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MATH. SCAND. 36 (1975), 159—-173

INTERSECTION OF MOVING CONVEX SETS
IN A NORMED SPACE

J. J. MOREAU

To Werner Fenchel on his 70th birthday

1. Introduction.

Let I be an interval of R; let ¢+» A(t) or £ » 4, denote a multifunction
(i.e. a set-valued mapping) from I into a metric space (E,d). When ¢ is
interpreted as the time the language of kinematics may be used and 4
is called a moving set in H.

Several recent papers concerning evolution processes or selection
properties (cf. [3], [4], [8], [9]) have drawn the attention to the concept
of the variation of such a multifunction in the sense of the Hausdorff
distance between subsets of (E,d).

A classical preliminary in the study of Hausdorff distance consists in
defining, for every two subsets C and D of (#,d), the non symmetric
écart
(1) e(C,D) = SqueoiﬂfyeDd(x,Z/)

= sup{d(z,D): zeC}

which we propose to call the metric excess of C over D. The considered sets
may be empty; let us agree that “sup’ and “inf”’ above are understood
in the sense of the ordered set R, =[0, + co]. The supremum of an empty
collection of elements of this ordered set is 0 and the infimum is +oco.
Thus ¢(@,D)=0 for any D, and e(C,@)= + o for any C'+@. One easily
proves that the écart e satisfies the triangle inequality; clearly ¢(C, D) =0
if and only if C is contained in the closure clD of D.

The Hausdorff distance between C and D is then

h(C,D) = max{e(C,D),e(D,C)},

possibly infinite; it is zero if and only if C and D have the same closure.
Let [s,t] be a compact subinterval of I; for every finite subdivision of
[s,t], namely
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160 J.J. MOREAU

put
V(S) = 37, MA(v;y), A(7;)) eR,,..

In accordance with classical terminology, the supremum of V(S) for S
ranging over all the finite subdivisions of [s,t] is called the variation of
the multifunction A over the interval [s,t]; it is denoted var(4; s,t).

If, for every [s,f]<1I, this variation is finite, let us say that A4 is of
finite variation in I; in this case there exists a non decreasing function
v:I - R (unique up to an additive constant), called the indefinite varia-
tion of A in I, such that for every [s,t]<r

var(4; s,t) = v(t)—v(s) .

Let us say that the multifunction A4 ¢s of continuous finite variation in I
if v is continuous in I.

The absolute continuity of A over a compact subinterval K of I is
defined, by means of Hausdorff distance, in the conventional way, i.e.
for every £> 0, there exists 7> 0, such that the implication

2ilti—al <n = X hA(a), A7) < &

holds for any finite family Jo;, ;[ of non overlapping subintervals of K.
This is equivalent to A being of finite variation in K, with the numerical
function v absolutely continuous. In this case v is almost everywhere
differentiable in K ; its derivative, denoted by 9, is a nonnegative element
of LA(K) which, kinematically speaking, may be called the speed function
of the moving set A.

The multifunction A is said to be Lipschitzian over I if there exists
A2 0 such that, for every o and 7 in I,

h(A(0),A(7)) £ Ao—1|.

This holds if and only if 4 is absolutely continuous on every compact
subinterval of I, with ¥ <A almost everywhere.

- Having recalled this we now turn to the main purpose of the present
paper: Suppose that the metric space X is actually a normed real linear
space, that K is a compact interval of R and that ¢ A(tf) and ¢~ B(t)
are two multifunctions from K into E with convex values. If these two
multifunctions are of continuous finite variation, respectively are ab-
solutely continuous, respectively are Lipschitzian, does the same hold
for the multifunction ¢~ 4(t)nB(t)? It will be shown that the answer is
yes under the addtional assumptions that A(¢) has, for every ¢, a non
empty intersection with the interior of B(f) and that diam A(¢)n.B(¢) <
+o0o. In this connection, for 2 fixed in E, the numerical function
t - d(z, A(t)nB(t)) is also studied.
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The proofs rest on various inequalities which may be of more general
interest. For instance they could be used in studying the retraction of the
multifunction ¢~ 4(t)nB(t), a concept similar to that of variation, in
the definition of which 4 is replaced by e (cf. [13]).

All this was motivated by the author’s theory of the evolution of
elastoplastic mechanical systems [7], [9], [12].

2. Summary.

Throughout the paper, the distance function d on E is supposed
finite-valued; but, as ¥ is not necessarily bounded, the diameters of
subsets or the expressions ¢ and % associated with two subsets may
take the value + co.

The suprema or infima of expressions involving d, e or &, will always
be understood in the sense of the ordering of R,=[0, +c]: In this
ordered set sup@=0 and inf@= + oo.

Sections 3 to 5 establish some technical inequalities, mainly concerning
the case where E is a real normed linear space. In particular, (4, E \ B)
is studied; clearly 4 meets the interior of B if and only if this is > 0.

The elementary facts about convex functions and their conjugates, a
theory initiated by W. Fenchel [2], used in these sections, may today be
considered as classical; the reader could refer to [5], [6] or [14]. (The latter
treatise, though restricted to finite dimensional spaces, supplies much of
the fundamental information.)

Sections 6 and 7 introduce what can be called the two metric semi-
continuities of multifunctions from an arbitrary topological space 7' into
a metric space K (here actually a normed space), i.e. continuity-like prop-
erties defined by means of the non-symmetric écart e. Other situations
involving these concepts can be found in [1], [13], [15]. Considering two
multifunctions ¢~ 4, and ¢+ B, from 7' into the normed space E, with
convex values and possessing such a semi-continuity at the point se T,
it is proved that the assumption A nint B+ @, with diamA nB < oo,
ensures the same semi-continuity for ¢ 4,nB,. This yields also semi-
continuity properties, in the classical sense, for the numerical functions
t diamA,nB, and t - e(4,, E\ B)).

Section 8 makes use of all what precedes to answer the question for-
mulated in the introduction. The final section 9 shows that, in what
concerns the study of the numerical function ¢ d(x,4,nB), with x
fixed in E, the boundedness assumption on 4,nB, may be dropped.

All this reproduces, with some improvements, most of the material
formerly presented in two multigraph seminar reports [10]; short sum-
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162 J.J. MOREAU

maries appeared in [11] and [12] (to which a correction must be brought:
In the formulation of what corresponds to paragraph 4 below, the as-
sumption int B,+ @ had been forgotten).

3. Diameters.
Let A be a subset of a metric space (E,d); the diameter of 4, i.e.

diam4 = sup{d(x,y): vred,ye A}

takes its value in R, =[0, + c0]. As already stipulated such a supremum
is understood in the sense of the ordering of R, so that diam@ = 0.

If A’ denotes another subset of E, one has, with the definition (1) of
the excess e,
(2) diamA4’ < diam A4 +2e(4',4) .

In fact, this inequality is trivial when 4 or A4’ is empty. Otherwise let
x’ and y’ be elements of A’ and let ¢ > 0; there exist x and y in 4 such that

d(z',x) < d(',A)+¢, d(y',y) < d(y',4)+e.

Using the distance inequality for the chain of points 2/, x, y, ¥, then
taking suprema for ' and y' ranging over A’ one finally obtains

diam A’ < diam A + 2¢(4',A)+ 2¢ .

Since ¢ is arbitrary this proves (2).
In a similar way the following inequality can be established:
For everyae 4 and be E

(3) d(a,b) < diam A +d(b,4) .

4. Balls contained in convex sets.

If (E,d) denotes an arbitrary metric space and B a subset of E, the
open ball with center a and radius g is contained in B if and only if
e <d(a,E \ B). One concludes that, if A denotes another subset of E, the
following equivalence holds

(4) AnintB + @ < ¢(4,E\B) > 0.

From now on let us suppose that E 18 a real normed linear space. Let F
be its dual; in both spaces the norm will be denoted by ||-||.

If B, and B, are two nonempty convex, not necessarily closed, subsets
of E, their respective support functions y, and y, are sublinear functions
from F into ]— oo, + 0], taking the value zero at the origin. An expression
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of e(B,,B,) in terms of p; and y, is easily found (cf. [13]) and, in partic-
ular, denoting by o the unit sphere of F, one obtains

(5) Yyeo: yi(y) < yay)+e(By, By) .

Lemma. Let B, and B, denote two convex subsets of the normed space E,
with int B, + @ and let a € B ; then

(6) d(a, B\ By) £ d(a,E\B;)+e(By,B,) .

Proor. In order to simplify the calculations, assume that a=0. Sup-
pose B; nonempty, since otherwise the inequality is trivial.
Let ¢ be a real number such that

(7) 0 <o £d(0,E\By);

this means that the open ball with center 0 and radius g is contained in
B;. As the support function of the ball is y & g|ly||, this inclusion implies

VyeF: ollyll £ yi(y)

or equivalently, as y, is positively homogeneous,

(8) Vyeo: o = n(y).

Let us make use now of inequality (5) and suppose e(B;,B,)< + o
(otherwise the lemma is trivial); then (8) implies

Vyeo: g—e(By,B,) < po(y) -

Again, let us interpret this as an inequality between two support func-
tions, therefore equivalent to the relation of inclusion between the cor-
responding closed convex sets. Suppose first o —e(B,,B,)>0; the pre-
ceding inequality means that the closed ball centered at the origin with
this radius is contained in clB,. By an elementary property of convex
sets in topological linear spaces, the hypothesis int B, + @ ensures cl B, =
clint B,; thus the corresponding open ball is contained in B,, i.e.

(9) o—e(By,B,) £ d(0,E\B,).

This, on the other hand, is trivial in the case ¢ —e(B;, B,) 0. The fact
that (7) implies (9) proves the lemma.

ProrosiTiON. Let B, and B, denote two convex subsets of the normed
space E, with int B,+ @, and let A, and A, denote arbitrary subsets of E.
Then
(10) e(4y, EN\B,) < e(4,y, B\ B,)+e(d,,4,) +e(By, By) .
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Proor. Taking the suprema of both members of (6) for a ranging over
A, yields
(4, E\B,) < e(A;,E\ B,)+e¢(By,B,) .

Now, as e satisfies the triangle inequality, one has

e(41, E\B;) = e(4,,4,)+e(45, E\By) .

5. Main inequality.

LemMma. Let X be a real topological linear space and Y its topological
dual. Let f and g denote two convex functions defined on X, with values in
]— o0, + o0]; suppose there exists a point a € X at which both functions take
finite values and that one of them is continuous at this point. Then, denoting
by * their conjugate functions (i.e. the polar functions in the terminology of
[6]) defined on Y, the function (f+g)* equals the infimal convolute of f*
and g*.

If A and B are two convex subsets of X such that Anint B + @, the support
Junction of AnB equals the infimal convolute of the support functions of
A and B.

Proor. By the definition of polar functions, the continuous affine
function x - (x,y) —r, with y € Y and r € R is a minorant, for instance of
J if and only if r = f*(y). By the definition of the infimal convolute f* v g*

(f* v ¢*)(y) = inf{f*(u)+g*(v) : u+v=y}
the assumption
r > (f* v g*)(y)

implies the existence of s and ¢ in R, and of 4 and v in Y, such that
r=s8+t, y=u+v, 8 > f*¥u), t > g*(v).

Then the affine functions {-,u)—s and {-,v) —¢ are minorants of f and g,

respectively; consequently (-,y)—r is a minorant of f+g¢, thus

(11) rz (f+9)*) .

This proves f*vg*=(f+g)*.
To establish the reverse inequality, we are going to prove that (11)
implies
rz (f*v g .

This will be done by showing that every continuous affine minorant m
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of f+¢ equals the sum of continuous affine minorants of f and g. In fact,
for such an m one has
YexeX: flx) = m(x)—g(x) .

Therefore, in the topological linear space X x R the two convex sets

{(x,r)e X xR: f(x)<r}
and
{(x,r)e X xR: r<m(z)—g(z)}

have an empty intersection. As f possesses a point of continuity the first
of these sets possesses a nonempty interior; by a standard separation
theorem it follows that there exists a closed hyperplane separating these
two subsets of X x R. The fact that both sets meet the line {(z,r):z=a},
and again the continuity of f at the point a, ensures that this hyperplane
is “nonvertical”’, i.e. it is the graph of an affine continuous functions
n: X — R such that
m—g =nsf.

Thus n and m — n are continuous affine minorants of f and g, respectively;

their sum equals m.

The last part of the lemma is a special case of what precedes: Take as
Jf and g the respective indicator functions of 4 and B (i.e. the functions
taking the value zero on the sets and + oo outside).

ProrosirioN. Let A and B denote two convex subsets of the mormed
space E. If there exists an open ball with radius o > 0 contained in B, whose
center a belongs to A, one has

(12)  VzeE: dx,AnB) £ (1+o-Yw—a|)(d(x,4)+d(x,B)).

Proor. Let ¢ and y denote the support functions of 4 and B, defined
on the dual F of E. Let x € E; standard arguments from the theory of
conjugate convex functions yield

d(z,4) = sup{(z,upy—g(u): ueF, |u|=<1}
and a similar expression for d(x,B), hence
d(z,4) +d(x,B) = sup {(x,u+v)—g(u)—y@©): [[ulS1, |b[=1}.
As the function 0 defined on F x F' by
0(u,) = <2, u+v)—@(u)—y(v)

is positively homogeneous, one has equivalently, for every k>0,
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(13) k(d(x,A)+d(x,B)) = sup{0(u,v): |lu| Sk, ||[v]|<k}.

Let us make calculation easier by supposing a translation performed in
E such that a=0; in that case the hypothesis a € 4 implies

(14) VYueF: pu) 20

and the hypothesis that the open ball with center a=0 and radius g is
contained in B implies

(15) VveF: y(v) 2 o|v| -

By the lemma, the support function of AnB is the inf-convolute ¢ vy,
thus
d(x,AnB) = sup{(z,w)—(pvy)(w): |w|=1}

= sup {sup {(z, w) — g(w) —y(v) : utv=aw}: |w| <1}
sup{6(u,v) : Jju+v]<1}.

I

Now, in view of (14) and (15) one has the implication
lutoll = 1 = 0(u,0) = [l —eloll .

Therefore, when |[v||> |z||/o, the value of O(u,v) is less than 6(0,0)=0;
hence,
d(x,AnB) = sup{0(u,v) : [u+vl|=1, |v] <|zllfe} -
But
lwtoll £ 1, Joll < llelife = lull = 1+il/e -

After putting k=1 +|jz||/e in (13), the comparison of the sets over which
the suprema of 0(u,v) are taken yields

d(x,AnB) = (1+|ill/e)(d(x,4) +d(z, B));
since a=0, this is (12).

CoroLLARY. Let A and B denote two convex subsets of the normed space
E; let « and o be real numbers such that

(16) 0<ax<pg<edE\B).

Then, for every x € E such that

(17) d(z,A)+d(z,B) £ «,

one has

(18) dw,AnB) < ST EmANE G A)+d@,B)) .

o0—x
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Proor. In view of (16) there exists a € A satisfying with ¢ the hypothe-
sis of the proposition. On the other hand, similarly to inequality (3),

lx—al £ diamAnB+dx,AnB).
Therefore inequality (12) ensures
d(x,AnB) < ( 1+pYdiamAnB+d(x, 4 nB)))(d(x,A) +d(z,B)) .

Denoting by s the left member of (17) and by r the left member of (18),
this is equivalent to
or £ (o+diamAnB+r)s.

If x satisfies (17) one has p—s=p—a >0, hence

< o+diamA4 n B

o+diamA4 n B
8 8
0—s$ 0—«

IA

2

which is (18).

REMARK. When F is a Hilbert or pre-Hilbert space some more precise
inequalities may be obtained by using trigonometrical arguments (see
[10]); they may be of use, for instance, in the study of multifunctions
with discontinuous finite variation.

6. First semi-continuity.

ProPOSITION. Let T denote a topological space and let t > A, and t - B,
be two multifunctions from T into the normed space E, with convex values.
Let s €T be such that

diamA4,nB, < +o,

(19) A,nintB; + @,

(20) lim, ,  e(4,4,) =0,
(21) lim, ,.e(B;,B,) = 0.
Then

(22) lim, , e(4,nB;, A,nB,) = 0

and the two functions t - diam 4,n B, and t - e(A, E\ B,) are upper-semi-
continuous at the point s.

Proor. In view of assumption (19) there exist two real numbers «
and g such that 0<x<p<e(d,E\B,). By assumptions (20) and (21)
there exists a neighborhood V of s in 7' such that, for every f in V one
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has e(4,4,)<«/2 and e(B,,B,) < «/2. Hence, if t € V and z € 4,nB, one
has d(z,4;)+d(x,B,) < «. Therefore, using (18) we get
+diam4,n B
d(w,4,nB,) =TT 04, 4,) +o(B, By) .
0—n

Taking the supremum for x ranging over 4,nB,, one obtains an upper
bound fore(4,n B, 4 ,nB,) which shows that (22) followsfrom (20) and (21).

The upper semi-continuity of the function ¢+ diam4,nB, is a conse-
quence of the inequality (2), namely

diamA4,n B, £ diamA4,n B,+2¢(4,nB;, A,nB,) .

The upper semi-continuity of the function ¢+ e(4,, E \ B,) (trivial in the
case where e(4,, E \ B,)= + ) follows from the proposition of section 4,
which implies

e(AhE \Bl) = e(As’E A Bs) + e(At’As) +e(Bt7Bs)

ReMARK. Concerning, for instance the multifunction ¢+ A, observe
that assumption (20) holds in particular when this multifunction is
upper semi-continuous at the point s in the following classical sense: For
every open set {2 containing 4, there exists a neighborhood V of s in T'
such that ¢ e ¥V implies 4,<Q. Furthermore, under the additional as-
sumption that 4, is compact this upper semi-continuity is equivalent
to (20).

7. Second semi-continuity.

PRrOPOSITION. In the same framework as in the preceding section, let the
hypotheses (20) and (21) be replaced by

(23) lim, , je(4,,4,) = 0,
(24) Hml——)Se(Bth) =0.
Then

and the two functions t+ diam 4,nB, and ¢+ e(A4,, E\ B,) are lower semi-
conttnuous at the point s.

Proor. As the assumption 4 nint B, @ still holds, there exist r>0
and a € 4, such that d(a, E \ B,) > r. The assumptions (23) and (24) yield
a neighborhood V of s in T, such that, for every te V,

e(As’At) < i')‘, e(Ba,Bl) < i" .
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Thus, for each ¢ € V, one has d(a,4,) < }r and this ensures the existence
of a point g, in 4, such that |j@a —ay| < 1r. On the other hand, inequality
(6), rewritten as

d(a, E\ B,) < d(a,E\ B))+e(B,,B,)
implies that, if te V,

d(a,EX\B)) > r—e(B,,B,) > §r.

On the other hand

d(a,E\B)) £ |la—a|l+d(a,E\ B

thus d(a, £\ B,) = ir. Therefore, inequality (12) yields, for every te V,
Ve E: dz,4,nB;) £ (14 2r-Yjx—aj)(d(x,4,) +d(z,B)) .

If x € A,nB; one has
lo—al < le—all+la—a < diamd, n By+ir
hence finally, for every te V,
e(d,nB,, AinB) £ (3+2rtdiamd,nB,)(e(d,, 4;)+e(B,, By)) .

This shows that (25) follows from (23) and (24).
The lower semi-continuity of ¢~ diam A,nB, results from inequality
(2) rewritten as

diamA,n B, £ diamA4,n B,+2¢(4,nB,, 4,nB)) .

The lower semi-continuity of ¢ - e(4,, E \ B,) results from inequality (10)

rewritten as
e(A,E\B,) < e(4,E\B)+e(4,,4)+e(B,B,) .

RemARK. Concerning, for instance, the multifunction ¢~ 4,, observe
that assumption (23) implies that this multifunction is lower semi-continu-
ous in the following classical sense: For every open set 2 meeting 4,,
there exists a neighborhood V of s in 7' such that ¢ € V implies 4,nQ2 +@.

8. Variation over a compact interval.

ProrosiTION. Let K be a compact interval of R; let t A, and t - B,
be two multifunctions from K into the normed space E, with convex values;
it is supposed that, for every t € K,

dia:mAtﬂB, < +00, A,ﬂintB, ='= Q .
Then, if both multifunctions are of continuous finite variation in K (resp.

are absolutely continuous, resp. are Lipschitzian), so s also the multifunc-
t’iO’n t A ‘ﬂBt .
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Proor. The assumption involves that both multifunctions are con-
tinuous in the sense of Hausdorff distance & which majorizes the écart e;
therefore the propositions of sections 6 and 7 can be applied. This shows
that the finite-valued function ¢~ diam 4;n B, is upper semi-continuous
at every point of the compact interval K, thus majorized by some finite
constant D. Similarly the function ¢~ e(4,,  \ B,), with strictly positive
values, is lower semi-continuous on K, thus minorized by some constant
0> 0; let us choose « in ]0,g[.

The indefinite variations of the two multifunctions are continuous
finite numerical functions on K, hence uniformly continuous. Conse-
quently there exists p> 0 such that for any two points ¢ and 7 of K, the
condition |o— 7| < p ensures that k(4,,4,) and k(B,, B,) are majorized by
3a <}o. When these majorations hold, by putting k=p+ Dfo—«, in-
equality (18) yields

Voed,nB,: dx,A,nB,) < kd(x,A,)+d(z,B,)) .

After taking the suprema for x ranging over A NB,, one obtains an
inequality concerning the écart e; the same holds when o and v are
exchanged; hence finally

h(A,nB,, A,nB,) £ k(h(4,,4,)+B,,B,)).

In view of this, the definition of the variation of multifunctions over a
compact subinterval [s,t] of K will be applied, under the precaution of
considering only sufficiently fine subdivisions of this subinterval, in
order that the distance between successive points be less than p. This
yields

var(AnB; s,t) £ k(var(4; s,t)+ var(B; s,1))

which establishes the proposition.

A useful special case consists in taking as B, a fixed open ball g:

CoroLLARY. Let K be a compact interval of R; let t - A, be a multifunc-
tion from K into the normed space E, with convex values and let § denote a
Jized open ball such that, for every t in K, one has AnB+D. Then, if
t o A, is of fintte continuous variation (resp. 18 absolutely continuous, resp.
18 Lipschitzian) so is also the multifunction t—~ A4,nB.

ReMARk. For an interval I possibly non-compact, the above propo-
sition may be used from a local standpoint: If the multifunctions ¢ 4,
and ¢ - B, are of finite continuous variation in I and if s € I is such that

diam4,nB, < +c0 and A4,nintB, + O,



INTERSECTION OF MOVING CONVEX SETS IN A NORMED SPACE 171

sections 6 and 7 yield a compact interval, neighborhood of s in 7, to which
the proposition can be applied.

9. Distance function.

Let = be a fixed point of £. By elementary inequalities, the semi-
continuity properties of the multifunction ¢~ 4,n B, possibly established
by applying the foregoing propositions, as well as the properties concern-
ing the variation of this multifunction, imply similar properties for the
numerical function ¢ - d(x, 4,0 B;). The purpose of the present section is
to show that the conclusions concerning this numerical function may
actually be obtained in a slightly more general framework, free from the
boundedness assumption precedingly made about the intersection 4,nB,.

ProPOSITION. Let T denote a topological space and let t» A, and ¢t~ B,
be two multifunctions from T into the normed space E, with convex values.
Let s € T such that A;nintB,+ @ and

lim, , ,e(4,4,) = 0 (respectively lim, , ,e(4,,4,)=0)
lim, , .e(B,B,) = 0 (respectively lim, , ,e(B,,B,)=0).

Then, for every x € K, the function t - d(x, A,nB,) is lower semi-continuous
(resp. upper semi-continuous) at the point s.

PROOF OF THE LOWER SEMI-CONTINUITY. As A4,nB, is nonempty,
d(z,A,nB,) is finite. We have to prove that, for every ¢ > 0, there exists
a neighborhood V of s in T ensuring the implication

(26) teV = d(x,A,nB) = d(x,4,nB,)—¢.

Let us choose an open ball 8, with center x and large enough to meet
A nint B,. To establish (26) it suffices to proves the similar implication
where the considered sets are replaced by their intersections with §. In
fact, if A,nB;np+ D, one has

d(x,A,nBtﬂﬂ) = d(x,AtﬂB‘)

and if 4,nB;np=0A, the distance d(z,4,nB;) is greater than or equal to
the radius of g which itself is greater than d(z,4,nB,). Put B/ =B,np
and B,'=B,ng; the triangle inequality concerning the écart e, applied
to the three sets {x}, A,nB, and 4,nB,’ yields

(27) d(x,A,nB,") < d(x,4,nB;)+e(4,nB;,A,nB,).
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The results of section 6 hold for the pair of multifunctions ¢+~ B, and
t e B, thus
lim,  .e(B/,B,) = 0.

As these results hold again for the pair of multifunctions ¢~ A4, and
t B/, one has
lim, , e(4,nB/,A,nB,) = 0.

In view of (27) this proves the expected implication.

PRrROOF OF THE UPPER SEMI-CONTINUITY. The arguments of section 6,
at their beginning, do not make use of the boundedness of A,nB,: In
the present case they still yield a real number >0, a point a € 4, a
neighborhood V of s in T' such that for every ¢ € V there exists a,€ 4,
with |la —a,| < }r and d(a, E \ B)) = }r. The point a, belongs to 4,nB,,
thus

d(z,4,0B) < lp—a]| < lw—af+a—a] < |e—af+}r

which means that the open ball § with center  and radius |jx—al|+ }r
meets 4,nB,. Consequently, for every te V,

(28) d(x,A,nB,) = d(x,4,nB,np) .

The results of section 6 apply to the pair of multifunctions ¢~ B, and
t - B, thus by putting B/ =B,np

lim, , e(B,,B/) = 0.

The same results apply also to the pair ¢ A4, and ¢+ B,’, with the

conclusion
lim, , ;e(4,nB,,4,nB/) = 0.

Then, in view of (28), the upper semi-continuity of ¢ = d(z, 4,n B,) follows
from the triangle inequality

d(z,A,nB/) < d(x,A,nB,)+e(4,nB,, A4,nB/).

As an application of this proposition, let us indicate:

CorOLLARY. Let K be a compact interval of R; let t - A, and t - B, be
two multifunctions from K into the normed space E, with convex values;
let x be a point of E. It is supposed that for every t € K one has 4,nint B,+ @.
Then, if both multifunctions are of finite continuous variation on K (resp.
are absolutely continuous, respectively are Lipschitzian) so 18 also the func-
tion t d(z,4,nB,).
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Proor. The above proposition ensures that this function, with finite
values, is upper semi-continuous on K, thus strictly majorized by some
constant D > 0. For every ¢ in K, the open ball 8 with center « and radius
D meets 4,nB,, thus meets the interior of B,. The results of section 8
apply to the pair of multifunctions ¢+ 4, and ¢t~ B,'=B,n8; therefore
the multifunction ¢~ 4,nB, is of continuous finite variation (resp. is
absolutely continuous, resp. is Lipschitzian). Then the conclusions con-
cerning the function ¢e d(x,4,nB,)=d(x,4,nB,) follow from the in-
equality

|d(x,4,.nB,")—d(x,A,nB,)| £ h(4A,nB,, A,nB,)

for every o and v in K.
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