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EXISTENCE AND STABILITY OF TRAVELING WAVES FOR
DISCRETE NONLINEAR SCHRODINGER EQUATIONS OVER LONG TIMES

JOACKIM BERNIER AND ERWAN FAOU

ABsTrRACT. We consider the problem of existence and stability of solitary traveling waves for the one dimen-
sional discrete non linear Schrodinger equation (DNLS) with cubic nonlinearity, near the continuous limit.
We construct a family of solutions close to the continuous traveling waves and prove their stability over long
times. Applying a modulation method, we also show that we can describe the dynamics near these discrete
traveling waves over long times.
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1. INTRODUCTION

1.1. Motivations and main results. We study existence and stability of solitary traveling waves for the

discrete nonlinear Schrédinger equation (DNLS) on a grid hZ of stepsize h > 0 and with a cubic focusing non

linearity. This equation is a differential equation on C"# defined by (see [I3] for details about its derivation)
. Ugrn —2Ug +Ug—p

(1) Vge hZ, idju,=—2 th I+ ug [Puy, .

We focus on this equation near its continuous limit (as h goes to 0), called non linear Schrodinger equation

(NLS), defined as the following partial differential equation

(2) VeeR, idwu(r) = d2u(x) + |u(z)|?u(z).

We study solutions of DNLS with a behavior close to the continuous traveling waves of NLS . Such
solitons u are global solutions of NLS with speed of oscillation &; and speed of advection &5, satisfying

(3) VtgeR, VteR, VYzeR, wu(ty+tz)=e " ulty,z— Eat).
1



2 JOACKIM BERNIER AND ERWAN FAOU

The parameter & = (£1, &) characterizes travelling waves up to gauge transform u(z) — e"u(x) and advection
u(z) — u(x —y). For NLS they are given explicitly by their values at time t = 0

iz \/i . 2
(4) Vx € R, 1/15(1') = e2 EzWZ:x) with me = & — (%) .

for speed of oscillation &; and speed of advection &5 satisfying

5) b > (52)

On a grid, the notion of traveling wave is not as clear as on a line, and we cannot define traveling waves
for DNLS as easily as those of NLS by . The difficulty comes from the definition of the advection. Indeed,
the canonical advection on a grid is only defined when the distance to cross is a multiple of the stepsize h. Of
course, we could find some reasonable extensions of in the discrete case. For example, a possible definition
of discrete traveling waves could be for solution u to DNLS to satisfy

(6) VtgeR, VYneZ, VgehZ, wuy(to+nt)=e"Tu, np(ty) with &7 =h,

for some speeds &1, &> € R. Even if this definition seems to be the most natural, it is not the only one possible.
For example, we could replace h by 2h in this definition or to do things even more complicated, and no canonical
choice appears obvious. There is at least one class of solutions that can be defined without ambiguity, the
standing waves (i.e. when & = 0) which are solutions of the form

(7) Vto € RVt € R, u(ty +t) = et u(t).

for some speed of oscillation & € R.
We define the discrete L? and H' norms as follows: for v € C"4,

[0 3202) =0 D) lvg > and v [3z) =h D)
gehZ gehZ

2
Vg —Vg—h

h +]w H2L2(h2)'

Of course, these norms are equivalents but not uniformly with respect to h. Since we focus on the continuous
limit (i.e. when h goes to 0), uniformity with respect to h is crucial.

The discrete L? norm, | - H2L2( hz) 18 a constant of the motion of DNLS associated, through Noether Theorem
(see, for example, [7] for details about this Theorem), to its invariance under gauge transform action. As
L?(hZ) is an algebra we can deduce by Cauchy-Lipschitz Theorem that DNLS is globally well-posed in L?(hZ).
Moreover, DNLS is a Hamiltonian system associated with the Hamiltonian

) Honws(w) = & Y S

2 gehZ gehZ

Ug+h — Uy
h

As we can guess from its expression, this Hamiltonian is very useful to establish some estimates of coercivity
with the discrete H' norm, uniformly with respect to h.

The continuous traveling waves of NLS defined by verify a property of stability called orbital stability. If
for a given time a solution of NLS is close enough of a traveling wave, then it stays close of this traveling wave
for all times, up to an advection and a gauge transform. This property has been first proven by Cazenave and
Lions in 1982 in [6] by a compactness method and in 1986 by Weinstein in [I8] with what we call nowadays the
energy-momentum method. This second method is more quantitative than the first one, and the estimates of
stability we give in this article are all based on it. It has been developed by Grillakis, Shatah and Strauss in
1987 in [I0] and [I1] (see also [7] for a very clear presentation of this method).

Theorem 1.1. Cazenave and Lions [6], Weinstein [18]

For each couple of speed € € R%, such that & > (%) , there exists a constant ¢ > 0, such that for all solutions
u O{L ZLLf with |u(0) — el m gy < ¢ and Hu(O)H%Q(R) = Hz/)EH%z(R), for all time t € R, there exist y,v € R
such tha

clu(t) — eV e(x = y) | mr(ry < [u(0) — Vel i1 (r)-

This result does not give any information on the exact position of the solution. To remedy this problem,
modulational stability methods have been developed, which allows to follow very precisely this solution (see
[17] or [A]).

If we try to apply energy-momentum method to construct orbitally stable traveling waves for DNLS, the
main difficulty comes from the definition of the advection on the grid. We discuss this problem in detail in
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section [2| However this problem is easily solved when considering standing waves (i.e. & = 0) with symmetric
perturbations for which the solution, remaining symmetric for all times, cannot move. In 2010, Bambusi
and Penati proved in [2] the existence of standing waves of DNLS looking like those of NLS. In fact, they
constructed two kinds of standing waves. FEach ones are real valued and symmetric but the first ones, called
Sievers-Takeno modes or onsite , are centered in 0 whereas the second ones, called Page modes or off-site,
are centered in g In 2013, in [I], Bambusi, Faou and Grébert, studying fully discrete approximation in
time and space of NLS standing waves, gave some results of their orbital stability. The construction of these
standing waves is also realized in a 2016 paper of Jenkinson and Weinstein (see [12]), with another kind of
approximations. If we focus only on the onsite standing waves, we summarized a piece of these results in the

following theorem.

Theorem 1.2. Ezistence and orbital stability of standing waves
For all & > 0, there exists hg,C,c > 0 such that for all h < hg, there exists a unique qﬁ?l e H'(hzZ;R)
symmetric, centered in 0, and (1 € R, such that

o Gt ¢]gl is a solution of DNLS,

o [t =&+ ¢?1 —V(e1,0) [hzlH (hz) < Ch?,
o If u is a solution of DNLS such that u(0) is symmetric, centered in 0, and | u(0) — (]5?1 |1 (hzy < €
then for all t € R, there exists v € R such that

lu(t) — e ¢Zl HHl(hz) < Cfu(0) — ¢>Z HHl(hz)~

Note that the same theorem holds, for the off site standing waves. We just need to write "symmetric,
centered in %" instead of "symmetric, centered in 0" and "¢, o)(. — %)IhZ” instead of "¢, o) |nz"-
Usually, it is enough to prove existence and orbital stability of NLS standing waves to get some orbitally

stable traveling wave. Indeed, NLS is invariant by Galilean transformation , defined by
u(t, z) — ei%(‘7”7”’5)“‘(%)2t11(t7 x — vt).

However, it seems there is no such transformation for DNLS. So we cannot apply the same strategy.

The second reason why existence of orbitally stable traveling waves for DNLS seems very uncertain is more
experimental. If we assume that DNLS admits a moving traveling wave (i.e. & # 0) that is orbitally stable
and looking like a continuous traveling wave, ¢, then the solution of DNLS generated by the discretization
of ¢ on hZ, should look like ¢ for all times, up to an advection and a gauge transform. But there are some
reasonable numerical simulations for which it is not what is observed (see [12]). In fact, the speed of this
solution seems going to 0 as ¢t goes to infinity. In the literature, this phenomenon is usually called Peierls-
Nabarro barrier (see [12], [13] and [I4]). A rigorous proof of this phenomenon seems to be an open problem.
However, it is really difficult to observe when h is small enough (in fact, stability for exponentially long times
is expected, see [14]).

Before stating our main results, let us first formulate an easy corollary of them, showing that there ex-
ists quasi-traveling waves to DNLS close to the continuous limit, for times of order O(h~2), preventing the
phenomena described above to appear before this time scale.

2
Theorem 1.3. For all ¢ > 0 and for all ¢ € R? such that & > (%2) , there exist hg,C, Ty > 0 such that

To=00 when & =0 and Ty — o  when the speed &; — 0,
and such that if h < ho, yg,% € R and wu is the solution of DNLS such that

VgehZ,  uy(0) = e e(g —yy),
then, there exist v,y € CY(R) satisfying v(0) = vo and y(0) =y, such that, for all t = 0,
Vt < Toh ™27, sup |uy(t) — e ape(g — y(t))‘ < Ch?
gehZ

and
Vvt < Toh ™77, 5(t) = &l + [y(t) — &2f < Ch%.

The proof of Theorem is a straightforward application of Theorem (or Theorem if & =0). It
would be possible to write the same result with the discrete H! norm instead of the L* norm.

To obtain this result, the strategy is to construct a function close to the continuous solitary wave )¢ for
given parameters £ = (£1, &), which define solitary waves of a modified version of DNLS essentially defined by
removing the aliasing terms. This typically gives bound for time scales of order O(h~!) for orbital stability in
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H'(hZ). Moreover as the aliasing terms are small for regular functions, we can combine this analysis with a
result of control of discrete Sobolev norms of DNLS to reach the time scale O(h~2). We give now the details

of our results. The first one is a result of existence and stability in H! of discrete traveling waves for times of
order h1.

2
Theorem 1.4. Let Q) be a relatively compact open subset of {f eR?| & > (%2) }
There exist hg, k,7,£ > 0 such that for all h < hg, for all € € Q, there exists 17? € H*(R) with
(9) Iné = velm @ < sh?,
satisfying the following property.
If ve HY(hZ) is an approzimation of 77? up to a gauge transform or an advection, i.e.
0,0 €R, v _(eivong(- — yo))\thHl(hZ) <,

then there exist v,y € C1(R) with v(0) = vo and y(0) = y, such that if T > 0 and u, the solution of DNLS
with u(0) = v, satisfy

(10) Ve (0,7),  6(t) = |u(t) — (e nl (- = y(O))nzlm nz) <7
then we have for all t € (0,T),

(11) F() — &l + [5(t) — &f < 5 (5(0) + 6(t) + e ),

and

(12) 5(t) <k e (5(0) + e F).

The functions 77? are constructed in the third section and estimates and are proven in the fourth
section. Now, we discuss this result. We focus on inequalities and .

e If we remove the exponential terms, it is a result stronger than the classical inequality of orbital
stability (see Theorem [1.1)) as it includes a result of modulation.

e The exponential terms "e~#" means that any discretization of 77? is not exactly a traveling wave of
DNLS.

e The time dependent exponential term means that the estimate of stability holds while ¢|€5| is smaller
than A~1. In particular, if we focus on standing waves (i.e. & = 0), we get an estimate of stability
for all times. Since our perturbation does not need to be symmetric, it is an extension of the previous
results (see Theorem [1.2)).

o If u(0) is a discretization of 77é1 (i.e. if 6(0) = 0) then the estimate of stability holds longer. Indeed,
while #|¢3] is smaller than 5—32 (up to a multiplicative constant) , then the bootstrap condition is
satisfied. In particular, we deduce of the second inequality that at the end of this time, u has crossed
the distance ﬁ—z (up to a multiplicative constant), still looking like 17?.

Now, we discuss some consequences and applications of the proof of Theorem . These extensions are
linked to the two relevant exponents for A in this theorem.

First, there is a control of n'g — ¢ by O(h?) (see @D) This error is a consistency error. It is due to the
approximation of the second derivative by a finite difference formula of order 2. Such an estimate depends on

the finite difference operator used to approximate second derivative in space. For example, if we consider the
generalization of DNLS called Discret Self-Trapping equation (DST, see [g])

. 1
(13) Vge hZ, idiug = 2 Z ak Ug—pp +| ug |2 Ug,
keZ
where (ap)rez € L'(Z;R) is a symmetric sequence (i.e. ap = a_j, for all k), consistent of order 2n, n € N*,

(14) Yue H*(R), % > awu(hk) = 0tu(0) + O(h*"*?),
keZ

and satisfying the estimate of stability

(15) Ja>0, Ywe(0,7), -— Z ay cos(kw) = aw?
kezZ
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then Theorem (1.4) holds for DST and we can replace @D by Hng — Vel mEr) < kh?". In particular, this
extension includes usual pseudo spectral method and the usual high order discrete second derivatives (see [3]
for details about these formulas) whose non-zero terms are given by

2-1)+ Cp

n
. 1
aik:TCg , if O0<k<mn, and a0:_2§ =.

=17

hléalt
Second, there is the right exponential term e 3 giving the stability estimates for times of order h=!. As
the error terms come mainly from aliasing effects, the control of stability for times larger than % essentially

relies on a control of higher Sobolev norms for long times uniformly with respect to h. More precisely, we
define the discrete homogeneous Sobolev norm | - | 7,2y by

Ugyh —2Ug + Ug_p,
h? ’

(16) ” u H2 n(hZ) = <(—Ah)n u, ’U,>L2(hz), with (Ah 'u,)g =

and the Sobolev norm by

n
H u HQH"(}LZ) = Z H u Hiﬂ"(hZ)'
k=0
Then we have the following version of Theorem (see Remark for its proof).
Theorem 1.5. In Theorem the inequality can be replaced by

(17) vne N, §(t) < & (5(0) e h o Gt s | u(s)mhz)) -
<s<

With such an estimate, we see that to obtain stability over exponentially long times, it would be enough to
prove a control of the growth of the homogeneous Sobolev norm of the type Ct®, with « independent of n and
h and C' independent of h. Note that for the continuous case, it is indeed the case for the solutions of NLS for
which the H® norms are uniformly bounded in times by using integrability arguments (see for example [16]).
Note that such bounds hold for linear Schrodinger equation with a smooth potential in ¢ and z (see [5]).

For DNLS, it is possible to obtain polynomial control of the growth of Sobolev norms by using the higher
modified energy method. The following result was obtained in [4] by the first author:

Theorem 1.6 (Growth of discrete Sobolev norms, see [4]). For all n € N*, there exists C > 0, such that for
all h > 0, if w is a solution of DNLS then for allt € R

2n+1
(18) [l 2y < C [ 1000) |z + M)

where

+ |t|"T‘1M4n?71]
w(0) |

My o) = [ w(0)] g1 (nz) + | w(0)]32(nz)-

The exponents of the u(0) norms are natural and correspond to an homogeneous estimate preserved by
scalings in h. As a corollary of Theorem (1.5 and Theorem [1.6] we get an extension of Theoremfor smooth
perturbations of 772’. It is a result of stability for times of order h~2 for such perturbations.

2
Theorem 1.7. Let Q) be a relatively compact open subset of {f eRZ| & > (52) } and hg,k,r, £ > 0 be the

2
constants given in Theorem [1.7)
For all ,s > 0, there exists n € N* such that for all p > 0, there exist C,Ty > 0 with

(19) To =0 when & =0 and Ty — o© when the speed &3 — 0,
and hy € (0, ho), such that for all h < hy, £ € Q and for all ve H™(R), if

lol oy <P and e —vlmir) < m
then any solution w of DNLS such that
Iyg, 70 €R, VYgehZ, uy(0)=e""v(g—1y,)
satisfies, for all t = 0 such that ,
(20) Vit < Toh >, | w(t) — (e”“)n?(- @Ozl rnzy < C (HW? —v|m@) + h°)
where v,y € C1(R) satisfy v(0) = vo, y(0) =y, and
(21) Vi<Toh™2*, () =&l +13(t) = &| < C (g = vlmr) + 1°) -
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This Theorem is proven in Appendix (see Section . Note that if we can prove a control on the growth
of high Sobolev norms by O(t*("~1)) with o < 1, then we would adapt Theorem n to reach a stability time
of order h=**e,

1.2. Notations. Sometimes some notations could be ambiguous, so in this subsection we clarify them.

e In all this paper, we consider C as an R Euclidian space of dimension 2 equipped with the scalar
product "-" defined by

Vz1,22 €C, 21 - 29 = R(2172) = Nz1RN2o + T2182s.

Consequently, L?(R; C) scalar product is defined by

Vug,ug € LQ(R;C), <U1au2>L2(R) = ful(l“) “uz(7) dx.

In particular, we consider all the Fréchet differentials as R linear applications.
e If u: R — C is a real function and h > 0, we define the discrete seconde derivative of u by
u(x + h) + u(z — h) — 2u(zx)
12

sin(z) .

Vo eR, Apu(z) =

e We define the cardinal sine function on R by sinc(x) :=

e As usual when we consider second derivative, we identifzgf the continuous bilinear forms with the
operators from the space to its topological dual space. More precisely, if E is a normed vector space
and b is a continuous bilinear form on FE, we identify b with the operator b: E — E' defined by
b(z,y) = Z(x, y), z,y € E. Consequently, it makes sense to try to invert b.

e If M € M, (R) is a square matrix of length n then |M|, is the matrix norm of M associated to the ¢P
norm on R™. Similarly, if £ € R?, [£] := 4/€2 + &5 is the £? norm of &.

e If & is a set then 1g is the characteristic function of &.

Acknoledgements. The authors are glad to thank Dario Bambusi, Benoit Grébert and Alberto Maspero for
their helpful comments and discussions during the preparation of this work.

2. ALIASING GENERATING INHOMOGENEITY

In this section, we explain why DNLS can be interpreted as an inhomogeneous equation on R and why we
cannot apply directly the energy-momentum method to get stable traveling waves. This section is also an
introduction to most of the tools used in the this paper.

The energy-momentum method is a way to construct orbitally stable equilibria of a Hamiltonian system,
relatively to a Lie group action. It has been used by Weinstein in [I§] to prove the orbital stability of the
traveling waves of NLS. Then it has been developed, in the general context of Hamiltonian systems by Grillakis,
Shatah, Strauss in [10],[II]. A clear and rigorous presentation of the method and its formalism in a general
setting is given in the paper [7] of De Biévre, Genoud, and Rota Nodari.

A crucial part of this method is based on Noether theorem, requiring to identify invariant Lie group actions
with Hamiltonian flows. For DNLS, the Lie group actions are defined by gauge transform w > ! u and
discrete advection u — (ug1q)genz. The gauge transform is clearly the flow of the Hamiltonian || w H%z( nz) but
the discrete advection is only defined for a countable set of values a € hZ and cannot naturally be associated
with a Hamiltonian.

First, we need to extend the advection for any values a € R and then try to identify this extension with the
flow of an Hamiltonian. Then we are going to see that the Hamiltonian of DNLS (see ) is not invariant by
this advection, and that the error is driven by aliasing terms.

2.1. Shannon’s advection. There are natural ways to define an advection, denoted by 7,, on the grid hZ.
For a given interpolation operator Z; : L?(hZ) — L?(R) we can carry the advection on R to the grid hZ by
making the following diagram commute

(22) L2(hZ) —— [2(hZ)

LQ(R) u—u( - —a) L2(R)



DISCRETE TRAVELING WAVES FOR DNLS 7

In general, this construction does not work, as the advection of an interpolation is not necessary an interpolation
(see, for example with a finite element interpolation). However, there exists a classical interpolation called
Shannon interpolation for which this construction can be applied. Let us define the discrete Fourier transform
F, and Fourier Plancherel transform .%

L?*(hZ) — L*(R/%Z) L?(R) — L*(R)
. L gw a . .
(23) fh : u — w—h 2 Uy e'9 and F u W '_’J u(x)eww dx
gehZ R

where the last integral is defined by extending the operator defined on L!(R) n L?(R). We also use the notation
U = Zu. The Shannon interpolation , denoted by T, is defined through the following diagram

u—l_x myu -1
W e T e e
Ih

With this construction, this interpolation clearly enjoys some useful properties.

Proposition 2.1. Z), is an isometry between L*(hZ) and its image in L*(R). This image is denoted BL3. It

is the subspace of L*(R) whose Fourier transform support is a subset of (%, 7] e

BIL2 = {ue L*R) | Supp i = [f%, %]}.
Moreover, the Shannon advection 7, is well defined through .

Proof. We just need to verify that the advection of a Shannon interpolation is an interpolation. So let u € BL%.
Since we have

VweR, u(—a)(w) =e “a(w),
it is clear that Supp u(/—\a) = Supp 4. Consequently, we have proven that u(- — a) € BL?. O

Since Fourier transform support of Shannon interpolations is bounded, BL% functions are very regular
functions (they are entire function). Consequently, when we deal with BL% functions we will not justify the
algebraic calculations.

We now check that this advection is generated by a Hamiltonian flow. Introducing some formalism, since
Shannon interpolation is a C linear isometry, we prove in the following Lemma that it is a symplectomorphism
between (LQ(hZ; C), (., ~>L2(hz;c)) and (BL%, (., .>L2(R;C)) preserving the Hamiltonian structure.

Lemma 2.2. Let I be an open subset of R, uw € C*(I; L?(hZ;C)) and H € C*(L*(hZ;C);R). Definingu = Ij, u,
the following properties are equivalents

(25) Vtel, VwveL*(hzZ;C), <{idiu(t),v)r2(nzy = dH(u(t))(v),
and
(26) Vtel, YveBL;, {(idw(t),vype(ry = d(H o I; ") (u(t))(v).

Proof. Assume and v € BL?. Since I}, is bijective, there exists v € L?(hZ;C) such that v = Z, v. So we
have

A(H o I; ) (u(t)(v) = d(H o ;) (u(t)) (Zn v) = d H(u(t)(v) = (0, ult), v)1202)-
However, we have
<28fu(t), ’U>L2(R) = <I;:ZI}L8t u(t), v>L2(hZ)7
where Z is the adjoint operator of 7. But Zj, is C linear so we have
Furthermore, it is an isometry so we have I} = 7, 1 Consequently, we get
<iatu(t), 7)>L2(R) = <i(?t u(t)7 v>L2(hz).

So we have proven (26). Conversely, we can prove that is a consequence of using the same equalities.

O

Applying Lemma [2.2] to identify Shannon advection with a Hamiltonian flow, we just need to identify the
canonical advection on BL}%.
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Lemma 2.3. Let M : BL? — R be the momentum defined by
Yue BL:, M(u) = (102U, U)12(R)-
If ue C*(R; BL?) then the following properties are equivalent

(27) VieR, u(t,z) =u(0,x + 2t),
and
(28) VteR, VYveBL},  {idwu(t),v)r2(r) = dM(u(t)(v).

Proof. Assume and let t € R, v € BLZ. We have
Ou(t), vyre(ry = (G0pu(t), iv) 2 gy = A M(u(t))(iv) = 2(i0u(t),iv)r2(ry = 2{0zu(t), V)12 (R)-

So since (BL3, || - ||r2(r)) is a Hilbert space, we have
Vt,x € R,  du(t,x) = 20, u(t, ).
Consequently, we have u(t,z) = u(0,z + 2t). The converse is obvious. d

Applying Lemma [2.2] and Lemma [2.3] we deduce that Shannon’s advection the flow of the Hamiltonian
1 —1

—sMol .
2 h

2.2. The aliasing error. In this subsection, we show that the DNLS Hamiltonian is not invariant by Shan-
non’s advection. We recall some classical properties of Shannon interpolation, see for example [15] for more
details.

Proposition 2.4. If we L?(hZ) then I, U| pz = U.

This proposition is just a corollary of the following decomposition, where the series converges in L*(R) n
L*(R),

VeeR, Zhu Z ug sine(m 79).

gehZ

Corollary 2.5. The Shannon interpolation of w is the only function in L*(R) with Fourier transform support
included in [—7, 7] and whose values on hZ are those of .

Now, we detail a classical property of Shannon interpolation that is crucial in this paper.

Proposition 2.6. If ue H'(R) then w := u| z € L*(hZ) and for all w € (=%, ) we have

(29) Thu(w) = D) fiw + fk).
keZ

s

Proof. First observe that the series (29|) converges in LZ(—E, 7). Indeed, using Cauchy Schwarz inequality,
we have

R 21 PRy 2 '
Y i+ GRlecrn < X IEut + TRl mre T
kez\{0} kez\{0}
h?
<Varlosulm, | DL Gy
kez\{0}

Now define v € BL? through its Fourier transform

~ ~ 27
V(w) =1 x = Z U(w + Wk)
keZ
If we prove that the values of v on hZ are the same as the values of u then we conclude the proof with Corollary
Using inverse Fourier transform formula and continuity of Fourier Plancherel transform, we get for j € Z,

1 z_21g
o(hj) = — | B(w)e ®hidw = — Z J iR g,

2m Jr e e

1 RoRk - 1 -
=— f A(w)e M dw = —J i(w)e " dw = u(hy).
kez R
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We now express the DNLS Hamiltonian in terms of Shannon interpolation:

Lemma 2.7. For all w e L*(hZ), let u = Ij, u, then we have

S 2
dx —-— f (1 + 2COS()> Ju(z)|* dx .
Proof. Since the Shannon interpolation Zj, is an isometry between L?(hZ;C) and L?(R;C), we have
2
hoy] = f
gehZ R
Now we calculate the nonlinear part. First, we use the same argument of isometry to prove that

(31) he Y luglt = Cusu Puypzgnz) = (o, ol u P w)) e g)-
gehZ
But we deduce from Proposition [2.6] that for w € R

5 2w
Fh(|ulw)w) = 1g.5)(@) X [ululw + 5-k).
keZ

u(z + h) — u(x)

h

(30) HDNLs(’u) = %JR

w(z + h) — u(z)]?
h

Ug+h — Ug

h dx.

However, since u € BL?, we have

hh

Consequently, if k¥ ¢ {—1,0,1} the term in the sum is zero. Furthermore, it is clear that for any v € L?(R),

o ~ ~ ~ 37T 37T
supp |u|?u < supp @ + suppu + suppu < | — .

veR, U(- + ) = e7®v. So we have

2mx
FIn(|u P u)(w) = 1z =y (w)F [(1 + 2cos(h)) |u|2u] (w).
We conclude by plugging this relation in . O

We this Lemma, m we can observe that Hpnrs is not invariant by advection. This default of invariance is
due to an inhomogeneity generated by aliasing errors.

2.3. The flow of DNLS in the space of the Shannon interpolations. Thanks to Shannon interpolation,
we identify functions defined on a grid with functions of BLY. We will now see that it is equivalent to consider
the flow of DNLS on a grid, or consider the Hamiltonian flow on BL! associated with the Hamiltonian

2
! dx—lJ <1+2cos(2”)) lu(z)[* dx.
1 Jq I

(32) Vue BL?, Hiys(u) = - L u(z + h) —u(x)

2 h

Applying Lemma 2.2 we obtain:

Lemma 2.8. Let h > 0, u € C'(R; L?(R)) and u = Z(u). Then u is a solution of DNLS (see (1)) if and
only if
VteR, Yve BL,QZ, <i§tu(t),v>Lz(R) = dHﬁNLS(u(t))(v).

We conclude with the following result showing that discrete Sobolev norms are equivalent to continuous
Sobolev norms on BL}:

Lemma 2.9. Let uw e L?(hZ) and u = I uw € BL3. Then we have

2
;HUHHl(R) < | ulmrnzy < llullagr)-

Proof. By construction, we know that | w | r2(hz) = |lul|z2(r). So we just need to focus on the other part of the
H*'(hZ) norm. Indeed, applying Shannon isometry and Fourier Plancherel isometry, we have

2 2
u(z + h) —ulx 1 4 . wh\ .
F sz = S - [ [ = sn (1) )l o
R
1 (*»

gehZ h 27 Rﬁ 1
h 1 (% 2\°
— 7’1sinc2 (“’2) |wﬁ(w)|2dw€2ﬁj}w lwii(w)]? dw [sian(g),l] = 022 qy [(F) ,11.

O

Ug+h — Uy
h
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Similarly, we can prove that for high order homogeneous Sobolev norms (see ), we have for all u €
L?(hZ;C) and u = T, (u),

2 n
33 - n(R) S n < Tn(R)"
(33) (2) 1oy < 1 inizy < Dilinge

3. TRAVELING WAVES OF THE HOMOGENEOUS HAMILTONIAN

In the previous subsection, we have seen that the Hamiltonian of DNLS is not invariant by Shannon’s
advection. This default of invariance is due to an inhomogeneity generated by an aliasing error (the highly
oscillatory terms in (32))), preventing a faire use of energy-momentum method to get stable traveling waves.
Let us introduce the following perturbation of the DNLS Hamiltonian, obtained by removing these aliasing

terms:
2

(34) Vue BL2,  Hy(u) = lj ulw + h) = u(@)
2 Jr h

This new Hamiltonian is clearly invariant by gauge and advection transform, and we will be able to apply the

energy-momentum method. Moreover, for smooth function, it is very close to the DNLS Hamiltonian.

In the first subsection, we construct, with a perturbative method, critical points of Lagrange functions
associated with . These critical points are the functions 772_? of Theorem They are traveling waves
for the dynamic associated to this homogeneous Hamiltonian. In the second subsection, we focus on their
regularity and their orbital stability.

1
dx—iHuH%‘l(R)‘

2
In all this section, we only consider speeds £ in €, a relatively compact open subset of {5 eRZ| & > (%2) }

3.1. Construction of the traveling waves. Let us introduce the Lagrange function . g : BL,QL — R defined
by
&1 & .
(35) Vue BL;, £ (u) = Hy(u) + 5“““%2@) + 5 (0t w2 R).-
We prove in the following lemma that traveling waves generated by H}, are critical points of .Z 2

Proposition 3.1. Let £€R?*, h > 0 and ue C'(R; BL?) be such that
VteR, VzeR, u(tz)=e"" u(0,z— &t).

Then the following properties are equivalents

(36) VteR, VYveBL;, {(idwu(t),vyrz2r) = dHy(u(t))(v),
and
(37) d.2¢(u(0)) = 0.

Proof. By a straightforward calculation, we have, for all ¢,z € R,
atu(tv J}) = Zglu(u Z‘) - anwu(ta .’E)
Consequently, testing this relation against v € BL,QL7 we get for all ¢,z € R,

Goau(t) oy = =4 (S e + 4000 dram ) () o)

So is clearly equivalent to
(38) VteR, d.Z¢(u(t)) = 0.

In particular = is obvious.
Conversely, to prove = , we just need to prove that if ug € BL? is a critical point of 32 and

v,y € R then eug(. —y) is also a critical point of f? Define T,y : BL? — BL? by
Yve BLE, T,yv=e¢7v(.—y).
Since £ g is invariant by gauge transform and advection, we have
Yve BL;, LHT, ) = LE(v).
Calculating the derivative with respect to v in ug, we get
Yve BL},  dZ¢(Tyyuo)(Tyyv) = dL¢(ug)(v) = 0.
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Since T,  is an invertible operator on BL? (because T,Y’}l, =T_,_y), Ty yuo is also a critical point f? O

In the following Theorem, we construct critical points of the Lagrange functions f? as perturbations of
the continuous traveling waves ¢ embedded in BL%L.

Theorem 3.2. There exist hg, C, p,a > 0 such that for all h < hg and for all £ € Q, there exists n? € BL?
satisfying

a) d.L¢(nk) =0,

b) Ing = velmwr < Ch2,

¢) Vo € R, ni(—x) = n{(z),

d) if ue BL? is such that ||u — 77?HH1(R) < p, u(—x) = u(x) for allz € R and dfg(u) =0 then u = 77?,

e) ifve BL? n Span(ng, ing, axng)J—L% then we have

&* Z¢ () (v,0) = vl gy-
Furthermore, £ — Tl? is C' and for all h < hg, for all € € Q, we have
YCeRY [ deng(€)(C) — de ve(€)(O)mr) < CICIR®.

The remainder of this section is devoted to the proof of this Theorem. It is divided in three steps. The idea
of the proof is to apply, for each value of £, the inverse function Theorem to solve df?(u) = 0. We give an
adapted version of this result, see Theorem [5.3] proven in Appendix. Moreover, we have to pay attention to
symmetries and establish estimates uniform with respect to ¢ € €2 and h small enough.

Step 1: Identify the function to invert

First, we need a point around which apply the inverse function Theorem. To do this, we consider the
orthogonal projection of the continuous traveling wave )¢ on BL? (for the L?(R) norm) denoted by wg. Using

Fourier Plancherel transform we observe that wg and ¢ are linked by their Fourier transform through the
relation

(39) ¢g = 1(_1 1)¢£.

h’h

Sometimes it is useful to extend this notation for h = 0 with ’(/Jg = 1.

Now, we have to take care about the symmetries of the problem. Indeed, since the set of the critical points
of X’g is stable under advection and gauge transform, we expect that the differential of d & 2 is not invertible
in this critical point. However, there is a classical trick to avoid the problem generated by these symmetries.
To explain this trick we need to introduce an operator on BL?

S, - BL? — BL?
' u = (- u(—x)).
This symmetry is natural for our problem because & 2 is invariant under its action.
Lemma 3.3. For all h > 0, for all £ € R%, for all uwe BL?, we have
LE(Su(w) = LLw).
Proof. Tt can be proven by a straightforward calculation. O
This operator induces a decomposition of BL%L very well adapted to our problem
BL3 = Ker(id —Sy) @ Ker(id +54).

This decomposition is also a topological decomposition because these subspaces are closed for the | - ||51(r)
norm. In all the paper, these spaces are always implicitly equipped with this norm.
The continuous traveling waves is invariant under this symmetry. Indeed, we can verify (see (4)) that

VeeR, e(—x) = e(x).

Consequently, we expect n? to be invariant under the action of Sj. The space Ker(id —S},) is not invariant
under advection or gauge transform, so we avoid the previous difficulty. Moreover, we have the following result

Lemma 3.4. For all h > 0, for all £ € R%, for all u € Ker(id —S},), for all v € Ker(id +S4), we have
4.2 (u)(v) = 0.
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Proof. Applying Lemma [3.3] we get
h h
Li(u—v)=2L¢(u+wv).
Then, if we compute the derivative with respect to v € Ker(id +5},), we get
h h
dZ¢(u)(v) = —d Z¢ (u)(v).

O

With this lemma, we see that a critical point of dgg [Ker(id —s,) 18 a critical point of Xg Hence we
will apply the inverse function Theorem in the point 1/)2‘ which is in Ker(id —S},) (it is a straightforward

calculation), and to the function d.,i”? [Ker(id —Sp)-
Step 2: Invertibility of the derivative

Now, we want to prove that d? fg |Ker(id _Sh)(wg) is invertible and to estimate the norm of its invert
uniformly with respect to & €  and h small enough. The strategy of the proof is to establish that d*_.& ?(wg)
is negative in the direction of 1/)2‘ and positive in the direction L2?-orthogonal to wg in Ker(id —S). Then it
will be possible to conclude using a classical lemma of functional analysis (see Lemma ).

We are going to establish most of our estimates from the continuous limit. So we need to introduce the
continuous Lagrange function associated to NLS, defined on H'(R) by

1 1 & &2 .
Le(u) = §Hf7ru||2L2(R) - 1““”%4@) + 5““”%?@) + 5@(7&, U)r2(R)-
Of course, as expected, we can verify that 1)¢ is a critical point of .Z¢. We will have to compare precisely z/;?
and 1¢. So we need a precise control of the regularity of 1.

Lemma 3.5. There exist C' > 0 and € > 0 such that for all £ € Q and all w e R
e (w)] < Ceell,

Proof. Tt is a classical result of elliptic regularity. Here we can see it directly through formula . We also
could prove it directly with the same ideas as in Theorem below. O

First, we prove, through the following lemma, that d?.% 2 (1/)?) is negative in the direction of 111?.
Lemma 3.6. There exist a > 0 and hg > 0 such that for all h < hy and all £ € Q we have
A LW (W08 < —alvglin ).
Proof. If ue H*(R) we have
d* Le(u)(u,u) = d.Le(u)(uw) = 2ul L gy.

Consequently, since ¢ is a critical point of .Z¢, we have

d* Le(Ve) (e, Ye) = —2|vbel| 11 gy

However, € — |[v¢| 74y and & = [¢¢|F: g, are continuous positive maps on Q. So, there exists a > 0 such
that, for all £ € 2,

d® Le(ve) (e, Ye) = —2|vbel| Lary < —allvbe]| 3 ry-
Since Hlﬁg\l?p(m < HQ/’EH%H(R) (see (39)), to conclude this proof it is enough to prove that fg(¢g)(¢?7 ¢g) goes
to d? Ze(e) (e, e) when h goes to 0, uniformly with respect to £ € 2. We can write

2

h 1k

h
(40) +d® Lo () (W, ) — d* Le(wbe) (e, vhe).-

02 L () (Wl ) =42 Le(e) (e, ) + f
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First, with Fourier Plancherel isometry, we control by the classical estimate of consistency, the term gener-
ated by the discretization of the second derivative

Ja¢n2_¢ﬂx+m‘¢5”2
RS h

27T _% 2
1 — sinc? (“’—h)
< sup ——————22 | 0% |2
wI;IR) w2 H def”L?(R)
h\? 1 —sinc® (W) o, o
= (2) i a— 10z %e 72 R)-

Furthermore, we deduce from Lemma [3.5] that [02¢¢[?, (r) can be estimated uniformly with respect to § € Q.

The convergence of the second term in is easier. Indeed, we deduce from Lemma that 1/)? goes
to ¢ when h goes to 0, uniformly with respect to { € €. We conclude because it is clear that the map
u — d? Z¢(u)(u,u) is Lipschitz on bounded subsets of H'(R), uniformly with respect to & € Q. O

Now, we give the most important lemma of this proof, establishing the coercivity property of the discrete
Lagrange functions uniformly with respect to the parameters.

Lemma 3.7. There exist a > 0 and hg > 0 such that for all £ € Q and all h < hy we have
(41) o€ BLj, 0 Span(ivg, du0g, ) e, &2 LEWE) (0,0) = afjvlf g

Proof. We are going to establish this estimate by a perturbation of the continuous case. Indeed, for the
continuous Lagrangian this result has been proved by Weinstein in [I8]. There exists @ > 0 such that for all
el

vue H'(R) n Span(ive, Orthe, )%, d* Le(¥e)(v,v) = afvlip gy
Literally, it is not exactly the result of Weinstein. We explain, in Lemma [5.4] of the Appendix how to get this
estimate from the original result. Moreover, this result can be slightly extended to obtain the existence of two
constants c1, cg > 0 such that for all £ € 2,

if ||u — ’l/)§||H1(R) <C and max (K’Q/JE, 'U>L2(R) ‘, Ki’(/)g, 'U>L2(R) |7 |<am¢§, U>L2(R)|) < CQH’U”Hl
«
(42) then & Ze(w)(v,0) = S o3

This result is a consequence of Lemma given in Appendix. With its formalism we take £ = H'(R),
b=d*y ¢ and X = Span(itbe, 0zt)¢, ¢¢). This last family is free because 1)¢ is not a plane wave. Consequently,
the associated Gram matrix is invertible. Finally, we just need to verify that the constants ¢; and ¢y given by
the lemma can be controlled uniformly with respect to £ € 2. But it is a direct consequence of the estimate
proven in Lemma since the Gram matrix is a continuous function of ¢ € Q.

Now, we focus on estimate of Lemma Let hg > 0 be small enough to get that for all h < hyg
and all £ € Q, we have ng — Yelmr) < c1. Let us fix h < ho, £ € Q and consider a direction v €
BL? n Span(l/}g, iz/)g7 %wgb)LLz. We decompose v as
20
 ho
where 6 € (0, Z) is a constant (independent of h, £ and hg) that we will determine later. Consider the following

)
decomposition

(43) 4> 2L W) (v, v) = & LL W) (ve, ve) + 4> LEWE) (0p, vp) + 24> LE(WE) (vb, v0).

We estimate separately each one of these terms as follows:

v=v+v, with 0y =1_, w0 and wo

e For the first one, we deduce from Lemma [3.5 and the constraint on v that there exists ¢,C > 0
(independent of £) such that

max ([(e, veyr2m)l, Kite, vey L2 ry |, [(0atles vy L2 (r) ) < Ce™ 0] 1 r)-
Consequently, if hg is small enough to get Ce™*“° < ¢y, we can apply to get

(6]
d* Le (V) (ve, ve) = gHW“%ﬂ(R)'
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Hence we have

& L) (v ve) > Tloelin gy + & LEWE) we ) — & L) (vr,ve)

@ 1 4 wh R

= g“véH%ﬂ(R) + % fR |:h2 51112 (2> _w2:| |vg(w)|2 dw
«a 1 wh

= ~loelFr g — ff [1 - sian()} |wdp(w))? dw
8 R 21 ), <o 2
a .

= gH’UEH%[l(R) — [1 — 51n02(9)] H’U@H%Il(R)

Choosing 6 € (0, F) to have 1 —sinc®(0) < %, we get

«
d* L (W) (ve,ve) = EHUAGP(R)'

e For the second term, we use Fourier Plancherel isometry to get

1 (. wh _ &l
L o) > 3 [ sine® (5] 0P o =31 e o)~ 2 s nlca vl e
. &2
> sinc?(0) [0z v 72 (r) — 310E 1170y 081 72(R) — 5 100l 2w [ve] 2 (R)-

However, applying Fourier Plancherel isometry we get

2 o 2 ~ 2 2
Vbl L2(R) = v W dw < J wu(w dw = 811;, R)"

|w|>wo

Consequently, we have

d2 g > | sinc2(0 3”¢?H%@(R) [ P 2
¢ (V) (vp, vp) = | sine”(0) — T2 2w |0zvb[72(R)

3 ,(/}h 200 2
= (sincz(ﬁ) - M - |52|> 0 Hva?{l(R)

w; 2w | 1+ wg

Since these quantities can be controlled uniformly with respect to £ € Q, if hg is small enough, we have
for all £ €

1.
d? f?(w?)(vb,vb) > gsch(Q)Hva%l(R).

e For the third term, since the frequency supports of vy and vy are disjoint, we get

4
@ 22 wnwn) = @ L2 @l 0,00

> =3¢ 170wy l0n ]l L2 () Vel 2y

lvs ]l 72 Ry

> =383 o o Ve 111 () el

I 120 ry Vel .y g
39213 ry , )

> —m (HW”Hl(R) + H’UbHHl(R)) .

Controlling this quantity uniformly with respect to £ € €2, we deduce that if hj is small enough then

B
& L) s, v0) = =5 (il ey + [ool3n ey )

with 8 = min(3 sinc?(0), 16)-

Applying these three estimates, we deduce that there exists an hy > 0 such that if h < hg and £ € € then for
all ve BL? n Span(wg‘, il/}?, (9$1/)2)LL2, we have

B B
@ 2L ,0) > 5 (vl + ool ) = S0l -

O

Before focusing on the invertibility of d* .# 2’ |Ker(id — Sh)(@/;g), we give a small but useful lemma (particularly

to control uniformly the norm of the inverse).
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Lemma 3.8. For all r > 0, there exists C > 0 such that for all h > 0 and all £ € Q, we have for all
w,v,w € BL} with |w| g gy <7

| d*.Z¢ (w) (u,v)| < Ol sy 0] 1 ) -
Proof. Since |sin(w)| < |w|, we observe that, for all u,v € BL?

|d* 2 (w)] < [ 0au] 2Ry 02 2Ry + Bl W e gyl L2 Ry 0] 22 Ry
+&lul e wrylvlzewry + 2l 0zul 2Ry V] 2 (R)-

The result is thus a simple consequence of the classical Sobolev inequality,

HwH%OO(R) < |wlzzw)lldzw] 2 r)-
O

In the following concluding Lemma, we prove the invertibility of d* & 2 [Ker(id —S,) (1/)?) and control the norm
of its inverse uniformly with respect to £ € Q and h small enough.

Lemma 3.9. There exist hg > 0 and C > 0 such that for all € € Q and all h < hy, d? .i”g |Ker(id _S}L)(¢g) is
invertible and the norm of its inverse is smaller than C'.

Proof. We use Lemma of the Appendix, by taking E' = Ker(id —Sy,) (equipped with | - |1 (r) norm),
h .

T = 4> 2} Keria —sn) (W), By = Span(¢f)*22 A Ker(id —S) and Ey, = Span(y}).

To get the coercivity estimate on F,, we apply Lemma while coercivity on E), is obtained from Lemma
after noticing that

Ker(id —Sy) = BL} n Spaun(z/J?Ji/J?7 awa)LL27

which is obvious since i}, 0,1 € Ker(id +5,) © Ker(id —S,) 2.

Applying Lemma we obtain the invertibility of d? f? |Ker(id — S, (wé’) and an explicit control of the
norm of its inverse in terms of oy, o, and ||T]|. However, with Lemma and Lemma we have a uniform

control of a, and «,, with respect to £ € Q and h small enough, the uniform control of |T'| being given by
Lemma 3.8 O

Step 3: The resolution and its consequences

We now want to apply the inverse function theorem|5.3|to d .Z Z [Ker(id —S,,) 110 ¢g. In the following Lemma,

we focus on the last assumption required, i.e. d? .,f? is a Lipschitz function.

Lemma 3.10. For all R > 0 there exists k > 0 such that for all £ € Q, h > 0, uy,uz,v,w € BL%, with
|uil| gy < R and HUQHHI((R)) < R, we have

a2 L2 ) (v, w) — & L2 ug) (v, w)] < klur — sl o [0 01 oy [0l 10 -

Proof. We use mean value inequality. Indeed d*.% 2 = —i a? |- |\%4(R) is clearly a bounded function on bounded
subsets of H'(R). O

Applying Lemma [3.10] and Lemma we deduce that assumptions of the inverse function Theorem
are fulfilled. In the following Proposition, we give its conclusion.
Proposition 3.11. There exist hg,r,\,C > 0 such that if h < hg and £ € Q then
. d.,?? Ker(id —s,) 15 a C' diffeomorphism from {u € Ke}f(id =5Sn) | |u— wgﬂHl(R) < r} onto its image,
o if u e Ker(id —Sp) and ||u — ¢£LHH1(R) <7 then | d? Ly |Ker(id _Sh)(u)_lﬂg(Kerm,Sh)/;Ker(id _syy < C,
o if p < r and ® € Ker(id —Sy)" with |® — diﬂg |Kcr(id—Sh)(qzbg)HKer(id—Sh)’ < Ap then there exists
u € Ker(id —Sp,) such that |u — 1/12HH1(R) < p and

4.2 Ker(id —5,,) (W) = @.

To apply this result to ® = 0, we will show that the norm of d.,iﬂg |Ker(id 7Sh)(1/12) is small when h — 0,
uniformly in € € Q. It is exactly, what we establish in the following Lemma, which also explains the error term
"A2" in Theorem [L.4]

Lemma 3.12. For all hg > 0 there exists M > 0 such that if h < hg and £ € Q then
Yoe BLy,  [dZ¢ (W) ()] < ME*|v] g (g).
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Proof. The arguments are very similar to the proof of Lemma [3.6] The key point is the estimate of the
consistency error associated to the discretization of the second derivative by finite differences.
Since ¢ is a critical point of .Z¢, we deduce from the definition of 1/1? (see ([39)) that

dZEWE)(v) =dLEEWE)(v) — d Le(e)(v)

. 44 . 44
(44) = (@2 = An)e, V)2 + d 'fﬁngv) -d 'E(W@(v).

To estimate the first term, we use Fourier Plancherel isometry to get
1 4 mwh -~ ~

(02 = An)e, Vel = |5 | |5 80 | 5 ) — w?| ¢e(w)-B(w) dw
2T R h 2

3 2 (wh 2
sinc -1 h
# H3§¢£||L2(R)HUHL2(R) = <2) sg]g
w

.9
sinc” (w) — 1
e [T PO P

As we can see from Lemma 03¢ || £2(R) is clearly bounded uniformly with respect to £ € €.
To control the second term in , we use mean value inequality and Lemma to get some constants
M, C > 0 independent of h and £ € 2 such that

[-174® I-174= -
d 2 (o) (v) — d 2 (W) (0)| < Ml — v 2ol ey < Ce ¥ ol ey,
which shows the result, provided h < hg small enough. O
Applying Lemma |3.12} if hg is smaller than 2)‘—1(4 we can choose ® = 0 in Proposition [3.11{ and we denote

by ng the corresponding critical point of .,2”2 |Ker(id —Sy)- As shown in the first step, ng is thus a critical point

of & ?, and with Proposition we have proven the points a) to d) of Theorem It remains to show the
coercivity estimate e) and the regularity with respect to &.

To obtain the coercivity estimate, we just have to perturb the estimate of Lemma with Lemma [5.6
presented in Appendix. This is given by the following result

Lemma 3.13. There exist a« > 0, hg > 0 and p > 0 such that for all £ € Q, h < hg and u € BL}Q1 such that
lu— %ZJQHHl(R) < p, we have

(45) Vv e BL? n Span(iu, Opu,u)tc2,  d? Z?(u)(v, v) = oszH%Il(R).

Proof. The proof is very similar to the first part of the proof of Lemma[3.7, but we need to track precisely the
dependence of the constant with respect to h.
First, applying Lemma [3.7} we know that there exists ho > 0 and a > 0 such that for all A < ho and all
£ € Q we have
Yve BLi N Span(iwg, 8z¢g,w2)LL2, d? fg(wg)(v,v) > oszH%l(R).
We want to apply Lemma in @ZJ? in order to perturb this estimate and prove that there exist hy > 0,
c1,co > 0 such that for all £ € Q and all h < hg, if

lu =gl mE) < and  max (KOF, V)2l [GUE, V) 2R | €008 V) 2wy |) < collvl gy,
then o
d* 2L (u)(v,0) = afv]F g = §HU||§11(R)~

To do this, we apply Lemma in z/)g with E = BL?, X = Span(iw?, (%ﬂp?,z/)g) and b = d2 gi} The Gram

matrix is
W?H%zm) Gl 0y L2 (R) 0
Gl = | (g, 0912 10298172 Ry 0
0 0 19 B

To prove that the constants ¢, co > 0 —explicitly given by Lemma [5.6]- are independent of £ € Q and h small
enough, we have to control uniformly the inverse of G’g, the norm of wg in H'(R), the norm of d* . g (w?) and

prove that d*.% g is uniformly Lipschitz.
The control of wg in H'(R) is obvious, and Lemma shows that d? .& g is uniformly Lipschitz. In Lemma

we have proven that the norm d? ,fg (1/)2‘) is uniformly bounded with respect to h and £ € Q. So we just
need to focus on the Gram matrix.
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As explained in the proof of Lemma Gg = G¢ is invertible. Furthermore, (h,§) — Gé‘ is a continuous
function on Ry x Q, so there exists hg > 0 and M > 0 such that for all h < hy and all £ € €, G? is invertible
and [ (Gf) "o < M.

To prove (45)), let us set p = min(cy, c2) and consider h < hg and § € Q. Let u,v € BL? be such that
Ju— w?HHl(R) < p and v € Span(iu, dpu, u) 2. Then, we have

max ([, v)r2r)l, [GUE, V) r2®)l, [K0¥E V) r2r)l) < Ju— V¢ mw) vl ®y < c2lvlmr)-
Consequently, we can apply the result of Lemma [5.6] to get
h o
d* ¢ (u)(v,v) = alv|F gy = 5“”“%{1@)'
which shows the result. O

The following Lemma concludes the proof of Theorem It shows that £ — n? is C! and that its derivative
with respect to & is a good approximation of the derivative of ¢¢ with respect to &.

Lemma 3.14. Let hg,7,A\,C > 0 be the constants given in Proposition |3.11] and M > 0 be the constant

associated with hg > 0 given in Lemma|3.12 Let hy := min(hg, 1/ 2’\—](4) and for any h < hy and § € Q, let 772

denotes the critical point of .,%2 at a distance smaller than r from 1/1? There exists k > 0 such that for all
h < hy, for all £ € Q, f»—»n? is C1 and

| de ve(¢) — de ng (Ol m) < KICIR®.

Proof. Let h < hy and £ € Q. The function (u,() — d.f? [Kex(id -, (w) is clearly a C* function. Applying

Proposition its derivative with respect to v in (772‘, £) is invertible. By construction, (ng, £) is a zero point
of this function. So we can apply the implicit function theorem.
There exists p > 0 such that B(£,p) =« Q and T € CY(B(&, p); Ker(id —S4)) such that

VC € B(gap% dg? \Ker(id—Sh)(r(C)) =0.

To prove that T'(¢) = n’, it is enough to prove that |'(¢) — w?HHl(R) < r. But by construction of hy, we
deduce of Proposition that

r
IT(€) = ¢l mr) = Iné¢ — Yelm® < 3
Furthermore, ¢ — I'(¢) and ¢ — w? are continuous functions. So there exists p < p such that,
T
YCe B p), ) =Tl + ¢ = vélmr < 7
Applying the triangle inequality for ¢ € B(&, p), we thus obtain

3
IT(C) — vl mwy < <

Since we have proven in Proposition that d.i”g Ker(id —,) 18 invective on {u € Ker(id —5Sp) | [u —
’IZJ?HHI(R) <r}, we get I'(¢) = ng for all ¢ € B(&, p). Consequently, ¢ — 77? is C'L.

Now, we have to prove that dg¢ 77? is an approximation of d¢ 9¢. First, we introduce some constants c,e > 0
such that for all £ € Q and all ¢ € R%, we have

(46) YweR,  |de e (C)(w)]| < cl¢]ee.

There are several ways to establish this property. The most direct is probably to deduce it from the explicit
formula of ¢ (see (4))). But it can also be proven with elliptic regularity as in Theorem below.
Then, we deduce from the definition of 1/12’ that for all h > 0, £ — wé’ is C! and there exists k > 0 such that

(47) Yh>0, VEeQ, VCeR:  [dewe(C) — devf (Q)lmm < ke 5.

So we just need to prove that de¢ ng is an approximation of d¢ ’(/J? of order 2 in h. To compare these quantities,
we are going to prove that they are almost solutions of the same linear equation.

Since né‘ is a critical point of f?, it satisfies for all v € Ker(id —S},), df? Ker(id _Sh)(ngh)(v) = 0. So we
can calculate the derivative with respect to £ to obtain that

VC € RQ; Vv e Ker(ld 7Sh)’ d2 "g? |Ker(id —Sh)(ng)(vv df 77?(0) + b?[ng](’”) = 07
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where b? [u] € (Ker(id —Sy))’ is defined for u € Ker(id —S},) by
bg[u] (v) == Glu, v)r2R) + C2{i0:U, V) 2(R)-
Similarly, we define Egg € Ker(id —Sy,)’ by
VCeR?, WueKer(id—Sh),  d*.Z¢ |Keria—s,) (VE) (0, de WE(Q)) + DE[WEN(v) = L (v).
Then, we get (in Ker(id —S},)’), for all ( € R? |
d2 «iﬂg \Ker(id—Sh)(ng)(df 7/’?(0 - df ng(C)) = [d2 f? |Ker(id —Sh)(ng) - d2 j? |Ker(id —Sh)(wg)jl (df 7/’?(())
+ bh[ﬁg T/Jg] + Eg c(v).

However, we have proven in Proposition that d? .22 ¢ |Ker(id —Sh) (175) is invertible and that the norm of its
invert is smaller than C. So we just need to control the three right terms of the last equality.

e Applying and ([£7)), for all A > 0 and all £ € Q, we have | d¢ w?(C)HHl(R) < 2|¢]k. So applying
Lemma there exists £ > 0, such that for all h < hy, all £ € Q, all ¢ € R? and all v € Ker(id —S},),

€2 28 a5y 1) = 4 L fgengia—siy (0] (de L))

Mk
< klng — Ol @ lClvlmE) < Th2|C|HU”H1(R)-

e The estimate of the second term is obvious. Indeed, for all h < hq, all £ € Q, all ¢ € R? and all
v € Ker(id —S},) we have

M
¢ [ng — e1()] < [CIng = ¢l r2@wlvlz®y + 102 (1€ — Ve 2w 020l L2 ry) < 27h2|§|”””H1(R)

e The bound on the term Eh is more difficult to obtain. First, we have to identify it. Since ¢ is a

critical point of L, it satlsﬁes dZe(e)(v) =0forallve Hl(R). By calculating its derivative with
respect to &, we get for ¢ € R2,

4> ZLe(ve) (v, de e (Q)) + C1{te, V) 2Ry + ({002, V) 12(r) = 0.

In particular, we can choose v € Ker(id —S},). Consequently, we get

4> 2L W) (v, de ¥ (Q)) + bE[WE] + (A — 02) de ¥ (C), V)12 (ry

N
v D@ g acupien - o LIE® 0, d e <0
So we have
. 44
E£,<<v>—d2'fﬁwg)(v,dgwg(o)—d? DB (1) 0, (60 + (22 = A) e Q) D100

To estimate (92 — Ap) dg ¥ (C), v)2(r) We use the same method as in Lemma and we can find
an universal constant Cp;, > 0 such that

(48) (02 — Ap) de ¥2(C), v)r2wry| < Cunivh®| de ¥ (Ol sr2myllv ] 2Ry
On the other hand, we have
& | [y () (0, de e(0)) = A | - ey (W) (0, de w2 (O)
< 120 + ¢l pawrylve — vf | rawy vl Law) |l de e ()l rary
+12] dg e (¢) — de ¢§(C)HL4(R) \|¢?H%4(R) |v] L2 (R)-

Applying Gagliardo-Nirenberg inequality, and Lemma it is clear that || +111g|| LA(R) Hq/’?HZM(R)’
1] de ¥ ()] Lary and [¢| 7] de wg(C)HHz(R) are bounded uniformly with respect to £ € Q and h < hy.
Consequently, by using , there exist £ > 0, k > 0 such that for all h < hq, all £ € Q and all ¢ € R?,

we have
. ) 2\°
El < <h2 *ﬁ)g Rl1+ (= ,
|E¢ (v)] < K +e K + .,

which concludes the proof of the Lemma.
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3.2. Gevrey uniform regularity, Lyapunov stability and some adjustments. The discrete traveling
waves constructed in Theorem enjoy most of the properties of the continuous traveling waves v¢. In this
subsection, we analyse some of these properties useful to prove Theorem

First, we study their regularity. Of course, since they belong to BL? they are entire functions but we can
give a control of them in Gevrey norms uniformly with respect to h and &.

Theorem 3.15. There exists hg > 0 such that for all M > 0, there exist C,e > 0 such that for all h < hg
and all € € Q, if u € BLY satisfies |ul| g (ry < M then

(49) d,i”?(u) —0 = YweR, |[G(w)] < Cesll,
Proof. To get this result of elliptic regularity, we prove, in the following lemma, a result of coercivity.

Lemma 3.16. Let f : R — R be a function continuous in 0 such that f(0) = 1. Assume that there exists
m > 0 such that f = m on R. Then there exist & > 0 and hy > 0 such that for all £ € Q and h < hy we have

VweR, w’f(hw)+&w+& =>a(l+w?).

Proof. First, observe that we have

2 2
w2+§2w+§1= <w+€22> +§1—(§22> .

Consequently, there exists 8 > 0 such that for all £ € 2, we have
w2+£2w+§1 26(1+w2).
Second observe that there exists wp > 0 such that, for all |w| > wy we have
5

mw? + Eow + & = 5 1+w2).

Consequently, for such w and for any h > 0, we have
m
W (hw) + Gw + & = o (1+w7).
Now, since f is continuous in 0, there exists ¢ > 0 such that if |w| < ¢ then |f(w) — 1| < g Consequently,
if |w| <wp and h < u% =: ho then we have

o™

w? f(hw) + bow + & = w? + Sw + & + W (f(hw) — 1) = B (1 + w?) —§w2 > = (1+w?).
O

We now prove the elliptic regularity result . Let us write Equation d ¥ ’g (u) = 0 in terms of the Fourier
transform 4. It is written

T T 4 5 (wh ~ PP
(50) Yw € (—E,E) , (hQ sin (2) —§2w+§1) U(w) =u#*u=*u(w).
Applying Lemma to f(w) = sinc? (%) +1(—r,m)e(w), for which m = %, there exist hg > 0 and « > 0 such
that if £ € Q and h < hy,

™ . o [wh 9
Vwe(—ﬁ,g), 77 Sin (2)—§2w+£1>a(1+w).
Hence, we have using (50))
m™ T ~ ~ o ~

61) Vwe (<5 7), (1 +e?) )] < )]« i) « @)
Now, we prove by induction (on n) that there exists C' > 0, that only depend of o and M such that
(52) Vi<p<o, |w']r) <C'nl

First, we consider the cases n = 1 and n = 0. Since we have assumed that |u| g1 (r) < M, we have

V1 + w?i(w)] 2r) = V2rlul g1 r) < V2T M.

L2(R)

~ 1
U7 < || ——
ol < | s
Then, we get from (51
1 NEURIUE:

[wii] L1 ry < (1 +w2)a“L1(R) < aHaHil(R) < o
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Furthermore, we also get from ,

1+ |w]
1+ w?

~ 1 ~
I+ Jwhal=r) < %1 w)-

L*(R)
We deduce for n = 0 and 1 and for the other values of p using Holder inequality.
Now, we assume that is proved for all 0 < n < N 4+ 1. We deduce from that for all w e (—%, %),

we have

w2 faw)] < WV (1 + w?)a(w)]

N

2 m(w ) (W) # (W) (w)| -

1
a
ni+na+ng=N

We deduce from Young convolution inequality that if % =2+ % then

N! n .
Z n1'!nslng! n HwnjuHLq(R)'
ni+ngs+ns=N 1+h2:08: Jj=1

Q|

||WN+217HLP(R) <

Using the induction hypothesis, we obtain
1
2aC?

So, if C'is chosen large enough to ensure 2aC? > 1, we obtain the result by induction.
Choosing p = o in , we get

. 1
Jw™N*20 Lo gy < aCNN! #{(n1,n2,n3) [ n1 +n2 +nz = N} = CNT2(N +2)!

C n
VneN, VYweR* |u(w)] < () n!.
w
But using Stirling formula, we get an universal constant ¢ > 0 such that n! < ce= ",
||

lw| = C and n = [&], we have |ti(w)| < ce”™2c, and this shows the result. O

Consequently, if

In the following lemma, we prove that Lagrange functions are Lyapunov functions for the traveling waves
of the homogeneous Hamiltonian. These uniform estimates are discrete versions of the continuous case, see
for example Proposition 8.8 of [7]. They are the key estimates for applying the energy-momentum method.

Lemma 3.17. Let hy,C, p,a > 0 be the constants given by Theorem[3.4 There exist r,3,hy > 0 such that
for allh < hy, all £ €Q, allue BL? N Span(ing, 6:,377?), if Ju — 77?||H1(R) <r and HUH%2(R) = HU?H%z(R) then

(53) Blu =0kt < ZLe(w) = LEM0E).
Proof. Let hy < hg and € > 0 be such that

2
‘W&”Lz(R) < €

Vh < hla v§ € Q7 Hng“%ﬁ(R) = 9 =

O |

Let r € (0,1) be a positive constant that will be determined later.
Since 77? is bounded in H'(R), uniformly with respect to £ € Q and h < hg, there exists a constant M > 0

such that for all £ € Q, h < hg, wy,ws, w3 € BL?, we have HngHHl(R) < M,

| %22 () (w1, w2)| < M|wi| g ry|we i vy

and

sup |d® 2 (w) (w1, wa, ws)| < Mwi | gy |wel i vy | ws ] g -

HW?‘UJHHI(R)gl

4
Indeed, the first estimate has been establish in Lemma and the second is obvious since d® % ? =d3 %.
Consider h < hy, £ € Q and w € BL} n Span(ing,ﬁmng)LL"’ such that |u — ngHHl(R) < r and HuH%z(R) =

HU?HQLQ(R). Then we define

h

"l ne

h h h

v=n+ [ (=) = o= )R | -
: [ : HnQHLZ(m ¢ HU?”L?(R) ®)
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By construction, v — ng belongs to Span(in?, 5m77?, n?)LLQ. Furthermore, v — ng is a second order perturbation
of u— 772 because, since ||uH2L2(R) = \|77§H%2(R)7 we have

1
<77?7u - 77§L>L2(R) = —§HU - W?\\%Z(Ry
So, we get

HWELHH 1(R) B2 2M

lu = v]m(r) lu —ng | 72r) < GTHUJ_WQH%P(R)'

A g

Now, we can establish our estimate through a Taylor expansion of .2 Z(u) around 772. The first order term
vanishes since 77? is a critical point of fg The second order term is controlled by applying the coercivity
estimate of d° f? (see (53)),

g?() 35(775)
> d® ZEn) (u u—ng) — Mu—ng|?
¢ Me 7757 Ul Ne lH1(R)
= L) (0 —ng o —ng) = LEmE) (u—v,u—v) +2d° LE () (w — gy u—v) = Mu— ¢ |G )

2M 2M
2 a0~y — = L (M(> e — i +2M+M)

_C“H“_%”Hl +afv - UH%P(R)_2O‘<U_U7U_77§L>H1

2M? 4M2
— llu =013 gy ((6) Ju—ng HHl(R)Jr +M>

oM [2M2\? AM?
> |u— W?\\?{I(R) la — fu— 77?||H1(R) (20462 + <62> |u— 772”H1(R) t-a t M)}

AM  [2M2\?  4M?
>||U77?§{1(R)l0‘7"<0‘62+< 2 > + 2 +M>]

Consequently, to prove the Theorem, we just need to choose

o AM  [2M2\? 4l -
’l"<§ OéeT‘i‘ 62 + 62 +M

O

The previous lemma provides a stability control for the solutions of the homogeneous Hamiltonian system.
To apply it, two strong assumptions are required: u € Spam(in5 , &rn{) and ||u||L2(R) Hng HLQ(R) If u is close

enough to 77? there are two classical tricks to get these assumptions. To fulfill the first condition, the idea is
to apply a small gauge transform and a small advection to u. We focus on this problem in the two following
Lemmas. To satisfy the second assumption, the idea is to modify &;. It is the object of the last Theorem of
this section.

When 772 is well defined through Theorem for any v € BL?, we define the matrix Ag¢ ,[v] by
Gnlivyery =Nk, 0xv)re(R) )
54 A plv &) &) .
(54) enlv]i= <<aﬂ]§ ) ZU>L2(R) —<aﬂ]?, axU>L2(R)
We will explain later why this matrix is very useful, but first we give a technical Lemma.

Lemma 3.18. Let hy,C,p,a > 0 be the constants giwen by Theorem[3.3 There exists hy < ho, M > 0 and
§ > 0 such that for all h < hy, all £ € Q and all v € BL? with |v — UgHHl(R) < 0, A¢ plv] is invertible and

[(Agnlv) ™ oo < M.

Proof. Let h < hg, £ € Q and v e BL?. Since v — Ag p[v] is a linear map we have

(55) Agnlv] = Aenlng] + Aenlv —nf].
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However, since Hng — el mr) < Ch?, Ag,h[n?] converges to G¢, uniformly with respect to £ € €2, as h goes to
0, where '

<i¢57 am'(/)£>L2(R) - Hazwﬁniz(R)

Applying Cauchy-Schwarz inequality, we have

det Ge = (itbe, Outpe)Tzmy — Vel T2 (r) |02te |72 Ry < O.
But the case of equality is excluded since ¢ is not a plane wave (i.e. Span(ive, 0,1¢) is a free family). So G¢
is an invertible matrix. As £ — G¢ is a continuous map on §2, there exists M > 0 such that for all { € Q
M
-
As Ag,h[ﬁ?] converges to G¢ when h — 0, there exists h; < hg such that for all A < hy and £ € Q, Ag,h[ﬁ?] is
invertible and

Ge = ( [¥el2ry —<i¢573z¢§>L2(R)> .

|G oo <

[(Aen[neD) " o < M.
Applying the linear decomposition 7 we have
Agnlv] = Aen[nf1(Lz + (Agn[ng]) ™" Agnlv — né D).

However, since 772” is bounded in H'(R) uniformly with respect to & and h, there exists § > 0 such that for all
£eQand all h < hy, we have

_ 1
|(Aenln]) ™ Aenlv — né e < 2*5\\0 — 0w w)-
Consequently, if |v — 7]£|‘H1(R) < 0 then A¢ j[v] is invertible and the norm of its invert is bounded by 2M. O
Lemma 3.19. There exists A\, > 0 and hy < hg, such that for all§ € Q, h < hy, ve BL?, if Hv—n?HIp(R) <d
then there exists v,y € R such that
max(|vy|,|y]) < AMv — 'I’]?HHI(R) and  ev(- —y) — 77? € Span(ing, é‘wn?)LLz.
Proof. For this proof, we introduce a notation. If v,y € R and v : R — R then
Ty yv = ev(- —y)
Let v e BL?. We are going to apply the inverse function Theorem to the following function
RZ — R?
9En <7> = (<i77?7Tw,yv —nireR) )
y Oanf Ty v = M) L2(R)
g¢ p is clearly a C ! function whose Jacobian matrix is given by

JgE 1 (v, y) = Ae n [Ty yv].
Applying Lemma we can find h; < hg, 6 > 0 and M > 0 such that if h < hy and |v — 7)?\|H1(R) < 4 then
J ggyh(O, 0) is invertible and its norm is smaller than M. We want to prove that J ¢ p, 1s Lipschitz uniformly

with respect to &, h, v. In fact, since it is a C'* function, we just need to control its derivative. Using integration
by parts, there exists a constant x > 0 such that for all y,~ € R we have

1 dJgen (7. ¥) 2R ey < BIE L@ | Ty y vl ®) = EIng | a2 w) 0] R)-
But, applying the result of elliptic regularity (Theorem 7 Hn?” m2(R) 1s bounded in H 2(R) uniformly with
respect to £ € Q and h < hg. So, there exists k > 0 such that for all £ € Q, h < hg and v € BL? with
v — 77£HH1(R) < 4, we have
I dJgg n(v,¥) | .2r20mr2)) < k-
Now, we apply the inverse function theorem to g¢ , and we obtain some constants A > 0 and r > 0,
such that for all h < hq, £ € Q and v € BL? with |v — 77?||H1(R) < R,

YeR® |y <r = 37,y€eR, ggu(r.y) =9£4(0,0) + v and  max(jyl,|y[) < Ayl

To prove the lemma, we would like to choose v = —gg’h(O,()) small enough. But since ng is uniformly
bounded in H'(R), there exists a constant K > 0 such that for all h < hg, ve BL?, £ € Q,

19€.1(0,0)] < Kllng — vl -
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So, if Hng —v|lg1R) < %, We can choose v = —g¢ ;,(0,0) and the lemma is proven. O

In the following Theorem, we focus on a change of variable. Usually, NLS traveling waves are not indexed
by € but by their L? norm and their momentum. It would be possible to do the same here. Here, we prove
that it is possible to index them by their L? norm and their speed of advection (i.e. &).

Theorem 3.20. Let hy,C, p,a > 0 be the constants given by Theorem and let 0 be a relatively compact
open subset of Q. Then there exist hy < hg,0 > 0,k > 0 such that for all h < hy, for all £ € Q and for all
we BLY, if |u — ngHIp(R) < ¢ then there exists ¢ € ) such that

&2 = hj2 2
56 3 and —¢l <k — |u .
(56) { Hné H;@) — \IuH%z(m I¢—¢] |H775 ||L2(R) I HL2(R)|

Proof. From the definition of ¢¢ (see (4])), we observe that for all £ € Q,

&\’
T2R) = 4me = 44 [€F — (2> :

Consequently, there exists g > 0 such that for all £ € Q,

|vel 72y = mellion ol

2
= >28.
e

Oe, [Vel72 ) =

Let h < hg. Applying Theorem we know that & — 77? is a C! approximation of ¢ — 1) up to an second
order error term. Consequently, we have
10, [V 72r) — Pes InEI72m) | = 20€06, 0 — Oy s ) L2(r) + (Oeunid's Ve — ME VL2 (R)]
< 200 (el 2 (ry + 106718 [22(R) )
< 2Ch? (||1/1£HL2(R) +Ch% + 10¢, el 2(ry)
< 2Ch? Sup (Iellze(ry + ChE + [0e, vell L2 (w))
=: MR>.
Let hy = min(hg, BV M). If h < hg and ¢ € Q, we have
5§1H77§H%2<R) = f.
Since €1 is relatively compact open subset of €, there exists r > 0 such that
Q-+ Bgr2(0,7) c Q.
Let £ € Q, h < hy and let g be the following function

g.{[fl—ﬁfﬁ‘r] — R

' G = HWZ,&H%Z(Ry

Since g is a continuous map, we have

(57) U|n?1—r7£2H%2(R)a (/s H%?(R)] cg([& —r & +7]).

But applying the mean value equality, we have
Hﬁgl—r,gg ||2L2(R) < H’??HQB(R) —pr < \\77?\\%2@) +pr < ||7721+r,52H%2(R)-

Let u € BL? be such that |u — ngHHl(R) < 0, where § € (0,1) is a positive constant that will be fixed later.
Applying triangle inequality, we get

< 0(ull 2y + 1€ 22 )
<600+ 2|n¢ |2 (r))
<O(L+2 sup  [ng]rem)

eQ, h<hg

||U||%2(R) - HU?H%z(R)

=: 0K.
So, choosing § = 27, we deduce from that there exists ¢; € [&; — 7, & + 7] such that

K

lulZ2m) = 9(C1) = 02172 (Ry»
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where (5 := &. Applying the mean value equality, we obtain

€ =<l < B7 lulZemy — 72 wy] -

which proves the result. O

4. CONTROL OF THE INSTABILITIES AND MODULATION

In the last section we have constructed approximate traveling waves n?. In order to prove Theorem H we
now study the dynamics of DNLS around these approximate traveling waves.

We are going to use many results established in the previous section about ng and its properties. In a first
paragraph, we summarize the results that will be useful and fix most of the constants.

Step 1: variational properties around the equilibria

~ 2
Let  be a relatively compact open subset of {5 eR?| & > (%2) } and 2 a relatively compact open subset

of . In the previous section, we have proven there exist some constants hg, e, C, p > 0 and, for all £ € O and
all h < hg, a function ng € BL? satisfying the following properties.

e From Theorem ng is a critical point of .,2”? and it is an approximation of

Ing — Vel g ry < CHZ.
e From Theorem , 772 is regular function

(58) VweR, [ w)] < e,

Consequently, we also have HngH mRr) < C.
e From Lemma if ue BLj, n Span(inf, d,n¢) 22, HuH%Q(R) = Hr]gH%z(R) and [[u —n¢| g1y < p then

1
(59) ollv = el m) < LE(u) = L),
e From Theorem , if ue BLZ(R), £ € Q and |ju — 77?\|H1(R) < p then there exists ¢ € Q) such that
(60) { f2h 2 z 2 2
In¢ HLz(R) HuHm(R)
and (using regularity of £ — 77? uniformly with respect to h, see Theorem
(61) ¢ =&+ |u—n¢miry < Clu—n¢| i (ry-
e From Lemma for all we BL?(R), if |lu — ng"HHl(R) < p then there exists v,y € R such that
(62) max([y), |y |) < Clu—n¢lm@ —and  eTu(- —y) —ng € Span(ing, dung) 2.
e From Lemma for all u € BL?(R), if |u — ngHHl(R) < p and Ap ¢[u] is the matrix defined in
then
(63) Ap¢e[u] is is invertible and | (Ap¢[u]) ™ < C.

e From Lemma and Lemma for all uw e BL?(R), if |ju — 77?\|H1(R) < p then

(64) Yv,we BL}, ‘d2 f?(u)(v, w)

< Ol g wyllw] g1 r)-

We finish this paragraph by a remark. In Theorem we compare a solution w of DNLS with some
discretizations of ng using discrete Sobolev norms. However, as we explain in Lemma it is equivalent to
compare directly the Shannon interpolation u of the discrete solution with 77? using continuous Sobolev norms.

Step 2: Lyapunov estimation and modulation

Let r > 0 be a positive constant independent of £ and h that will be determined at the end of this paragraph.

Recall that for v : R — R we have

VzeR, T, yv(z):=eTv(r—y).

and note that 7,1 = T, _y. Let ug € BLj be such that §(0) = [ug — T%’yongHHl(R) < r where € € Q,
Yo, € R. Let u be the solution of DNLS in BL? (see Lemma [2.8) such that u(0) = uo.
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Assume that r < p. Applying and , there exists ( € Q) such that
{ &2 =

”nC”L2(R) _ ”U0H2L2(R) and IC =&l + [luo — 'yu,yongﬂHl(R < C6(0).

Consequently, we have
Hn? - ngHHl(R) < (1+C)4(0).
Now, assume that Cr < p, then applying , there exist 6., dy € R such that
b = 7+9 : 2 hoA o hyl
(65) { P - vo +(5y7 with  max(|d,], |6y]) < C76(0) and T, pOUO € Span(in, 0zn¢)1*
We would like to get some functions ,p € C'(R,) such that as long as u(t) is close to the orbit of 77’C1 (up to

gauge transform and advection), we have Tg(f) o)l u(t) € Span(iné’, &m?)lﬁ. We are going to construct them
by solving a differential equation. Taking a time derivative, if such functions exist they have to satisfy

1 0 < p(t atu(t)ainh> 2
(66) AcalTigh 0] (200 - << 9(§> oy %%;2)) .

We would like to solve the Cauchy problem associated with this ordinary differential equation with 6(0) = 6,
and p(0) = po. Note that all the terms depend smoothly on ¢, p(¢),8(t), hence to get the existence of a local
solution, we need to invert Ag’h[T(;(tl) p(t)u(t)]. Using the regularity of né‘ (see (58)), we have

HUO - TGO,pU”?H[‘Il < 035(0)

Assuming that C3r < p, we get from (63)) that Ae, h[ up] is invertible and

90 »Po
[(Ac [Ty, u0]) o < C.
So (applying, for example, Cauchy-Lipschitz theorem or the implicit functions theorem), there exist Tiax €
(0, 0] and a solution 6,p € C*([0, Trpax)) of on [0, Tinayx) such that
e 0(0) = 6o and p(0) = po,
o for all t € [0, Tmax), Ac.n[Ty, e(t) p(t) u(t)] is invertible,

o dim (0] + |p(t)] + [(AcalTy byt L =0

We would like to prove that while |u(t) — Tﬂ/(t),y(t)n?Hm(R) <r, withy =60 -9, and y = p — &, where ¢,
and 4, are given in ([65), the last condition is not satisfied and so y(t) and y(t) are well defined. This is done
by the following Lemma, whose proof is given in Section [5.2] of the Appendix.

Lemma 4.1. There exist v,y € C*(Ry) such that v(0) = o, y(0) = y, and if T > 0 satisfies
Vt e (0, T), Hu(t) — T’y(t)7y(t)ngHH1(R) <r,
then T < Tinax and vy =60 — 6., y = p — 0y on (0,T), where 6, and 6, are defined in .

From now on, we consider the functions v,y given by Lemma [{.I] and T > 0 satisfying the bootstrap
condition

vt e (0,1),  8(t) == [u(t) = Ty yoyn Iy <7
By construction, we have

lu(t) = oy pieynl i r) < lult) = Tyey vyt Iy + 08— Ts, 5,m L ) + I8 — 18 | )
< (1) + C35(0) + (1 + C)8(0)
<(2+C+C®r.

We assume that (2+C +C3)r < p Since ||u||2L2(R) is a constant of the motion, we have [Ju(t )H2 = ”774 HL2 R
Furthermore, by construction T} ot ) p)U € Span(mC , (%cnc) L2 50 we can apply . ) to get the Lyapunov control

of the stability

1
(67) S = Togey ooy 0 [ my < L2 (ul®)) = LE ()

To be rigorous, we can verify our assumptions on r and observe that r =
Step 3: Estimation of 4(t)

37 rcs is a possible choice.
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Usually, when we apply the energy-momentum method, the Lagrange function is a constant of the motion
of DNLS. An estimate of the form allows to control |u(t) — Tg(t)’p(t)ng\ﬁ{l(m by fg(uo) - 92”2’ (772) This
latter quantity can be controlled by using a Taylor expansion

L) = LLE) = LETy, ,u0) — L))

1
<= sup ’dzfc( W7, uo—nél)

2 00,p0
lo=n21 1 (ry <P

¢ h
< 5”“0 = Ty, po"c H%{l(R),

where the last estimate is given by .

In our case, because of the aliasing terms, f?(u(t)) is not a constant of the motion. So we have to control
its variations. Let t < T, since Hfj\y(u(t)) and Hu(t)H%z(R) are constant of the motion, applying the formula
of Lemma [30} we obtain the following decomposition

L) ~ L2 w0) = Hrs () ~ Hrs(@(0)) + 5 (u0)3m) ~ 00 For))

5 [y (%) e - 02102
+ %2 (<i6mu(t), u(t))r2(r) — <i6mu(0),u(0)>L2(R))

(68) = Bi(0) — Fa(t) + 5 Ba(0),

Ei(t) = %L cos (T) lu(t, z)[* dx

By (t) = & (Gdpult), u(t))r2ry — (i02u(0), u(0))r2(r)) -
Note that we write &, instead of (5 as these two numbers are equal by construction (see )
First, we explain how to bound FEj(t). It can be decomposed as follow

and

1 —_— in
By(t) = (Eg(u(t)) + Eg(u(t))) . with  E3(v) = f ¢ |u(t, )[* dx .
R
Since F3 is a 4—homogeneous continuous function, its Taylor expansion is exact. So, we have
4
1 .
(69) Es(u(t)) = Z il &’ E3(To) p(eyn) (w(t) = Togey p(eylchs - - - ut) — Tocey p(eye,n)-
j=0" ~-

J times
To control these derivatives, we use the following lemma.
Lemma 4.2. If uy,u2, us,us € BL? and

2inx

My, (u1, ug,ug, uq) = J e uy(z)ug(z)us(x)uy(z) dx,
R
then we have
| Mp (u1, uz, us, us)| Z oy Loz = | L2 R) [Tos Loz 2 | L2 (R) [tos | 21 (R) Uy [ 21 (R)
O’GS4

Proof. We identify M), with a convolution product
2m
My (u1, ug, ug, ug) = Uy * Ug * Uz * Us(— h )-
But if the sum of four numbers, all smaller than 1, is equals to 2, then at least 2 of them are larger than %
Consequently, since suppzfj [ I h] it comes

2w
‘Mh(ulau27u37u4 Z |1 /3}1 u0'1| * |1 /3}LU0-2| * ‘u0'3| * |u0'4|< h )
0'654
Then, we conclude the proof using Young convolution inequalities. O

Applying this Lemma to estimate the terms of we obtain four types of contributions.



DISCRETE TRAVELING WAVES FOR DNLS 27

e Applying (58) and defining ¢ = Z=, we have
—2cw 02 _ T 02 _2¢
P Tt o < O | 7o = Temtedi = Tk,

e Up to an universal constant ¢ > 0, we have

|- [Tyy peynélllr vy < cC.

e Up to an universal constant ¢ > 0, we have

3h
|7 [u(t) — Te(t),p(tm?]lwzsihHLQ(R) < ?“9\[ u(t) — Toct),pt) 77(] w|r2ry < chlu(t) — TH(t),p(t)n?”Hl(R)

e Up to an universal constant ¢ > 0, we have

|7 [u(t) — Te( t),p t)n(]HLl (R) S < cflu(t) — G(t),p(t)nélHHl(R)-

Sometimes, it is also useful to control it by cp.

With these estimates, we get a constant M > 0 (depending only of &, C, p, hg) such that

(70)
So we deduce that
(71)

_ £
| Bs(u(t))] < 2Me™F + 2Mh2[u(t) — Toe) pioynl [ ry-

_z
|Ex(t)] < Me™ % + h* M u(t) — To) poyn? I3 ) -

We show now how to control the term FE5 in . It is precisely the error generated by the default of
invariance by advection. First, we give a more adapted expression of Es:

=& L 05Ci0zu(s),u(s))r2(r) ds = 282 L (i0zu(s), 0su(s))r2(ry ds

_—r f C@nts)ocos () o) Puts) sz s
= —52 j f ( ) u(s, 2)|* dxds = —&+ J Bs(u(s)) — Ea(u(s)) ds.

Applying Estimate of E3(u(s)) (70), we obtain

E

t
Ba(0)] < 40elealh |+ 1) = Taco il ey -

Finally, we apply estimate and we get

1
olul®) = Tty oy |71 )

< Z¢ (u(t))
= Z¢(u(0)) —
= Z¢(u(0)) —

< S u(0)

— ZLE(ml)

LEmE) + L2 (u(t) — L2 (u(0))
Zg(ﬁ )+ E1(0) — Eq(t) + Ex(t)

_£
— To(0) p() 1 71 r) + Me™F + h2Mu(t) — To) poyn |1 31 m)

Z

t
_£
+ Me™# + 2 M|[u(0) — Tp(o) ( OUS HHl(R) +4M7T|§2|hL Tz T |u(s) — Te(s),p(s)ﬁgﬁ{l(m ds.

So there exist some constants hy < hg, ¢ > 0 and A > 0 (depending only of ¢, C, p, hg) such that, for all

h < hy, we have

t
\ _t _t
() = Toge).pyn I3 ry < ce™ 2 +¢|u(0) = To(0) poyl |71 gy +2)\h|§2|f0 €2 + [u(s) = To(s) p(s) e |11y ds

Applying Gronwall’s

lemma, we obtain the estimate

L _L
Jult) = Ty ey s gy + ™% < N0 [(1 4 e+ cfu(0) = Togoy o ey |-
Now applying Minkowski inequality, we get

Jru(

_ e
t) — Te(t),p(t)néLHHl(R) < V1 +ceMealht [6 R+ u(0) — T0(0)7p(0)77?”H1(R)] :
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We want to deduce a bound on § from this inequality. Applying the inequalities established in the previous
paragraph, we have
[u(0) = Ts0y y oy Ry + I8 — T, 5, me e my + I8 — né I )
5(0) + C35(0) + (1 + C)5(0).

On the other hand, applying the same inequalities, we have

|u(0) — TO(O),p(O)néLHHl <
<

5(t) = u(t) — Ty yyme lm ) < |ut) = Toy ooyl ez wy + InE = Ts,.6,m¢ [ ) + 0 — 0l iy
< lu(t) = Ty ooyl ry + C26(0) + (1 + C)5(0).

Consequently, we have proven our estimate:

3
(72) 3(t) < V1 +c el [64@ +6(0) <2 +C+C%+ Hf\/%f)] .

Remark 4.3. We could get an other kind of estimate of §(t) based on the high order Sobolev norms of u(t).
Indeed, if n € N*, using Lemma[/.3, we have

| Bs(u(t))] < |@(w) > 2 172 @) € 22" )] g-
Applying this inequality for FEo and realizing the same proof without applying Gronwall’s lemma, we get

8(t) < 8(0) + e~ i +/t]|Ea]n" 3 sup [u(s) 7o g
<s<

Step 4: Control of v and y

The idea to obtain the estimate is that & is the solution of a perturbed linear equation whose (¥,y) is
a solution (i.e. (66])). We work with a fixed t < T. To simplify the notation, we assume that 0(¢) = p(¢t) = 0.
We introduce a notation : for v e BL?, we define

Apv + [v|2v, P2
(73) belvl = <<<Ahhv + |v||2v,igi:]2‘>fz)(m> |
With this formalism, equation becomes (see Lemma
. 2mx 2
Acalu(®)] <§8> — benlu(t)] +2E;, where By — ( <<CCOO:((2”))|ZL: ng7>7§>f<R)

By construction 77? generates a traveling wave of the perturbation of DNLS whose speed is (. It means
we can apply Proposition with u(¢, x) := ’Cln (x — (ot). However, we have e ®tu(t,- + &ot) = 77? €
Span(in}, d,n¢)+*. So calculating d;u with Equation (36) of Proposition we get

Acnlnl¢ = bc,h[ng]-

Consequently, we have

(74) Acalu(®] (5401 78 ) = (bealuto)] = bealal) ~ Acalu(®) - 2 + 285,

It is with this equation that we will obtain an estimate on 6(t) — ¢; and p(t) — (2. Indeed, as we have seen
in the second step, since t < T, A¢ p[u(t)] is invertible and |A¢ p[u(t)]7'|1 < C. So we just need to control
the three terms in the right-hand side of the previous equation.

o We first prove that be, is a Lipschitz function on bounded subsets of BL?, for the norm || - | z1(r),
uniformly with respect to ¢ and h. Considering the first coordinate (see ), we have
(be,n[v])1 = (Apv + |U|2”a 77?>L2(R) = v, Ahng>L2(R) + <|U|2Ua 77?>L2(R)~
But HAhng 2@y < H&znc lr2®) < C (see (58)) and v — |v|?v is a Lipschitz function on bounded

subsets of H(R). So, since ||17 1Ry < C and |u(t) — 77?|\H1(R) < p, there exists a constant k > 0
(depending only of C and p) such that

|(be,n[u(D)] = ben [t Dl < kllult) — 0wy
Since HW?HHS(R < C, the second coordinate of (b¢ n[u(t)] —b¢ n[1¢])1 clearly enjoys the same estimate.

e Since ||17?|| m(r) < C, it is obvious, from the definition of A¢  (see (54)) that there exists an universal
constant ¢ > O such that

| Acnlu(t) = nf]lh < Clu(t) = 0| w)-
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e We can estimate E4 as we have estimated F1(t) in the previous paragraph. Consequently, we get some
constants M, ¢ independent of h and ¢ such that

|Ba] < Me™F 4+ Mlu(t) =l | -
Applying these three estimates and the control of the norm of the invert of A 5[u(t)], we get from
10(t) — G| + [B(t) — Co| < CMe ™ + C(M + k + cO)|u(t) — 12| i ry-

However, we have proven that |u(t) — né‘HHl(R) <O(t)+ (14 C+C3)5(0) and |€ — ¢| < C5(0). So, since § = 5
and p =y, we have proven that

. . _e

[9(t) = &l + [y(t) — &| < K(e™7 +6(t) +6(0)),
where K depends only of C, M, ¢ and k.

5. APPENDIX

5.1. Proof of Theorem Let s > 0, € € (0,2) and n € N* be such that n > ng = 2 where ng € N* will
be determined later to be large enough. Let p > 0 and v € H™(R) be such that
r

HUHHn(R) <p and [ —v[mr) < m7

with £ € Q. Let hy < hg a constant that we will determine later.
Now consider h < h; and u a solution of DNLS such that
Iy €R, VgehZ,  uy(0) = eu(g - y,).

We denote by u the Shannon interpolation of w. Without loss of generality, since DNLS is invariant by gauge
transform, we can assume g = 0.

Lemma 5.1. The following inequality holds:
luo = ne (- = yo)lmmwy < v = ¢ gy + 2" o
This lemma is a classical estimate of aliasing, it will be proven at the end of this subsection.
Since uo, 772 € BL?, we can apply Lemma [2.9| to obtain
(75) 8(0) = u(0) = (n¢ (- = ¥0)) jz lr1(n2) < o = mE (- =yl (ry < v = g [ my + 2"
Applying the triangle inequality, we deduce of Theorem [I.4] that

5(0) < v —velmr) + [ve = e |m@ + R p < + kh® + A" p.

"
21+ &)
Consequently, if hy is small enough then §(0) < 15+ So we can apply Theorem and Theorem In
particular, we get functions v,y € C*(R, ) such that, if for all t € (0,7

(76) 8(t) := | w(t) = ("I (- = y(O))nzlanz) <7

then we have for all ¢ € (0,7

(77) JOR (6<0> teh /it sup | u<s>|ml(hz>) ,
and
(78) () — &1 + [5(t) — €| < & (5(0) + 8(t) + e 7).

Applying Theorem m we deduce that if is satisfied then
L 2n+1
+ VIV (JulO)] ez + May )

" an1
(79)  6(t) <= (5(0) +eTF 4+ OVt TR M,
where
My o) = [ w(0)] g1 (nzy + | U(O)HiZ(hz)-
So, to use (79), we have to estimate My(o) and || w(0)] (2, uniformly with respect to h and §. We get
these bounds in the following lemma that will be proven at the end of this subsection.

Lemma 5.2. There exists a constant K > 0, depending only of 0, p and n such that for all h < hyg,
4n—1

dn_1 2n+41
RCM, G <K and nC ([ w(0)] gz + Mg, ) < K.
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With the estimate, becomes
(50 3(1) < R(0) + reh + K\/GItF 07 F + K/[GIVERE.

Now, we overcome the bootstrap condition . Let Ty € (0,00] be a function of |&3] that will be fixed
later. Consider ¢ € (0, Toh~2%¢) such that for all 7 < t, 6(7) < r. We deduce from that

5(t) < k6(0) + ke ™k & T + K\/Tol&|h" 375,

Assuming ng > max(2, 1£25 s43=¢) 'h) <1 and Ty 7m1n(|§2| L |&|=7), we deduce

(81) 3(t) < K6(0) + ke~ F + 2Kh* < k8(0) + (n (%) + QK) he.

_11—S8
So assuming hy < [ﬁ (Ii (é)s + 2K) 1] , we get 0(t) < 7. Consequently, proceeding as usual by contra-

diction, we deduce that it was useless to assume that for all 7 < ¢, §(7) <
Finally, to conclude rigorously this proof we have to explain how to get and . On the one hand,
to get ., we just have to estimate 6(0) by . in . (and to assume that no —1=3). On the other hand,

we have to estimate the terms of ( . We control §(0) as previously, §(¢) by (20) and e~ 7 by ( e) .
Proof of Lemma [5.1] -. Let v;, be the L? orthogonal projection of v on BLh, i.e.
’Uh = 1(_;72)7).
We introduce wy, = ug — vy (- — yy)- Since the H! norm is invariant by advection, we have
|uo — 77?(' - Yo)HHl(R) < Jon — ngHHl(R) + HwhHHl(R)-

Since n? € BL?, v — vy, is orthogonal to 772‘ in H'(R). Consequently, we have |vj, — né-LHHI(R) < v - 772HH1(R)
So we just have to prove that [[wp | g r) < ph™ ™t
Applying Proposition we have

. —i 3 2k
Yw e (—%, %) , wh(w) = Z e l(w+2’;L )yov(w + Tﬂ-)
kezZ*

Consequently, we have

2k 2k7r V14 w?
lwn ] 1 (r) Z [o(w+==)VI+ W oz 2y S = Z — ) -
Vor S h (=#%) = V2 kez* hlw S L2(-%.%)
Assuming h; < 2w, we have ‘wﬁ*;%“f < 2“3‘71 for w € ( z %) Consequently, applying Cauchy-Schwarz

inequality, we get
lwnl Ry < 102(v —vi)lz2myy | D) S L 0s (0 = vn) | L2(m)-
2 Q-1 V2

Since the Fourier support of v — vy, is localized outsize [f%, %] and n > 2, we have
T "' 7 w2
funlin ) < T510uto = ol < (2) 51020 - iy < 0 T p <0,

Proof of Lemma There are two quantities to control, || w(0)] g (j,z) and Myg). To control | w(0)|| g 4,2y,

it is enough to prove that the restriction to hZ is a continuous map from H™(R) to H"(hZ), uniformly with
respect to h. Indeed, denote w = v(- — y;). Then applying Proposition 2.6, we have, for all w € (=%, %),

Blw) = 3 B+ 7).
keZ*

Since for k # 0 and w € (—%, %), we have

1
< ,
o0k — 1

w
+ 2k7r
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applying Cauchy Schwarz inequality (and ), we get

. 2km
( n 2271_) 6lw(w+7)

[ w(O)ignnzy < 9"l po (5 &
( ) ( h’h)

< w02 (—g.5) + D]

kez* LQ(_%’%)
< orw] gy + D) ||0xw(w+7)HLz(f%,%)W

keZ*

< lozwlr2r) + [0 wlr2r) Z
kezZ*

_ <1 + \/2 (1 - 4171) C(Qn)) [0l 2y < (1 + \/2 (1 - 41n) g(%)) P,

where ( is the Riemann zeta function.

Finally, to control My, (), we just have to control | w(0)| g1 (nz). But since we have proven that §(0) < 17,
we just need to control ||77?||H1 uniformly with respect to £ € Q and h < hg. Such an estimate can be
obtained by using the bound an 1/15 |z Ry < Kh?* of Theorem (1.4 .

2Ikl

5.2. Proof of Lemma We would like to define the functions v and y from 6 and p. So we introduce a
new time: Te¢. It is the largest time, smaller than Ty,.x, such that for all ¢ € (0, Teyit), we have

(52) HAcalTyld u®D ! < 2
and
(83) |0(t) — 00| + |p(t) — pol < 1+ cat,

where ¢y > 0 is a real constant that will be determine later.
Now we define v and y as C' functions on R, such that

(84) Vt € (0, Terit), ¥(t) = 0(t) — &y and y(t) = p(t) — dy.

Let T > 0 be such that for all t < T, §(¢) = |u(t) — T,Y(t)7y(t)'l’]g”Hl(R) < r. To prove Lemma it is enough
to prove that T' < Tc.i;. We proceed by contradiction. Assume that Ty < T. So if t < T, we have

lu(t) = Towy pynl |y < 2+ C + C%)r <
Applying , we know that
(85) A<7h[T9_(t1)’p(t)u(t)] is invertible and  [|(Ac¢, h[Te_(tl),p(t)u(t)])*lHl < C.

Furthermore, we can estimate <T9_(tl)7p(t dru(t), in¢ Prew) and (T, 0(t) e é}u(t), 6zng>Lz(R). Indeed, since u is a
solution of DLNS in BL? (see Lemma

_ . 2mx
<T p(t)ﬁtu(t),zng>Lz(R) = — <Ahu(t) + <1 + 2 cos (h)) \u(t)|2 (t )7T0(t1) ot )n?> .
L%(R)

Since this operator is symmetric for the L? norm, we have

_ . 2mx -
CTih o) in ey = ~Cul0) Tygh oy Stz = (1 200s (252 ) WPuto). Tygh ol )
L2(R)

We are going to estimate these terms. Since ¢ < T, by definition, we have [u(t) —T') y(1)7¢ 2l Ry < and so

.3)), we have

lu() gy <7+ C.
Consequently, we have
H|U( WPut)c2ry < [u®)|Ze [u®)]z2my < (r + C)°.
Furthermore, we have seen in (33)) that HAWC lz2ry < Haxng |z2ry < C. Consequently, we have

|<T—( il ) < Clr+ O + Clr + 0).

Similarly, we could prove that
KTy 0(t) (1) Oru(t), 0anlyr2R)| < C(r+C)* + C(r + C).
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So, we have proven that

max(|6()], [p(1)]) < C*(r + C)(1 + (r + C)?).
Defining ¢ = 2C%(r + C)(1 + (r + C)?), we have
|0(t) — 00| + [p(t) — pol < cat.
We can apply this inequality and for t = T, SO we have

H(AC,h[ G(Tcm)m( cm) (t)])ilHl C and |0( crlt) 90| + |p( crlt) pO‘ CoTtrit-

But it is impossible because by definition of T¢.i; we should have
H(Ath[Tt;(’%“crit),p(Tcrit)u(t)])_lHl =2C or |9(Tcrit) - 90‘ + |p(Tcrit> - p0| =1+ coTtrit-

So, here is the contradiction and we have proven that T < Te-
5.3. Inverse function Theorem. In this subsection, we give a version of the inverse function theorem.
Theorem 5.3. Let X,Y be some Banach spaces, ) be an open convexr subset of X such that 0 € ).
If g: Q — Y is a C' function such that

e dg(0) is invertible,

e dg is a k-Lipschitz function,
then, defining B = | dg(0)7Y|~! and r = %, we have

e gis aC' diffeomorphism from BX(O r) N Q to g(Bx(0,7) n ),

e forallz e Bx(0,7) nQ, |dg(z)™!] < W

e forall0 < p<r, if Bx(0,p) © © then By (9(0), £p) < g(Bx (0, ).
Proof. First, we prove that g is injective on Bx (0,7) n Q. Let y € Bx (0,7) n Q. We introduce the application
o { Bx(0,r)nQ — X
v =z —dg(0)7H(g(x) - 9(v))-
It is enough to prove that y is the only fix point of ®,. But if z € Bx(0,7) n 2 then

(86) [d®,(2)] = [Ix —dg(0)~" dg(x)| <[ dg(0)~* [ dg(0) — dg(x)] < el o

< — =1
B B

Consequently, we deduce that if z # y then ||®,(z) — y| < |z — y| and so y is the only fix point of ®,,.

Then, we prove that d g(x) is invertible for any « € Bx (0,7) n Q. Indeed, we have

dg(z) = dg(0) + dg(x) — dg(0) = dg(0) [Ix + dg(0) " (dg(z) — dg(0))]
with
| dg(0)~!(dg(x) — dg(0))] < *HwH <1
So we also deduce the second point of the theorem through the classlcal estimate of the Von Neumann series.

Now, applying the classical inverse function theorem, we have proven that g is a C' diffeomorphism from
Bx(0,7) n Q to g(Bx(0,7) n Q). Finally, we just need to prove the last assertion of the theorem. Let p > 0

be such that 0 < p < r, Bx(0,p) < Q. We introduce § € (0, p) to prove that By (g(0), gé) < g(Bx(0,9)). It is
enough to prove the last point because

By(9(0).2p) = |J Br(s(0).55) and g(Bx(0.0)) = | 9(Bx(0.5)).

0<d<p 0<d<p

Let y € By (g(0), gé), we want to solve g(z) = y. So, we introduce the application ¥ = @

v [Bx08) We
want to apply the Banach fix point theorem. We have proven in ) that U is 5—k < 1 Lipschitz, so we just

need to prove that it preserves Bx (0,d). Indeed, we have

[W (@) < [wO)] + () - T(O)]

< §5Hd9(0)71\| +[dg(0)~ lg(z) — g(0) — d g(0)z]
6 ! d kéo
<§+% Ldg(sx)xds—dg(())x <§+F§ < 0.




DISCRETE TRAVELING WAVES FOR DNLS 33

5.4. A result of coercivity.

Lemma 5.4 (A reformulation of a Weinstein result in [18]). If Q is a relatively compact open subset of the

2
set {§ eR? | & > (%) } then there exists ¢ > 0 such that for all £ € Q we have

(87) VYo e H'(R) n Span(ve, ithe, Outbe) 712, d* Le(te)(v,0) = vl )-
Proof. Weinstein has proven in [I8] that there exists ¢ > 0 such that for all ve H!(R),

(88) v e Span(P(1,0), i) gy, 0u (¥l ) 5 = d° L 1,0)(V(1,0) (v, 0) = c|v]F.

First, we will deduce from this estimate and Lemma that holds true for & = (1,0). Then we will
extend this result applying two transformations: dilatation and boost.
Step 1: The case £ = (1,0). We apply Lemma below, with the spaces E = H*(R) n Span(w(l’o))lﬂ,

G = H'(R) 0 Span (41,0, iy oy, 0 (¥} )22, F = H'(R) 0 Span(y(1,0), 91,0y Cuh(1,0))+* and eventually
H = Span(it)(1,0), 0z%(1,0))- We equipped all these spaces with the H'(R) norm for which they are closed. By
construction, F' and H are obviously complementary spaces. However, we have to prove that G and H are
complementary spaces.

First, we prove that HnG = {0}. If g = aitp(1,0)+ 02 (1,0) € G then (g, iw?170)>L2(R) =g, 6z(1/)(31’0))>L2(R) =
0. However, since 11 ) is a real valued function, we have

(89) (P10 ,W?l 0)L2(R) = 0z (¢ (1,0)): 1W,0))L2R) = 0.
Consequently, we deduce that a1 o) ||L4(R) B<aw(¢(1,o))= 0x¥(1,0)12(R) = 0. So we just need to verify from
(@) that {(0,( ’(/J(LO )> O2tb(1,0))12(R) # 0 which yields oo = 3 = 0.

Now, we prove that H + G = E. Since, by construction G + Span(iw?l’o)7 agc(wfl’o))) = FE, we just need to
prove that iz/;f’m), (33:(1/1‘;’1’0)) € H + G. Since i¢?1,0) and (9%(1/)(31,0)) are orthogonal, we can decompose it )
and 0,1 (1,0) through the decomposition £ = G + Span(zﬁ/}gl o) 61(1/)?1,0))) to get (with )

{ o laolSer — Hw Lo ||L4(R)w o

dx(1,0) Hax(dﬁ 0) )H — {0 ( ) rT/J(l,o >L2(R)(7r(1/)?1 0)) €G.

Since the coefficients associated with zz/)(l o) and 0y (1/)(1 0) ) are not zero, we deduce that zz/)(l 0)> O (¢?1,0)) €
H+G.

In order to apply Lemma with b = d? Z (1,0)(%(1,0y) We have to prove that 0,%(1,0) and i) o) belong
to the kernel of d* Z(1,00(%(1,0))- Indeed, since £ (1 0)(1(1,0)) is invariant by gauge transform and dilatation,
the set of its critical points are also invariant by these transform, i.e.

VteR,Yve H'(R), d.Z10)(e"1,0)(v) = dL1,0)(tb1,0)(- — 1)) (v) = 0.

However, since 91 oy is a very regular function (see Lemma or directly (4] ), we can compute the derivative
int =0 to get

VteR,Yve H'(R), d° Z1,0)(Y1,0) (1% ,0),v) = d? Z(1,0)(¥(1,0)) (02%(1,0),v) = 0.

Now to apply Lemma we observe that the required assumption of coercivity of b on G is the result of
Weinstein , and we obtain the result.

Step 2: Extension by dilatation and boost

Denote by T the dilatation action defined by Ty, (u)(x) = mu(maz) for all z € R, u € H*(R) and m > 0, and
let B bz the boost action defined by B,u := e*u for all z € R, u € H'(R) and v € R. These transformations
are useful because we have the following relations

Vm,u > 0, Yv e R7 3(1,0) ol = m3 g(mfz’o) and g(lho) oB, = g(u+y2’_2y)

With these relations a straightforward calculation shows that

i~}

(90) .i/ﬂg = mg’ .,2&(1’0) Ong1 @) B,% with me = fl — (%) .

Furthermore, using the definition of ¢, we have

e = Bey 0 Tine¥1,0)-
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Consequently, we are able to transport the coercivity property from & = (1,0) to any &, provided that

2
& > (%) . First, we observe that if v e H*(R) n Span(q/)&’w&’wé)LLz then
T 0 B_gv e H'(R) 0 Span(v 0, it1,0), ¥(1.0)) 7+

Second, we calculate the derivative of the Lagrange function through the transport relation ,
dgg(’llig)(’l)) = mg d[-f(l,o) OTms_l ¢} B_%](wg)(’l}) = mg’ dg(l,o) (wlfo)(Tms_l (¢] B_%g’()) = 0

Then we deduce a property of coercivity

2
d2 Le(e)(v,v) = mg’ d? Z(1,0) (wl’o)(ngl o B_%'U,ng—l o B_%zv) > cmg’ Hngl o B_%ZUHHl .

This inequality implies Estimate because applying Peetre inequality EI, we get
2 2 - -
LTl g ol + g2

=

_ 2 _ 2
H1 2 1+ (mg;ﬁz) 2 1+ (mE;éz)

2
10 = _ o _
Hng ' B*%“Hm ’B_ ”22152 ng v

5.5. Functional analysis lemmas.

Lemma 5.5. Let F', G be two closed subspaces of a mormed space E. If F' and H admit a same finite
dimensional complementary space H, denote by II the projection onto G of kernel H. Then 1| is a normed
space vector isomorphism.
Furthermore, if b is a bilinear symmetric form on E, H is a subspace of its kernel and if there exists a > 0
such that

Ve e G, b(z,z) = a|z|?
then there exists 8 > 0 such that

Vo e F, b(z,r) = B|=|*

Proof. Let P be the projection onto F' of kernel H. If f € F then PIIf = f. Indeed, if f =g+ h with ge G
and h e H then g =IIf = f — h. Consequently, we would have f = Pg = PIIf. Similarly, we can prove that
I[MPg = g, for any g € G. So, we have proven that H|_F1 = Pg-
To prove the first part of the lemma, we just have to prove that II and P are continuous to conclude this
proof. This is a very classical exercise of normed space vector, whose proof is based on compactness.

The second part of the lemma is a straightforward calculation. Indeed, if x € F' then

b(x, ) = b(llz, Iz) > a|llz|* > oI |72 ).

Lemma 5.6. Let E be a real vector space whose (x;);=1,...n is a free family. Define X = Span(z;);—1
subspace generated by this family. Let {-,-)1,(:,y2 be two scalar products on E such that the induced norms
satisfy | - |1 < ¢|| - |2. Define G € M, (R) the Gram matriz associated to (x;)j—1,. n for the scalar product

<~, '>1, i.e.

.....

1,y ... {x1,Tan
G = : :
Enyz1)r oo EnyTpn
For any u € E, let b(u) be a bilinear symmetric form continuous for the | - |2 norm. Assume that b is k

Lipschitz on a ball of radius R > 0, i.e.
Vu,v€ Bo(0,R), Vy,ze E, [b(u)(y,2) —b(v)(y, 2)| < klu —vlz2]yll2]2]2
and that there exists a > 0 such that

Vye X, b(0)(y,y) = a3

'Ifa,yeRthen 1+ (z — )% > L(1+22)(1 +42)".
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Define two constants cq,co > 0 by the explicit formulas
o} o - _ o 2(6(0))2\ |
q=mwmxymm@=4K;xmﬁmlm(,ﬂmm+'g”ﬂ]

«
b(u)(y,y) = gHyH%-

Proof. Let y =y + y. be the decomposition of y associated to the algebraic decomposition £ = X @& Xt
So, we get
b(0)(y, y) = b(0)(y) + v,y +y1)
b(0)(y1,y1)b(0) + 26(0)(yy, y) + (v, yyp)
allyc]3 = 2[600) 21y 2y |2 — [6(0) 2]y |2

o 20p(0)13
ol = (1o + 2 2

2Ib(0)||§>

A\

\Y

\Y

Q2 @ 2
1ol - (5 + 16Oz + o 3

Consequently, we just need to control |ly; |2 with [y[l2 to get the result when u = 0. However, using basis
linear algebra we can prove that

n
Y| = Z ajz; with (a;)j=1,...0 = G ({25, 901)j=1,..n-
j=1

So, we get

n
lyyll2 < e2 (Z $j||2> (et PP
j=1

Finally, by definition of ¢, we get b(0)(y,y) = <|yl3. Furthermore, since b is k Lipschitz on B(0, R), we
deduce directly that if |ul; < ¢; then b(u)(y,y) = £[yl3.
O

Lemma 5.7. Let E be a Banach space of dual space E'. Consider a algebraic decomposition of E, E =
E,® E,,, and a continuous linear application T : E — E’ such that
i) Ve,ye B, (Tz,y)p 5 =Ty, 2)p E,
i) Ja, > 0, Vo€ E,, (Tx,2)p g = ap|z)?,
i) 3y, >0, Vo € B, Tz, 2)p g < —am|z|?.
Then T is invertible and we have

1 1 2|T T|?
(91) 1T < <++ 17, 7] 2>.
ap Oy o, (o)

Proof. In the proof we omit the index E’, F for all the duality brackets. We define by restrictions Ty, ., €
Z(E.,; E.,) for €1, €2 € {p, m}. Then we use a direct corollary of Riesz Theorem to prove that T}, is invertible.
This corollary is the following.

Lemma 5.8. Let E be a Banach space of dual E’. Consider a continuous linear application T : E — E' such
that

i) Ja > 0,Vz € B, (Tz,x) > o|z|?,

i) Yo,y € B, (Tx,y) = (Ty,x),
then T is invertible and [T~ < o~ 1t.

Now, decomposing * = z, + =, with x, € E, and z,,, € E,,, we introduce operators P : E — E, and
S: B, — E! defined by
Pz =z + T Ty @, and S = Trum — Trnp Ty Tpm-
Then we verify by symmetry of T' (with the same decomposition for y) that
Ve, ye F, <T:c, y> = <Tppr, Py> + <Sxma ym>'
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To prove the Lemma, we have to solve,
(92) Vye E, (Tz,y) = ¢(y) with ¢ € F'.

Let z € E,, and denote y = z — Tp_plTpmz. First, we verify that Py = 0. Consequently, we deduce from
that
o(y) = o(z — T[;DITpmz) =Sz, 2).
However, we verify that —S verifies assumptions Lemma [5.8| with « = «;,,. Consequently, S is invertible and
so we have
Tm =S Pm, — S O TppTym.
Now if we apply for y = y, € I, we have

o(y) = TppPr,y) = Dppp, y) + TLpmTm, y)-
Consequently, we have
Tp = Tp;1¢\Ep - Tp_plTmem'
Finally, we have solved . So T is bijective and we verify using the estimate given by Lemma O
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