

Photomechanics

International Conference on full-field measurement techniques and their applications in experimental solid mechanics

10-12 July 2006 Clermont-Ferrand, France

Parameters Identification using Field Measurements of Polymer Membranes during Bubble Inflation Technique

Samia HMIDA-MAAMAR, Fabrice SCHMIDT, Laurent ROBERT, Vincent VELAY

CROMeP, Ecole des Mines d'Albi Carmaux

Introduction

- Identification of material parameters:
 - Extraction of contour
 - Full field measurements
 - Inverse analysis using numerical simulations such as Finite Element Method

Outline

- Experimental set-up:
 - Elongational Rheometer
- Parameters identification:
 - Extraction of contour
 - Tensile test
 - Full-field measurement
- Conclusion and prospects

Experimental set-up: Bubble inflation rheometer

Pyrometer Oven IR Lamps 3

Elastomer bubble

Measurement using one CCD camera

- Natural rubber samples:
 Diameter: 90 mm / Thickness: 1.5 mm
- Camera XC-75CE:
 - -25 mm f 1.4 / Resolution: 795 (H) * 596 (V)

Example of rubber bubble inflations:

P= 0.129 Bar	P= 0.295 Bar	P= 0.505 Bar	P= 0.595 Bar	

Numerical modeling

- Commercial FEM Software ABAQUS[®]:
 - 2D quadratic elements, axisymmetric CAX8H

• Hyper Elastic Behavior: Mooney Rivlin

$$w = w(I_1, I_2) = C_{10}(I_1 - 3) + C_{01}(I_2 - 3)$$

C₁₀ and C₀₁ : material parameters

Optimization algorithm

- Interface ABAQUS[®] and MATLAB[®]
- Sequential Quadratic Programming Method (SQP)
- Function 'fmincon' of the optimization module of MATLAB[®] was used

• Objective function:
$$\Phi = \sqrt{\sum_{i=1}^{N} (y_{sim}^{i} - f(x_{sim}^{i}))^{2}} / \sqrt{\sum_{i=1}^{N} (f(x_{sim}^{i}))^{2}}$$

 (x_{sim}, y_{sim}) : Computed Contour

f(x): Interpolation function of experimental contour (x_{exp}, y_{exp})

Optimization principle

Identification: extraction of contour (1)

Result for a given pressure value:

- $C_{10} = 0.134 \text{ MPa}$,
- $C_{01} = 0.09954$ MPa
- Objective = 0.0105

Summary results for 5 pressure steps:

Pressure (Bar)	0.129	0.295	0.424	0.505	0.595
C ₁₀ (MPa)	0.1343	0.13677	0.13291	0.13751	0.134
C ₀₁ (MPa)	0.09913	0.09651	0.09971	0.0968	0.09954

Identification: extraction of contour (2)

Global identification:

- for all the values of pressure, only one couple of parameter is identified :
 - $C_{10} = 0.13298 \text{ MPa}$
 - $C_{01} = 0.10011 \text{ MPa}$
 - Objective = 0.0061

Stereo-correlation technique: tensile test

- Natural rubber rectangular samples:
 - Length L_o: 90 mm
 - Width I_o: 25 mm
 - Thickness e_0 : 4 mm
- Boundary conditions:
 - Vertical load F
 - The lower face is fixed
- Stereo-correlation technique using Vic-3D[®] software

Green's Lagrangian strain

Identification on tensile test

 $\sigma = \frac{F}{S_0} = 2C_{10}\left(\lambda - \frac{1}{\lambda^2}\right) + 2C_{01}\left(1 - \frac{1}{\lambda^3}\right)$

- Tensile stress:
 - F: load
 - S₀: initial surface
 - $-\lambda$: stretch ratio calculated using the experimental strain value
- Identified Parameters:
 - $C_{10} = 0.1359 \text{ MPa}$
 - $C_{01} = 0.09745 \text{ MPa}$
 - Objective = 0.0087

=> Values are closed to those obtained using bubble inflation technique

Identification based on full field measurements

Description of the methodology:

Numerical modeling: 4 tensile steps

Samia HMIDA- MAAMAR

U, U2

+1

261e+02

6e+02

Identification based on full fields

(In order to assess the algorithm, the procedure used « simulated » measurements)

 Put in correspondence of meshes

Experimental mesh
FEM mesh

- Optimization algorithm (SQP)
- Objective function:

$$\Phi = \frac{1}{N_{image}} \sum_{i=1}^{N_{image}} \left[\frac{1}{N_{node}} \sum_{j=1}^{N_{node}} \frac{\left\| \vec{U}_{simu,j}^{i} - \vec{U}_{exp,j}^{i} \right\|}{\left\| \vec{U}_{exp,j}^{i} \right\|} \right]$$

20

10

15

20

Identification based on full fields: convergence

=> Values are closed to those obtained using previous techniques

Stereo-correlation technique: Elongational rheometer (1)

- Natural rubber samples:
 - Diameter: 90 mm / Thickness: 1.5 mm
 - Two CCD cameras: RETICA QICAM (QIMAGING)
 - Lens: AF 28 200mm / Resolution: 1360 * 1036 pixels
- Digital Image Stereo-Correlation software: Vic-3D[®]

Vertical displacement field obtained by stereo-correlation

17

Conclusion and prospects

Conclusion :

- Behavior identification using 2D contour extraction coupled to inverse method of rubber membrane
- Procedure assessment of behavior identification using fullfield measurement during tensile test
- Preliminary results of behavior identification using 3D fullfield measurement of rubber membrane using bubble inflation technique

Future works :

- Parameters identification using 2D and 3D full field measurement (experimental) values
- Behavior identification using extraction contour 2D and using field measurement 3D of PET-type polymer membrane