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THE PARABOLIC EXOTIC T-STRUCTURE

PRAMOD N. ACHAR, NICHOLAS COONEY, AND SIMON RICHE

Abstract. Let G be a connected reductive algebraic group over an alge-
braically closed field k, with simply connected derived subgroup. The exotic
t-structure on the cotangent bundle of its flag variety T ∗(G/B), originally
introduced by Bezrukavnikov, has been a key tool for a number of major re-
sults in geometric representation theory, including the proof of the graded
Finkelberg–Mirković conjecture. In this paper, we study (under mild technical
assumptions) an analogous t-structure on the cotangent bundle of a partial
flag variety T ∗(G/P ). As an application, we prove a parabolic analogue of
the Arkhipov–Bezrukavnikov–Ginzburg equivalence. When the characteristic
of k is larger than the Coxeter number, we deduce an analogue of the graded
Finkelberg–Mirković conjecture for some singular blocks.

1. Introduction

1.1. The exotic t-structure. Let Ġ be a connected reductive algebraic group
over an algebraically closed field k, and let Ḃ ⊂ Ġ be a Borel subgroup. (The
undecorated letter G is reserved for another group, to be introduced later.) Let

Ñ = T ∗(Ġ/Ḃ) be the cotangent bundle of its flag variety, and consider the derived

category DbCohĠ×Gm(Ñ ) of (Ġ × Gm)-equivariant coherent sheaves on Ñ . The
exotic t-structure is a remarkable t-structure on this category, originally defined
in [14]. This t-structure has close connections to derived equivalences coming from
the geometric Langlands program [9, 8, 23], to the cohomology of tilting modules
for Lusztig’s quantum groups [14] and algebraic groups [2], and other topics in
representation theory (see [1] and the references therein). It is defined using a

so-called exceptional set of objects in DbCohĠ×Gm(Ñ ).
An important and rather nontrivial feature of this t-structure is that the higher

t-cohomology of every exceptional object vanishes. This theorem (which was im-
plicit in [14] and proved in different ways in [8, 22]) implies that the heart of this t-
structure has the familiar structure of a highest weight category. For representation-
theoretic applications, this fact plays a similar conceptual role to the Kempf van-
ishing theorem (for reductive groups) or to the Artin vanishing theorem (for direct
images of perverse sheaves under affine maps). In particular, this vanishing theorem
plays a crucial role in the proof of the graded Finkelberg–Mirković conjecture [7],
which relates the principal block of a reductive group to perverse sheaves on the
Langlands dual affine Grassmannian, hence also in the proof of the tilting character
formula for reductive groups [3].

P.A. was supported by NSF Grant No. DMS-1500890. This project has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 677147).
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1.2. Parabolic analogue. The main result of this paper is a parabolic version of
this vanishing theorem. Namely, for any parabolic subgroup Ṗ ⊂ Ġ, the first and

third authors have defined in [7] a certain exceptional set in DbCohĠ×Gm(T ∗(Ġ/Ṗ ))

which generalizes that defined by Bezrukavnikov in the case Ṗ = Ḃ. As in this spe-

cial case, our exceptional set determines a t-structure on DbCohĠ×Gm(T ∗(Ġ/Ṗ )),
which we again call the exotic t-structure. In Theorem 2.2 we show that, with
respect to this t-structure, the higher t-cohomology of every exceptional object
vanishes. As a consequence, its heart is a highest weight category; see Corollary 2.3.

Unlike the case of the full flag variety as treated in [22], our proof is indirect,
and requires a translation of the problem to the realm of constructible sheaves and
“mixed derived categories” in the sense of [6].

1.3. Applications. As an application, we prove a modular parabolic version of a
derived equivalence originally due to Arkhipov–Bezrukavnikov–Ginzburg, relating

DbCohĠ×Gm(T ∗(Ġ/Ṗ )) to a category of constructible sheaves on the affine Grass-
mannian of the Langlands dual group.

Then, under the additional assumption that the characteristic of k is larger than
the Coxeter number of Ġ, we combine this result with [7] to deduce a singular ver-
sion of the graded Finkelberg–Mirković conjecture, relating a certain block (whose

“singularity” is controlled by Ṗ ) for the reductive group whose Frobenius twist is

Ġ to a suitable category of Whittaker perverse sheaves on the dual affine Grass-
mannian.

1.4. Contents. In Section 2 we state our main result more precisely, and outline
our strategy of proof. This result is proved in Section 4, after some preliminaries
in Section 3. The applications are deduced in Section 5. Finally, in Appendix A
we extend certain results on parity complexes and “mixed derived categories” to
the case of Whittaker sheaves. (These results play a technical role in some of our
proofs.)

1.5. Acknowledgements. We thank G. Williamson for useful discussions.

2. Statement of the main result

2.1. Notation. Let Ġ be a connected reductive algebraic group over a field k of
characteristic ℓ, with maximal torus and Borel subgroup Ṫ ⊂ Ḃ ⊂ Ġ. (The reason
why we decorate our notation with a dot should become clear in §5.5 below. It does
not play any role in earlier subsections.) Let also Ḃ+ be the Borel subgroup which

is opposite to Ḃ (with respect to Ṫ ), R be the root system of (Ġ, Ṫ ), and R
+ ⊂ R

be the system of positive roots given by the nonzero Ṫ -weights in Lie(Ḃ+). We will

denote by X the character lattice of Ṫ , and by S the set of simple reflections of
the Weyl group W of (Ġ, Ṫ ) determined by our choice of R+. For s ∈ S, we will
denote by αs the corresponding simple root, and by α∨

s the associated coroot.

We will make the following assumptions on Ġ and k:

(1) ℓ is very good for Ġ;

(2) the derived subgroup of Ġ is simply connected.

By [21, Proposition 2.5.12], our assumption (1) implies the following property:

(2.1) Lie(Ġ) admits a nondegenerate Ġ-invariant bilinear form.
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These assumptions and this property will in particular allow us to use the results
of [8]. (Note that, by [23, Corollary 1.6], the condition that ℓ is a “JMW prime”

used in [8] is equivalent to the condition that ℓ is good for Ġ.)
Our assumption (2) allows us to choose weights (ςs)s∈S such that

〈ςs, α
∨
t 〉 = δs,t

for any s, t ∈ S. For any subset I ⊂ S, we then set ςI :=
∑

s∈I ςs.
The main players of this article will be the “partial Springer resolutions”

ÑI := Ġ×ṖI ṅI

for I ⊂ S, where ṖI ⊂ Ġ is the standard (with respect to Ḃ) parabolic subgroup
corresponding to I, and ṅI is the Lie algebra of its unipotent radical. Note that

Ñ∅ is the usual Springer resolution of Ġ, and that ÑI identifies with the cotangent

bundle to Ġ/ṖI (thanks to (2.1)).
We let the multiplicative group Gm act on ṅI by z · x = z−2x. This induces

an action on ÑI that commutes with the natural Ġ-action, so we may consider
Ġ×Gm-equivariant coherent sheaves. We will denote by

〈1〉 : CohĠ×Gm(ÑI) → CohĠ×Gm(ÑI)

the functor of tensoring with the tautological 1-dimensional Gm-module, and by
〈n〉 the n-power of this functor (for n ∈ Z).

2.2. A graded exceptional set. Following the notation and conventions of [7, §9],

we fix a subset I ⊂ S, and consider the objects ∆I(λ) and∇I(λ) inDbCohĠ×Gm(ÑI)

characterized in [7, Proposition 9.16].1 Here λ ∈ X
+,reg
I where

X
+,reg
I := {λ ∈ X | ∀s ∈ I, 〈λ, α∨

s 〉 > 0}.

In order to define these objects one needs to choose an order ≤′ on X. Here we
will assume that ≤′ is constructed as in [7, §9.4]. Then the objects one obtains are
independent of the choices involved in this construction, by [7, Proposition 9.19(1)
and Proposition 9.24].

Remark 2.1. In the case I = ∅, the objects ∆I(λ) and ∇I(λ) are the same (up to
shift) as those introduced by Bezrukavnikov (for characteristic-0 coefficients) in [14].

The general case is similar, replacing characters of Ṫ by standard or costandard
modules for the Levi factor of ṖI containing Ṫ . In particular, when I = S, the
object ∆S(λ) is the Weyl module of highest weight λ−ςS , and ∇S(λ) is the induced
module of highest weight λ− ςS .

According to [7, Proposition 9.16], the objects (∇I(λ) : λ ∈ X
+,reg
I ) form a

graded exceptional set of objects with respect to the order≤′ and the “shift functor”
〈1〉, in the sense of [14, §2.1.5]. That is, we have

(2.2) Hom
DbCohĠ×Gm (ÑI )

(∇I(λ),∇I(µ)〈n〉[m]) = 0

if µ 6≤′ λ or if λ = µ and (n,m) 6= (0, 0), and moreover

(2.3) Hom
DbCohĠ×Gm (ÑI )

(∇I(λ),∇I(λ)) = k.

1In [7] we work under the running assumption that ℓ is bigger than the Coxeter number of Ġ.
However, as noticed in [7, Remark 9.1], the results of this particular section hold in the present
generality.
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The dual exceptional set is given by (∆I(λ) : λ ∈ X
+,reg
I ). In other words, these

objects form the unique collection of objects satisfying

Hom
DbCohĠ×Gm (ÑI )

(∆I(λ),∇I(µ)〈n〉[m]) = 0

if µ <′ λ and

(2.4) ∆I(λ) ∼= ∇I(λ) mod DbCohĠ
×Gm(ÑI)<′λ.

Here DbCohĠ×Gm(ÑI)<′λ is the full triangulated subcategory of DbCohĠ×Gm(ÑI)
generated by the objects ∇I(µ)〈n〉 for µ <′ λ and n ∈ Z, and the condition (2.4)
means that the images of ∆I(λ) and ∇I(λ) in the Verdier quotient

DbCohĠ×Gm(ÑI)/D
bCohĠ×Gm(ÑI)<′λ

are isomorphic. These objects in fact satisfy

(2.5) Hom
DbCohĠ×Gm (ÑI )

(∆I(µ),∇I(ν)〈n〉[m]) ∼=

{
k if µ = ν and n = m = 0;

0 otherwise,

see [7, Corollary 9.18]. Moreover, both of the families (∇I(λ)〈n〉 : λ ∈ X
+,reg
I , n ∈

Z) and (∆I(λ)〈n〉 : λ ∈ X
+,reg
I , n ∈ Z) generate DbCohĠ×Gm(ÑI) as a triangulated

category.

2.3. The exotic t-structure. By the general theory of (graded) exceptional sets
(see [14, Proposition 4]), the following pair of subcategories defines a bounded t-

structure on the triangulated category DbCohĠ
×Gm(ÑI):

DbCohĠ×Gm(ÑI)
≤0 = 〈∆I(λ)〈n〉[m] : λ ∈ X

+,reg
I , n ∈ Z, m ∈ Z≥0〉ext;

DbCohĠ
×Gm(ÑI)

≥0 = 〈∇I(λ)〈n〉[m] : λ ∈ X
+,reg
I , n ∈ Z, m ∈ Z≤0〉ext.

Here, 〈A〉ext means the smallest strictly full additive subcategory containing the
objects A and closed under extensions. This t-structure is called the exotic t-
structure, and its heart will be denoted by

ExCoh(ÑI).

It is clear from the definitions that the functor 〈1〉 is t-exact for this t-structure.
The main result of this paper is the following.

Theorem 2.2. The objects ∆I(λ) and ∇I(λ) (λ ∈ X
+,reg
I ) belong to ExCoh(ÑI).

This result can be rephrased as a cohomology-vanishing statement as follows:

since ∇I(λ) belongs to DbCohĠ×Gm(ÑI)
≥0 by definition, Theorem 2.2 is equivalent

to the statement that

(2.6) tHi(∇I(λ)) = 0 for i > 0,

along with a similar vanishing statement in negative degrees for ∆I(λ) (where
tHi

means the i-th cohomology with respect to the exotic t-structure).
Once Theorem 2.2 is established, standard arguments (see e.g. [13], [22, §3.5]

or [6, Proposition 3.11]) then imply the following claim, which formed our main
motivation for studying this question.

Corollary 2.3. The category ExCoh(ÑI) is a graded highest weight category in

the sense of [26, §7], with weight poset (X+,reg
I ,≤′), standard objects (∆I(λ) : λ ∈

X
+,reg
I ), costandard objects (∇I(λ) : λ ∈ X

+,reg
I ), and shift functor 〈1〉.
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DbRep∅(G) DbCohĠ×Gm(Ñ∅) Dmix
(Iw)(Gr′, k) Dmix

IW(Fl, k)

DbRepI(G) DbCohĠ×Gm(ÑI) Dmix
IW(FlI , k)

T I
∅

Ψ
∼

Φ∅

ΠI

κ

(qI )∗T
∅

I

ΦI

ΠI (qI )
∗

Figure 2.1. Setting for the proof of Theorem 2.2

DbRepI(G) DbCohĠ×Gm(ÑI) Dmix
(Iw)(Gr′, k) Dmix

IW(FlI , k)

exotic adverse perverse
natural representation-theoretic perverse

Table 2.2. t-structures arising in the proof

2.4. Strategy of proof. The proof of Theorem 2.2 will be given in Section 4. In
the case I = ∅, this theorem is one of the main results of [23] (see also [8] for a
different proof). This special case plays a crucial role in the proof for I 6= ∅.

Broadly speaking, the strategy of the proof is to carry out a kind of categorical
“diagram chase” using the categories and functors on the second, third and fourth
columns in the diagram of Figure 2.1. (Precise definitions of all the notation in
this diagram will be given in the following sections; we only mention here that the
categories in the third and fourth columns are certain “mixed derived categories” in
the sense of [6], and that the dashed arrow is not an equivalence but an identification
of the right-hand side with a certain summand in the left-hand side; see §4.3 for
details.) The leftmost column of this figure is only defined under the stronger

assumption that ℓ is larger than the Coxeter number of Ġ, but it motivates our
constructions even when it is not available. Each category carries one or two t-
structures, which in some cases are already known to satisfy analogues of (2.6).
Table 2.2 lists the t-structures that will come up in this paper. In this table, t-
structures appearing in the same row correspond to one another under one of the
horizontal functors in Figure 2.1.

In more detail, we begin in Section 3 by defining and studying a second t-

structure on DbCohĠ×Gm(Ñ∅), and relating both t-structures to the affine Grass-
mannian Gr′ of the Langlands dual group. In Section 4, we transfer the problem to
the rightmost column of Figure 2.1. Specifically, we will reduce the proof of (2.6)
to a similar claim for the perverse t-structure on the category Dmix

IW(FlI , k). This
claim is proved in Appendix A, using variations on some arguments in [27, 3, 6]. (In
a sense, the problem is easier for this category because one can use the categories
of Bruhat-constructible sheaves on Fl and FlI , which have no counterparts in the
world of coherent sheaves.)

Once the proof of Theorem 2.2 is complete, we will be in a position to obtain an
analogue on the bottom line of Figure 2.1 of the equivalence “Ψ” of the upper line.
We do this in Section 5, and thereby obtain the parabolic version of the Arkhipov–
Bezrukavnikov–Ginzburg equivalence (Theorem 5.5). (The space Gr′ appearing in
Figure 2.1 is the “right coset” version of the affine Grassmannian, but in Section 5
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we will switch to the traditional “left coset” version, denoted by Gr.) Finally,
when ℓ is larger than the Coxeter number, we can combine this equivalence with
the results of [7] to obtain the singular version of the graded Finkelberg–Mirković
conjecture (Theorem 5.7).

3. Representation-theoretic t-structure and translation functors

3.1. The representation-theoretic t-structure. In this subsection, we will in-

troduce and study a different t-structure on DbCohĠ×Gm(ÑI), which is “Koszul
dual” (in an appropriate sense) to the exotic t-structure.

Lemma 3.1. The objects (∇I(λ) : λ ∈ X
+,reg
I ) form a graded exceptional set of

objects in DbCohĠ
×Gm(ÑI) with respect to the order ≤′ and the shift functor 〈1〉[1].

Proof. The claim follows from the observation that the definition of a graded ex-
ceptional set does not depend on the choice of “shift functor.” More precisely, in
our case the assertion we must prove states that

Hom
DbCohĠ×Gm (ÑI)

(∇I(λ),∇I(µ)〈n〉[m + n]) = 0

if µ 6≤′ λ or if λ = µ and (n,m) 6= (0, 0), and moreover that

Hom
DbCohĠ×Gm (ÑI )

(∇I(λ),∇I (λ)) = k.

But these are clearly equivalent to (2.2) and (2.3). �

Of course the dual exceptional set is again (∆I(λ) : λ ∈ X
+,reg
I ). Using once

again [14, Proposition 4], we obtain that the following pair of subcategories forms

a bounded t-structure on DbCohĠ×Gm(ÑI):

DbCohĠ×Gm(ÑI)
≤0
RT = 〈∆I(λ)〈n〉[n+m] : λ ∈ X

+,reg
I , n ∈ Z, m ∈ Z≥0〉ext;

DbCohĠ×Gm(ÑI)
≥0
RT = 〈∇I(λ)〈n〉[n+m] : λ ∈ X

+,reg
I , n ∈ Z, m ∈ Z≤0〉ext.

This t-structure will be called the representation-theoretic t-structure, and its heart
will be denoted

grRep(ÑI).

By construction, the functor 〈1〉[1] is t-exact with respect to this t-structure.

Remark 3.2. The motivation for our terminology and notation should become clear
in §5.5 below.

3.2. Geometric translation functors. Now we will make use of the “translation
functors”

DbCohĠ×Gm(Ñ∅) DbCohĠ×Gm(ÑI)
ΠI

ΠI

defined in [7, §9.2] as follows. Set Ñ∅,I := Ġ ×Ḃ
ṅI and nI := dim(ṖI/Ḃ). The

inclusion ṅI →֒ ṅ∅ induces a Ġ-equivariant morphism

eI : Ñ∅,I →֒ Ñ∅.

There is also a smooth proper map

µI : Ñ∅,I → ÑI
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with fibers isomorphic to ṖI/Ḃ. We define:

ΠI(F) := (µI)∗(eI)
∗
(
F ⊗O

Ñ∅

OÑ∅
(−ςI)

)
,

ΠI(F) := (eI)∗(µI)
∗(F)⊗O

Ñ∅

OÑ∅
(ςI − 2ρI)〈−nI〉,

where ρI is the halfsum of the positive roots which belong to the sublattice of ZR
generated by the simple roots αs with s ∈ I. (Here, as in [7], all the functors are
understood to be derived.)

Lemma 3.3. The functor ΠI is t-exact with respect to both the exotic and repre-
sentation-theoretic t-structures, and it does not kill any nonzero object.

For the t-exactness statement in this lemma, one should equip both categories

DbCohĠ×Gm(Ñ∅) and DbCohĠ×Gm(ÑI) with the exotic t-structure, or both with
the representation-theoretic t-structure. In the proof below we denote by WI ⊂ W
the subgroup generated by I.

Proof. To show that ΠI is left t-exact, by definition it suffices to show that the

object ΠI(∇I(µ)) belongs to DbCohĠ×Gm(Ñ∅)
≥0 and to DbCohĠ×Gm(Ñ∅)

≥0
RT. In

view of [14, Proposition 4(c)], we require that

(3.1) Hom
DbCohĠ×Gm (Ñ∅)

(
∆∅(λ)〈n〉[r],Π

I (∇I(µ))
)
= 0

for any λ ∈ X and any n, r ∈ Z with r > 0 (for the exotic case) or r − n > 0 (for
the representation-theoretic case). By adjunction (see [7, Remark 9.5]), we have

Hom(∆∅(λ)〈n〉[r],Π
I (∇I(µ))) ∼= Hom(ΠI(∆∅(λ))〈nI + n〉[nI + r],∇I(µ)).

By [7, Corollary 9.21 and Proposition 9.24(2)], we have

ΠI(∆∅(λ))〈nI + n〉[nI + r] ∼=






∆I(λ
′)〈m+ n〉[m+ r] for some λ′ ∈ X

+,reg
I and

m ≥ 0 if λ ∈ WIX
+,reg
I ;

0 if λ /∈ WIX
+,reg.

Using (2.5), we deduce that (3.1) holds under the present assumptions on n and r, so
ΠI is left t-exact. An analogous argument using the adjunction (ΠI〈−nI〉[−nI ],ΠI)
shows that ΠI is also right t-exact.

The fact that ΠI does not kill any nonzero object follows from similar arguments:

if F is a nonzero object in DbCohĠ×Gm(ÑI), then there exists λ ∈ X
+,reg
I and

r, n ∈ Z such that

Hom
DbCohĠ×Gm (ÑI)

(
∆I(λ)〈n〉[r],F

)
6= 0.

As above we have

Hom
DbCohĠ×Gm (Ñ∅)

(
∆∅(λ)〈n〉[r],Π

I (F)
)

∼= Hom
DbCohĠ×Gm (ÑI )

(
∆I(λ)〈n〉[r],F

)
6= 0,

so that ΠI(F) 6= 0. �

Lemma 3.4. The functor ΠI is t-exact with respect to the representation-theoretic
t-structure.

Proof. We must show that ΠI(∆∅(λ)) belongs to DbCohĠ×Gm(ÑI)
≤0
RT and that

ΠI(∇∅(λ)) belongs to DbCohĠ×Gm(ÑI)
≥0
RT. Both of these assertions follow from [7,

Proposition 9.24] and the definition of the representation-theoretic t-structure. �
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3.3. Mixed derived category of the affine Grassmannian. The proof of The-
orem 2.2 will require a “translation” of the problem to a setting involving con-
structible sheaves on affine flag varieties. This will require in particular an equiva-
lence of categories obtained in [8, 23] (which adapts a result obtained by Arkhipov–
Bezrukavnikov–Ginzburg [9] for characteristic-0 coefficients), that we explain now.

Let K = C((t)) be the field of formal Laurent series in an indeterminate t, and

let O = C[[t]] be the ring of formal power series in t. Let Ġ∨ be the complex

reductive algebraic group which is Langlands dual to Ġ. By definition this group
comes with a maximal torus Ṫ∨ whose cocharacter lattice is X, and such that
the root system of (Ġ∨, Ṫ∨) identifies with the coroot system of (Ġ, Ṫ ). We will

also consider the Borel subgroup Ḃ∨ ⊂ Ġ∨ containing Ṫ∨ and associated with the
negative coroots of Ġ.

Let Waff := W ⋉X be the extended affine Weyl group and let WCox
aff ⊂ Waff be

the “true” affine Weyl group, i.e. the subgroup W ⋉ ZR. (The image of λ ∈ X

in Waff will be denoted tλ.) Then WCox
aff has a natural structure of Coxeter group

(such that S is a subset of the set of simple reflections), and whose length function
extends to Waff . We will denote by 0Waff ⊂ Waff the subset of elements w which
are minimal in the coset Ww. This subset is in bijection with X, via the map
sending λ ∈ X to the minimal element wλ in Wtλ. (See e.g. [22, §2.2] for details
and references on this subject.)

Consider the (left version of the) affine Grassmannian

Gr′ := Ġ∨(O)\Ġ∨(K ).

We denote by Iw ⊂ Ġ∨(O) the Iwahori subgroup associated with Ḃ∨, i.e. the

inverse image of Ḃ∨ under the “evaluation at t = 0” morphism Ġ∨(O) → Ġ∨. We

consider the action of Iw on Gr′ induced by right multiplication in Ġ∨(K ). The
orbits for this action are parametrized in a natural way by the subset 0Waff ⊂ Waff ,
and we will denote by Gr′w the orbit associated with w. Since each of these orbits
is isomorphic to an affine space, following [6] we can consider the mixed derived
category

Dmix
(Iw)(Gr′, k) := KbParity(Iw)(Gr′, k)

and its perverse t-structure, where Parity(Iw)(Gr′, k) is the category of parity com-

plexes on Gr′ with respect to the stratification by Iw-orbits, in the sense of [19]. In
particular, this theory provides standard and costandard (mixed) perverse sheaves2

∆mix
w and ∇mix

w for all w ∈ 0Waff , and indecomposable tilting perverse sheaves Tmix
w .

We will denote by {1} the autoequivalence of Dmix
(Iw)(Gr′, k) induced by the coho-

mological shift in Parity(Iw)(Gr′, k), and by [1] the usual shift of complexes; then

the “Tate twist” 〈1〉 := {−1}[1] is t-exact for the perverse t-structure.
The results of [8, 23] provide an equivalence of triangulated categories

Ψ : DbCohĠ×Gm(Ñ∅)
∼
−→ Dmix

(Iw)(Gr′, k)

which satisfies Ψ ◦ 〈1〉 ∼= 〈1〉[−1] ◦Ψ and

(3.2) Ψ(∆∅(λ)) ∼= ∆mix
wλ

, Ψ(∇∅(λ)) ∼= ∇mix
wλ

.

2In the general setting for the construction from [6] it is not known if the standard and costan-
dard objects are perverse; but this is true in the case of affine Grassmannians by [6, Corollary A.8].
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From these properties we see that Ψ is t-exact if DbCohĠ×Gm(Ñ∅) is equipped
with the representation-theoretic t-structure and Dmix

(Iw)(Gr′, k) is equipped with

the perverse t-structure.

Remark 3.5. See [7, Remark 11.3] for a comparison of the conventions used in [8]
and in [23]. The assumptions in §2.1 come from [8]; in [23], there are slightly more
restrictive conditions on the group. Note that [8] and parts of [23] work instead with

the “left coset” affine Grassmannian Ġ∨(K )/Ġ∨(O), but as explained in [23, §3.2]
it is straightforward to pass back and forth between this variety and Gr′. We will
use Gr′ for now because it is more convenient for the arguments in Section 4, but in
Section 5, we will switch to (a positive characteristic analogue of) Ġ∨(K )/Ġ∨(O).

The triangulated category Dmix
(Iw)(Gr′, k) also admits a second interesting t-struc-

ture, called the adverse t-structure, defined in [8, §A.2]. This t-structure consists
of the subcategories

aDmix
(Iw)(Gr′, k)≤0 = 〈∆mix

w 〈n〉[m] : w ∈ 0Waff , n,m ∈ Z with n+m ≥ 0〉ext;

aDmix
(Iw)(Gr′, k)≥0 = 〈∇mix

w 〈n〉[m] : w ∈ 0Waff , n,m ∈ Z with n+m ≤ 0〉ext.

From this definition we see that the functor 〈−1〉[1] is t-exact with respect to the

adverse t-structure and (using also (3.2)) that Ψ is t-exact if DbCohĠ
×Gm(Ñ∅) is

equipped with the exotic t-structure and Dmix
(Iw)(Gr′, k) is equipped with the adverse

t-structure.

3.4. Highest weight structure. The following analogue of Theorem 2.2 for the
representation-theoretic t-structure turns out to be much easier to prove.

Lemma 3.6. The objects ∆I(λ) and ∇I(λ) (λ ∈ X
+,reg
I ) belong to grRep(ÑI).

Proof. Let us first treat the case where I = ∅. In this case, we can use the
equivalence of categories Ψ introduced in §3.3. Since this equivalence takes the

representation-theoretic t-structure on DbCohĠ
×Gm(Ñ∅) to the adverse t-structure

on Dmix
(Iw)(Gr′, k), it suffices to prove that the objects ∆mix

w and ∇mix
w (w ∈ 0Waff)

belong to the heart of the adverse t-structure. In turn, this claim follows from [8,
Lemma A.5 and Proposition A.16].

Now suppose that I 6= ∅, and let λ ∈ X
+,reg
I . By [7, Proposition 9.24], we

have ∆I(λ) ∼= ΠI(∆∅(λ))〈nI〉[nI ]. By Lemma 3.4 and the previous paragraph, we

conclude that ∆I(λ) ∈ grRep(ÑI). Similar reasoning applies to ∇I(λ). �

Remark 3.7. Under the assumption that ℓ is bigger than the Coxeter number of
Ġ, one can alternatively prove Lemma 3.6 by using the fact that the functor ΦI

considered in §5.5 is t-exact if DbCohĠ×Gm(ÑI) is endowed with the representation-
theoretic t-structure and DbRepI(G) with its tautological t-structure, and sends
standard, resp. costandard, objects to standard, resp. costandard, objects.

As in §2.3, this lemma implies that the category grRep(ÑI) is a graded highest

weight category in the sense of [26, §7], with weight poset (X+,reg
I ,≤′), standard ob-

jects (∆I(λ) : λ ∈ X
+,reg
I ), costandard objects (∇I(λ) : λ ∈ X

+,reg
I ), and shift func-

tor 〈1〉[1]. In particular, we can consider the tilting objects in grRep(ÑI). The in-
decomposable tilting object associated with λ will be denoted TRT

I (λ), and the mul-
tiplicity of a standard, resp. costandard, object ∆I(λ)〈m〉[m], resp. ∇I(λ)〈m〉[m],
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in a tilting object T will be denoted

(T : ∆I(λ)〈m〉[m]), resp. (T : ∇I(λ)〈m〉[m]).

Note that, in the case I = ∅, the isomorphisms in (3.2) imply that for λ ∈ X we
have

(3.3) Ψ(TRT
∅ (λ)) ∼= Tmix

wλ
.

Remark 3.8. In the case I = ∅, the object TRT
∅ (λ) coincides with the indecompos-

able exotic parity object in DbCohĠ×Gm(Ñ∅) associated with λ studied in [2]. Once
Corollary 2.3 is established, this claim can be generalized to any subset I ⊂ S.

3.5. Compatibility with translation functors. We are now in a position to
refine some claims from Lemma 3.3.

Lemma 3.9. For any λ ∈ X
+,reg
I , the object ΠI(∆I(λ)), resp. Π

I(∇I(λ)), belongs

to grRep(Ñ∅), and it admits a filtration whose subquotients are the objects of the
form ∆∅(µ)〈m〉[m], resp. ∇∅(µ)〈−m〉[−m], where µ ∈ WI(λ) and m is the length
of the unique element w ∈ WI such that µ = w(λ) (each appearing once).

Proof. The first assertion follows from Lemma 3.3 and Lemma 3.6. We will prove
the second one for the object ∆I(λ); the case of ∇I(λ) is similar.

By general properties of graded highest weight categories (see e.g. [26, §7.4]),

we know that an object F ∈ grRep(Ñ∅) admits a filtration whose subquotients are
standard objects if and only if

(3.4) Ext1
grRep(Ñ∅)

(F ,∇∅(µ)〈n〉[n])

= Hom
DbCohĠ×Gm (Ñ∅)(F ,∇∅(µ)〈n〉[n+ 1]) = 0

for all µ ∈ X and all n ∈ Z. Moreover, if F admits such a filtration, then the
number of occurences of a specific standard object ∆∅(µ)〈n〉[n] as a subquotient
in such a filtration is the dimension of

(3.5) Hom
DbCohĠ×Gm (Ñ∅)

(F ,∇∅(µ)〈n〉[n]).

We apply this criterion to F = ΠI(∆I(λ)). As in the proof of Lemma 3.3 we
have

Hom(ΠI(∆I(λ)),∇∅(µ)〈m〉[n]) ∼= Hom(∆I(λ),ΠI(∇∅(µ))〈m − nI〉[n− nI ])

∼=

{
Hom(∆I(λ),∇I(wµ)〈m − ℓ(w)〉[n − ℓ(w)]) if w ∈ WI and wµ ∈ X

+,reg
I ;

0 if wµ /∈ X
+,reg
I for all w ∈ WI .

Using (2.5), we deduce that Hom(ΠI(∆I(λ)),∇∅(µ)〈m〉[n]) vanishes unless m =
n = ℓ(w) and λ = wµ for some w ∈ WI , and is 1-dimensional otherwise. In
particular, we have confirmed (3.4) for F = ΠI(∆I(λ)), and we have shown that
the space (3.5) is 1-dimensional if µ ∈ WI(λ) and m is the length of the unique
element w ∈ WI such that µ = w(λ), and 0-dimensional otherwise. �

Lemma 3.10. For any λ ∈ X
+,reg
I , the object ΠI(TRT

I (λ)) is a tilting object in

grRep(Ñ∅). It admits TRT
∅ (λ) as a direct summand, and all its other direct sum-

mands are of the form TRT
∅ (ν)〈m〉[m] with ν <′ λ and ν /∈ WI(λ).
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Proof. It follows from Lemma 3.9 that the functor ΠI sends tilting objects in

grRep(ÑI) to tilting objects in grRep(Ñ∅). Hence indeed ΠI(TRT
I (λ)) is tilting, and

Lemma 3.9 gives us information on the multiplicities (ΠI(TRT
I (λ)) : ∆∅(ν)〈m〉[m]).

More precisely, using also the construction of the order ≤′ (see in particular [7,
Equation (9.9)]), this information shows that

(ΠI(TRT
I (λ)) : ∆∅(ν)〈m〉[m]) 6= 0 ⇒ ν ≤′ λ,

and that (ΠI(TRT
I (λ)) : ∆∅(λ)〈m〉[m]) = δm,0. We deduce that TRT

∅ (λ) is a direct

summand of ΠI(TRT
I (λ)), with multiplicity 1, and that all the other indecompos-

able direct summands are of the form TRT
∅ (µ)〈m〉[m] with µ <′ λ. If an object

TRT
∅ (µ)〈m〉[m] with µ ∈ WI(λ) r {λ} was also a direct summand, then we would

have

(ΠI(TRT
I (λ)) : ∆∅(µ)〈m〉[m]) 6= 0 and (ΠI(TRT

I (λ)) : ∇∅(µ)〈m〉[m]) 6= 0.

The first condition would imply that m > 0, and the second one that m < 0; a
contradiction. �

Remark 3.11. We expect (but do not prove in general) that in fact ΠI(TRT
I (λ)) ∼=

TRT
∅ (λ). See Remark 5.6 for more details.

4. Proof of Theorem 2.2

4.1. Reduction to a claim about adverse sheaves. For λ ∈ X
+,reg
I , set

Xλ :=
⊔

µ≤′λ

Gr′wµ
, Uλ :=

⊔

µ∈WI (λ)

Gr′wµ
.

By definition of the order ≤′, Xλ is a closed subvariety of Gr′, and Uλ is open in
Xλ. We will consider the open and closed embeddings

jλ : Uλ →֒ Xλ, iλ : Xλ r Uλ →֒ Xλ.

The definition of the mixed derived category in [6] applies to locally closed unions
of Iw-orbits in Gr′ also; in particular we can consider the categories Dmix

(Iw)(Xλ, k)

andDmix
(Iw)(Uλ, k), these categories possess perverse t-structures, and they are related

by functors (iλ)∗, (iλ)
∗, (iλ)

!, (jλ)∗, (jλ)!, (jλ)
∗ which satisfy the usual adjunction

properties. Moreover, we have a fully-faithful and t-exact pushforward morphism
Dmix

(Iw)(Xλ, k) → Dmix
(Iw)(Gr′, k) associated with the closed embedding Xλ → Gr′,

whose essential image contains Tmix
wλ

. Therefore we may (and will) consider this

object as belonging to Dmix
(Iw)(Xλ, k).

In §4.3 below we will prove the following claim.

Lemma 4.1. For any λ ∈ X
+,reg
I , the objects (jλ)!(jλ)

∗Tmix
wλ

and (jλ)∗(jλ)
∗Tmix

wλ

belong to the heart of the adverse t-structure.

In the rest of this subsection we show that Lemma 4.1 implies Theorem 2.2. We

fix λ ∈ X
+,reg
I , and will prove that ∆I(λ) belongs to ExCoh(ÑI). The case of ∇I(λ)

can be treated similarly.
By general properties of highest weight categories (see e.g. [26, Theorem 7.14]),

we have an exact sequence

∆I(λ) →֒ TRT
I (λ) ։ coker
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in grRep(ÑI), where coker is an extension of objects of the form ∆I(µ)〈m〉[m] with

m ∈ Z and µ ∈ X
+,reg
I such that µ <′ λ. Applying the exact functor ΠI (see

Lemma 3.3) we deduce an exact sequence

(4.1) ΠI(∆I(λ)) →֒ ΠI(TRT
I (λ)) ։ ΠI(coker)

in grRep(Ñ∅). In view of Lemma 3.10, we can choose an isomorphism

ΠI(TRT
I (λ)) ∼= TRT

∅ (λ) ⊕ T ,

where T is a direct sum of objects of the form TRT
∅ (ν)〈m〉[m] with ν <′ λ and

ν /∈ WI(λ). Using Lemma 3.9 we see that Hom(ΠI(∆I(λ)), T ) = 0, so that the first
arrow in (4.1) factors through an embedding ΠI(∆I(λ)) →֒ TRT

∅ (λ) whose cokernel
is a direct summand of the third term in (4.1). In conclusion, we have constructed
a distinguished triangle

(4.2) ΠI(∆I(λ)) → TRT
∅ (λ) → F

[1]
−→

in DbCohĠ×Gm(Ñ∅), whose first term belongs to the triangulated subcategory gen-
erated by the objects of the form ∆∅(µ)〈n〉 with µ ∈ WI(λ), and whose third
term belongs to the triangulated subcategory generated by the objects of the form
∆∅(ν)〈n〉 with ν <′ λ and ν /∈ WI(λ).

Applying Ψ to (4.2) and using (3.3) we obtain a distinguished triangle

(4.3) Ψ
(
ΠI(∆I(λ))

)
→ Tmix

wλ
→ Ψ(F)

[1]
−→ .

The comments above and (3.2) show that all three objects in this triangle are
supported on Xλ, and that

(4.4) (iλ)
∗Ψ

(
ΠI(∆I(λ))

)
= 0, (jλ)

∗Ψ(F) = 0.

Now, consider the natural distinguished triangle

(4.5) (jλ)!(jλ)
∗Tmix

wλ
→ Tmix

wλ
→ (iλ)∗(iλ)

∗Tmix
wλ

[1]
−→,

where the first two arrows are the adjunction maps. Adjunction and the first
equality in (4.4) show that the composition of the first arrow in (4.3) with the
second arrow in (4.5) vanishes. In view of [12, Proposition 1.1.9], this implies that
there exists a unique morphism of triangles

Ψ
(
ΠI(∆I(λ))

)
Tmix
wλ

Ψ
(
ΠI(coker)

)

(jλ)!(jλ)
∗Tmix

wλ
Tmix
wλ

(iλ)∗(iλ)
∗Tmix

wλ

[1]

[1]

whose middle morphism is the identity. (Here, the upper line is (4.3), and the lower
line is (4.5).) Similar considerations using the second property in (4.4) produces a
morphism of triangles in the reverse direction, and applying the uniqueness claim
in [12, Proposition 1.1.9] to both compositions of these morphisms we see that they
are isomorphisms, inverse to each other.

In particular,we have shown that there exists an isomorphism

Ψ
(
ΠI(∆I(λ))

)
∼= (jλ)!(jλ)

∗Tmix
wλ

.

By Lemma 4.1 the right-hand side belongs to the heart of the adverse t-structure.
By t-exactness of Ψ (see §3.3), it follows that ΠI(∆I(λ)) belongs to the heart of
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the exotic t-structure. In view of Lemma 3.3, this shows that ∆I(λ) belongs to the
heart of the exotic t-structure, and finishes the proof of Theorem 2.2.

4.2. Iwahori–Whittaker mixed derived categories. The proof of Lemma 4.1
will require a new “translation,” via the Koszul duality from [3] (which adapts a
characteristic-0 construction due to Bezrukavnikov–Yun [16]), to a setting involving
Whittaker parity complexes on affine flag varieties. This will require in particular
a passage from the classical topology to the étale topology. Since étale sheaves
are defined only for certain choices of coefficients, in the next two subsections we
replace k by a large enough finite field of characteristic ℓ (or by a finite extension
of Qℓ′ for some prime ℓ′ if ℓ = 0), that we will still denote by k for simplicity.
Lemma 4.1 of course makes sense for such coefficients, and this variant will imply
the lemma as stated in §4.1.

The general theory of Whittaker parity complexes on partial flag varieties of Kac–
Moody groups is developed in Appendix A (after partial results obtained in [27, 3]).
In this subsection we explain how to apply these general results in the present case
of affine flag varieties.

Let F be an algebraically closed field such that char(F) = p > 0 and p 6= ℓ (or

p 6= ℓ′ if ℓ = 0). We now consider the connected reductive F-group Ġ∨
F
which is

Langlands dual to Ġ, and its maximal torus Ṫ∨
F

and Borel subgroup Ḃ∨
F
, defined

as in §3.3. We will also denote by H the simply-connected cover of the derived
subgroup of Ġ∨

F
. We can then consider the groups H(F((t))) and H(F[[t]]), the

Iwahori subgroup IwH ⊂ H(F[[t]]), and the affine flag variety

Fl := H(F((t)))/IwH .

(By our conventions, this ind-variety is connected.)
As in [27, §11.7] and [3, §7.2] we can consider the “Iwahori–Whittaker” de-

rived category Db
IW(Fl, k) and its “mixed” variant Dmix

IW(Fl, k) (defined again as
an appropriate bounded homotopy category of parity complexes). These cate-
gories are defined using the action of an Iwahori subgroup Iw+

H associated with

a positive Borel subgroup in H . The orbits of Iw+
H on Fl are parametrized in a

natural way by WCox
aff and we denote the orbit associated with w by Flw. If we set

0WCox
aff := 0Waff ∩WCox

aff , then the indecomposable parity complexes in Db
IW(Fl, k)

are naturally parametrized by 0WCox
aff × Z, and we will denote by EIW

w the object
corresponding to (w, 0). The complex concentrated in degree 0, and with degree-0
term EIW

w , is an object of Dmix
IW(Fl, k), which will be denoted EIW,mix

w .
The cohomological shift in the triangulated category Db

IW(Fl, k) restricts to
an autoequivalence of the subcategory of parity complexes, and thus induces an
autoequivalence of Dmix

IW(Fl, k). This autoequivalence will be denoted by {1}.
To I ⊂ S we can also associate a parabolic affine flag variety

FlI := H(F((t)))/PI
H ,

where PI
H ⊂ H(F[[t]]) is the parahoric subgroup corresponding to the parabolic

subgroup of H containing the negative Borel subgroup and associated which I.
The natural projection qI : Fl → FlI is a smooth, proper morphism. In the same
way as for Fl, we can consider the Iwahori–Whittaker derived categoryDb

IW(FlI , k)
and its “mixed” variantDmix

IW(FlI , k). The latter category admits a natural perverse
t-structure, defined by the same procedure as in [6]; see Appendix A for details.
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Remark 4.2. In Appendix A, for completeness we work in the setting of (partial)
flag varieties of Kac–Moody groups. It seems very likely that the partial affine
flag varieties considered above are special cases of (products of) flag varieties of
(untwisted affine) Kac–Moody groups, but we do not know of a reference for this
claim. (See, however, [20, Chap. XIII] for similar claims when the base field is C,
and [25, §9.f] for the case I = ∅.) In any case, all the properties of flag varieties
of Kac–Moody groups that we use in Appendix A have well-known analogues for
affine flag varieties, so that all of our results apply in this setting also.

The orbits of Iw+
H on FlI are parametrized in a natural way by WCox

aff /WI , or
equivalently by the subset of WCox

aff consisting of elements w which are maximal in
wWI . Let

0W I
aff ⊂ Waff be the subset

0W I
aff := {w ∈ Waff | w is maximal in wWI and wv ∈ 0Waff for all v ∈ WI}.

Then the orbits that support a nonzero Iwahori–Whittaker local system correspond
to the subset WCox

aff ∩ 0W I
aff ⊂ WCox

aff . Therefore, the indecomposable parity com-
plexes in Db

IW(FlI , k) are parametrized by (WCox
aff ∩ 0W I

aff)× Z (see §A.2 for more
details). For any w ∈ WCox

aff ∩ 0W I
aff , we will denote by EIW,I

w the indecomposable
parity complex associated with (w, 0), and by EIW,I,mix

w the corresponding object
of Dmix

IW(FlI , k). Similarly, for such w’s we have standard and costandard objects
in Dmix

IW(FlI , k), which will be denoted ∆IW,I,mix
w and ∇IW,I,mix

w respectively.

Remark 4.3. In Appendix A we label orbits in FlI by minimal representatives in
cosets wWI instead of maximal representatives. Thus, if wI

0 is the longest element
in WI , then the orbit labelled by w in the present section would be labelled by wwI

0

with the conventions of Appendix A.

The following claim is a counterpart in the present setting of Lemma A.12, and
follows from similar considerations.

Lemma 4.4. For any w ∈ WCox
aff ∩ 0W I

aff , the objects (qI)
∗∆IW,I,mix

w {ℓ(wI
0)} and

(qI)
∗∇IW,I,mix

w {ℓ(wI
0)} belong to the heart of the perverse t-structure.

4.3. Proof of Lemma 4.1. Using Lemma 4.4, we can now prove Lemma 4.1. In
fact we will treat the case of (jλ)!(jλ)

∗Tmix
wλ

; the case of (jλ)∗(jλ)
∗Tmix

wλ
is similar

and left to the reader.
We first remark that all the connected components of Gr′ are isomorphic as ind-

varieties stratified by the Iw-orbits. Hence we can assume that λ belongs to ZR,
or equivalently that wλ ∈ WCox

aff , or in other words that Tmix
wλ

is supported on the

connected component (Gr′)0 of the base point.
Now, recall the “Koszul duality” equivalence

κ : Dmix
(Iw)

(
(Gr′)0, k

) ∼
−→ Dmix

IW(Fl, k)

from [3, Theorem 7.4]. This equivalence satisfies κ◦〈1〉 = 〈1〉[1]◦κ, and sends stan-
dard, resp. costandard, perverse sheaves to standard, resp. costandard, perverse
sheaves (in a way compatible with labellings). Hence it is t-exact if Dmix

(Iw)((Gr′)0, k)

is endowed with the adverse t-structure and Dmix
IW(Fl, k) is endowed with the per-

verse t-structure. By [3, Theorem 7.4], it also satisfies

(4.6) κ(Tmix
w ) ∼= EIW,mix

w

for any w ∈ WCox
aff ∩ 0Waff .
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Fix λ ∈ X
+,reg
I , and recall the distinguished triangle (4.5) in Dmix

(Iw)

(
(Gr′)0, k

)
.

Applying κ and using (4.6) we deduce a distinguished triangle

(4.7) κ((jλ)!(jλ)
∗Tmix

wλ
) → EIW,mix

wλ
→ κ((iλ)∗(iλ)

∗Tmix
wλ

)
[1]
−→ .

On the partial affine flag variety FlI , let (FlI)wλ
be the Iw+

H -orbit corresponding
to wλ, and consider the embeddings

jIλ : (FlI)wλ
→֒ (FlI)wλ

, iIλ : (FlI)wλ
r (FlI)wλ

→֒ (FlI)wλ
.

As in §4.1 we have pullback and pushforward functors between mixed derived cat-
egories associated with these maps, and using these functors we obtain a canonical
distinguished triangle

(4.8) ∆IW,I,mix
wλ

→ EIW,I,mix
wλ

→ (iIλ)∗(i
I
λ)

∗EIW,I,mix
wλ

[1]
−→ .

Now by [7, Lemma 10.2] we have wλ ∈ 0W I
aff . Hence by Lemma A.5 (see also

Remark 4.3) we have an isomorphism EIW,mix
wλ

∼= (qI)
∗EIW,I,mix

wλ
{ℓ(wI

0)}; there-

fore applying the triangulated functor (qI)
∗{ℓ(wI

0)} to (4.8) gives a distinguished
triangle

(4.9) (qI)
∗∆IW,I,mix

wλ
{ℓ(wI

0)} → EIW,mix
wλ

→ (qI)
∗(iIλ)∗(i

I
λ)

∗EIW,I,mix
wλ

{ℓ(wI
0)}

[1]
−→ .

We now want to identify the triangles (4.7) and (4.9). Applying κ−1 to the
composition of the first arrow in (4.7) and the second arrow in (4.9) gives a map

(jλ)!(jλ)
∗Tmix

wλ
→ κ−1((qI)

∗(iIλ)∗(i
I
λ)

∗EIW,I,mix
wλ

{ℓ(wI
0)}).

This map is 0 by adjunction, since the second term is supported on XλrUλ. Hence
our original composition also vanishes, and as in §4.1 we obtain a unique morphism
of triangles

κ((jλ)!(jλ)
∗Tmix

wλ
) EIW,mix

wλ
κ((iλ)∗(iλ)

∗Tmix
wλ

)

(qI)
∗∆IW,I,mix

wλ
{ℓ(wI

0)} EIW,mix
wλ

(qI)
∗(iIλ)∗(i

I
λ)

∗EIW,I,mix
wλ

{ℓ(wI
0)}

[1]

[1]

whose second vertical arrow is the identity. Consider now the space of maps between
the first object in (4.9) and the third object in (4.7): we have

HomDmix
IW

(Fl,k)

(
(qI)

∗∆IW,I,mix
wλ

{ℓ(wI
0)}, κ((iλ)∗(iλ)

∗Tmix
wλ

)
)

∼= HomDmix
IW

(FlI ,k)

(
∆IW,I,mix

wλ
{ℓ(wI

0)}, (qI)∗κ((iλ)∗(iλ)
∗Tmix

wλ
)
)
.

In view of Lemma A.8, the object (qI)∗κ((iλ)∗(iλ)
∗Tmix

wλ
) belongs to the triangulated

subcategory of Dmix
IW(FlI , k) generated the objects ∇IW,I,mix

v with v 6= wλ; hence
this Hom-space vanishes. There is thus a unique morphism of triangles from (4.9)
to (4.7) whose middle arrow is the identity and, as in §4.1, applying [12, Propo-
sition 1.1.9] to both compositions of these morphisms gives that they are inverse
isomorphisms. We have finally identified (4.7) and (4.9), hence proved in particular
that there exists an isomorphism

(4.10) κ((jλ)!(jλ)
∗Tmix

wλ
) ∼= (qI)

∗∆IW,I,mix
wλ

{ℓ(wI
0)}.

We can finally conclude: Lemma 4.4 guarantees that the right-hand side of (4.10)
is perverse; hence (jλ)!(jλ)

∗Tmix
wλ

is adverse, which finishes the proof.
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5. Application: a singular version of the mixed Finkelberg–Mirković

conjecture

In this section we assume that k is an algebraic closure of Fℓ.

5.1. Whittaker perverse sheaves on Gr. We continue with the notation of §4.2.
We also denote by Ḃ∨,+

F
the Borel subgroup of Ġ∨

F
which is opposite to Ḃ∨

F
with

respect to Ṫ∨
F
. (In other words, as the notation suggests, Ḃ∨,+

F
is the positive Borel

subgroup of Ġ∨
F
.) We will now work with the F-version of the affine Grassmannian

(in its usual incarnation in terms of cosets for right multiplication), defined by

Gr := Ġ∨
F

(
F((t))

)
/Ġ∨

F

(
F[[t]]

)
.

We have a natural embedding

X = Ṫ∨
F

(
F((t))

)
/Ṫ∨

F

(
F[[t]]

)
→ Gr,

and we will denote by Lλ the image of λ ∈ X.
Let again I ⊂ S be a subset, and consider the associated parabolic subgroup

Ṗ∨,+
F,I ⊂ Ġ∨ containing Ḃ∨,+

F
. Let also L̇∨

F,I be the Levi factor of Ṗ∨,+
F,I containing

Ṫ∨
F
, and set U̇∨

F,I := U̇∨
F
∩ L̇∨

F,I, where U̇∨
F

is the unipotent radical of the (negative)

Borel subgroup Ḃ∨
F
⊂ Ġ∨

F
. We set

QI := ev−1
(
(Ṗ∨,+

F,I )u · U̇
∨
F,I

)
,

where ev : Ġ∨
F

(
F[[t]]

)
→ Ġ∨

k
is the natural morphism, and (Ṗ∨,+

F,I )u is the unipotent

radical of Ṗ∨,+
F,I . Fixing an Artin–Schreier local system on U̇∨

F,I and pulling it back

to QI , we obtain a notion of “Whittaker” complexes on Gr (see e.g. §A.2);3 we
denote the corresponding category of parity complexes by ParityWh,I(Gr, k), and

the associated mixed derived category by Dmix
Wh,I(Gr, k). (In case I = ∅, this con-

struction recovers the familiar Iwahori-constructible categories.) As in §4.2, this
category is endowed with a natural “perverse” t-structure, whose heart will be
denoted Pervmix

Wh,I(Gr, k), and the corresponding standard and costandard objects
are perverse (by an appropriate analogue of Proposition A.9). By standard argu-
ments (see e.g. [6]), this implies that the realization functor (see [12, §3.1] or [11,
Appendix]) induces an equivalence of categories

(5.1) DbPervmix
Wh,I(Gr, k)

∼
−→ Dmix

Wh,I(Gr, k).

The orbits of QI on Gr are parametrized in a natural way by X, where λ corre-
sponds to the orbit of Lλ. To understand the combinatorics of orbits on (partial)
affine flag varieties, it is usually simpler to work with the negative Iwahori subgroup
IwF (defined as ev−1(Ḃ∨

F
)). But here, because we will eventually want to combine

our constructions with those of [8] and [7, Section 11], we instead work with the

positive Iwahori subgroup Iw+
F
, defined as ev−1(Ḃ∨,+

F
). We now explain how to

compare the resulting combinatorics of orbits.
We set

Gr′F := Ġ∨
F

(
F[[t]]

)
\Ġ∨

F

(
F((t))

)
and Fl′F := IwF\Ġ

∨
F

(
F((t))

)
.

Then the IwF-orbits on Fl′F (for the action induced by right multiplication) are
parametrized in a natural way by Waff , and those on Gr′F by 0Waff . Consider a

3Here we understand the étale derived category of k-sheaves on Gr as the direct limit of the
categories of k0-sheaves, where k0 runs over finite subfields of k.
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“Cartan” anti-automorphism of Ġ∨
F
which acts as the identity on Ṫ∨

F
and sends Ḃ∨

F

to Ḃ∨,+
F

. (With the notation of [7, Remark 11.3(2)], this antiautomorphism can be
chosen as the composition of the F-version of the automorphism ϕ with the map
g 7→ g−1.) This map induces an isomorphism Gr′F → Gr, which sends the IwF-orbit
corresponding to wλ to the Iw+

F
-orbit of Lλ.

Lemma 5.1. For λ ∈ X, the QI-orbit on Gr labelled by λ supports a nonzero
local system which is QI-equivariant against the pullback of the Artin–Schreier local
system iff λ ∈ −X

+,reg
I .

Proof. We translate our problem in terms of Gr′F following the principles presented
above. We will denote by Q−

I the analogue of QI where the roles of positive and

negative roots are switched (so that Q−
I is the appropriate analogue in the present

setting of the subgroup U K ·U #
K of §A.2.) Then we have to show that the Q−

I -orbit

labelled with wλ supports a (nonzero) Whittaker local system iff λ ∈ −X
+,reg
I . By

the general considerations in §A.2, the latter condition holds iff vwλ is minimal in
vwλWI for any v ∈ W .

First, we assume that wλ satisfies this property. Then ℓ(vwλw) = ℓ(vwλ) +
ℓ(w) = ℓ(v) + ℓ(wλ) + ℓ(w) for any v ∈ W and w ∈ WI . In particular, wλw

I
0

belongs to 0Waff ; it must then coincide with wwI
0(λ)

. In view of [7, Lemma 10.2],

this implies that wI
0(λ) belongs to X

+,reg
I , so that λ ∈ −X

+,reg
I .

Conversely, assume that λ ∈ −X
+,reg
I . Then, by the converse implication in [7,

Lemma 10.2], wwI
0(λ)

wI
0 belongs to

0Waff , hence coincides with wλ; moreover we have

ℓ(vwλw) = ℓ(v) + ℓ(wλw) = ℓ(v) + ℓ(wλ) + ℓ(w) for any v ∈ W and w ∈ WI . This
implies that vwλ is minimal in vwλWI for any v ∈ W , and finishes the proof. �

For λ ∈ −X
+,reg
I , we will denote by EWh,I(λ), JWh,I

! (λ), JWh,I
∗ (λ), JWh,I

!∗ (λ),

T Wh,I(λ) the corresponding normalized indecomposable parity complex, standard
mixed perverse sheaf, costandard mixed perverse sheaf, simple mixed perverse sheaf
and indecomposable mixed tilting perverse sheaf associated with λ respectively;
see [6] for details on these notions. We will also denote by EWh,I,mix(λ) the object
of Dmix

Wh,I(Gr, k) consisting of the complex with EWh,I(λ) in degree 0, and 0 in other

degrees. (When I = ∅, we will sometimes omit the superscripts.)

5.2. Averaging functor. We have a natural “averaging” functor

AvI : Db
Wh,∅(Gr, k) → Db

Wh,I(Gr, k),

defined by the same procedure as in §A.3.
In the following lemma we use the notion of the “naive” quotient of an additive

category by a full additive subcategory as in §A.3.

Lemma 5.2. The functor AvI sends parity complexes to parity complexes. More-
over, it induces an equivalence of additive categories

ParityWh,∅(Gr, k) � 〈E(λ) : λ /∈ −X
+,reg
I 〉⊕,Z

∼
−→ ParityWh,I(Gr, k),

where 〈E(λ) : λ /∈ −X
+,reg
I 〉⊕,Z is the full subcategory of ParityWh,∅(Gr, k) whose

objects are direct sums of shifts of objects of the form E(λ) with λ /∈ −X
+,reg
I .

Proof. In view of Lemma 5.1, this statement is the analogue in the present context
of Proposition A.6. �
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From Lemma 5.2 we obtain in particular that AvI induces a functor

Avmix
I : Dmix

Wh,∅(Gr, k) → Dmix
Wh,I(Gr, k)

on bounded homotopy categories.

Lemma 5.3. For λ ∈ −X
+,reg
I we have

Av
mix
I (J!(λ)) ∼= JWh,I

! (λ), Av
mix
I (J∗(λ)) ∼= JWh,I

∗ (λ).

Proof. These claims are special cases of the analogue in the present context of
Lemma A.11. In particular, from the proof of Lemma 5.1, for λ ∈ −X

+,reg
I ,

wλ is minimal in wλWI and so the shifts appearing in the second statement of
Lemma A.11 are 0. �

5.3. Study of tilting objects in ExCoh(ÑI). We denote by Tilt(ExCoh(ÑI)) the

full additive subcategory of ExCoh(ÑI) whose objects are the tilting objects. (This
notion does make sense now that Corollary 2.3 is proved.) By the general theory
of (graded) highest weight categories, we know that the isomorphism classes of

indecomposable objects in this category are in a natural bijection with X
+,reg
I ×Z.

For any λ ∈ X
+,reg
I , we will denote by Texo

I (λ) the object associated with the pair
(λ, 0); then the object associated with (λ, n) is Texo

I (λ)〈n〉. It is also known that
the “realization” functor

(5.2) KbTilt(ExCoh(ÑI)) → DbCohĠ
×Gm(ÑI)

provided by [3, Proposition 2.2] is an equivalence of categories. (To construct this

functor one needs to choose a “filtered version” of DbCohĠ×Gm(ÑI); here we take
the filtered version constructed in [12, §3.1].)

Lemma 5.4. (1) For any T in Tilt(ExCoh(Ñ∅)), the object ΠI(T ) belongs to

ExCoh(ÑI), and is tilting therein.

(2) If λ /∈ −X
+,reg
I we have ΠI(T

exo
∅ (λ)) = 0.

Proof. (1) Let T ∈ Tilt(ExCoh(Ñ∅)). Then T is an extension of objects of the form
∆∅(λ)〈n〉 for λ ∈ X and n ∈ Z. By [7, Corollary 9.21 and Proposition 9.24(2)],
we deduce that ΠI(T ) is an extension (in the sense of triangulated categories) of
objects of the form ∆I(µ)〈n〉[m] for µ ∈ X+,reg, n ∈ Z and m ∈ Z≤0, hence that

(5.3) Hom(ΠI(T ),∇I(ν)〈n〉[m]) = 0 if m > 0.

Now, T is also an extension of objects ∇∅(λ)〈n〉 for λ ∈ X and n ∈ Z. Using
now [7, Corollary 9.21 and Proposition 9.24(1)], we deduce similarly that

(5.4) Hom(∆I(ν),ΠI(T )〈n〉[m]) = 0 if m > 0.

By [14, Lemma 4], the properties (5.3) and (5.4) imply that ΠI(T ) belongs to

ExCoh(ÑI), and is tilting therein.

(2) As observed in the proof of Lemma 5.1, if λ /∈ −X
+,reg
I then there exists

v ∈ W such that vwλ is not minimal in vwλWI , or in other words such that vwλ

admits a reduced expression ending with a simple reflection s ∈ I. In view of [22,
Proof of Corollary 4.2] this shows that Texo

∅ (λ) is then a direct summand of an
object which is killed by ΠI . �
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5.4. Exotic sheaves and mixed perverse sheaves. Recall now the equivalence
Ψ from §3.3. Here we will rather consider the variant of this equivalence considered
in [7, §11.3], which will be denoted

P : Dmix
Wh,∅(Gr, k)

∼
−→ DbCohĠ×Gm(Ñ∅).

Note that in [7] the affine Grassmannian is defined over the complex numbers, while
here we work with étale sheaves on the F-version of this variety. The fact that
these two constructions give rise to equivalent categories follows from the general
principles from [12, §6.1].

We now denote by
Pervsph(Gr, k)

the abelian category of Ġ∨
F

(
F[[t]]

)
-equivariant k-perverse sheaf on Gr. This category

is equipped with a symmetric monoidal structure given by the convolution product
⋆; moreover if we denote by Repf(Ġ) the category of finite-dimensional algebraic Ġ-
modules, then the geometric Satake equivalence provides an equivalence of abelian
monoidal categories

S :
(
Pervsph(Gr, k), ⋆

)
→

(
Repf(Ġ),⊗

)
;

see [24] for the original source and [10] for a more detailed exposition of the
proof. The same considerations as in [7, §11.2] (see also [15, §4.4]) show that
the convolution construction also provides an action of the monoidal category
(Pervsph(Gr, k), ⋆) on Dmix

Wh,I(Gr, k) on the right, which will also be denoted ⋆.

The following theorem is a “parabolic version” of the main results of [8] and [23].

Theorem 5.5. There exists an equivalence of triangulated categories

PI : Dmix
Wh,I(Gr, k)

∼
−→ DbCohĠ

×Gm(ÑI)

such that

(1) there exists an isomorphism of functors PI ◦ 〈1〉 ∼= 〈1〉[1] ◦ PI ;

(2) for any λ ∈ −X
+,reg
I there exist isomorphisms

PI(J
Wh,I
! (λ)) ∼= ∆I(w

I
0(λ)), PI(J

Wh,I
∗ (λ)) ∼= ∇I(w

I
0(λ)),

PI(E
Wh,I,mix(λ)) ∼= Texo

I (wI
0(λ));

(3) for any F in Dmix
Wh,I(Gr, k) and G ∈ Pervsph(Gr, k), there exists a bifuncto-

rial isomorphism PI(F ⋆ G) ∼= PI(F)⊗ S(G);
(4) the following diagram commutes up to isomorphism:

Dmix
Wh,∅(Gr, k) DbCohĠ×Gm(Ñ∅)

Dmix
Wh,I(Gr, k) DbCohĠ×Gm(ÑI).

P
∼

Avmix
I

ΠI

PI

∼

Proof. The equivalence P restricts to an equivalence of additive categories

P ′ : ParityWh,∅(Gr, k)
∼
−→ Tilt(ExCoh(Ñ∅))

sending E(λ) to Texo
∅ (λ), see [8, Proposition 8.4]. Lemma 5.2 and Lemma 5.4 imply

that ΠI ◦ P ′ factors through a functor

P ′
I : ParityWh,I(Gr, k) → Tilt(ExCoh(ÑI)).
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Passing to bounded homotopy categories and composing with the equivalence (5.2)
we deduce a functor

PI : Dmix
Wh,I(Gr, k) → DbCohĠ×Gm(ÑI)

which satisfies (1).
Consider now the diagram

Dmix
Wh,∅(Gr, k) KbParity(Iw)(Gr, k) KbTilt(ExCoh(Ñ∅)) DbCohĠ×Gm(Ñ∅)

Dmix
Wh,I(Gr, k) KbParityWh,I(Gr, k) KbTilt(ExCoh(ÑI)) DbCohĠ×Gm(ÑI)

Avmix
I

P

KbAvI

KbP ′

∼

KbΠI

real
∼

ΠI

PI

KbP ′
I real

∼

where the maps labelled “real” are the functors (5.2). The leftmost square in this
diagram commutes by definition, and the middle square commutes by construction
of P ′

I . The rightmost square commutes by [3, Proposition 2.3]. (To be able to
apply this result we need to check that the functor ΠI admits a “lift” to the filtered
versions. This however follows from [11, Example A.2].) The bottom part of the
diagram commutes by definition of PI .

We claim that the top part of the diagram also commutes (up to isomorphism).
This will again follow from [3, Proposition 2.3] once we justify that the functor
P lifts to filtered versions. (Here, the filtered version of Dmix

Wh,∅(Gr, k) that we

consider is the same as in [3, Comments preceding Lemma 2.4]; the corresponding
realization functor is then the identity.) In fact, P is defined (see [8, §7]) by applying
an additive functor

P 0 : ParityWh,∅(Gr, k) → CohĠ×Gm(Ñ∅)

termwise to complexes of parity complexes. Using the filtered version of the cat-

egory Dmix
Wh,∅(Gr, k) constructed in [4, §2.5] and that of DbCohĠ×Gm(Ñ∅) con-

structed in [12, §3.1], we can again apply P 0 termwise to filtered objects formed

from ParityWh,∅(Gr, k) to obtain filtered objects formed from CohĠ×Gm(Ñ∅), and
hence obtain the required lift. This finishes the justification of the commutativity
of the diagram in (4).

For λ ∈ −X
+,reg
I , by [7, Proposition 9.24] we have

ΠI(∆∅(λ)) ∼= ∆I(w
I
0(λ)), ΠI(∇∅(λ)) ∼= ∇I(w

I
0(λ)).

Comparing this with Lemma 5.3 we deduce that

PI(J
Wh,I
! (λ)) ∼= ∆I(w

I
0(λ)) and PI(J

Wh,I
∗ (λ)) ∼= ∇I(w

I
0(λ)).

Then standard arguments (see e.g. [3, Theorem 6.5]) show that PI is an equivalence
of categories. In particular, this functor must send indecomposable objects to
indecomposable objects, and the third isomorphism in (2) follows.

To conclude, it only remains to prove (3). By construction of the convolution
action of Pervsph(Gr, k) on Dmix

Wh,I(Gr, k), it suffices to construct such an isomor-

phism when G is parity (in addition to being perverse), i.e. when S(G) is a tilting

Ġ-module. In this case the functor (−) ⊗ S(G) stabilizes Tilt(ExCoh(Ñ∅)) by [22,
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Proposition 4.10]. The equivalence P intertwines the functors (−)⋆G and (−)⊗S(G)
(see [8, Proposition 7.2]); therefore the same property holds for its restriction P ′.

The functor ΠI clearly commutes with the functors (−) ⊗ S(G); from this we

deduce that (−) ⊗ S(G) also preserves the subcategory Tilt(ExCoh(ÑI)). Now the
functor AvI commutes with (−) ⋆ G (see e.g. [27, (11.1.1)] for a similar statement);
hence the latter functor preserves the kernel of the former, namely the subcategory
〈E(λ) : λ /∈ −X

+,reg
I 〉⊕,Z of ParityWh,∅(Gr, k). By construction of the functor P ′

I

out of P ′, AvI and ΠI , we finally deduce that this functor also intertwines the
functors (−) ⋆ G and (−) ⊗ S(G). And using [3, Proposition 2.3] once again we
deduce (3). �

5.5. Relation with representations of reductive groups. From now on we
fix a connected reductive group G over k with simply-connected derived subgroup,
and assume that ℓ > h, where h is the Coxeter number of G. We also fix a maximal
torus and a Borel subgroup T ⊂ B ⊂ G. We then assume that Ġ, resp. Ḃ, resp. Ṫ ,
is the Frobenius twist of G, resp. B, resp. T . (Of course, Ġ is a reductive group
that is isomorphic to G, but it plays a different conceptual role.) Note that ℓ is

automatically very good for Ġ, so that the assumptions of §2.1 hold.
We will identify the lattice of characters of T with X, in such a way that the

composition of the Frobenius morphism T → Ṫ with the character λ ∈ X = X∗(Ṫ )
is the character ℓλ of T . We will consider the “dilated and shifted” action of Waff

on X defined by

w ·ℓ µ = w(µ + ρ)− ρ, tλ ·ℓ µ = µ+ ℓλ

for w ∈ W and λ, µ ∈ X. (Here, ρ ∈ 1
2X is as usual the halfsum of the positive

roots.)

Denote by Rep∅(G) the “extended principal block” of the category Repf(G) of
finite-dimensional algebraic G-modules, that is, the Serre subcategory generated
by the simple modules whose highest weight has the form w ·ℓ 0 with w ∈ Waff .
Here the weight w ·ℓ 0 is dominant iff w belongs to the subset 0Waff ⊂ Waff . In
particular, Rep∅(G) contains the Weyl and induced modules of highest weight w ·ℓ 0
for w ∈ 0Waff , denotedM(w·ℓ0) and N(w·ℓ0) respectively. The corresponding simple
object will be denoted L(w ·ℓ 0).

Given a subset I ⊂ S, we let RepI(G) be the Serre subcategory of Repf(G)
generated by the simple modules whose highest weight has the form w ·ℓ (−ςI) for

w ∈ Waff . This category is a direct summand of Repf(G) and is “singular at I” in
that the stabilizer of −ςI under the dot action of Waff is the subgroup WI of W
generated by I. Here, the weight w·ℓ(−ςI) is dominant iff w belongs to 0W I

aff ⊂ Waff

(see [7, §10.1]). In particular, RepI(G) contains the Weyl and induced modules of
highest weight w ·ℓ (−ςI) for w ∈ 0W I

aff , denoted M(w ·ℓ (−ςI)) and N(w ·ℓ (−ςI))
respectively, and the corresponding simple module L(w ·ℓ (−ςI)).

Recall the bijection X
∼
−→ 0Waff considered in §3.3. As explained in [7, Lem-

ma 10.2], this bijection restricts to a bijection X
+,reg
I

∼
−→ 0W I

aff . Recall also the
functor

ΦI : DbCohĠ×Gm(ÑI) → DbRepI(G)

constructed in [7, §10.3]. (In the notation of [7], we have ΦI := ΩI ◦κI .) According
to [7, Proposition 10.6], this is a degrading functor with respect to 〈1〉[1]: that

is, there exists a natural isomorphism ΦI ◦ 〈1〉[1]
∼
−→ ΦI , such that ΦI induces an



22 PRAMOD N. ACHAR, NICHOLAS COONEY, AND SIMON RICHE

isomorphism

(5.5)
⊕

n∈Z

Hom
DbCohĠ×Gm (ÑI)

(F ,G〈n〉[n])
∼
−→ HomDbRepI(G)(ΦI(F),ΦI(G))

for all F ,G ∈ DbCohĠ×Gm(ÑI). Moreover, by [7, Proposition 10.3] we have

(5.6) ΦI(∆I(λ)) ∼= M(wλ ·ℓ (−ςI)), ΦI(∇I(λ)) ∼= N(wλ ·ℓ (−ςI)).

It is clear from these properties that ΦI is t-exact if DbCohĠ×Gm(ÑI) is endowed
with the representation-theoretic t-structure, and DbRepI(G) with its tautological
t-structure. In particular, this provides a grading on the category RepI(G) in the
sense of [13, Definition 4.3.1] (see also [7, Definition 11.5]); in other words, under

our present assumptions grRep(ÑI) is a “graded version” of RepI(G).

Remark 5.6. In view of [7, Theorem 8.16, Remark 8.17 and Proposition 9.25], the
functors Φ∅ and ΦI intertwine the “geometric translation functors” ΠI and ΠI and
the usual translation functors for G-modules, denoted T I

∅ and T∅

I in [7]. Using [18,
Proposition E.11], it follows that in the setting of Lemma 3.10 we in fact have
ΠI(TRT

I (λ)) ∼= TRT
∅ (λ) under the present assumptions.

5.6. The singular Mirković–Vilonen conjecture. The following theorem is a
“singular analogue” of [7, Proposition 11.6 and Theorem 11.7]. Here we denote by

ForĠG : Repf(Ġ) → Repf(G) the restriction functor associated with the Frobenius

morphism G → Ġ.

Theorem 5.7. (1) For any F in Perv
mix
Wh,I(Gr, k) and G in Pervsph(Gr, k), the

object F ⋆ G belongs to Pervmix
Wh,I(Gr, k).

(2) There exists an exact functor

QI : Pervmix
Wh,I(Gr, k) → RepI(G)

together with an isomorphism εI : QI
∼
−→ QI ◦ 〈1〉 such that the triple

(Pervmix
Wh,I(Gr, k),QI , εI) is a grading on RepI(G). In addition,

(a) for any λ ∈ −X
+,reg
I we have

QI(J
Wh,I
! (λ)) ∼= M(wwI

0(λ)
·ℓ (−ςI)), QI(J

Wh,I
∗ (λ)) ∼= N(wwI

0(λ)
·ℓ (−ςI)),

QI(J
Wh,I
!∗ (λ)) ∼= L(wwI

0(λ)
·ℓ (−ςI)), QI(T

Wh,I(λ)) ∼= T(wwI
0(λ)

·ℓ (−ςI));

(b) for any F in Pervmix
Wh,I(Gr, k) and G in Pervsph(Gr, k), there exists a

bifunctorial isomorphism QI(F ⋆ G) ∼= QI(F)⊗ ForĠG(S(G)).

Proof. The proof is the same as for [7, Theorem 11.7] but for completeness we repeat
it. We first construct a functorQI : Dmix

Wh,I(Gr, k) → DbRepI(G) as the composition

ΦI ◦PI . Using the isomorphism from Theorem 5.5(1) and the natural isomorphism

ΦI ◦ 〈1〉[1]
∼
−→ ΦI we obtain the isomorphism εI : QI

∼
−→ QI ◦ 〈1〉. By the first two

isomorphisms in Theorem 5.5(2) and (5.6), we also obtain isomorphisms

(5.7) QI(J
Wh,I
! (λ)) ∼= M(wwI

0(λ)
·ℓ (−ςI)), QI(J

Wh,I
∗ (λ)) ∼= N(wwI

0(λ)
·ℓ (−ςI))

for any λ ∈ −X
+,reg
I . In particular, this shows that the complexes QI(J

Wh,I
! (λ))

and QI(J
Wh,I
∗ (λ)) belong to RepI(G), which implies that QI is t-exact if the

category Dmix
Wh,I(Gr, k) is endowed with the perverse t-structure and DbRepI(G)

with its tautological t-structure. We will still denote by QI the restriction of this
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functor to the hearts of these t-structures, which provides the wished-for exact
functor Pervmix

Wh,I(Gr, k) → RepI(G). By (5.1), Theorem 5.5, and (5.5), this functor
induces isomorphisms

(5.8)
⊕

n∈Z

ExtkPervmix
Wh,I

(Gr,k)(F ,G〈n〉)
∼
−→ ExtkRepI (G)(QI(F),QI(G))

for any F and G in Pervmix
Wh,I(Gr, k) and any k ∈ Z. In particular, this im-

plies that QI is faithful. Now JWh,I
!∗ (λ) is the image of any nonzero morphism

JWh,I
! (λ) → JWh,I

∗ (λ) and L(wwI
0(λ)

·ℓ (−ςI)) is the image any nonzero morphism

M(wwI
0(λ)

·ℓ (−ςI)) → N(wwI
0(λ)

·ℓ (−ςI)). Combining these facts with (5.7) gives that

QI(J
Wh,I
!∗ (λ)) ∼= L(wwI

0(λ)
·ℓ (−ςI)), hence finally that (Pervmix

(Wh,I)(Gr, k),QI , εI)

gives a grading on RepI(G).
As QI is exact and given the isomorphisms (5.7), one sees that, for any λ ∈

−X
+,reg
I , QI(T Wh,I(λ)) is a tilting G-module, and that it admits T(wwI

0(λ)
·ℓ (−ςI))

as a direct summand. The isomorphism (5.8) provides a ring isomorphism

(5.9)
⊕

n∈Z

HomPervmix
(Wh,I)

(Gr,k)

(
T Wh,I(λ), T Wh,I(λ)〈n〉

)

∼
−→ EndRepI(G)(QI(T

Wh,I(λ))).

Since the left-hand side is local by [17, Theorem 3.1], this shows that QI(T Wh,I(λ))
is indecomposable, and so isomorphic to T(wwI

0(λ)
·ℓ (−ςI)).

By Theorem 5.5(3), for F in Dmix
Wh,I(Gr, k) and G in Pervsph(Gr, k) we have

QI(F ⋆ G) ∼= ΦI(PI(F) ⊗ S(G)). Combining this with the isomorphisms in [7,
Theorem 1.1 and Theorem 1.2], we deduce a bifunctorial isomorphism

QI(F ⋆ G) ∼= QI(F)⊗ ForĠG(S(G))

in DbRepI(G). If F is in Pervmix
Wh,I(Gr, k) then this implies that QI(F ⋆ G) belongs

to RepI(G). Since QI is t-exact and does not kill any nonzero object, this in turn
implies that F ⋆ G is perverse, which proves Points (1) and (2b), and finishes the
proof. �

Appendix A. Whittaker mixed perverse sheaves on partial flag

varieties

In this appendix we assume that the reader is familiar (to a certain extent at
least) with the theory of parity complexes (from [19]) and of mixed derived cat-
egories (from [6]). Our aim is to study such objects and categories in the case
of Whittaker sheaves on partial flag varieties of Kac–Moody groups. The case of
Bruhat-constructible sheaves on partial flag varieties (corresponding, in the nota-
tion used below, to the case when K = ∅) is known, mainly from [19, 6], as is that
of Whittaker sheaves on the full flag variety (corresponding to the case J = ∅),
mainly from [27, 3]. The general case will usually be deduced from one of these
special cases.

A.1. Notation. In this section we consider the setting of [27, Part III] or [3, §§6.1–
6.2]. In particular, we consider an algebraically closed field F of characteristic p > 0
and a Kac–Moody root datum (I,X, {αi}i∈I , {α∨

i }i∈I). (Note that the symbol “I”
used here is unrelated to the set I considered in the body of the paper.) Let G be
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the associated Kac–Moody group over F in the sense of Mathieu. We also denote
by B ⊂ G the Borel subgroup, and by X := G /B the associated flag variety.
(See [27, §9.1] for a reminder on this construction, and for references to the original
sources.) If W is the Weyl group of G , and if S ⊂ W are the simple reflections (in
canonical bijection with I), then we have a decomposition into B-orbits

X =
⊔

w∈W

Xw,

where Xw is a locally closed subvariety isomorphic to an affine space of dimension
ℓ(w).

For any subset J ⊂ I of finite type we also have a partial flag variety X J . We
will denote by WJ ⊂ W the (finite) subgroup generated by the simple reflections
corresponding to elements in J , and by W J ⊂ W the subset of elements w such
that w is minimal in wWJ . Then we have a stratification

X
J =

⊔

w∈WJ

X
J
w

with X J
w

∼= Aℓ(w). We also have a natural proper morphism of ind-schemes qJ :
X → X J . For any w ∈ W J and v ∈ WJ , we have qJ(Xwv) = X J

w , and the
morphism Xwv → X

J
w induced by qJ identifies with the natural projection from

Aℓ(w)+ℓ(v) to Aℓ(w). (Note however that it is not known—at least to us—if qJ is a
smooth morphism in general; see [27, Remark 9.2.1] for details on this question.)

A.2. Whittaker derived categories. We let ℓ be a prime number different from
p, and k be either a finite field of characteristic ℓ, or a finite extension of Qℓ. Then
it makes sense to consider étale k-sheaves on X J (for J ⊂ I of finite type). We will
assume that k contains a primitive p-th root of unity; after fixing a choice of such
a root of unity we can consider the associated Artin–Schreier local system LAS on
Ga,F.

Let now K ⊂ I be another subset of finite type, and consider the associated
parabolic subgroup PK of G , and its pro-unipotent radical U K . Let also LK ⊂
PK be the Levi subgroup, and U

#
K ⊂ LK be the unipotent radical of the Borel

subgroup of LK which is opposite to B∩LK with respect to the canonical maximal

torus. Then the orbits of U K ·U #
K on X J are also in a natural bijection with W J .

We will denote by KX J
w the orbit associated with w. (When J or K is ∅, we will

usually omit the corresponding superscript. This convention will be applied more
generally to any notation used in this appendix and involving J or K.)

After choosing an identification of each simple root subgroup of U
#
K with the

additive group Ga,F, the quotient U
#
K /[U #

K ,U #
K ] identifies with a product of #K

copies of Ga,F. Composing with the addition map to Ga,F, we obtain a group

homomorphism U
#
K /[U #

K ,U #
K ] → Ga,F. The composition of this morphism with

the projection

U
K · U #

K ։ U
#
K ։ U

#
K /[U #

K ,U #
K ]

will be denoted χK .
We will denote by

Db
Wh,K(X J , k)
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the (étale) (U K ·U #
K , (χK)∗LAS)-equivariant derived category of k-sheaves on X J .

(See [5, Appendix A] for a brief review of the construction of this category. When
K = ∅, one recovers the usual Bruhat-constructible derived category.)

In the case J = ∅, as explained in [27, §11.1] (see also [16, Lemma 4.2.1] for more

details), the orbit KXw supports a nonzero (U K ·U #
K , (χK)∗LAS)-equivariant local

system iff w is minimal in WKw. The subset of W consisting of elements satisfying
this condition will be denoted KW . For the orbits on X

J , we observe that, for

w ∈ W J , the orbit KX J
w supports a nonzero (U K ·U #

K , (χK)∗LAS)-equivariant local

system iff each orbit in (qJ )
−1(KX J

w ) supports a (U K ·U #
K , (χK)∗LAS)-equivariant

local system, i.e. iff w belongs to

KW J := {w ∈ W J | ∀v ∈ WJ , wv ∈ KW}.

In fact one, using standard Coxeter groups combinatorics one can check that

(A.1) KW J = {w ∈ W J | wwJ
0 ∈ KW},

where wJ
0 is the longest element in WJ .

For any element w ∈ KW J , we have standard and costandard perverse sheaves
in Db

Wh,K(X J , k), denoted K∆J
w and K∇J

w respectively, and obtained as !- and ∗-

extensions of the perversely shifted rank-1 (U K ·U #
K , (χK)∗LAS)-equivariant local

system on KX J
w . (The fact that these objects are perverse sheaves is guaranteed

by [12, Corollaire 4.1.3].)
The following lemma is an extension of [27, Lemma 11.1.1], with an essentially

identical proof.

Lemma A.1. Let w ∈ KW , and write w = wJwJ with wJ ∈ W J and wJ ∈ WJ .
(Then wJ automatically belongs to KW .)

(1) If wJ /∈ KW J , then we have

(qJ )∗
K∆w = 0 = (qJ )∗

K∇w.

(2) If wJ ∈ KW J , then we have

(qJ )∗
K∆w

∼= K∆J
wJ [−ℓ(wJ )], (qJ)∗

K∇w
∼= K∇J

wJ [ℓ(wJ )].

Sketch of proof. We have (qJ)(
K
Xw) = K

X
J
wJ . By compatibility of the pushfor-

ward functors with composition, (qJ )∗
K∆w and (qJ )∗

K∇w are respectively the ∗-
and !-pushforward of the object on KX J

wJ obtained as the ∗- and !-pushforward

under the restriction of qJ of the perversely shifted rank-1 (U K ·U #
K , (χK)∗LAS)-

equivariant local system on KXw. If w
J /∈ KW J , then KX J

wJ does not support any

nonzero (U K ·U #
K , (χK)∗LAS)-equivariant object, proving (1). If wJ ∈ KW J , then

the map KXw → KX J
wJ induced by qJ is a trivial fibration with fiber Aℓ(wJ ), and

the restriction of our local system to this fiber is trivial; this implies (2). �

As in [27, §11.2], we can consider the ∗-even, ∗-odd, !-even, !-odd, and parity
complexes in Db

Wh,K(X J , k). The same arguments as for [27, Lemma 11.2.1], using

Lemma A.1 as a starting point instead of [27, Lemma 11.1.1], implies the following.

Proposition A.2. Let F ∈ Db
Wh,K(X , k).

(1) If F is ∗-even, then (qJ )∗F is ∗-even.
(2) If F is !-even, then (qJ )∗F is !-even.
(3) If F is parity, then (qJ )∗F is parity.
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The general theory of parity complexes from [19] guarantees that, for any w ∈
KW J , there exists at most one indecomposable parity complex which is supported
on the closure of KX J

w and whose restriction to KX J
w is a perversely shifted rank-1

local system. Proposition A.2 guarantees that such an object indeed exists: in fact
by [27, Remark 11.2.4] there exists a parity complex in Db

Wh,K(X , k) supported on
K
Xw and whose restriction to K

Xw is a perversely shifted rank-1 local system. The
image of this object under (qJ )∗ then admits a direct summand with the appropriate
properties. As in [19] we deduce that isomorphism classes of indecomposable parity
complexes in Db

Wh,K(X J , k) are parametrized (in the obvious way) by KW J × Z.

These comments also show that any parity complex in Db
Wh,K(X J , k) is a direct

summand of an object of the form (qJ )∗F with F parity in Db
Wh,K(X , k).

Proposition A.3. Let F ∈ Db
Wh,K(X J , k). If F is parity, then (qJ )

∗F and (qJ)
!F

are parity.

Sketch of proof. The comments before the statement of the proposition show that
it suffices to prove a similar statement for the functors (qJ)

∗(qJ)∗ and (qJ )
!(qJ )∗.

Now it follows from Proposition A.2 and the definitions that the first, resp. second,
of these functors sends ∗-even, resp. !-even, complexes to ∗-even, resp. !-even, com-
plexes (and similarly for odd). But the same considerations as in [27, Lemma 9.4.2]
show that these functors differ only by a cohomological shift; hence they send parity
complexes to parity complexes. �

A.3. Averaging functor. We have a natural “averaging” functor

AvJK : Db
Wh,∅(X

J , k) → Db
Wh,K(X J , k)

which can be defined as in [5, §A.2]. More precisely, a priori there exist two ver-

sions of this functor: a ∗-version AvJK,∗ (defined in terms of a ∗-pushforward) and a

!-version AvJK,! (defined in terms of a !-pushforward). However there exists a canon-

ical morphism AvJK,! → AvJK,∗. The composition of each of these functors with

the forgetful functor from the B-equivariant derived category to Db
Wh,∅(X

J , k)

identifies with the convolution product with the object K∆∅

id = K∇∅

id; therefore
our morphism is an isomorphism on objects in the essential image of this functor.
Since this essential image generates Db

Wh,∅(X
J , k) as a triangulated category, the

5-lemma then implies that the morphism Av
J
K,! → Av

J
K,∗ is an isomorphism. Our

notation Av
J
K stands for either of these isomorphic functors.

Lemma A.4. The functor AvJK sends parity complexes to parity complexes.

Proof. The case J = ∅ is treated in [27, Corollary 11.2.3]. The general case follows,
using the facts that

(qJ)∗ ◦ AvK ∼= AvJK ◦ (qJ )∗,

that (qJ)∗ sends parity complexes to parity complexes (see Proposition A.2) and
that any parity complex in Db

Wh,K(X J , k) is a direct summand of an object of

the form (qJ )∗F with F parity in Db
Wh,K(X , k) (see the comments before Propo-

sition A.3). �

We now denote by ParityWh,K(X J , k) the full subcategory of Db
Wh,K(X J , k)

whose objects are parity. Lemma A.4 shows that Av
J
K restricts to a functor
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ParityWh,∅(X
J , k) → ParityWh,K(X J , k), which will also be denoted AvJK . For

w ∈ W J , we will denote by EJ
w the indecomposable object of ParityWh,∅(X

J , k)
parametrized by w (see the comments following Proposition A.2). We will also
denote by

〈EJ
w : w ∈ W J r KW J 〉⊕,Z

the full subcategory of ParityWh,∅(X
J , k) whose objects are the direct sums of

cohomological shifts of objects of the form EJ
w with w ∈ W J r KW J . Then we

consider the “naive” quotient

ParityWh,∅(X
J , k) � 〈EJ

w : w ∈ W J r KW J 〉⊕,Z,

i.e. the additive category whose objects are those of ParityWh,∅(X
J , k), and whose

morphisms are obtained from those in ParityWh,∅(X
J , k) by quotienting by the

morphisms which factor through an object of 〈EJ
w : w ∈ W J r KW J〉⊕,Z.

Lemma A.5. For any w ∈ W J we have

(qJ )
∗EJ

w[ℓ(w
J
0 )]

∼= EwwJ
0
.

Proof. The proof is copied from [28, Proposition 3.5]. By Proposition A.3, the
complex (qJ )

∗EJ
w[ℓ(w

J
0 )] is parity. The orbit XwwJ

0
is open in the support of this

object, and its restriction to this stratum is k[ℓ(wwJ
0 )]. Hence

(qJ)
∗EJ

w[ℓ(w
J
0 )]

∼= EwwJ
0
⊕ G

for some parity complex G in Db
Wh,∅(X , k). This isomorphism also shows that

the restriction of EwwJ
0
to any stratum Xx with x ∈ wWJ is k[ℓ(wwJ

0 )]; it follows

(using distinguished triangles associated with open/closed decompositions) that the
restriction of (qJ )∗EwwJ

0
to X J

w is
⊕

z∈WJ
k[ℓ(wwJ

0 )− 2ℓ(z)]. Since this stratum is

open in the support of this object, we deduce that

(qJ )∗EwwJ
0

∼=
⊕

z∈WJ

EJ
w[ℓ(w

J
0 )− 2ℓ(z)]⊕ G′

for some parity complex G′ in Db
Wh,∅(X

J , k), and then that

(qJ)∗(qJ )
∗EJ

w[ℓ(w
J
0 )]

∼=
⊕

z∈WJ

EJ
w[ℓ(w

J
0 )− 2ℓ(z)]⊕ G′ ⊕ (qJ )∗G.

On the other hand, by the projection formula we have

(qJ )∗(qJ )
∗EJ

w[ℓ(w
J
0 )]

∼=
⊕

z∈WJ

EJ
w[ℓ(w

J
0 )− 2ℓ(z)],

proving that G′ = (qJ )∗G = 0. From this one can deduce that G = 0, which
completes the proof. �

Proposition A.6. Assume that char(ℓ) 6= 2.4 The functor AvJK vanishes on 〈EJ
w :

w ∈ W J r KW J 〉⊕,Z, and induces an equivalence of categories

ParityWh,∅(X
J , k) � 〈EJ

w : w ∈ W J r KW J 〉⊕,Z
∼
−→ ParityWh,K(X J , k).

4As should be clear from the proof, this assumption can be refined to the one considered in [27,
Theorem 11.5.1].
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Proof. The case J = ∅ is equivalent to [27, Theorem 11.5.1]. Let us now ex-
plain how the general case can be deduced from this one. Let w ∈ W J r KW J .
By Lemma A.5 we have (qJ )

∗EJ
w

∼= EwwJ
0
. Here wwJ

0 /∈ KW by (A.1), so that

AvK(EwwJ
0
) = 0. We deduce that

AvK((qJ )
∗EJ

w)
∼= (qJ)

∗Av
J
K(EJ

w) = 0,

which implies that AvJK(EJ
w) vanishes. This proves the first claim of the statement,

and hence also that AvJK factors through a functor

ParityWh,∅(X
J , k) � 〈EJ

w : w ∈ W J r KW J 〉⊕,Z → ParityWh,K(X J , k).

We will now argue that this functor is fully faithful; essential surjectivity is then
easy to see.

We need to show that for any F ,G in ParityWh,∅(X
J , k), the functor AvJK induces

an isomorphism between the quotient of Hom(F ,G) by the morphisms factoring

through an object of 〈EJ
w : w ∈ W J r KW J 〉⊕,Z and Hom(AvJK(F),AvJK(G)). The

comments after Proposition A.2 (in the special case K = ∅) show that we can

assume that G = (qJ )∗H for some H in ParityWh,∅(X , k); then we have AvJK(G) =

(qJ)∗AvK(H), and using adjunction and the obvious isomorphism (qJ )
∗ ◦ AvJK

∼=
AvK ◦ (qJ )∗ we obtain isomorphisms

Hom(F ,G) ∼= Hom((qJ )
∗F ,H),

Hom(AvJK(F),AvJK(G)) ∼= Hom(AvK((qJ )
∗F),AvK(H)).

Moreover, under these identifications our morphism is induced by AvK . Taking into
account the known case J = ∅, it therefore suffices to prove that the isomorphism

(A.2) Hom(F ,G)
∼
−→ Hom((qJ )

∗F ,H)

identifies the subspace V1 of the left-hand side consisting of morphisms factoring
through an object of 〈EJ

w : w ∈ W J r KW J〉⊕,Z with the subspace V2 of the
right-hand side consisting of morphisms factoring through an object of 〈Ew : w ∈
W r KW 〉⊕,Z.

From Lemma A.5 and (A.1) it is clear that (A.2) maps V1 into V2. On the
other hand, if w /∈ KW then Ew is annihilated by AvK , so the same is true for
(qJ)

∗(qJ)∗Ew. Hence (qJ )∗Ew cannot admit as direct summands objects of the
form EJ

x [n] with x ∈ KW J ; in other words this object belongs to 〈EJ
w : w ∈ W J r

KW J 〉⊕,Z. It follows that the inverse map of (A.2) sends V2 into V1, as desired. �

Remark A.7. It follows in particular from Proposition A.6 that the functor Av
J
K

sends indecomposable parity complexes to indecomposable parity complexes.

A.4. Mixed derived category. Following [6], we define the “mixed derived cat-
egory”

Dmix
Wh,K(X J , k) := KbParityWh,K(X J , k).

As in [6] the autoequivalence induced by the cohomological shift in the category
ParityWh,K(X J , k) will be denoted by {1}, and the cohomological shift (of com-

plexes of objects of ParityWh,K(X J , k)) will be denoted by [1]. This category also
admits a “Tate twist” autoequivalence 〈1〉 defined as {−1}[1].

The “recollement” formalism constructed in [6] applies in this setting (see also [3,
§6.2]), and we have “mixed” standard and costandard objects

K∆J,mix
w and K∇J,mix

w .
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The category Dmix
Wh,K(X J , k) also admits a natural “perverse” t-structure, which

can be characterized in terms of these objects as in [6, Proposition 3.4]: we have

pDmix
Wh,K(X J , k)≤0 = 〈K∆J,mix

w 〈n〉[m] : w ∈ KW J , n ∈ Z, m ∈ Z≥0〉ext,

pDmix
Wh,K(X J , k)≥0 = 〈K∇J,mix

w 〈n〉[m] : w ∈ KW J , n ∈ Z, m ∈ Z≤0〉ext,

where 〈−〉ext means the subcategory generated under extensions by the given ob-
jects.

The functors (qJ )∗, (qJ )
∗, (qJ )

! and AvJK send parity complexes to parity com-
plexes by Proposition A.2, Proposition A.3 and Lemma A.4 respectively. Therefore
they induce functors between the corresponding mixed derived categories, which
will be denoted by the same symbol.

We can now prove the “mixed analogue” of Lemma A.1.

Lemma A.8. Let w ∈ KW , and write w = wJwJ with wJ ∈ W J and wJ ∈ WJ .
(Then wJ automatically belongs to KW .)

(1) If wJ /∈ KW J , then we have

(qJ)∗
K∆mix

w = 0 = (qJ )∗
K∇mix

w .

(2) If wJ ∈ KW J , then we have

(qJ )∗
K∆mix

w
∼= K∆J,mix

wJ {−ℓ(wJ)}, (qJ)∗
K∇mix

w
∼= K∇J,mix

wJ {ℓ(wJ)}.

Proof. The proof is identical to that of Lemma A.1, once we have proved the appro-
priate compatibility statement, in mixed derived categories, for the functor (qJ )∗
and the ∗- or !-pushforward functor under the embedding of a statum in X and
X J . However, by adjunction it suffices to prove a similar statement for pullback
functors. In turn, this property is clear from the Whittaker analogue of [6, Re-
mark 2.7]. �

A.5. Standard and costandard objects. The goal of this subsection is to prove
the following claim.

Proposition A.9. For any w ∈ KW J , the objects K∆J,mix
w and K∇J,mix

w belong to
the heart of the perverse t-structure.

For the proof of this claim we need some preliminary lemmas.

Lemma A.10. Let w ∈ W , and write w = wKwK with wK ∈ WK and wK ∈ KW .
Then we have

AvK(∆mix
w ) ∼= K∆mix

wK 〈−ℓ(wK)〉, AvK(∇mix
w ) ∼= K∇mix

wK 〈ℓ(wK)〉.

Proof. In the case wK = id, these isomorphisms are proved in [3, Lemma 6.1].
We deduce the general case as follows. We will only give the details for the first
isomorphism; the second one can be treated similarly. Recall from [6, Lemma 4.9]
that there exists a morphism

∆mix
id 〈−ℓ(wK)〉 → ∆mix

wK

whose cone is an extension (in the sense of triangulated categories) of objects which
belong to the essential image of the forgetful functors from some equivariant mixed
derived categories for some parabolic subgroups of the form PL with ∅ 6= L ⊂ K.
Convolving with ∆mix

wK on the right and using [6, Proposition 4.4(1)] we deduce a
morphism

∆mix
wK 〈−ℓ(wK)〉 → ∆mix

w
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whose cone satisfies a similar property. It is easily seen that this cone is killed by
AvK ; see e.g. [16, Lemma 4.4.6] for similar considerations. Therefore we obtain an
isomorphism

AvK(∆mix
wK )〈−ℓ(wK)〉

∼
−→ AvK(∆mix

w ),

which concludes the proof. �

Lemma A.11. Let w ∈ W J . If WKw ∩ KW J = ∅, then

AvJK(∆J,mix
w ) = 0 and AvJK(∇J,mix

w ) = 0.

Otherwise, write w = wKwK with wK ∈ WK and wK ∈ KW (so that wK belongs
to KW J). Then we have

AvJK(∆J,mix
w ) ∼= K∆J,mix

wK 〈−ℓ(wK)〉, AvJK(∇J,mix
w ) ∼= K∇J,mix

wK 〈ℓ(wK)〉.

Proof. As in the non-mixed setting, the functor (qJ )∗ commutes with averaging
functors. Hence using Lemma A.8 (in case K = ∅) we have

AvJK(∆J,mix
w ) ∼= AvJK ◦ (qJ )∗(∆

mix
w ) ∼= (qJ )∗ ◦ AvK(∆mix

w ).

Now we write w = wKwK with wK ∈ WK and wK ∈ KW . Applying Lemma A.10
we deduce that

AvJK(∆J,mix
w ) ∼= (qJ )∗(

K∆mix
wK 〈−ℓ(wK)〉).

Here wK automatically belongs to W J . If WKw ∩ KW J = ∅ then wK /∈ KW J ,
so that (qJ )∗(

K∆mix
wK ) = 0 by Lemma A.8 (applied now with our choice of K).

Otherwise we have wK ∈ KW J , and (qJ )∗(
K∆mix

wK ) = K∆J,mix
wK again by Lemma A.8.

The claims for costandard objects can be proved in a similar way. �

Proof of Proposition A.9. The special case K = ∅ is treated in [6, Theorem 4.7].
As written in [6] this proof seems to use the fact that qJ is smooth; to convince
the reader that in fact this property does not play any crucial role, let us recall its
main steps for the objects ∆J,mix

w (the other case is similar). This proof uses the B-
equivariant mixed derived category Dmix

B
(X , k) defined as above but starting from

the equivariant parity complexes; see [6, §3.5]. As above we let wJ
0 be the longest

element in WJ ; then XwJ
0
is a smooth closed subvariety of X , so that the shifted

constant sheaf k
X

wJ
0

{ℓ(wJ
0 )} defines an object of Dmix

B
(X , k); see [6, Lemma 3.7].

We remark that

(qJ )
!∆J,mix

w {−ℓ(wJ
0 )}

∼= (qJ )
!(qJ )∗∆

mix
w {−ℓ(wJ

0 )}
∼= ∆mix

w ⋆B k
X

wJ
0

{ℓ(wJ
0 )}

where the convolution product ⋆B is as in [6, §4.3]. Here the first isomorphism uses
Lemma A.8 (in the special case K = ∅), and the second one uses [6, Lemma 4.3]
(see also [27, Lemma 9.4.2]). By [6, Lemma 3.7], k

X
wJ

0

{ℓ(wJ
0 )} is perverse. Us-

ing then [6, Proposition 4.6(2)], we deduce that (qJ )
!∆J,mix

w {−ℓ(wJ
0 )} belongs to

pDmix
Wh,∅(X , k)≥0. Considering the !-pullback of this object to strata XxwJ

0
with

x ∈ W J , we deduce that ∆J,mix
w belongs to pDmix

Wh,∅(X
J , k)≥0. Since, by definition

of the perverse t-structure, this object also belongs to pDmix
Wh,∅(X

J , k)≤0, we finally
conclude that it is perverse.

Now, let us deduce the case of a general subset K (of finite type). In view of the
characterization of the perverse t-structure in terms of standard and costandard
objects (see §A.4), Lemma A.11 implies that the functor AvKJ is t-exact for the
perverse t-structures. Since the objects ∆J,mix

w and∇J,mix
w are known to be perverse,
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we deduce that AvJK(∆J,mix
w ) ∼= K∆J,mix

w and AvJK(∇J,mix
w ) ∼= K∇J,mix

w are perverse
too (where the isomorphisms follow from Lemma A.11 again). �

Let us also note the following property.

Lemma A.12. For any w ∈ KW J we have isomorphisms

(qJ )
!
(
K∆J,mix

w {−ℓ(wJ
0 )}

)
∼= (qJ)

∗
(
K∆J,mix

w {ℓ(wJ
0 )}

)
,

(qJ )
!
(
K∇J,mix

w {−ℓ(wJ
0 )}

)
∼= (qJ)

∗
(
K∇J,mix

w {ℓ(wJ
0 )}

)
.

Moreover, these objects are perverse.

Proof. As usual we only treat the case of standard objects; the case of costandard
objects is similar.

We begin with the case K = ∅. Here we have

∆J,mix
w = (qJ)∗∆

mix
w

by Lemma A.8, so the isomorphism between our two objects follows from the com-
parison of the two isomorphisms in [27, Lemma 9.4.2(1)]. We have already ob-
served in the course of the proof of Proposition A.9 that this objects belongs to
pDmix

Wh,∅(X , k)≥0. Now it is clear that the ∗-pullback of (qJ )
∗
(
∆J,mix

w {ℓ(wJ
0 )}

)
to

a stratum Xx vanishes unless x ∈ wWJ and that in this cases it is isomorphic to
k{ℓ(w)+ℓ(wJ

0 )}. Since ℓ(w)+ℓ(wJ
0 ) ≥ ℓ(x), we deduce that this object also belongs

to pDmix
Wh,∅(X , k)≤0.

The case of a general subset K follows from the case K = ∅ by applying the
functor AvJK , as in the proofs of Lemma A.11 and Proposition A.9. �
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[6] P. Achar and S. Riche, Modular perverse sheaves on flag varieties II: Koszul duality and

formality, Duke Math. J. 165 (2016), 161–215.
[7] P. Achar and S. Riche, Reductive groups, the loop Grassmannian, and the Springer resolution,

preprint arXiv:1602.04412, to appear in Invent. Math.
[8] P. Achar and L. Rider, The affine Grassmannian and the Springer resolution in positive

characteristic, with an appendix joint with S. Riche, Compos. Math. 152 (2016), 2627–2677.
[9] S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grassmannian,

and the Springer resolution, J. Amer. Math. Soc. 17 (2004), 595–678.
[10] P. Baumann and S. Riche, Notes on the geometric Satake equivalence, preprint

arXiv:1703.07288, to appear in Lecture Notes in Math. 2221.
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[15] R. Bezrukavnikov, D. Gaitsgory, I. Mirković, S. Riche, and L. Rider, An Iwahori–Whittaker
model for the Satake category, in preparation.

[16] R. Bezrukavnikov and Z. Yun, On Koszul duality for Kac–Moody groups, Represent. The-
ory 17 (2013), 1–98.

[17] R. Gordon and E. Green, Graded Artin algebras, J. Algebra 76 (1982), 111–137.
[18] J. C. Jantzen, Representations of Algebraic Groups, second edition, Amer. Math. Soc., 2003.
[19] D. Juteau, C. Mautner, and G. Williamson, Parity sheaves, J. Amer. Math. Soc. 27 (2014),

1169–1212.
[20] S. Kumar, Kac–Moody groups, their flag varieties and representation theory, Progress in

Mathematics 204, Birkhäuser Boston, 2002.
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