

Protein–Protein Interaction: Tandem Affinity Purification in Bacteria

Julie Viala, Emmanuelle Bouveret

▶ To cite this version:

Julie Viala, Emmanuelle Bouveret. Protein–Protein Interaction: Tandem Affinity Purification in Bacteria. Bacterial Protein Secretion Systems Methods and Protocols , 2017, Methods in Molecular Biology. hal-01788459

HAL Id: hal-01788459 https://hal.science/hal-01788459v1

Submitted on 9 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Protein-protein interaction: Tandem Affinity Purification in bacteria

- 2 Julie P.M. Viala and Emmanuelle Bouveret
- 3
- Aix-Marseille University CNRS UMR7255 Institut de Microbiologie de la Méditerranée,
 Laboratoire d'Ingénierie des Systèmes Macromoléculaires, 31 Chemin Joseph Aiguier, 13009
 Marseille, FRANCE
- 8 Correspondence: jviala@imm.cnrs.fr
- 9 Running head: TAP in bacteria

11 Summary

12 The discovery of protein-protein interaction networks can unveil protein complex(es) forming 13 cellular machinerie(s) or can reveal component proteins of a specific cellular pathway. 14 Deciphering protein-protein interaction networks therefore participates to a better 15 understanding of how the cell functions. Here, we describe the protocol to perform Tandem 16 Affinity Purification (TAP) in bacteria that enables the identification of the partners of a bait 17 protein under native conditions. This method consists in two sequential steps of affinity 18 purification, using two different tags. For that purpose, the bait protein is translationally fused 19 to the TAP-tag, which consists in a calmodulin binding peptide (CBP) and two IgG binding 20 domains of Staphylococcus aureus protein A (ProtA) that are separated by the Tobacco Etch 21 Virus (TEV) protease cleavage site. After the first round of purification based on the binding 22 of ProtA to IgG coated beads, TEV protease cleavage releases CBP-tagged bait-protein along 23 with its partnersfor a second round of purification on calmodulin affinity resin and leaves 24 behind protein contaminants bound to IgG. Creating the TAP-tag translational fusion at the 25 chromosomal locus allows detection of protein interactions occurring in physiological 26 conditions.

27

28 Keywords

Protein-protein interaction, protein complex, affinity purification, TAP, CBP, ProtA, TEV, *E. coli*, *Salmonella*

32

33 **1. Introduction**

34 At the end of the nineties, mass spectrometry combined with genome sequencing rendered 35 possible the rapid and systematic identification of all the proteins present in a purified sample. 36 However, a protocol amenable to standardized and systematic purification of protein 37 complexes without any prior knowledge was missing. In 1999, the laboratory of B. Séraphin 38 in EMBL proposed such a generic procedure for the identification of protein complexes in 39 yeast [1]. This permitted the subsequent description of the full interactome of yeast [2, 3]. 40 This method has since been used in a variety of organisms. We have first described its use in 41 bacteria [4], and it was soon after used to obtain the first interactome of E. coli [5].

42 One general principle of the TAP method is to use 2 successive steps of affinity 43 purification to lower as much as possible the amount of contaminants, together with an 44 elution preserving the interactions (without changing much the buffer chemical properties) 45 between these 2 steps. Specifically, the original TAP tag consists of 2 repeats of the IgG 46 binding domain of Protein A from Staphylococcus aureus, and a Calmodulin Binding Peptide, 47 separated by a TEV protease cleavage site (Fig. 1). However, it has to be noted that any 48 combination of affinity tags is potentially usable. Published examples are the GS-TAP 49 (Protein G and Strep tag), the SPA tag (CBP and 3Flag), the SF-TAP (Strep-tag II and Flag 50 tag), or the HB tag (6Histidine and Biotin) (see [6] for specific references). The second 51 general principle of the TAP procedure is to use physiological expression of the recombinant 52 tagged protein. This needs to be adapted to each organism of interest. For E. coli and closely 53 related bacteria, Lambda Red based recombination [7] combined with specific dedicated SPA 54 and TAP cassettes [8], makes it very easy to introduce the tag at the 3' extremity of the gene 55 on the chromosome to obtain the physiological production of a recombinant protein tagged at its C-terminus (Fig. 2). If more convenient, however, TAP tag translational fusion can also be
expressed from a plasmid (Fig. 3).

58 We present here the TAP protocol that has been successfully used in our institute to purify 59 protein complexes of E. coli, Salmonella, and Bacillus subtilis [4, 9, 10, and unpublished 60 results]. A detailed protocol for the SPA purification has been published before [11]. In order 61 to isolate a protein complex by TAP, a strain producing a recombinant bait protein tagged 62 with the TAP tag has to be constructed first (Fig. 1, step 1). Then, a soluble extract is prepared 63 from a sufficient volume of bacteria (about 500 ml). The complex is enriched by a first step of 64 affinity chromatography on IgG beads (Fig. 1, step 5). After washes, TEV protease is added, 65 which cleaves the specific site located between the CBP and ProtA domains, resulting in the 66 elution of the specifically bound material (Fig. 1, step 6). This material is purified a second 67 time by affinity of the CBP tag with Calmodulin beads (Fig. 1, step 7). After washes, the 68 purified complex is eluted by adding EGTA that chelates the calcium required for the 69 CBP/Calmodulin interaction (Fig. 1, step 8). The totality of the purified material is analyzed 70 on SDS-PAGE. Bands detected by Coomassie blue or Silver staining are cut from the gel and 71 analyzed by mass spectrometry.

72 This consists in the basic TAP procedure. It has to be noted that this procedure can be 73 amenable to adaptation or improvements depending on the specific needs. For example, the 74 extensive washes and the duration of the procedure only allows for the recovery of relatively 75 stable complexes. For the detection of more transient or unstable interactions, a cross-linking 76 procedure can be applied before purification [12]. This might be helpful also for the 77 purification of membrane complexes, where modifications have to be made in the protocol for 78 solubilization of the membranes [3]. Finally, it is possible to play with the 2 tags to gain 79 information on the organization of the complexes. Indeed, in some cases, one bait protein 80 might participate to the formation of several types of complexes. To purify one specific type of complex it is therefore possible to put the two tags on 2 distinct proteins that are both members of the desired type of complex (split tag method [9, 13]). Alternatively, it is possible to perform the subtraction method that consists in eliminating the unwanted complex(es) during the first purification step, by leaving it, for example, on IgG beads thanks to a partner protein of the bait that belongs to the unwanted complex and bears a non cleavable protA tag. The desired complex, made of untagged partner proteins, will elute with the bait after TEV protease cleavage [13, 14].

To our knowledge, the TAP procedure has not been used so much for the characterization of secretion systems in bacteria, certainly due to the difficulty of working with integral envelope components. However, it has proved to be powerful to identify the target of effectors of *Legionella* T4SS or *Pseudomonas* T6SS in eukaryotic host cells [15, 16]. In addition, as mentioned above, it is amenable to several improvements that might permit to identify unsuspected partners of the secretion machineries in the bacterium.

94

95 **2. Materials**

96

2.1 Media, stock solutions and reagents

97 1. 2YT: 16 g Yeast Extract, 10 g Tryptone, 10 g NaCl, make up to 1 L with distilled
98 water. Autoclave and store at room temperature.

2. LB: 5 g Yeast Extract, 10 g Bactotryptone, 10 g NaCl, make up to 1 L with distilled
water. Autoclave and store at room temperature.

101 3. PBS: 8 g NaCl, 0.2 g KCl, 0.2 g KH₂PO₄, 2.9 g Na₂HPO₄, make up to 1 L with
102 distilled water. Autoclave and store at room temperature.

103 4. 1 M Tris pH 8 stock solution: Dissolve 121 g of Tris base in 800 ml of distilled water,
104 make up to 1 L with distilled water once the pH has been adjusted to 8 with HCl. Autoclave
105 and store at room temperature.

5. 5 M NaCl stock solution: Dissolve 292 g NaCl in 1 L of distilled water. Autoclave and
store at room temperature.

108 6. 10 % Nonidet P-40 (NP-40 or Igepal): Mix 10 ml NP-40 to 90 ml of distilled water,
109 0.2 μm filter and store at room temperature (note 1).

110 7. 0.5 M EDTA (C₁₀H₁₄N₂Na₂O₈. 2H₂O): Dissolve 18.6 g of EDTA to 80 ml of distilled 111 water, make up to 100 ml with distilled water once the pH has been adjusted to 8 with 112 10 N NaOH (note 2). Autoclave and store at room temperature.

113 8. 1 M DTT: Dissolve 1.54 g in 10 ml distilled water. Store at -20°C.

114 9. 1 M magnesium acetate (Mg(CH₃COO)₂. 4H₂O): Dissolve 10.7 g magnesium acetate 115 in 50 ml distilled water, 0.2 μ m filter and store at room temperature.

116 10. 1 M imidazole: Dissolve 3.4 g imidazole to 50 ml distilled water, $0.2 \mu m$ filter and 117 store at -20°C.

118 11. 1 M CaCl₂: Dissolve 11.1 g to 100 ml distilled water. Autoclave and store at room
119 temperature.

120 12. 1 M EGTA: Dissolve 19 g to 40 ml distilled water, make up to 50 ml with distilled 121 water once the pH has been adjusted to 8 with 10 N NaOH (note 2), 0.2μ m filter and store at 122 4°C.

123 13. 0.1 M PMSF: Dissolve 87.1 mg PMSF to 5 ml isopropanol. Prepare 1 ml aliquots and
124 store at -20°C (note 3)

- 125 14. 16 mg/ml sodium deoxycholate: Dissolve 160 mg sodium deoxycholate to 10 ml water
- 126 and $0.2 \,\mu$ m filter. Store at room temperature.
- 127 15. β -mercaptoethanol (stock is at 14.3 M)
- 128 16. Liquid Trichloroacetic acid (stock is 100 %)
- 129 17. Acetone
- 130 18. Ethanol
- 131 19. Peroxidase Anti-Peroxidase antibody (PAP) (Sigma, # P1291)
- 132 20. AcTEVTM protease (Invitrogen, # 12575015)
- 133 21. IgG sepharose 6 fast flow (GE Healthcare, # 17-0969-01)
- 134 22. Calmodulin affinity resin (Agilent, # 214303)
- 135 23. Disposable chromatography columns (Bio-Rad, # 7311550)
- 136

137 <u>2.2 Buffers</u>

- 138 1. Protein A binding buffer : 10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP-40
- 139 Approximately 50 ml will be required per sample per experiment.
- Prepare 500 ml containing 5 ml of 1M Tris-HCl pH 8, 15 ml of 5 M NaCl, 5 ml of
 10% NP-40 and 475 ml of distilled water. Store at 4°C.
- 142 2. TEV cleavage buffer: 10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP-40,
 143 0.5 mM EDTA, 1 mM DTT

144	Approximately	1.5 ml will be req	uired per sam	ple per experiment.
-----	---------------	--------------------	---------------	---------------------

145	Prepare 100 ml containing 1 ml of 1M Tris-HCl pH 8, 3 ml of 5M NaCl, 1 ml of 10% NP-40,
146	100 μ l of 0.5 M EDTA, 100 μ l of 1 M DTT (note 4) and 95 ml of distilled water. Store at 4°C.
147	3. Calmodulin binding buffer: 10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP-40,
148	1 mM magnesium acetate, 1 mM imidazole, 2 mM $CaCl_2$, 10 mM β -mercaptoethanol
149	Approximately 40 ml will be required per sample per experiment.
150	Prepare 500 ml containing 5 ml of 1M Tris-HCl pH 8, 15 ml of 5M NaCl, 5 ml of 10% NP-40,
151	500 μ l of 1 M magnesium acetate, 500 μ l of 1 M imidazole, 1 ml of 1 M CaCl ₂ , 348.5 μ l of
152	14.3 M β -mercaptoethanol (note 5) and 473 ml of distilled water. Store at 4°C.
153	4. Calmodulin elution buffer: 10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP-40,
154	1 mM magnesium acetate, 1 mM imidazole, 2 mM EGTA, 10 mM β -mercaptoethanol
155	Approximately 1 ml will be required per sample per experiment.
156	Prepare 100 ml containing 1 ml of 1M Tris-HCl pH 8, 3 ml of 5M NaCl, 1 ml of 10% NP-40,
157	100 μ l of 1 M magnesium acetate, 100 μ l of 1 M imidazole, 200 μ l of 1 M EGTA, 69,7 μ l of
158	14.3 M β -mercaptoethanol (note 5) and 94.5 ml of distilled water. Store at 4°C.
159	5. TCA Washing Buffer: Mix 70 ml acetone, 20 ml ethanol, 5 ml 1 M Tris pH 8 and 5 ml
160	distilled water. Store at 4°C.

161

162 <u>2.3 Equipment</u>

Centrifuge tubes and rotor compatible with spinning volumes of 250 ml, 10 ml and
 50 ml, at approximately 5 000 rpm, 15 000 rpm and 6 000 rpm, respectively.

- 165 2. Sonicator, French press or Cell disruptor
- 166 3. Disposable chromatography columns of 10 ml

167 4. Wheel

168

3. Methods

170 <u>3.1 Preamble</u>

171 Construction of the TAP-taged protein translational fusion

A translational fusion between the protein of interest and TAP tag, either at the chromosomal locus or on an appropriate plasmid has to be constructed. Translational fusion at the chromosomal locus will allow a physiological expression, while constructing the translational fusion on a plasmid may be more amenable.

176 A C-terminal TAP tag translational fusion can be introduced at the chromosomal locus 177 using the λ red recombination system [7]. To prepare the appropriate PCR product, use pJL72 178 plasmid as template (this latter harbors a cassette made of the TAP tag and the kanamycine 179 resistance gene, Fig. 2A) [8], design a forward primer that contains, in the 5'-end, the 45 180 nucleotides that are immediately upstream the stop codon of the gene of interest, followed by 181 the sequence 5'-TCCATGGAAAAGAGAAG-3' (this sequence will hybrid to the CBP tag, 182 Fig. 2B) and design a reverse primer that contains at its 5'-end the reverse complement 45 183 nucleotides that are immediately downstream the stop codon of the gene of interest, followed 184 by the sequence 5'-CATATGAATATCCTCCTTAG-3' (Fig. 2A).

185	Alternatively, the sequence corresponding to the open reading frame of the gene of interest
186	can be cloned in the plasmid pEB587 [17] (Fig. 3A), which allows a N-terminal TAP tag
187	translational fusion (Fig. 3B) under the control of the PBAD arabinose inducible promoter.
188	
189	Verifying the expression of the TAP-tag translational fusion by western blot
190	Prepare a cytoplasmic or a crude protein extract (note 6), load 10 μ g of protein extract (or
191	proteins corresponding to a bacterial sample of 0.3 OD ₆₀₀ unit) on a SDS-PAGE and proceed
192	to transfer and western blot to verify production of the hybrid protein (note 7).
193	A one step western blot can be performed using PAP antibody (note 8) and using an
194	appropriate substrate to detect horseradish peroxidase activity. In our experience, the
195	detection of the tagged protein in crude extracts using this PAP antibody is mandatory for a
196	successful TAP purification.
197	
198	3.2 Protein cytoplasmic extract
199	1. Day 1 - Inoculate 10 ml of 2YT media with a bacterial colony and grow overnight at
200	37°C with shaking (note 6).
201	2. Day 2 - Dilute culture 1:100 in 500 ml LB and grow 5h30 at 37°C with shaking until
202	$OD_{600} \approx 2-3.$

203 3. Pellet bacteria by centrifugation 20 min 5 000 rpm at 4°C.

4. Wash once with cold PBS, transfer to 50ml centrifuge tubes, centrifuge again 10 min
6 000 rpm at 4°C, discard supernatant and freeze bacterial pellet with liquid nitrogen.

Keep frozen bacterial pellet at -80°C until you are ready to prepare cytosolic protein extractand proceed to Tandem Affinity Purification.

208 5. Day 3 - Resuspend frozen bacterial pellet with 10 ml of Protein A binding buffer
209 containing 0.5 mM PMSF (note 3).

210 6. Use sonication, French Press or Cell disruptor to break bacterial cells (note 9).

211 7. Centrifuge 30 min 15 000 rpm at 4°C and save supernatant, which is the cytoplasmic
212 protein extract.

213

214 <u>3.3 Tandem Affinity Purification</u>

From here, carry out all procedures with gloves to avoid contamination of your sample(s)with keratine.

Put 200 µl of IgG sepharose beads in a disposable chromatography column and wash
 by gravity with 5 ml of Protein A binding buffer.

2. *Binding of the Protein A tag to IgG sepharose beads*. After washing the beads, close 220 the bottom of the chromatography column and, using a pipette, transfer 9 ml of the 221 cytoplasmic protein extract. Close the top of the column and put on a wheel for 2 hours at 4°C.

3. Remove first the top plug of the column and then the bottom one. Leave the unboundmaterial flow by gravity and discard.

4. Wash the IgG beads still in the column by gravity, with 3 times 10 ml of Protein Abinding buffer.

5. *TEV protease cleavage*. Close the bottom of the column, fill it with 1 ml of TEV cleavage buffer and 100 units of $AcTEV^{TM}$ protease. Close the top of the column and put on a wheel at room temperature for one hour.

6. Remove the top and bottom plugs and <u>recover</u> elution by gravity. Add an additional 200 μ l of TEV cleavage buffer in the column in order to recover as much material as possible from the sides of column.

232 7. Add 3 ml of calmodulin binding buffer and 3 μ l of 1M CaCl₂ (note 10) to the elution 233 fraction.

8. Binding by the CBP tag part on calmodulin affinity resin. In a new disposable chromatography column, put 200 μ l of calmodulin affinity resin, and wash it with 5 ml of Calmodulin binding buffer. Then, close the bottom of column.

237 9. Add the 4.2 ml elution fraction (obtained at steps 6 and 7). Close the top of column238 and put on wheel for 1 hour at 4°C.

239 10. Remove first the top plug of the column and then the bottom one. Leave the unbound240 material to flow by gravity and discard.

11. Wash calmodulin affinity resin by gravity, with 3 times 10ml of calmodulin bindingbuffer

243 12. *Elution*. Elute with 5 times $200 \ \mu$ l of Calmodulin elution Buffer.

244 13. Pool fraction 2, 3 and 4 and proceed to TCA precipitation of elution fractions (1),
245 (pooled 2, 3 and 4), and (5).

247 <u>3.4 TCA precipitation</u>

1. To each of the eluted protein samples, add 1/100th of 16 mg/ml sodium deoxycholate.Vortex and leave on ice 30 min.

- 250 2. Add TCA to 10% final. Vortex and leave on ice 30 min.
- 251 3. Centrifuge 15 min 15 000 rpm at 4°C.
- 252 4. Wash twice with TCA wash buffer.
- 253 5. Leave the pellet to dry on bench and resuspend in 20 μ l protein loading buffer 1x.
- 254

255 <u>3.5 Analysis by SDS-PAGE and mass spectrometry</u>

- Load the totality of the samples on SDS-PAGE (note 11) and stain with Coomassie
 Blue.
- 257 Diuc.
- 258 2. Unstained and then rince with distilled water.
- 259 3. Cuts bands to identify partner proteins by mass spectrometry (note 12).
- 260

261 *4.* Notes

262 *Note 1:* Gently agitate the solution for complete dissolution of NP-40 if necessary.

263 <u>Note 2</u>: EDTA and EGTA may not be soluble until pH had been adjusted to 8 with
264 10 N NaOH.

265 <u>Note 3</u>: PMSF cristallizes at -20°C, therefore heat PMSF aliquot to 37°C to redissolve PMSF
266 before use. We use PMSF as generic protease inhibitor but protease inhibitor cocktail can be
267 used alternatively.

268 <u>Note 4</u>: Add DTT to the volume of buffer you will need when starting the experiment. DTT
269 is necessary for TEV activity.

270 <u>Note 5</u>: Add β -mercaptoethanol to the volume of buffer you will need when starting the 271 experiment.

272 <u>Note 6</u>: Also plan to prepare a protein extract of an untagged strain as negative control of the
273 experiment.

274 <u>Note 7</u>: Translational TAP tag fusion adds 20 kDa to the mass of the protein of interest;
275 3 kDa corresponds to the CBP tag and 15 kDa to the Protein A tag.

276 *Note 8*: Immunoglobulins will bind the protein A fragment of TAP tag.

277 *Note 9*: French Press or Cell disruptor might be more gentle to preserve protein complexes.

278 <u>Note 10</u>: Addition of extra CaCl₂ is required to quench EDTA that was previously necessary
279 for TEV protease activity.

280 <u>Note 11</u>: Usually a 12% SDS-PAGE allows visualization of low and high molecular weigh
281 proteins.

282 *Note 12*: Use one blade per band.

284 **5. References**

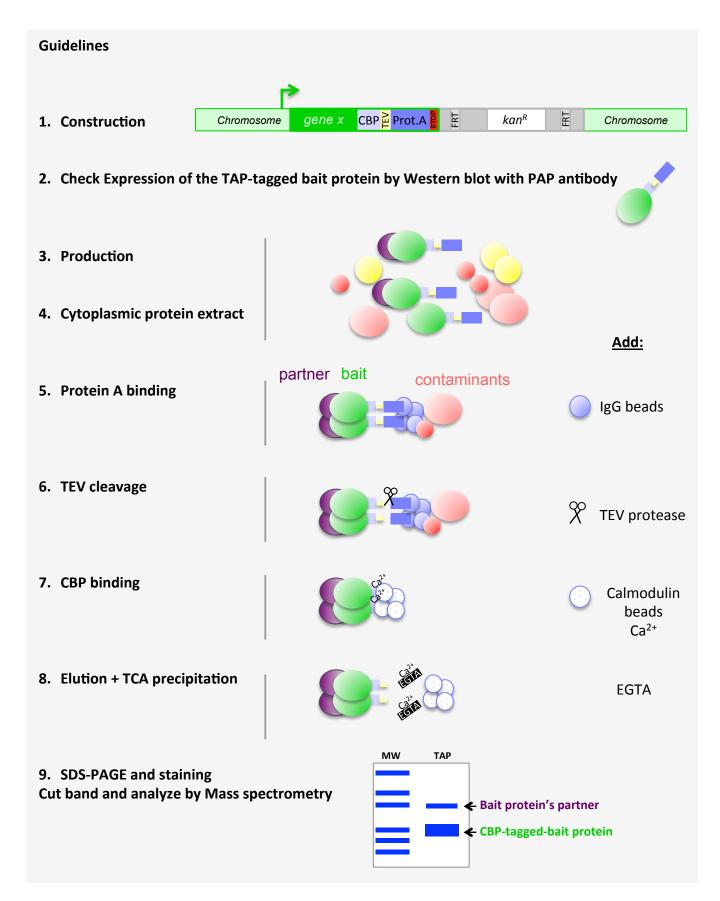
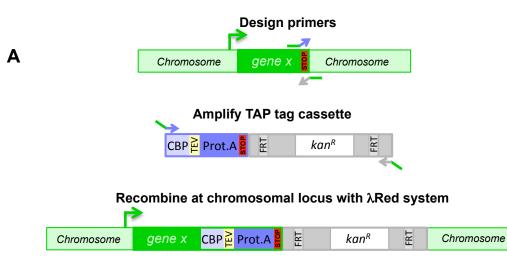
285	1.	Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M et al. (1999) A generic protein
286		purification method for protein complex characterization and proteome exploration. Nat
287		Biotechnol 17: 1030-1032.

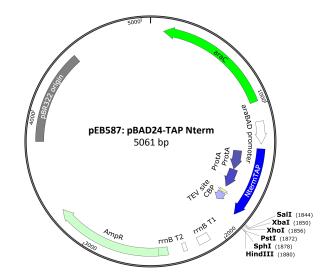
Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M et al. (2002) Functional
 organization of the yeast proteome by systematic analysis of protein complexes. Nature
 415: 141-147.

- 3. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M et al. (2006) Proteome survey
 reveals modularity of the yeast cell machinery. Nature 440: 631-636.
- 4. Gully D, Moinier D, Loiseau L, Bouveret E (2003) New partners of acyl carrier protein
 detected in Escherichia coli by tandem affinity purification. FEBS Lett 548: 90-96.
- 5. Butland G, Peregrin-Alvarez JM, Li J, Yang W, Yang X et al. (2005) Interaction
 network containing conserved and essential protein complexes in Escherichia coli.
 Nature 433: 531-537.
- 298 6. Collins MO, Choudhary JS (2008) Mapping multiprotein complexes by affinity
 299 purification and mass spectrometry. Curr Opin Biotechnol 19: 324-330.
- 300 7. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in
 301 Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640-6645.
- Zeghouf M, Li J, Butland G, Borkowska A, Canadien V et al. (2004) Sequential Peptide
 Affinity (SPA) system for the identification of mammalian and bacterial protein
 complexes. J Proteome Res 3: 463-468.

- 305 9. Gully D, Bouveret E (2006) A protein network for phospholipid synthesis uncovered by
 306 a variant of the tandem affinity purification method in Escherichia coli. Proteomics 6:
 307 282-293.
- 308 10. Pompeo F, Luciano J, Galinier A (2007) Interaction of GapA with HPr and its
 309 homologue, Crh: Novel levels of regulation of a key step of glycolysis in Bacillus
 310 subtilis? J Bacteriol 189: 1154-1157.
- 311 11. Babu M, Butl G, Pogoutse O, Li J, Greenblatt JF et al. (2009) Sequential Peptide
 312 Affinity Purification System for the Systematic Isolation and Identification of Protein
 313 Complexes from Escherichia coli. Methods Mol Biol 564: 373-400.
- 314 12. Stingl K, Schauer K, Ecobichon C, Labigne A, Lenormand P et al. (2008) In vivo
 315 interactome of Helicobacter pylori urease revealed by tandem affinity purification. Mol
 316 Cell Proteomics 7: 2429-2441.
- 317 13. Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E et al. (2001) The tandem affinity
 318 purification (TAP) method: a general procedure of protein complex purification.
 319 Methods 24: 218-229.
- 320 14. Bouveret E, Rigaut G, Shevchenko A, Wilm M, Seraphin B (2000) A Sm-like protein
 321 complex that participates in mRNA degradation. EMBO J 19: 1661-1671.
- 322 15. So EC, Schroeder GN, Carson D, Mattheis C, Mousnier A et al. (2016) The Rabbinding Profiles of Bacterial Virulence Factors during Infection. J Biol Chem 291:
 5832-5843.
- 325 16. Sana TG, Baumann C, Merdes A, Soscia C, Rattei T et al. (2015) Internalization of
 326 Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction
 327 of a T6SS Effector with the Microtubule Network. MBio 6: e00712.

328	17.	Battesti A, Bouveret E (2008) Improvement of bacterial two-hybrid vectors for
329		detection of fusion proteins and transfer to pBAD-tandem affinity purification,
330		calmodulin binding peptide, or 6-histidine tag vectors. Proteomics 8: 4768-4771.


Fig. 1. Guidelines for the overall Tandem Affinity Purification procedure

В

TCC S	ATG M	GAA E	AAG K	AGA R					aat N	ttc F			gtc V			igcc A		cgc R	
aag	aaa	atc	tca	tcc	tcc	ggg	gca	ctt	gat	tat	gat	att	cca	act	act	.gct	agc	gag	aat
K	K	I	S	S	S	G	A	L	D	Y	D	I	P	T	T	A	S	E	N
ttg	tat	ttt	cag	ggt	GAG	ctc	AAA	ACC	GCG	GCT	CTT	GCG	CAA	CAC	GAT	'GAA	GCC	GTG	GAC
L	Y	F	Q	G	E	L	K	T	A	A	L	A	Q	H	D	E	A	V	D
AAC	AAA	TTC	AAC	AAA	GAA	CAA	CAA	AAC	GCG	TTC	TAT	GAG	ATC	TTA	CAT	TTA	ССТ	AAC	TTA
N	K	F	N	K	E	Q	Q	N	A	F	Y	E	I	L	H	L	Р	N	L
AAC	GAA	GAA	CAA	CGA	AAC	GCC	TTC	ATC	CAA	AGT	TTA	AAA	GAT	GAC	CCA	AGC	CAA	AGC	GCT
N	E	E	Q	R	N	A	F	I	Q	S	L	K	D	D	P	S	Q	S	A
AAC	CTT	TTA	.GCA	GAA	GCT	'AAA	AAG	CTA	AAT	GAT	GCT	CAG	GCG	CCG	AAA	IGTA	GAC	AAC	AAA
N	L	L	A	E	A	K	K	L	N	D	A	Q	A	P	K	V	D	N	K
TTC	AAC	AAA	.GAA	CAA	CAA	AAC	GCG	TTC	TAT	GAG	ATC	TTA	CAT	TTA	CCT	'AAC	TTA	AAC	GAA
F	N	K	E	Q	Q	N	A	F	Y	E	I	L	H	L	P	N	L	N	E
GAA	CAA	CGA	AAC	GCC	TTC	ATC	CAA	AGT	TTA	AAA	GAT	GAC	CCA	AGC	CAA	AGC	GCT	AAC	CTT
E	Q	R	N	A	F	I	Q	S	L	K	D	D	P	S	Q	S	A	N	L
TTA	GCA	GAA	GCT	AAA	AAG	CTA	AAT	GGT	GCT	CAG	GCG	CCG	AAA	GTA	GAC	GCG	AAT	TCC	GCG
L	A	E	A	K	K	L	N	G	A	Q	A	P	K	V	D	A	N	S	A
GGG G	AAG K	TCA S	ACC T	TGA *															

Fig 2. Scheme of the procedure for creation of a C-terminal TAP-tag translational fusion at the chromosomal locus (**A**) and the corresponding nucleotidic and protein TAP-tag sequences (**B**). CBP sequence is in clear purple; upper cases at the beginning of the nucleotidic CBP sequence corresponds to the primer sequence mentioned in 3.1, TEV protease cleavage site is in yellow and Protein A sequence is in dark purple with the stop codon in red.

В

atggcaggcCTTGCGCAACACGATGAAGCCGTGGACAACAAATTCAACAAAGAACAACAA MĂĞLAQHDEAVDNKFNKEQQ AACGCGTTCTATGAGATCTTACATTTACCTAACTTAAACGAAGAACAACGAAACGCCTTC YEILHLPNLNEEQRN **ATCCAAAGTTTAAAAGATGACCCAAGCCAAAGCGCTAACCTTTTAGCAGAAGCTAAAAAG** I Q S L K D D P S Q S A N L L A E A K K CTAAATGATGCTCAGGCGCCGAAAGTAGACAACAAATTCAACAAAGAACAACAAAACGCG L N D A Q A P K V D N K F N K E Q Q N A **TTCTATGAGATCTTACATTTACCTAACTTAAACGAAGAACAACGAAACGCCTTCATCCAA** Y E I L H L P N L N E E Q R N A F I Q AGTTTAAAAGATGACCCAAGCCAAAGCGCTAACCTTTTAGCAGAAGCTAAAAAGCTAAAT S L K D D P S Q S A N L L A E A K K L N GGTGCTCAGGCGCCGAAAGTAGACGCGAATtgtgatatacctacaactgcttctgaaaat G A Q A P K V D A N C D I P T T A S <mark>E N</mark> ttatattttcaaggtgaactaaagagaagatggaaaaagaatttcatagccgtctcagca L Y F Q G E L K R R W K K N F I A V S A Sol IXbo IXbo IXho IgccaaccgctttaagaaaatctcatcctccggggcacttgtcgagtcgacTCTAGActcgANRFKKISSALVESTLDS Pst | Sph | Hind ||| agttcgacCTGCAGgcatgcAAGCTTg ST CRHAS

Fig 3. Map of plasmid pEB587 used to create a N-terminal TAP-tag translational fusion under the control of the P_{BAD} arabinose inducible promoter (**A**) and the corresponding nucleotidic and protein TAP-tag sequences (**B**). Protein A sequence is in dark purple, TEV protease cleavage site is in yellow, CBP sequence is in clear purple, the multicloning site is underlined and restrition enzyme sites are indicated.

Α