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Abstract  

Viscosity is an important characteristic of flow property and process ability for polymeric materials. A flat die was developed and 
brought into service at Maillfer[8], to make rheological characterizations. Measurements were made with two different slit heights, at 
different extrusion speeds, for one type of material (LDPE). In this paper, the optimization by response surface method, with the moving 
least squares approximate (MLS) [5-6], is used to identify the rheological parameters of thermoplastic melt. The objective is to minimize 
the difference between the measurement pressure obtained in flat die and the numerical pressure calculated by one dimensional finite 
difference programme by sections [1]. 

Global relative error between these both pressure is the objective function. This objective function is minimised by varying the 
rheological parameters. For this minimization two methods are used i.e. local response surface and global response surface. The 
rheological parameters obtained by these methods allow calculating the viscosity, validated by comparing an experimental viscosity 
measured on a capillary rheometer.   
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1. Introduction

  

The defects of extrusion (like the weld-lines, the bad 
distribution, a fairly uniform exit velocity distribution 
throughout the extrusion, problems of stagnation zones) 
are influenced by the geometry of the die of extrusion, 
the operating conditions such as temperature of 
regulation, flow rate and the rheological parameters of 
melt. In order to eliminate these problems we propose to 
determine a sufficiently robust method of optimization to 
be applied in industry. In a first step, in order to validate 
the method of optimization, we will identify the 
rheological parameters (behavior of the pseudo plastic 
melt) of the plastic melts starting from the points of 
measurement obtained in flat die. 

A standard extruder at various flow rates feeds the 
flat die and two series of tests were carried out, with two 
thicknesses of die to cover a sufficient range to make 
rheological characterizations. 

In spite of various utilities of plastics, the knowledge 
and the control of their behaviours remains always 
approximate. 

Physicists tried to characterize the properties of these 
materials, thus wanting to reproduce their behaviours 
using a simple or complex model. A number of viscosity 
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models have been published, such as the well-known 
Power-law model, Ostwald–Waele model, Cross model, 
and Carreau model, and so on. These models are 
established on the basis of some types of fluid. Ji-Zhao 
Liang [10] he investigated the melt viscosity in steady 
shear flow of several polymers by employing a capillary 
rheometer and the characteristics of shear viscosity. K. 
Geiger and H. Kuhnle[2] used a empirical correlation 
between density, pressure and temperature to identify  a 
rheological parameter. 

Our objective is to identify the rheology of a plastic 
melt directly from on-line production because that saves 
us much time and money, because in this way we will not 
be obliged to make measurement on dies capillary 
standard. 

For that we will identify the rheological parameters, 
using algorithm of optimization named as response 
surface method, with the moving least squares 
approximate [5 -6], and can obtain approximation by 
using the design of experiments [3].   

2. The optimization benchmark  

The flat die is equipped with 4 pressure transducers, 
spaced 100 mm apart; however only the pressure 
difference between the first and last transducer was 
considered for the analysis. A first series of tests has been 
performed with the flat die. Measurements were made 



  
with two different slit heights at different extrusion 
speeds for one type of material (LDPE). The 
experimental data is used as listed in table 1.  

Table 1. 
Experimental data slit 5 and 10mm 

Q 
[Kg/h] 

T 
[°C] 

? P[bar] ? [Kg/m3]

 
h [mm] 

11,2 166 53 779 5 
60 175 99 779 5 

143 192 125 773 5 
239 210 138 767 5 
10,9 185 12,7 779 10 
69,2 195 26 772 10 
189,5 210 34,3 761 10 
339,5 229 36,7 755 10 

  

Conductivity k=0.115 Watt/°C m  
Specific heat  Cp=1.90e03 K joules/°C m3  

Fig. 1. Geometry of the Flat die  

the geometry of the die is W = 100 mm, L = 300mm. 
Ltotal=500 mm. The thickness (h) of the die remains 
constant for a test, but it can be changed by taking in to 
account the correction factor (h/L)[1].   

3. Numerical simulation parameters  

The measurement of viscosity cannot be obtained 
directly because the shear rate is unknown and the three 
parameters for the power-law. On the other hand, three 
physical parameters related to viscosity such as pressure, 
temperature and the flow rate are directly measurable. 
We will use a one-dimensional calculation programme by 
sections of finite difference method [1], to calculate the 
variation of pressure with power-law for each point of 
measurement. Choice of this geometry by taking in to 
account the Correction factor[1] 0.1 and 0.05 as a 
function of the thickness to width ratio, h/W.    

4. Design variables and objective functions  

The power-law is defined as:  

1mT

1

0 eK

   
       (1)  

There are three variables (K, m and ß) for a power 
law with a thermal dependence of the Arrhenius type. 

The objective function is the difference between the 
measured pressures and calculated pressures obtained by 
simulated program of finite difference method. 

The objective of this simulation is to determine the 
rheological parameters K, m and ß which makes it 
possible to minimize the difference between the 
calculated pressures and the experimental pressures. We 
chose as variable optimization the rheology of the 
polymer and the objective function represents the value 
of the sum of the variations of the calculated pressures 
and experiment pressures for each point of measurement.  

J=( 2
expnpm calexp )p/)pp(( ).                               (2)   

5. Optimization procedure  

5.1. Choice of algorithm 
The algorithm of optimisation must be carefully 

chosen when one single analysis requires several hours of 
CPU time. Nondeterministic or stochastic methods such 
as Monte-carlo method and genetic algorithm [7] can 
obtain global minimum but they need a lot of evaluations 
for the functions to converge. Decent methods require the 
computations, the gradients of the functions, such as 
BFGS[9] with ought constraints, and SQP[8]  based on 
Lagrangian methods, it can be shown that the solution of 
the nonlinear equality constrained optimization problem. 
The computation of gradients by finite difference is time 
consuming and depends on the perturbed parameters. For 
the above reasons we decided to consider a response 
surface method.  

5.2. Response surface method 
The method of response surface consists the 

construction of an approximate expression of objective 
function starting from a limited number of evaluations of 
the real function. 

The main idea is to approximate the objective 
function through a response surface. To obtain a good 
approximation we used a moving least square method. In 
this method, the approximation is computed by using the 
evaluation points by design of experiments around the 
locus where the value of the function is needed.    

6. Moving least-squares approximation  

We will use moving least-squart interpolations that 
are used to approximate response surface of objective 
function. Let the dependent variable be )x(f in the 

domain S and the approximation of )x(f
~

.  
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              (3)   

The nodes are defined by x1,…..xn where xI=(xI,yI) in 
2D, xI=(xI,yI,zI) in 3D;  

Where )x(p is a polynomial basis and )x(aT is the 
vector of coefficients. The polynomial basis of order 2 in 
two dimensions is given by  
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              (4)  

In the moving least-square interpolation, at each point x, 
a is chosen to minimize the weighted residual:  

2T
ii ))x(a)x(Pf(w)a(J  

)PaF()PaF()a(J 2
1                                 (5)  

wher iw is a weight function, such that w is non-zero 

over a limited support or domain of influence and is non-
increasing over. 
To find the coefficients, we obtain the extremum of J(a) 
by   

0)a(J'

   

So we have  

Z.BQ)x(a 1

    

       (6)  

where    

WPPQ T

     

       (7)  

and  

WQPB T                             (8)   

Z is the dependent variable.   

7. Local response surface:   

This method is based on traditional minimization by 
the algorithm of fig2, with use of a local response surface 
of variable in each point. We fixed a step of grid at 0.01* 
X0. 

X0 is the initial value of the variable of optimization 
The initial values are: K0=12000, m0=0.641370 and 

ß0=1078 °K, we used a uniform local grid i.e. “Design of 
experiments” 

The constraints for the variables of optimization K, m 
and 

 

are respectively, 400 < K  < 20000, 0.01 < m <1 
and 500 < ß < 3000 °K for the first constraint, and n*P 

for the second constraint, with P is the step of the grid 
and n is the number of points of grid.   

Fig. 2. Flowchart of the optimisation   

The iterative process stops when the successive 
points are superpose with a certain tolerance.   

8. Global response surface  

The objective of this technique is to search for the 
global minimum on the field domain, the constraints is 
similar to the first constraints in local response surface 
method. Initially, in first iteration we constructed a grid 
of 5*5*5 points (125 points) for a global approximation, 
then to each iteration we constructed grid of 3*3*3 (27 
pints) for the local approximation.   

9. Results  

9.1. Result of local response surface: 
Figure 3 represents the evolution of the objective 

function and figure (4), (5) and (6) represents 
respectively the evolution of the coefficients of the law of 
rheology K, m and 

 

during the process of optimization. 
The optimal solution, which represents the minimal 
variation between the pressures obtained by finite 
difference calculation and the measured pressures,  

In iterations 20, the value of the function objective 
obtained is 8.e-5 , with K= 9826.14, m= 0.4179 and ß = 
1553.41,  a time CPU is 1hours 42minutes, on a machine 
Pentium IV, 2.4 GHz, 512 Mo RAM, the results of the 
pressures are presented in table 2.   

Optimal 
solution

 

Yes

 

No

 

Calculation of the increase ?xi 

bAx 1

 

xi+1=xi+?xi

 
evaluation of  the objective function 

at the points xi around x0 

Calculation of the 
coefficients a

 

|J| <=?  



    

Fig.3. Convergence of the objective function (result 
for the local method)  

  

Fig.4. Evolution of B during the process of 
optimization (result for the local method)

     

Fig.5. Evolution of m during the process of 
optimization (result for the local method)   

  

Fig. 6 evolution of ß during the process of 
optimization (result for the local method)  

We can choose between the precision and the time 
computing, for example in iteration 10 we obtained an 
error of 6.848 e-3 with a time CPU 51 minute, the values 
of the coefficients of rheology are: K=10562, m=0.4304, 
ß = 1131 °K.

 

With iteration 15 we obtained an error of 
5.2 e-4, with a computing time of 1hours 16minutes in 
the same machine, the coefficients obtained are: 
K=10077, m= 0.4239, ß= 1350 °K.
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Fig.7. Experimental and Calculated pressures with 
parameters determined by method 1   
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Fig. 8. Calculated and measured viscosity   

9.2. Result of global response surface: 
The solution is obtained after 6 iteration with a 

precision of 8.4e-3 and a time computing CPU of 1hours 
13minutes on a machine Pentium IV, 2.4 GHz, 512 Mo 
RAM. Fig 9 represents the evolution of the function 
objective and fig 10, 11 and 12 represent respectively the 
variables of optimization K, m and . The optimum 
parameters are: K=10213, m= 0.4064, ß=1386.2617 °K.

    

Fig. 9. Convergence of the objective function (results 
for the global method)   

  

Fig. 10. Evolution of K during the process of 
optimization (result for the global method)   

  

Fig. 11 Evolution of m during the process of 
optimization (result for the global method)  

  

Fig. 12. Evolution of ß during the process of 
(optimization result for the global method)   
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Fig.13. Experimental and calculated pressure with 
parameter determinates by method 2   
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Fig. 14 Calculated and measured viscosity   

10. Comparison of the two methods:  

We remarked in the table (2) that the solution 
obtained by the method (1) local response surfaces is 
more precise but with a more increased computing time 
where the difference in time between both methods is 30 
min. On the other hand the global response surface 
method (2) avoided local minimum and we can also 
improve by varying the design of experiments and the 
method of approximation to optimize the computing time 
CPU.        

Table 2. 
Results of optimization  

h [mm]

 
Q 

[Kg/m3]

 
T 

[°C]

 
? P 

[bar] 

? P[bar]

 
local 
(1) 

Residue
n (1) 

? P[bar]

 
global 

(2) 

Residue
n 

(2) 

5 3,9e-6

 

166

 

53 52.11

 

2.8e-4 49.32 4.8e -3

 

5 2,1e-5

 

175

 

99 96.69

 

5.4e-4 91.03 6.4e -3

 

5 5,1e-5

 

192

 

125 121.6

 

7.3e-4 116.8 4.3e -3

 

5 8,6e-5

 

210

 

138 132.9

 

1.3e-3 130.4 3e -3 

10 3,8e-6

 

185

 

12.7 12.49

 

2.7e-4 12.48 3e -4 

10 2,4e-5

 

195

 

26 25.15

 

1.e-3 24.89 1.8 e -3

 

10 6,9e-5

 

210

 

34 34.69

 

1.2e-4 34.66 3.7 e -4

 

10 1,2e-4

 

229

 

36.7 39.27

 

4.9e-3 40 8.1 e-3

   

10.1.  Pressures 
The figures (7), (13) illustrates the difference 

between the measured pressures and calculated pressures 
obtained by rheogical parameters. Which are identified 
by optimization using response surface method. It is 
noticed that there is almost no variation, which means 
that our method is very robust and gives very good results 
for the two approximations global and local.  

10.2. Viscosity 
We remarked well in the graph of viscosity obtained 

by the coefficients found by response surface method fig 
(8), (14), that it does not have an error between the points 
of measurements obtained in capillary rheometer and 
viscosity obtained by the method of optimization except 
in the zone that has high shear rate. As we have no 
knowledge of the inlet temperature so we used a 
simplification where we gave the same temperature of 
exit as of inlet temperature, on the other hand at this level 
of shear rate the polymer is reheated and this 
simplification is not completely right, but the variation 
between viscosities is always less important.   

11. Concluding remarks  

We can have the conclusion that since we obtained 
good results by the response surfaces method (global and 
local), so this allows us to know the rheology of a plastic 
directly in series of production and that saves us much 
time and money, because this way we will not be obliged 
to make measurement on standard capillary dies.  
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With this method we can find out the rheology of 

polymer starting from the true geometry even if this 
geometry is complex, by measurements of pressures, 
flows rate and the temperatures, we can determine the 
rheology of the material used.   

12. Prospects  

We have tried another method of approximation for 
approximating well the global response surface using the 
Krigeage method, which made it possible to approximate 
the global objective function, and saves us much 
computing time. 

Using response surface method to optimize the 
geometry of die extrusion using calculate program 3D “ 
REM3D® ”   
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