Ez ≤ 2. If
#Ez = 1, then we may conjugate so that Ez = {∞} and since f−1(∞) =∞ it follows
that f is a polynomial. If #Ez = 2 we conjugate so that Ez = {0,∞}. If both points
are fixed then it is easy to see that f(z) = zd, and in the last case that f(z) = z−d.
The independence with respect to z follows easily.

The following is an immediate consequence of the definition of E.

Corollary 2.2. — For every z /∈ E,
⋃

n≥0
f−n(z) ⊃ J .

Let us also note the following consequence of Montel’s Theorem.

Corollary 2.3. — If the Julia set J has non-empty interior, then J = P1(C).

What does J(f) look like? — The Julia set is closed, invariant, and infinite (apply
Corollary 2.2 to z ∈ J). It can be shown that J is perfect (i.e. has no isolated points).

A first possibility is that J is the whole sphere P1(C). It is a deep result by
M. Rees [37] that this occurs with positive probability if a rational map is chosen
at random in the space of all rational maps of a given degree. Note that this never
happens for polynomials because ∞ is an attracting point.

Important explicit examples of rational maps with J = P1 are Lattès mappings,
which are rational maps coming from multiplication on an elliptic curve. In a nutshell:
let E be an elliptic curve, viewed as a torus C/Λ, where Λ is a lattice, and let
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Figure 1. Gallery of quadratic Julia sets J(fc) with fc(z) = z2 + c. Left:
z2 + (−.5 + .556i), middle: z2 + .2531, right: z2 + i.

m : C → C be a C-linear map such that m(Λ) ⊂ Λ. Then m commutes with the
involution z 7→ −z, so it descends to a self-map of the quotient Riemann surface
E/(z ∼ (−z)) which turns out to be P1(C). The calculations can be worked out
explicitly for the doubling map using elementary properties of the Weierstraß ℘-

function, and one finds for instance that f(z) = (z2+1)2

4z(z2−1) is a Lattès example (see e.g.

[36] for this and more about Lattès mappings).

It can also happen that J is a smooth curve (say of class C1). A classical
theorem of Fatou then asserts that J must be contained in a circle (this includes lines
in C), and more precisely:

– either it is a circle: this happens for z 7→ z±d but also for some Blaschke
products;

– or it is an interval in a circle: this happens for interval maps such as the Cheby-
chev polynomial z 7→ z2 − 2 for which J = [−2, 2].

Otherwise J is a self-similar “fractal” set with often complicated topological
structure (see Figure 1).

Periodic points. — A point z ∈ P1(C) is periodic if there exists n such that
fn(z) = z. The period of z is the minimal such positive n, And a fixed point is
a point of period 1. Elementary algebra shows that fn admits dn + 1 fixed points
counting multiplicities. If z0 has exact period n, the multiplier of z0 is the complex
number (fn)′(z0) (which does not depend on the chosen Riemannian metric on the
sphere). It determines a lot of the local dynamics of fn near z0. There are three main
cases:

– attracting: |(fn)′(z0)| < 1: then z0 ∈ F and for z near z0, fnk(z) → z0 as
k →∞;

– repelling: |(fn)′(z0)| > 1: then z0 ∈ J since
∣∣(fnk)′(z0)

∣∣→∞ as k →∞;
– neutral: |(fn)′(z0)| = 1: then z0 belongs to either F or J .
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The neutral case subdivides further into rationally neutral (or parabolic) when
(fn)′(z0) is a root of unity and irrationally neutral otherwise. Parabolic points
belong to the Julia set. The dynamical classification of irrationally neutral points,
which essentially boils down to the question whether they belong to the Fatou or
Julia set, is quite delicate (and actually still not complete) and we will not need it.

Theorem 2.4 (Fatou, Julia). — Repelling periodic points are dense in J(f).

This is an explanation for the local self-similarity of J . In particular we see that if
z0 is repelling with a non-real multiplier, then J has a “spiralling structure” at z0, in
particular it cannot be smooth. A delicate result by Eremenko and Van Strien [20]
asserts conversely that if all periodic points multipliers are real, then J is contained
in a circle.

Idea of proof. — The first observation is that if g is a holomorphic self-map of an open
topological disk ∆ such that g(∆) ⊂ ∆, then by contraction of the Poincaré metric, g
must have an attracting fixed point. If now z0 ∈ J is arbitrary we know from Montel’s
Theorem and the classification of exceptional points that for any neighborhood N 3
z0,

⋃
n≥0 f

n(N) eventually covers J , hence z0. With some more work, it can be
ensured that there exists a small open disk D close to z0 and an integer n such
that fn is univalent on D and D ⊂ fn(D). Then the result follows from the initial
observation.

In particular a rational map admits infinitely many repelling points. It turns out
that conversely the number of non-repelling periodic points is finite. The first step is
the following basic result.

Theorem 2.5 (Fatou). — Every attracting periodic orbit attracts a critical point.

By this mean that for every attracting periodic orbit A there exists a critical point
c such that fn(c) tends to A as n→∞. This is a basic instance of a general heuristic
principle: the dynamics is determined by the behavior of critical points.

Proof. — Let z0 be an attracting point of period n. For expositional ease we replace
f by fn so assume n = 1. Let

B =

{
z ∈ P1, fk(z) −→

k→∞
z0

}
be the basin of z0 and B0 be the immediate basin, that is the connected component
of z0 in B. Then f maps B0 into itself and B0 is hyperbolic since B0 ∩ J = ∅. If f |B0

had no critical points, then f |B0
would be a covering, hence a local isometry for the

hyperbolic metric. This contradicts the fact that z0 is attracting.

Since f has 2d− 2 critical points we infer:

Corollary 2.6. — A rational map of degree d admits at most 2d − 2 attracting
periodic orbits.
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Theorem 2.7 (Fatou, Shishikura). — A rational map admits only finitely many
non-repelling periodic orbits.

Idea of proof. — The bound 6d − 6 was first obtained by Fatou by a beautiful per-
turbative argument. First, the previous theorem (and its corollary) can be easily
extended to the case of periodic orbits with multiplier equal to 1 (these are attracting
in a certain direction). So there are at most 2d − 2 periodic points with multiplier
1. Let now N be the number of neutral periodic points with multiplier different from
1. Fatou shows that under a generic perturbation of f , at least half of them become
attracting. Hence N/2 ≤ 2d− 2 and the result follows.

The sharp bound 2d− 2 for the total number of non-repelling cycles was obtained
by Shishikura.

Fatou dynamics. — The dynamics in the Fatou set can be understood completely.
Albeit natural, this is far from obvious: one can easily imagine an open set U on
which the iterates form a normal family, yet the asymptotic behavior of (fn|U ) is
complicated to analyze. Such a phenomenon actually happens in transcendental or
higher dimensional dynamics, but not in our setting: the key point is the following
deep and celebrated “non-wandering domain theorem”.

Theorem 2.8 (Sullivan). — Every component U of the Fatou set is ultimately
periodic, i.e. there exist integers l > k such that f l(U) = fk(U).

It remains to classify periodic components.

Theorem 2.9. — Every component U of period k of the Fatou set is

– either an attraction domain: as n → ∞, (fnk) converges locally uniformly on
U to a periodic cycle (attracting or parabolic);

– or a rotation domain: U is biholomorphic to a disk or an annulus and fk|U is
holomorphically conjugate to an irrational rotation.

3. Equilibrium measure

In many arithmetic applications the most important dynamical object is the equi-
librium measure. The following theorem summarizes its construction and main prop-
erties.

Theorem 3.1 (Brolin, Lyubich, Freire-Lopes-Mañé)
Let f be a rational map on P1(C) of degree d ≥ 2. Then for any z /∈ E(f), the

sequence of probability measures

µn,z =
1

dn

∑
w∈f−n(z)

δw

(where pre-images are counted with their multiplicity) converges weakly to a Borel
probability measure µ = µf on P1(C) enjoying the following properties:
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(i) µ is invariant, that is f∗µ = µ, and has the “constant Jacobian” property f∗µ =
dµ;

(ii) µ is ergodic;
(iii) Supp(µ) = J(f);

(iv) µ is repelling, that is for µ-a.e. z, lim inf
n→∞

1

n
log ‖dfnz ‖ ≥

log d

2
, where the norm

of the differential is computed with respect to any smooth Riemannian metric on
P1(C);

(v) µ describes the asymptotic distribution of repelling periodic orbits, that is,
if RPern denotes the set of repelling periodic points of exact period n, then
1
dn

∑
z∈RPern

δz converges to µ as n→∞.

Recall that if µ is a probability measure, its image f∗µ under f is defined by
f∗µ(A) = µ(f−1(A)) for any Borel set A. The pull-back f∗µ is conveniently defined
by its action on continuous functions: 〈f∗µ, ϕ〉 = 〈µ, f∗ϕ〉, where f∗ϕ is defined by
f∗ϕ(x) =

∑
y∈f−1(x) ϕ(y). Recall also that ergodicity means that any measurable

invariant subset has measure 0 or 1. A stronger form of ergodicity actually holds: µ
is exact, that is, if A is any measurable subset of positive measure, then µ(fn(A))→ 1
as n→∞.

The proof of this theorem is too long to be explained in these notes (see [26] for a
detailed treatment). Let us only discuss the convergence statement.

Proof of the convergence of the µn,z. — Consider the Fubini-Study (1, 1) form ω as-

sociated to the spherical metric on P1. It expresses in coordinates as ω = i
π∂∂ log ‖σ‖2

where σ : P1 → C2\{0} is any local section of the canonical projection C2\{0} → P1

and ‖·‖ is the standard Hermitian norm on C2, i.e ‖(z, w)‖2 = |z|2 + |w|2. Then

f∗ω − dω =
i

π
∂∂ log

‖(P (z, w), Q(z, w))‖2

‖(z, w)‖2d
=:

i

π
∂∂g0,

where by homogeneity of the polynomials P and Q, g0 is a globally well-defined
smooth function on P1. Thus we infer that

1

dn
(fn)∗ω − ω =

n−1∑
k=0

(
1

dk+1
(fk+1)∗ω − 1

dk
(fk)∗ω

)

=

n−1∑
k=0

1

dk+1
(fk)∗(f∗ω − dω)

=
i

π
∂∂

(
n−1∑
k=0

1

dk+1
g0 ◦ fk

)
=:

i

π
∂∂gk.

One readily sees that the sequence of functions gk converges uniformly to a continuous
function g∞, therefore basic distributional calculus implies that

1

dn
(fn)∗ω −→

n→∞
ω +

i

π
∂∂g∞.
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Being a limit in the sense of distributions of a sequence of probability measures, this
last term can be identified to a positive measure µ by declaring that

〈µ, ϕ〉 =

∫
P1

ϕω +
i

π

∫
π

g∞ ∂∂ϕ

for any smooth function ϕ. By definition this measure is the equilibrium measure µf .

Now for any z ∈ P1, identifying (1,1) forms and signed measures as above we write

1

dn

∑
w∈f−n(z)

δw =
1

dn
(fn)∗δz =

1

dn
(fn)∗ω +

1

dn
(fn)∗(δz − ω).

There exists a L1 function on P1 such that in the sense of distributions i
π∂∂gz = δz−ω,

so that
1

dn
(fn)∗(δz − ω) =

i

π
∂∂

(
1

dn
gz ◦ fn

)
and to establish the convergence of the µn,z the problem is to show that for z /∈ E,
d−ngz ◦ fn converges to 0 in L1. It is rather easy to prove that this convergence
holds for a.e. z with respect to Lebesgue measure. Indeed, suppose that the gz are
chosen with some uniformity, for instance by assuming supP1 gz = 0. In this case the
average

∫
gzLeb(dz) is a bounded function g (such that i

π∂∂g = Leb) and the result
essentially follows from the Borel-Cantelli Lemma: indeed, on average, d−ngz ◦ fn is
bounded by Cst/dn.

Proving the convergence for every z /∈ E requires a finer analysis, see [26] for
details.

The case of polynomials. — If f is a polynomial, rather than the Fubini-Study
measure, we can use the Dirac mass at the totally invariant point ∞, to give another
formulation of these results. Indeed, if ν is any probability measure (say with compact
support) in C, write ν − δ∞ = i

π∂∂g as before. In C, this rewrites as ν = ∆g,

where(1) g is a subharmonic function with logarithmic growth at infinity: g(z) =
log |z|+ c+ o(1). If νS1 be the normalized Lebesgue measure on the unit circle, then
νS1 = ∆

(
log+ |z|

)
(where log+ t = max(log t, 0)), so

1

dn
(fn)∗(νS1) =

1

dn
∆
(
log+ |fn(z)|

)
.

An argument similar to that of the proof of Theorem 3.1 yields the following:

Proposition 3.2. — If f is a polynomial of degree d, the sequence of functions
d−n log+ |fn| converges locally uniformly to a subharmonic function G : C → R
satisfying G ◦ f = dG.

(1)For convenience we have swallowed the normalization constant in ∆, so that ∆ is 1/4π times the

ordinary Laplacian.
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The function G = Gf is by definition the dynamical Green function of f . Introduce
the filled Julia set

K(f) = {z ∈ C, (fn(z)) is bounded in C}
= {z ∈ C, (fn(z)) does not tend to ∞} .

It is easy to show that J(f) = ∂K(f).

Proposition 3.3. — The dynamical Green function has the following properties:

(i) Gf is continuous, non-negative and subharmonic in C;
(ii) {Gf = 0} = K(f);

(iii) ∆Gf = µf is the equilibrium measure (in particular Supp(∆Gf ) = ∂ {Gf = 0});
(iv) if f is a monic polynomial, then Gf (z) = log |z|+ o(1) as z →∞.

Properties (i)-(iii) show that the dynamically defined function Gf coincides with
the Green function of K(f) from classical potential theory. Property (iv) implies
that if f is monic, then K(f) is of capacity 1, which is important in view of its
number-theoretic properties (see the lectures by P. Autissier in this volume [2]).

Another useful consequence is that the Green function Gf is completely determined
by the compact set K(f) (or by its boundary J(f)). In particular if f and g are
polynomials of degree at least 2 then

(1) J(f) = J(g)⇔ µf = µg.

The same is not true for rational maps: J(f) does not determine µf in general. For
instance there are many rational maps f such that J = P1(C), however Zdunik [42]
proved that µf is absolutely continuous with respect to the Lebesgue measure on
P1(C) (in this case automatically J(f) = P1(C)) if and only if f is a Lattès example.

4. Non-Archimedean dynamical Green function

Dynamics of rational functions over non-Archimedean valued fields has been de-
veloping rapidly during the past 20 years, greatly inspired by the analogy with holo-
morphic dynamics. Most of the results of the previous section have analogues in the
non-Archimedean setting. We will not dwell upon the details in these notes, and
rather refer the interested reader to [39, 5]. We shall content ourselves with recalling
the vocabulary of valued fields and heights, and the construction of the dynamical
Green function.

Vocabulary of valued fields. — To fix notation and terminology let us first recall
a few standard notions and facts.

Definition 4.1. — An absolute value |·| on a field K is a function K → R+ such
that

– for every α ∈ K, |α| ≥ 0 and |α| = 0 iff α = 0;
– for all α, β, |αβ| = |α| · |β|;



12 ROMAIN DUJARDIN

– for all α, β, |α+ β| ≤ |α|+ |β|.

If in addition |·| satisfies the ultrametric triangle inequality |α+ β| ≤ max(|α| , |β|),
then it is said non-Archimedean.

Besides the usual modulus on C, a basic example is the p-adic norm on Q, defined
by |α|p = p−vp(α) where vp is the p-adic valuation: vp(a/b) = ` where a/b = p`(a′/b′)

and p does not divide a′ nor b′. On any field we can define the trivial absolute value
by |0| = 0 and |x| = 1 if x 6= 0.

If (K, |·|) is a non-Archimedean valued field, we define the spherical metric on
P1(K) by

ρ(p1, p2) =
|x1y2 − x2y1|

max(|x1| , |y1|) max(|x2| , |y2|)
,

where p1 = [x1 : y1] and p2 = [x2 : y2]. From the ultrametric inequality we infer that
the ρ-diameter of P1(K) equals 1.

Definition 4.2. — Two absolute values |·|1 and |·|2 on K are said equivalent if there
exists a positive real number r such that |·|1 = |·|r2.

An equivalence class of absolute values on K is called a place. The set of places of
K is denoted by MK .

Theorem 4.3 (Ostrowski). — A set of representatives of the set of places of Q is
given by

– the trivial absolute value;
– the usual Archimedean absolute value |·|∞;
– the set of p-adic absolute values |·|p.

Decomposition into prime factors yields the product formula

∀x ∈ Q∗,
∏

p∈P∪{∞}

|x|p = 1,

where P denotes the set of prime numbers.

For number fields, places can also be described. First one considers Qp the comple-
tion of Q relative to the distance induced by |·|p. The p-adic absolute value extends
to an algebraic closure of Qp, so we may consider Cp the completion of this algebraic
closure. (For p =∞ of course Cp = C.)

A number field K admits a number of embeddings σ : K ↪→ Cp, which define by
restriction a family of absolute values a 7→ |σ(a)|p on K. Distinct embeddings may

induce the same absolute value. For any non-trivial absolute value |·|v on K there
exists pv ∈ P ∪{∞} such that |·|v |Q is equivalent to |·|pv and εv distinct embeddings

σ : K ↪→ Cpv such that the restriction of |·|Cpv to σ(K) induces |·|v up to equivalence.

Thus for each place of K we can define an absolute value |·|v on K that is induced
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by |·|Cpv by embedding K in Cpv and the following product formula holds

(2) ∀x ∈ K∗,
∏

v∈MK

|x|εvv =
∏

p∈P∪{∞}

∏
σ:K↪→Cp

|σ(x)|p = 1.

A similar formalism holds for certain non-algebraic extensions of Q, giving rise to a
general notion of product formula field.

Dynamical Green function. — Let (K, |·|) be a complete valued field. If f is
a rational map on P1(K) we can define a dynamical Green function as before, by
working with homogeneous lifts to A2(K). For (x, y) ∈ A2(K) we put ‖(x, y)‖ =
max(|x| , |y|), and fix a lift F : A2(K)→ A2(K) of f .

Theorem 4.4. — For every (x, y) ∈ A2(K), the limit

GF (x, y) := lim
n→∞

1

dn
log ‖Fn(x, y)‖

exists.

The function GF is continuous on A2(K) (relative to the norm topology) and
satisfies

– GF ◦ F = dGF ;
– GF (x, y) = log ‖(x, y)‖+O(1) at infinity;
– GF (λx, λy) = log |λ|+GF (x, y).

Note that the function GF depends on the chosen lift, more precisely GαF =
1
d−1 log |α| + GF . The proof of the theorem is similar to that of the Archimedean
case. The key point is that there exists positive numbers c1 and c2 such that the
inequality

(3) c1 ≤
‖F (x, y)‖
‖(x, y)‖d

≤ c2

holds. The upper bound in (3) is obvious, and the lower bound is a consequence of
the Nullstellensatz.

What is more delicate is to make sense of the measure theoretic part, i.e. to give
a meaning to ∆G. For this one has to introduce the formalism of Berkovich spaces,
which is well-suited to measure theory (see [39, 5] for details).

If f is a polynomial, instead of lifting to A2, we can directly consider the Green
function on K as in the complex case. More precisely: if f is a polynomial of degree
d, the sequence of functions d−n log+ |fn| converges locally uniformly to a function
Gf on K satisfying Gf ◦ f = dGf .

5. Logarithmic height

We refer to [12, 39] for details and references on the material in this section. For
x ∈ P1(Q) we can write x = [a : b] with (a, b) ∈ Z2 and gcd(a, b) = 1, we define
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the naive height h(x) = hnaive(x) = log max(|a|∞ , |b|∞). A fundamental (obvious)
property is that for every M ≥ 0{

x ∈ P1(Q), h(x) ≤M
}

is finite.

We now explain how to extend h to P1(Q) using the formalism of places. The key
observation (left as an exercise to the reader) is that the product formula implies that

h(x) =
∑

p∈P∪{∞}

log+ |x|p .

This formula can be generalized to number fields, giving rise to a notion of logarithmic
height in that setting. Let K be a number field and x = [x0, x1] ∈ P1(K). Then with
notation as above we define

h(x) =
1

[K : Q]

∑
p∈P∪{∞}

∑
σ:K↪→Cp

log ‖(σ(x0), σ(x1))‖p

=
1

[K : Q]

∑
v∈MK

εv log ‖(σ(x0), σ(x1))‖v ,

where as before ‖(x0, x1)‖v = max(|x0|v , |x1|v).Note that by the product formula,
h(x) does not depend on the lift (x0, x1) ∈ A2. By construction, h is invariant under
the action of the Galois group Gal(K : Q). Furthermore, the normalization in the
definition of h was chosen in such a way that h(x) does not depend on the choice of the
number field containing x, therefore h is a well-defined function on P1(Q) invariant
under the absolute Galois group of Q.

If x ∈ K we can write x = [x : 1] and we recover

log ‖(x, 1)‖p = log max(|x0|p , |x1|p) = log+ |x|p .

Theorem 5.1 (Northcott). — For all M > 0 and D ≤ 1, the set{
x ∈ P1(Q), h(x) ≤M and [Q(x) : Q] ≤ D

}
is finite.

Corollary 5.2. — For x ∈ Q
∗
, h(x) = 0 if and only if x is a root of unity.

Proof. — Indeed, note that by construction h(xN ) = Nh(x) and also h(1) = 0. In
particular if x is a root of unity, then h(x) = 0. Conversely if x 6= 0 and h(x) = 0
then by Northcott’s Theorem,

{
xN , N ≥ 1

}
is finite so there exists M < N such that

xM = xN and we are done.

Action under rational maps. — Let now f : P1(Q)→ P1(Q) be a rational map
defined on Q, of degree d.

Proposition 5.3 (Northcott). — There exists a constant C depending only on f
such that

∀x ∈ P1(Q), |h(f(x))− dh(x)| ≤ C.
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In other words, h is almost multiplicative. The proof follows from the decomposi-
tion of h as a sum of local contributions together with the Nullstellensatz as in (3)
(note that h(f(x)) = h(x) for all but finitely many places).

We are now in position to define the canonical height associated to f .

Theorem 5.4 (Call-Silverman). — There exists a unique function hf : P1(Q)→
R+ such that:

– h− hf is bounded;
– hf ◦ f = d hf .

Note that the naive height h is the canonical height associated to x 7→ xd.

Proof. — This is similar to the construction of the dynamical Green function. For
every n ≥ 0, let hn = d−nh ◦ fn. By Proposition 5.3 we have that |hn+1 − hn| ≤
C/dn, so the sequence hn converges pointwise. We define hf to be its limit, and the
announced properties are obvious.

Proposition 5.5. — The canonical height hf enjoys the following properties:

– hf ≥ 0;
– for x ∈ K∗, hf (x) = 0 if and only if x is preperiodic, i.e. there exists k < l such

that fk(x) = f l(x).
– the set

{
x ∈ P1(Q), h(x) ≤M and [Q(x) : Q] ≤ D

}
is finite.

Proof. — The first item follows from the positivity of h and the formula hf (x) =
limn d

−nh(fn(x)). The second one is proved exactly as Corollary 5.2, and the last
one follows from the estimate hf − h = O(1).

It is often useful to know that the logarithmic height expresses as a sum of local
contributions coming from the places of K. For the canonical height, the existence of
such a decomposition does not clearly follow from the Call-Silverman definition. On
the other hand the construction of the dynamical Green function from the previous
paragraph implies that a similar description holds for hf .

Proposition 5.6. — Let f be a rational map on P1(Q) and F be a homogeneous
lift of f on A2(Q). Then for every x ∈ P1(Q), we have that

hf (x) =
1

[K : Q]

∑
v∈MK

εvGF,v(x0, x1), where x = [x0 : x1]

where K is any number field such that x ∈ P1(K), GF,v is the dynamical Green
function associated to (K, |·|v) and εv is as in (2).

Proof. — Let κ(x0, x1) denote the right hand side of the formula. The product
formula together with the identities GF (λx, λy) = log |λ| + GF (x, y) and GαF =
GF + 1

d−1 log |α| imply that κ is independent of the lifts F of f and [x0 : x1] of x. In
particular κ is a function of x only.
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The invariance relations for the local Green functions imply that κ◦f = d κ. Since
furthermore GF,v(x0, x1) = log ‖(x0, x1)‖v for all but finitely many places, we infer
from the second property of Theorem 4.4 that κ− h = O(1). Then the result follows
from the uniqueness assertion in Theorem 5.4.

6. Dynamical consequences of arithmetic equidistribution

Equidistribution of preperiodic points. — It turns out that the Call-Silverman
canonical height satisfies the assumptions of Yuan’s equidistribution theorem for
points of small height (see [11, Thm. 7.4]). From this for rational maps defined
over number fields we can obtain refined versions of previously known equidistribu-
tion theorems.

Theorem 6.1. — Let f ∈ Q(X) be a rational map of degree d ≥ 2 and (xn) be any
infinite sequence of preperiodic points of f . Then in P1(C) we have that

(4)
1

[Q(xn) : Q]

∑
y∈G(xn)

δy −→
n→∞

µf ,

where G(xn) denotes the set of Galois conjugates of xn.

The reason of the appearance of µf in (4) is to be found in the description of
the canonical height given in Proposition 5.6. When G(xn) is the set of all periodic
points of a given period, this result is a direct consequence of the last item of Theorem
3.1. Indeed, by Theorem 2.7, f admits at most finitely many non-repelling points.
Likewise, we may also obtain in the same way an arithmetic proof of the convergence
of the measures µn,z of Theorem 3.1.

Rigidity. — As an immediate consequence of Theorem 6.1 we obtain the following
rigidity statement.

Corollary 6.2. — If f and g are rational maps defined over Q of degree at least 2
are such that f and g have infinitely many common preperiodic points, then µf = µg
(so in particular J(f) = J(g)).

Rational maps with the same equilibrium measure were classified by Levin and
Przytycki [29]. The classification is a bit difficult to state precisely, but the idea is
that if f and g have the same equilibrium measure and do not belong to a small list of
well understood exceptional examples (monomial maps, Chebychev polynomials, and
Lattès maps) then some iterates fn and gm are related by a certain correspondence.
If f and g are polynomials of the same degree, then the answer becomes simple:
µf = µg if and only if there exists a linear transformation L in C such that g = L ◦ f
and L(J) = J , where J = J(f) = J(g). A consequence of this classification is that for
non-exceptional f and g, if µf = µg then f and g have the same sets of preperiodic
points (see [29, Rmk 2]).
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Note also that Yuan’s equidistribution theorem says more: a meaning can be given
to the convergence (4) at finite places, and indeed Theorem 6.1 holds at all places. It
then follows from the description of the canonical height given in Proposition 5.6 that
if f and g are as in Corollary 6.2, then hf = hg, in particular the sets of preperiodic
points of f and g coincide. Denote by Preper(f) the set of preperiodic points of f .

Theorem 6.3. — If f and g are rational maps of degree at least 2, defined over C.
Consider the following conditions:

(1) # Preper(f) ∩ Preper(g) =∞;
(2) Preper(f) = Preper(g);
(3) µf = µg.

Then (1) is equivalent to (2) and both imply (3). If f and g are not exceptional then
the converse implication holds as well.

Proof. — This statement was already fully justified when f and g have their coeffi-
cients in Q. Note also that the implication (3) ⇒ (2) proven in [29] and mentioned
above holds for arbitrary non-exceptional rational maps. The equivalence between (1)
and (2) for maps with complex coefficients was established by Baker and DeMarco [4]
(see also [41, Thm. 1.3]), using some equidistribution results over arbitrary valued
fields as well as specialization arguments. Finally, the implication (2) ⇒ (3) in this
general setting was obtained by Yuan and Zhang [41, Thm. 1.5].

PART II. PARAMETER SPACE QUESTIONS

The general setting in this second part is the following: let (fλ)λ∈Λ be a holo-
morphic family of rational maps of degree d ≥ 2 on P1(C), that is for every λ,

fλ(z) = Pλ(z)
Qλ(z) and Pλ and Qλ depend holomorphically on λ and have no common

factors for every λ. Here the parameter space Λ is an arbitrary complex manifold
(which may be the space of all rational maps of degree d). From the dynamical point
of view we can define a natural dichotomy Λ = Stab∪Bif of the parameter space into
an open stability locus Stab, where the dynamics is in a sense locally constant, and its
complement the bifurcation locus Bif. Our purpose is to show how arithmetic ideas
can give interesting information on these parameter spaces.

7. The quadratic family

The most basic example of this parameter dichotomy is given by the family of
quadratic polynomials. Any degree 2 polynomial is affinely conjugate to a (unique)
polynomial of the form z 7→ z2 + c. so dynamically speaking the family of quadratic
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polynomials is
{
fc : z 7→ z2 + c, c ∈ C

}
. It was studied in great depth since the be-

ginning of the 1980’s, starting with the classic monograph by Douady and Hubbard
[17].

Let fc(z) = z2 + c as above. A first observation is that if |z| >
√
|c|+ 3 then

(5)
∣∣z2 + c

∣∣ ≥ |z|2 − |c| ≥ 2 |z|+ 1

so fnc (z) → ∞. Hence we deduce that the filled Julia set Kc = K(fc) is contained

in D(0,
√
|c|+ 3). Recall that the Julia set of fc is Jc = ∂Kc. Note that the critical

point is 0.

Connectivity of J . — Fix R large enough so that f−1(D(0, R)) b D(0, R) (R =
(|c|+ 1)2 + 1 is enough) then by the maximum principle, f−1(D(0, R)) is a union of
simply connected open sets (topological disks). Since f : f−1(D(0, R)) → D(0, R) is
proper it is a branched covering of degree 2 so the topology of f−1(D(0, R)) can be
determined from the Riemann-Hurwitz formula. There are two possible cases:

– Either f(0) /∈ D(0, R). Then f |f−1(D(0,R)) is a covering and f−1(D(0, R)) =
U1∪U2 is the union of two topological disks on which f |Ui is a biholomorphism.
Let gi = (f |Ui)−1 : D(0, R)→ U1, which is a contraction for the Poincaré metric
in D(0, R). It follows that

Kc =
⋂
n≥1

⋃
(εi)∈{1,2}n

gεn ◦ · · · ◦ gε1(D(0, R))

is a Cantor set.
– Or f(0) /∈ D(0, R). Then f−1(D(0, R)) is a topological disk and f :
f−1(D(0, R))→ D(0, R) is a branched covering of degree 2.

More generally, start with D(0, R) and pull back under f until 0 /∈ f−n((D(0, R)).
Again there are two possibilities:

– Either this never happens. Then Kc is a nested intersection of topological disks,
so it is a connected compact set which may or may not have interior.

– Or this happens for some n ≥ 1. Then the above reasoning shows that Kc = Jc
is a Cantor set.

Summarizing the above discussion, we get the following alternative:

– either 0 escapes under iteration and Kc = Jc is a Cantor set;
– or 0 does not escape under iteration and Kc is connected (and so is Jc).

We define the Mandelbrot set M to be the set of c ∈ C such that Kc is connected.
From the previous alternative we see that the complement of M is an open subset of
the plane. Furthermore it is easily seen from (5) that 0 escapes when |c| > 4, so M is
a compact set in C. The Mandelbrot set is full (that is, its complement has bounded
component) and has non-empty interior: indeed if the critical point is attracted by
a periodic cycle for c = c0, then this behavior persists for c close to c0 and Kc is
connected in this case.

The following proposition is an easy consequence of the previous discussion.
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Proposition 7.1. — c belongs to ∂M if and only if for every open neighborhood
N 3 c, (c 7→ fnc (0))n≥1 is not a normal family on N .

Aside: active and passive critical points. — We will generalize the previous
observation to turn it into a quite versatile concept. Let (fλ)λ∈Λ be a holomorphic
family of rational maps as before. In such a family a critical point for fλ0 cannot
always be followed holomorphically due to ramification problems (think of fλ(z) =
z3 + λz), however this can always be arranged by passing to a branched cover of Λ
(e.g. by replacing z3 +λz by z3 +µ2z). We say that a holomorphically moving critical
point c(λ) is marked.

Definition 7.2. — Let (fλ, c(λ))λ∈Λ be a holomorphic family of rational maps with
a marked critical point. We say that c is passive on some open set Ω if the sequence
of meromorphic mappings (λ 7→ fnλ (c(λ)))n≥0 is normal in Ω. Likewise we say that c
is passive at λ0 if it is passive in some neighborhood of λ0. Otherwise c is said active
at λ0.

This is an important concept in the study of the stability/bifurcation theory of
rational maps, according to the principle “the dynamics is governed by that of critical
points”. The terminology is due to McMullen. The next proposition is a kind of
parameter analogue of the density of periodic points in the Julia set.

Proposition 7.3. — Let (fλ, c(λ))λ∈Λ be a holomorphic family of rational maps of
degree d ≥ 2 with a marked critical point. If c is active at λ0 there exists an infinite
sequence (λn) converging to λ0 such that c(λn) is preperiodic for fλn . More precisely
we can arrange so that

– either c(λn) falls under iteration onto a repelling periodic point;
– or c(λn) is periodic.

Proof. — Fix a repelling cycle of length at least 3 for fλ0
. By the implicit func-

tion theorem, this cycle persists and stays repelling in some neighborhood of λ0.
More precisely if we fix 3 distinct points αi(λ0), i = 1, 2, 3 in this cycle, there exists
an open neighborhood N(λ0) and holomorphic maps αi : N(λ0) → P1 such that
αi(λ) are holomorphic continuations of αi(λ0) as periodic points. Since the family
(fnλ (c(λ)))n≥1 is not normal in N(λ0) by Montel’s theorem, there exists λ1 ∈ N(λ0),
n ≥ 1 and i ∈ {1, 2, 3} such that fnλ1

(c(λ1)) = αi(λ1). Thus the first assertion is
proved, and the other one is similar (see [30] or [19] for details).

The previous result may be interpreted by saying that an active critical point is
a source of bifurcations. Indeed, given any holomorphic family (fλ)λ∈Λ of rational
maps, Λ can be written as the union of an open stability locus Stab where the dynamics
is (essentially) locally constant on P1 and its complement, the bifurcation locus Bif
where the dynamics changes drastically. When all critical points are marked, the
bifurcation locus is exactly the union of the activity loci of the critical points. It is
a fact that in any holomorphic family, the bifurcation locus is a fractal set with rich
topological structure.
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Theorem 7.4 (Shishikura [38], Tan Lei [28], McMullen [34])
If (fλ)λ∈Λ is any holomorphic family of rational maps with non-empty bifurca-

tion locus, the Hausdorff dimension of Bif is equal to that of Λ.

Recall that the Hausdorff dimension of a metric space is a non-negative number
which somehow measures the scaling behavior of the metric. For a manifold, it coin-
cides with its topological dimension, but for a fractal set it is typically not an integer.
In the quadratic family, the bifurcation locus is the boundary of the Mandelbrot set,
and Shishikura [38] proved that HDim(∂M) = 2. Therefore ∂M is a nowhere dense
subset which in a sense locally fills the plane. It was then shown in [28, 34] that this
topological complexity can be transferred to any holomorphic family, resulting in the
above theorem.

Post-critically finite parameters in the quadratic family. — A rational map
is said post-critically finite if its critical set has a finite orbit, that is, every critical
point is periodic or preperiodic. The post-critically finite parameters in the quadratic
family are the solutions of the countable family of polynomial equations fkc (0) = f lc(0),
with k > l ≥ 0, and form a countable set of “special points” in parameter space.

As a consequence of Proposition 7.3 in the quadratic family we get

Corollary 7.5. — ∂M is contained in the closure of the set of post-critically finite
parameters.

Post-critically finite quadratic polynomials can be of two different types:

– either the critical point 0 is periodic. in this case c lies in the interior of M .
Indeed the attracting periodic orbit persists in some neighborhood of c, thus
persistently attracts the critical point and Kc remains connected;

– or 0 is strictly preperiodic. Then it can be shown that it must fall on a repelling
cycle, so it is active and c ∈ ∂M .

The previous corollary can be strengthened to an equidistribution statement.

Theorem 7.6. — Post-critically finite parameters are asymptotically equidistributed.

There are several ways of formalizing this. For a pair of integers k > l ≥ 0,
denote by PerCrit(k, l) the (0-dimensional) variety defined by the polynomial equation
fkc (0) = f lc(0), and by [PerCrit(k, l)] the sum of point masses at the corresponding
points, counting multiplicities.

Then the precise statement of the theorem is that there exists a probability measure
µM on the Mandelbrot set such that if 0 ≤ k(n) < n is an arbitrary sequence, then
2−n[PerCrit(n, k(n))] → µM as n → ∞. Originally proved by Levin [31] (see also
[32] for k(n) = 0), this result was generalized by several authors (see e.g. [19, 6]).
Quantitative estimates on the speed of convergence are also available [23, 24].

We present an approach to this result based on arithmetic equidistribution, along
the lines of [6, 23].



ARITHMETIC PROBLEMS IN RATIONAL DYNAMICS 21

Recall the dynamical Green function

Gfc(z) = lim
n→∞

1

2n
log+ |fnc (z)| ,

which is a non-negative continuous and plurisubharmonic function of (c, z) ∈ C2.
Put GM (c) = Gfc(c) = 2Gfc(0). This function is easily shown to have the following
properties:

– GM is non-negative, continuous and subharmonic on C;
– GM (c) = log |c|+ o(1) when c→∞;
– {GM = 0} is the Mandelbrot set;

– GM is harmonic on {GM > 0} = M{.

Therefore GM is the (potential-theoretic) Green function of the Mandelbrot set and
µM := ∆GM is the harmonic measure of M .

To apply arithmetic equidistribution theory, we need to understand what happens
at the non-Archimedean places. For a prime number p, let

Mp = {c ∈ Cp, (fnc (0))n≥0 is bounded in Cp} .
Proposition 7.7. —

(i) For every p ∈ P, Mp is the closed unit ball of Cp.
(ii) For every p ∈ P, for every c ∈ Cp,

GMp
(c) = Gfc(c) = lim

n→∞
2−n log+ |fnc (c)|p = log+ |c|p .

(iii) The associated height function hM defined for c ∈ Q by

hM(c) =
1

[Q(c) : Q]

∑
p∈P∪{∞}

∑
σ:Q(c)↪→Cp

GMp
(σ(c))

satisfies {
c ∈ Q, hM(c) = 0

}
=

⋃
0≤k<n

PerCrit(k, n).

The collection M of the sets Mp for p ∈ P ∪ {∞} is called the adelic Mandelbrot
set, and hM will be referred to as the parameter height function associated to the
critical point 0.

Proof. — Using the ultrametric property, we see that |c|p ≤ 1 implies that |fc(c)|p =∣∣c2 + c
∣∣
p
≤ 1. Conversely |c|p > 1 implies

∣∣c2 + c
∣∣
p

= |c|2p hence fnc (c) → ∞. This

proves (i) and (ii).

For the last assertion, we observe that the canonical height of fc is given by

hfc(z) =
1

[Q(z) : Q]

∑
p∈P∪{∞}

∑
σ:Q(z)↪→Cp

Gfc,p(σ(z)).

Indeed it is clear from this formula that hfc(z) = 2hfc(z) and hfc − hnaive = O(1)
so the result follows from the Call-Silverman Theorem 5.4. Recall that hfc(z) = 0 if
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and only if z is preperiodic. Assertion (iii) follows from these properties by simply
plugging c into the formulas.

An adelic set (this terminology is due to Rumely) E = {Ep, p ∈ P ∪∞} is a col-
lection of sets Ep ⊂ Cp such that

– E∞ is a full compact set in C;
– for every p ∈ P, Ep is closed and bounded in Cp, and Ep is the closed unit ball

for all but finitely many p;
– for every p ∈ P ∪∞, Ep admits a Green function gp that is continuous on Cp

and satisfies Ep = {gp = 0}, gp(z) = log+ |z|p − cp + o(1) when z →∞, and gp

is “harmonic”(2) outside Ep.

The capacity of an adelic E is defined to be γ(E) =
∏
p∈P∪∞ ecp . We will typically

assume that γ(E) = 1. Under these assumptions one defines a height function from
the local Green functions gp exactly as before

hE(z) =
1

[Q(z) : Q]

∑
p∈P∪{∞}

∑
σ:Q(z)↪→Cp

gp(σ(z)),

and we have the following equidistribution theorem (see [2, 11] for details and refer-
ences).

Theorem 7.8 (Bilu, Rumely). — Let E be an adelic set such that γ(E) = 1, and
(xn) ∈ CN be a sequence of points with disjoint Galois orbits Xn and such that h(xn)
tends to 0. Then the sequence of equidistributed probability measures on the sets Xn

converges weakly in C to the potential-theoretic equilibrium measure of E∞.

This convergence also holds at finite places, provided one is able to make sense of
measure theory in this context. Theorem 7.6 follows immediately.

8. Higher degree polynomials and equidistribution

In this and the next section we investigate the asymptotic distribution of special
points in spaces of higher degree polynomials. The situation is far less understood

for spaces of rational functions. Polynomials of the form P (z) =
∑d
k=0 akz

k can be
obviously parameterized by their coefficients so that the space Pd of polynomials of
degree d is C∗×Cd. By an affine conjugacy we can arrange that ad = 1 and ad−1 = 0
(monic and centered polynomials).

Assume now that P and Q are monic, centered and conjugate by the affine trans-
formation z 7→ az+ b, that is, P (z) = a−1Q(az+ b)− ba−1. Since P and Q are monic
we infer that ad−1 = 1 and from the centering we get b = 0. It follows that the space

(2)We do not define precisely what “harmonic” means in the p-adic context: roughly speaking it
means that locally g = log |h| for some non-vanishing analytic function (see [5, Chap. 7] for details

on this notion). Note that for the adelic Mandelbrot set we have gp = log+ |·|p at non-Archimedean

places.
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MPd of polynomials of degree d modulo affine conjugacy is naturally isomorphic to
Cd−1/〈ζ〉, where ζ = e2iπ/(d−1). In practice it is easier to work on its (d−1)-covering
by Cd−1.

Special points. — The special points in MPd are the post-critically finite maps.
They are dynamically natural since classical results of Thurston, Douady-Hubbard
and others (see e.g. [18, 27]) show that the geography ofMPd is somehow organized
around them.

Proposition 8.1. —

(i) The set PCF of post-critically finite polynomials is countable and Zariski-dense
in MPd.

(ii) PCF is relatively compact in the usual topology.

Proof. — For d = 2 this follows from the properties of the Mandelbrot set so it is
enough to deal with d ≥ 3. To prove the result it is useful to work in the spaceMPcm

c

of critically marked polynomials modulo affine conjugacy, which is a branched covering
of MPd. Again this space is singular so we work on the following parameterization.
For (c, a) = (c1, . . . , cd−2, a) ∈ Cd−1 we consider the polynomial Pc,a with critical
points at (c0 = 0, , c1, . . . , cd−2) and such that P (0) = ad, that is Pc,a is the primitive

of z
∏d−2
i=1 (z − ci) such that P (0) = ad. This defines a map Cd−1 →MPcm

c which is
a branched cover of degree d(d− 1).

Let GPc,a be the dynamical Green function of Pc,a, and define

G(c, a) = max
{
GPc,a(ci), i = 0, . . . , d− 2

}
.

The asymptotic behavior of G is well understood.

Theorem 8.2 (Branner-Hubbard [8]). — As (c, a)→∞ in Cd−1 we have that

G(c, a) = log+ max {|a| , |ci| , i = 1, . . . , d− 2}+O(1).

The seemingly curious normalization P (0) = ad was motivated by this neat ex-
pansion. See [19] for a proof using these coordinates, based on explicit asymptotic
expansions of the P(c,a)(ci). In particular G(c, a) → ∞ as (c, a) → ∞ and it follows
that the connectedness locus

C := {(c, a), K(Pc,a) is connected} = {(c, a), G(c, a) = 0}

is compact. Since post-critically finite parameters belong to C, this proves the second
assertion of Proposition 8.1. For the first one, note that the set of post-critically finite
parameters is defined by countably many algebraic equations in Cd, and since each
component is bounded in Cd−1 it must be a point.

The Zariski density of post-critically finite polynomials is a direct consequence of
the equidistribution results of [7, 19], based on pluripotential theory. Here we present
a simpler argument due to Baker and DeMarco [3]. This requires the following result,
whose proof will be skipped.
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Theorem 8.3 (McMullen [33], Dujardin-Favre [19])
Let (fλ, c(λ))λ∈Λ be a holomorphic family of rational maps of degree d with a

marked critical point , parameterized by a quasiprojective variety Λ. If c is passive
along Λ, then:

– either the family is isotrivial, that is the fλ are conjugate by Möbius transfor-
mations

– or c is persistently preperiodic, that is there exists m < n such that fmλ (c(λ)) ≡
fnλ (c(λ)).

Let now S be any proper algebraic subvariety of MPcm
d =: X, we want to show

that there exists a post-critically finite parameter in X \S. Consider the first marked
critical point c0 on Λ = X \ S. Since the family (Pc,a) is not isotrivial on Λ, by the
previous theorem, either it is persistently preperiodic or it must be active somewhere
and by perturbation we can make it preperiodic by Proposition 7.3. In any case we
can find λ0 ∈ Λ and m0 < n0 such that fm0

λ0
(c0(λ0)) ≡ fm0

λ0
(c0(λ0)). Now define Λ1

to be the subvariety of codimension ≤ 1 of X \S where this equation is satisfied. It is
quasiprojective and c0 is persistently preperiodic on it. We now consider the behaviour
of c1 on Λ1 and continue inductively to get a nested sequence of quasiprojective
varieties Λk ⊂ X on which c0, . . . , ck are persistently preperiodic. Since the dimension
drops by at most 1 at each step and dim(X) = d− 1, we can continue until k = d− 2
and we finally find the desired parameter.

Equidistribution of special points. — Pluripotential theory (see e.g. [15, Chap.

III]) allows to give a meaning to the exterior product
(
i
π∂∂G

)∧(d−1)
. This defines a

probability measure with compact support inMPcm
d which will be referred to as the

bifurcation measure, denoted by µbif .

The next theorem asserts that post-critically finite parameters are asymptotically
equidistributed. For 0 ≤ i ≤ d − 2 and m < n define the subvariety Perci(m,n) to
be the closure of the set of parameters at which fk(ci) is periodic exactly for k ≥ m,
with exact period n−m.

Theorem 8.4 (Favre-Gauthier [21]). — Consider a (2d − 2)-tuple of sequences
of integers ((nk,0,mk,0), . . . , (nk,d−2,mk,d−2))k≥0 such that:

– either the mk,i are equal to 0 and for fixed k the nk,i are distinct and mini(nk,i)
tends to ∞ with k;

– or for every (k, i), nk,i > mk,i > 0 and mini(nk,i −mk,i)→∞ when k →∞.

Then, letting Zk = Perc0(mk,0, nk,0) ∩ · · · ∩ Percd−2
(mk,d−2, nk,d−2), the sequence of

probability measures uniformly distributed on Zk converges to the bifurcation measure
as k →∞.

This puts forward the bifurcation measure as the natural analogue in higher degree
of the harmonic measure of the Mandelbrot set. It was first defined and studied in
[7, 19]. It follows from its pluripotential-theoretic construction that µbif carries no



ARITHMETIC PROBLEMS IN RATIONAL DYNAMICS 25

mass on analytic sets. In particular this gives another argument for the Zariski density
of post-critically finite parameters .

The result is a consequence of arithmetic equidistribution. Using the function
G(c, a) and its adelic analogues, we can define as before a parameter height func-
tion on MPcm

d (Q) satisfying h(c, a) = 0 iff Pc,a is critically finite. Then Yuan’s
equidistribution theorem for points of small height (see [11]) applies in this situation
–this requires some non-trivial work on understanding the properties of G at infinity.
Specialized to our setting it takes the following form.

Theorem 8.5 (Yuan). — Let Zk ⊂ MPcm
d (Q) be a sequence of Galois invariant

subsets such that:

(i) h(Zk) =
1

#Zk

∑
x∈Zk

h(x) −→
k→∞

0;

(ii) For every algebraic hypersurface H over Q, H ∩ Zk is empty for large enough
k.

Then 1
#Zk

∑
x∈Zk δx converges to the bifurcation measure µbif as k →∞.

Actually in the application to post-critically finite maps the genericity assumption
(ii) is not satisfied. Indeed we shall see in the next section that there are “special
subvarieties” containing infinitely many post-critically finite parameters. Fortunately
the following variant is true.

Corollary 8.6. — In Theorem 8.5, if (ii) is replaced by the weaker condition:

(ii’) For every algebraic hypersurface H over Q, lim
k→∞

#H ∩ Zk
#Zk

= 0,

then the same conclusion holds.

Proof of the corollary. — This is based on a diagonal extraction argument. First,
enumerate all hypersurfaces defined over Q to form a sequence (Hq)q≥0. Fix ε > 0.

For q = 0 we have that #H0∩Zk
#Zk

→ 0 as k → ∞ so if for k ≥ k0 we remove from Zk

the (Galois invariant) set of points belonging to H0 to get a subset Z
(0)
k such that

Z
(0)
k ∩H0 = ∅ and

#Z
(0)
k

#Zk
≥ 1− ε

4
.

For k ≤ k0 we put Z
(0)
k = Zk.

Now for H1 we do the same. There exists k1 > k0 and for k ≥ k1 a Galois invariant

subset Z
(1)
k extracted from Z

(0)
k such that

Z
(1)
k ∩H1 = ∅ and

#Z
(1)
k

#Z
(0)
k

≥ 1− ε

8
.

For k < k0 we set Z
(1)
k = Zk and for k0 ≤ k < k1 we set Z

(1)
k = Z

(0)
k Note that for

k ≥ k0, Z
(1)
k ∩H0 = ∅.
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Continuing inductively this procedure, for every q ≥ 0 we get a sequence of subsets

(Z
(q)
k )k≥0 with Z

(q)
k ⊂ Zk such that

#Z
(q)
k ≥

q∏
j=0

(
1− ε

2j+2

)
#Zk ≥ (1− ε)#Zk

and Zk is disjoint from H0, . . . ,Hq for k ≥ kq. Finally we define Z
(∞)
k =

⋂
q Z

(q)
k ,

which satisfies that for every q and every k ≥ kq, Z
(∞)
k is disjoint from H0, . . . ,Hq

and for every k ≥ 0, #Z
(∞)
k ≥ (1− ε)#Zk. Therefore Z

(∞)
k satisfies the assumptions

of Yuan’s Theorem so

µ
(∞)
k :=

1

#Z
(∞)
k

∑
x∈Z(∞)

k

δx −→
k→∞

(
i

π
∂∂G

)∧(d−1)

.

Finally if we let µk be the uniform measure on Zk, we have that for every continuous
function ϕ with compact support,∣∣∣µ(∞)

k (ϕ)− µk(ϕ)
∣∣∣ ≤ 2ε ‖ϕ‖L∞

and we conclude that µk converges to the bifurcation measure as well. This finishes
the proof.

Proof of Theorem 8.4. — We treat the first set of assumptions mk,i = 0, and denote
put Perci(nk,i) = Perci(0, nk,i). It is convenient to assume that the nk,i are prime
numbers, which simplifies the issues about prime periods. We have to check that the
hypotheses Corollary 8.6 are satisfied. First Xk is defined by (d − 1) equations over
Q so it is certainly Galois invariant, and it is a set of post-critically finite parameters
so its parameter height vanishes. So the point is to check condition (ii’). For every
0 ≤ i ≤ d − 2 the variety Perci(nk,i) is defined by the equation P

nk,i
c,a (ci) − ci =

0 which is of degree dnk,i . Recall from Proposition 8.1 that Zk is of dimension 0
and relatively compact in MPcm

d . Furthermore the analysis leading to Theorem 8.2
shows that these hypersurfaces do not intersect at infinity so by Bézout’s theorem the
cardinality of Zk equals dnk,0+···+nk,d−1 counting multiplicities. Actually multiplicities
do not account, due to the following deep result, which is based on dynamical and
Teichmüller-theoretic techniques.

Theorem 8.7 (Buff-Epstein [9]). — For every x ∈ Zk, the varieties Perc0(nk,0),
..., Percd−2

(nk,d−2) are smooth and transverse at x.

Finally, for every hypersurface H we need to bound #H ∩ Zk. Let x ∈ H ∩ Zk
and assume that x is a regular point of H. A first possibility is that locally (and
thus also globally) H ≡ Perci(nk,i) for some i. Since nk,i → ∞ this situation can
happen only for finitely many k so considering large enough k we may assume that
H is distinct from the Perci(nk,i). By the transversality Theorem 8.7, H must be
transverse to (d − 2) of the Perci(nk,i) at x (this is the incomplete basis theorem!).
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So we can bound #H ∩Zk by applying Bézout’s theorem to all possible intersections
of H with (d− 2) of the Perci(nk,i), that is

#Reg(H) ∩ Zk

≤
d−2∑
i=0

#H ∩ Perc0(nk,0) ∩ · · · ∩ ̂Perci(nk,i) ∩ · · · ∩ Percd−2
(nk,d−2)

≤
d−2∑
i=0

deg(H) · d(
∑d−2
j=0 nk,j)−nk,i = o

(
d
∑d−2
j=0 nk,j

)
= o (#Zk) .

To deal with the singular part of H, we write Sing(H) = Reg(Sing(H)) ∪
Sing(Sing(H)), and using the above argument in codimension 2, by we get a
similar estimate for #Reg(Sing(H)) ∩ Zk. Repeating inductively this idea we finally
conclude that #H ∩ Zk = o (#Zk), as required.

9. Special subvarieties

Prologue. — There are a number of situations in algebraic geometry where the
following happens: an algebraic variety X is given containing countably many “special
subvarieties” (possibly of dimension 0). Assume that a subvariety Y admits a Zariski-
dense subset of special points, then must it be special, too? Two famous instances of
this problem are:

– torsion points on Abelian varieties (and the Manin-Mumford conjecture);
– CM points on Shimura varieties (and the André-Oort conjecture).

The Manin-Mumford conjecture admits a dynamical analogue which will not be
discussed in these notes. We will consider an analogue of the André-Oort conjecture
which has been put forward by Baker and DeMarco [3]. Without entering into the
details of what “André-Oort” refers exactly to let us just mention one positive result
which motivates the general conjecture. Let us identify the space of pairs of elliptic
curves with C2 via the j-invariant.

Theorem 9.1 (André [1]). — Let Y ⊂ C2 be an algebraic curve containing in-
finitely many points both coordinates of which are “singular moduli”, that is, j-
invariants of CM elliptic curves. Then Y is special in the sense that Y is either
a vertical or a horizontal line, or a modular curve X0(N).

Recall that X0(N) is the irreducible algebraic curve in C2 uniquely defined by the
property that (E,E′) ∈ X0(N) if there exists a cyclic isogeny E → E′ of degree N
(this property is actually symmetric in E and E′). Likewise, it is characterized by
the property that for every τ ∈ H, (j(Nτ), j(τ)) ∈ X0(N).

Classification of special curves. — In view of the above considerations it is nat-
ural to attempt to classify special subvarieties, that is subvarieties Λ of MPd (or
Md) with a Zariski dense subset of post-critically finite parameters. Examples are
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easy to find: assume that the k critical points c0, . . . , ck−1 critical points are “dy-
namically related” on a subvariety Λ of codimension k− 1. This happens for instance
if they satisfy a relation of the form P ki(ci) = P li(c0) for some integers ki, li (say
Λ is the subvariety cut out by k − 1 such equations, thus dim(Λ) = d − k). Then
c0, ck+1, . . . , cd−2 are (d− 1− k) + 1 = d− k “independent” critical points on Λ and
arguing as in Proposition 8.1 shows that post-critically finite maps are Zariski dense
on Λ.

A “dynamical André-Oort conjecture” was proposed by Baker and DeMarco [3]
which says precisely that a subvariety Λ of dimension q in the moduli space of rational
maps of degree d with marked critical points Mcm

d is special if and only if at most q
critical points are “dynamically independent” on Λ (the precise notion of dynamical
dependence is slightly delicate to formalize).

Some partial results towards this conjecture are known, including a complete proof
for the space of cubic polynomials(3). Recall thatMPcm

3 is parameterized by (c, a) ∈
C2.

Theorem 9.2 (Favre-Gauthier [22], Ghioca-Ye [25])
An irreducible curve C in the space MPcm

3 is special if and only if one of the
of the following holds:

– one of the two critical points is persistently preperiodic along C;
– There is a persistent collision between the critical orbits, that is, there exists

(k, l) ∈ N2 such that P kc,a(c0) = P lc,a(c1) on C;
– C is the curve of cubic polynomials Pc,a commuting with Qc : z 7→ −c+z (which

is given by an explicit equation).

The proof is too long to be described in these notes, let us just say a few words on
how arithmetic equidistribution (again!) enters into play. For i = 0, 1, we define the
function Gi by Gi(c, a) = Gc,a(ci), which again admit adelic versions. Since C admits
infinitely many post-critically finite parameters, Yuan’s theorem applies to show that
they are equidistributed inside C. Now there are two parameter height functions on
C, one associated to c0 and the other one associated to c1. Since post-critically finite
parameters are of height 0 relative to both functions, we infer that the limiting mea-
sure must be proportional to both ∆(G0|C) and ∆(G1|C), thus ∆(G0|C) = α∆(G1|C)
for some α > 0. This defines a first dynamical relation between c0 and c1, which after
some work (which involves in particular equidistribution at finite places), is promoted
to an analytic relation between the ci, and finally to the desired dynamical relation.

We give a more detailed argument in a particular case of Theorem 9.2, which had
previously been obtained by Baker and DeMarco [3]. We let Pern(κ) be the algebraic
curve inMPcm

3 defined by the property that polynomials in Pern(κ) admit a periodic
point of exact period n and multiplier κ.

(3)Note added in April 2020: Favre and Gauthier have recently obtained a classification of special

curves in spaces of polynomials of arbitrary degree.
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Theorem 9.3 (Baker-DeMarco [3]). — The curve Per1(κ) in MPcm
3 is special if

and only if κ = 0.

The same result actually holds for Pern(κ) for every n ≥ 1 by [22, Thm B].

Proof. — The “if” implication is easy: Per1(0) is the set of cubic polynomials where
some critical point is fixed. Consider an irreducible component of Per1(0), then one
critical point, say c0 is fixed. We claim that c1 is not passive along that component.
Indeed otherwise by Theorem 8.3 it would be persistently preperiodic and we would
get a curve of post-critically finite parameters. So there exists a parameter λ0 ∈
Per1(0) at which c1 is active, hence by Proposition 7.3 we get an infinite sequence
λn → λ0 for which c1(λn) is preperiodic. In particular Per1(0) contains infinitely
many post-critically finite parameters and we are done.

Before starting the proof of the direct implication, observe that if 0 < |κ| < 1
by Theorem 2.5 a critical point must be attracted by the attracting fixed point so
Per1(κ) is not special. A related argument also applies for |κ| = 1, so the result is
only interesting when |κ| > 1. The proof will be divided in several steps. We fix
κ 6= 0.

Step 1: adapted parameterization. We first change coordinates in order to
find a parameterization of C that is convenient for the calculations to come. First we
can conjugate by a translation so that the fixed point is 0. The general form of cubic
polynomials with a fixed point at 0 of multiplier κ is κz + az2 + bz3 with b 6= 0. Now
by a homothety we can adjust b = 1 to get κz + az2 + z3. In this form the critical
points are not marked. It turns out that a convenient parameterization of C is given
by (fs)s∈C∗ defined by

fs(z) = κ

(
z − 1

2

(
s+

1

s

)
z2 +

1

3
z3

)
,

whose critical points are s and 1/s. Denote c+(s) = s and c−(s) = s−1. The
parameterization has 2-fold symmetry s↔ s−1.

Step 2: Green function estimates. We consider as usual the values of the
dynamical Green function at critical points and define G+(s) = Gfs(s) and G−(s) =
Gfs(s

−1). An elementary calculation shows that s 7→ fns (s) is a polynomial in s, with
the following leading coefficient

fns (s) =
κ

3

(κ
3

)3

· · ·
(κ

3

)3n−2 (
−κ

6

)3n−1

s3n +O
(
s3n−1

)
=
(κ

3

) 1
6 (3n−2−1) (

−κ
6

)3n−1

s3n +O
(
s3n−1

)
.

It follows that

G+(s) = Gfs(s) = lim
n→∞

log+ |fns (s)|(6)

= log |s|+ log
∣∣∣κ
6

∣∣∣1/3 + log
∣∣∣κ
3

∣∣∣1/6 +O(1)
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when s → ∞ (I am cheating here because the coefficient in O(s3n−1

) is not uniform
in n). On the other hand, since fns (s) is a polynomial, for |s| ≤ 1 we have |fns (s)| ≤
|fn1 (1)| so G+(s) ≤ G+(1) and it follows that G+ is bounded near s = 0. By symmetry
G− is bounded near ∞ and tends to +∞ when s→ 0.

Step 3: bifurcations. We now claim that c+ and c− are not passive along C.
Indeed as before otherwise they would be persistently preperiodic, contradicting the
fact that G+ and G− are unbounded. So we can define two bifurcation measures
µ+ = ∆G+ and µ− = ∆G− in C∗. Note that µ+ is a probability measure (because
the coefficient of the log in (6) equals 1) and its support is bounded in C (i.e. does
not contain∞) because the dynamical Green function is harmonic when it is positive.
A similar description holds for µ−, whose support is away from 0.

We saw in §8 that the bifurcation locus is the union of the activity loci of critical
points. It follows that it is contained in Supp(µ+) ∪ Supp(µ−) –this is actually an
equality by a theorem of DeMarco [16].

Step 4: equidistribution argument and conclusion. Assume now that
Per1(κ) contains infinitely many post-critically finite parameters. Note that the exis-
tence of a post-critically finite map in Per1(κ) implies that κ ∈ Q so Per1(κ) is defined
over some number field K. It can be shown that the functions G± (in their adelic
version) satisfy the assumptions of the Yuan’s arithmetic equidistribution theorem.
Thus if (sk)k≥0 is any infinite sequence such that c+(sk) is preperiodic, the uniform

measures on the Gal(K/K) conjugates of sk equidistribute towards µ+. Applying this
fact along a sequence of post-critically finite parameters we conclude that µ+ = µ−.
We want to derive a contradiction from this equality.

We have that Supp(µ+) = Supp(µ−) so this set must be compact in C∗. The
function G+−G− is harmonic on C∗ with G+(s)−G−(s) = log |s|+O(1) at +∞ and
0. Therefore G+−G−−log |·| is harmonic and bounded on C∗ so it is constant, and we
conclude that G+(s)−G−(s) = log |s|+C for some C. Now recall that the bifurcation
locus Bif is contained in Supp(µ+) ∪ Supp(µ−) = Supp(µ+), so Bif ⊂ {G+ = 0}.
Likewise Bif ⊂ {G− = 0} so Bif is contained in {G+ −G− = 0} which is a circle. On
the other hand it follows from Theorem 7.4 that for the family (fs)s∈C∗ , the Hausdorff
dimension of Bif is equal to 2. This contradiction finishes the proof.
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