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GEOMETRIC PROBLEMS FROM 3D REFLECTIVE TOMOGRAPHY

JEAN-BAPTISTE BELLET AND GÉRARD BERGINC

Abstract. Re�ective tomography is an emerging method in three-dimensional optical imaging. It empiri-
cally extends the domain of validity of X-ray inversion to the visible and near-infrared spectra. In this paper,
we show that this extension introduces mathematical challenges, and o�ers new opportunities in geometry.
In the spirit of re�ective tomography, we formulate properly new geometrical problems and we derive a
heuristics that solves e�ciently original problems of geometric tomography. We discuss this heuristics on a
canonical case and on numerical results. The argumentation emphasizes the contribution of the singularities,
and shows that the method reconstructs especially features, by backprojection of the discontinuities of the
input projections. On one side, this shows to opticians that the scope of re�ective tomography covers new
possibilities, including imaging of active surfaces. On the other side, we address to mathematicians conjec-
tures based on the previous observations, and we suggest approaches to be explored. In a word, this work
lays the foundation for further mathematical studies that could upgrade optical applications.

1. Introduction

1.1. Three-dimensional optical imaging. There is a considerable interest in the development of new
optical imaging systems that are able to give three-dimensional images. Potential applications range across the
�eld of defense and security for the recognition of targets, the medical �eld for the detection of subcutaneous
and cutaneous tumors or the archaeological �eld for the discovery of remains in forests. The framework is
the following: given a set of bi-dimensional images in the visible to near-infrared band, construct a three-
dimensional model of the original scene. This �eld is related to several topics.

1.1.1. Radiometry. The �rst one deals with image formation [19, 24]. This subject, called radiometry, is
about the modeling of an optical image. In this �eld, a camera is often modeled as an ideal pinhole, which
realizes an ideal perspective projection of the scene [23]; this provides a geometric model of an image by
the means of rays of projection. In radiometry the irradiance represents the amount of light incident on a
surface: it is the power per unit area (W.m−2) incident on the surface. The radiance represents the amount
of light radiated from a surface: it is the power per unit area per unit solid angle (W.m−2.sr−1). The sensors
of a camera measure the (incident) irradiance. Since light is an electromagnetic wave, the Maxwell equations
govern its propagation and its behavior at interfaces between media. For a scene of several meters and visible
to near-infrared wavelengths (0.4µm-3µm), light is often scattered from surfaces, due to subsurface volumic
di�usion and due to the rugosity of the surface. The models of radiometry take often this phenomenon
into account, by the means of the Bidirectional Re�ectance Distribution Function (BRDF): the BRDF is
a surfacic function de�ned as the ratio of radiance to irradiance; the incident direction and the radiation
direction are arguments of the BRDF. It tells how the surface re�ects light toward a radiation direction when
it is illuminated from an incident direction. In particular the BRDF can encode the specular re�ections on
a perfect mirror (Snell-Descartes law); while an ideal matte surface, called a Lambertian surface, is encoded
by a BRDF which does not depend on the radiation angle. In order to take into account the e�ects due to
the polarization of light, some models go further by using a vectorized version: the interaction of light with
a surface is expressed by the means of a Mueller matrix, or a polarimetric BRDF, which acts on a Stokes
vector [13,15,28]. For a polarized light, incident on a rough surface, some other scattering models are based
on the Small Slope Approximation [6, 30].
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1.1.2. Reconstruction. The second main topic deals with inverse problems: reconstruct the 3D scene by
combining the 2D projections. In the �eld of computer vision, this problem is the so-called multiple-view
reconstruction; standard strategies establish a correspondence of features, such as corners or edges, between
the frames; the reconstruction algorithm takes bene�t of these correspondence, thanks to linear algebra
considerations [23]. Other methods are based on a voxelized 3D reconstruction. In the shape-from-silhouette
problem, the input images are binary; volumic intersection of the corresponding viewing cones, which is a
way of backprojecting the images, reconstructs the visual hull of the scene [1,22]. Some other methods carve
iteratively a 3D volume by checking consistency of the input irradiances [21]. In this paper we will discuss
re�ective tomography, which enters also in the class of methods which computes a voxelized reconstruction.
And we mention a method which reconstructs a surface and its irradiance by an iterative �tting algorithm [32].

1.1.3. Tomography. In transmission tomography, the records are projections containing the X-ray transform
of an attenuation; they are processed to provide a reconstruction. The reconstruction method looks like a
Radon inversion formula, which is often implemented under the form of a �ltered backprojection algorithm [25].
This is the basis of tomography, while many variants exist. Exact or heuristic inversion formula dedicated to
special geometry of acquisition are derived. For instance the famous FDK algorithm [14] and its re�nements
such as [33] are heuristic methods dedicated to cone beam (perspective) projections. Also some other imaging
modalities are modeled by related transforms; for instance, in emission tomography, the considered transform
is an X-ray transform with attenuation [25].

The so-called re�ective tomography draws a parallel with transmission tomography: the records are pro-
jections with similar geometries. Then the idea is to compute a reconstruction by the means of a �ltered
backprojection from transmission tomography [20]. This heuristics is successful for several kinds of re�ec-
tive data [20]; the principle has also been proposed in object modeling from photographies [18]. A recent
patented technology is based on 3D re�ective tomography [4,5,8]; it can reconstruct surfaces from 2D optical
images [9�11], and it recovers partially occluded objects [7].

1.1.4. Example. The following example illustrates the e�ciency of re�ective tomography. We consider a
sequence of 360 images of size 342× 181, measured by turning around the scene, one degree step (courtesy of
Thales Optronique SA). These images have been recorded by a real laser system. See Figure 1 for samples of
the sequence. Using a home-made software, the FDK reconstruction from these 360 images takes 2.6 seconds
on a Graphics Processing Unit (Nvidia Tesla C2075). Then the reconstruction is displayed in real-time, using
a volume rendering method (Maximum Intensity Projection [31]). In the Figure 2, we represent snapshots of
such re-projections. The representations of the reconstruction contains clearly features and details that are
useful for the recognition.

Figure 1. A few images of a sequence of real laser images.

1.2. Mathematical gap. To the authors' knowledge, re�ective tomography is mainly known in optical
engineering; it is still unknown in mathematical communities, whereas it introduces interesting mathematical
challenges.

1.2.1. X-ray inversion in the visible to near-infrared band. The usual imaging methods, such as multiple-
view reconstruction, shape-from-silhouette, or transmission tomography, tries to invert some forward model,
to �nd respectively the location of features, the visual hull, or the attenuation. This is not the case for
re�ective tomography which is an empirical approach. This last heuristics inherits characteristics of the
previous methods, without being an exact inversion procedure: it applies the inversion formula of transmission
tomography, it contains a backprojection step as shape-from-silhouette, and it recovers features of the original
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Figure 2. Volume rendering of a 3D tomographic reconstruction from 2D laser images.

scene as multiple-view reconstruction does. The numerical results of the previous work demonstrate that this
works. But proving in a mathematical framework that this X-ray inversion of optical images in the visible
to near-infrared band reconstructs the surfaces of the scene is still an open question.

1.2.2. Radon inversion of incomplete data. Many materials are often opaque at the considered wavelengths.
This has a strong consequence. In general, a point of the scene is not visible on each plane of projection, due
to occlusions: thus the data are incomplete [27]. Not only applies re�ective tomography an X-ray inversion
on other things than X-ray projections, but also the data are incomplete. By the way, it is known in the
�eld of transmission tomography that serious di�culties appear for incomplete data, such as instabilities
and formation of artifacts [25]. In particular, despite transmission tomography has been extensively studied
over the past decades, there are still ongoing works about the Radon inversion of incomplete data: it can
characterize the artifacts, and then strategies of artifact reduction can be derived [12, 16]. For that point,
the problem of re�ective tomography meets the trendy problem of limited Radon data. A study of re�ective
tomography in a well-suited framework should also be a way to describe its artifacts.

1.3. Contributions of this work.

1.3.1. From Optics to Mathematics. In this work, we transfer results from optical engineering to applied
mathematics. We de�ne geometric problems and a heuristic solver inspired from re�ective tomography. We
formulate in a proper way a geometrical version of problems that arise in this �eld.

We de�ne an original class of geometric problems. For that purpose we de�ne a new transform that we
call the re�ective projection; it encodes a geometric version of the incident irradiance on sensors in optics.
The main geometric problem is to invert this transform: reconstruct the initial surfaces of a scene, from the
(partial) knowledge of a re�ective projection of the surfaces. In this way, we have transferred a problem from
optical imaging to a problem of geometric tomography :

�Geometric tomography is the area of mathematics dealing with the retrieval of infor-
mation about a geometric object from data about its sections, or projections, or both�,
Gardner [17].
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Furthermore, concerning the inversion of the re�ective projection, we transfer the heuristic principle of
re�ective tomography: apply an algorithm from transmission tomography, for the right geometry of acquisi-
tion. In this way, we propose a scheme, in general linear (�ltered backprojection), which solves e�ciently an
original non-linear geometric problem. Then the main question is to understand the result of this heuristics.

1.3.2. Discussion about the heuristics. We combine analytic calculations for a canonical case and numerical
results in order to discuss the e�ect of the heuristics. Roughly speaking, this discussion reveals that the
heuristics computes a volumic reconstruction, in which some features of the original surfaces are enlightened;
these features come from the backprojection of the discontinuities of the data set.

The canonical case concerns the reconstruction of a sphere ∂K from its silhouettes, for a horizontal cone
beam scan. We determine the exact structure of such a re�ective projection: we �nd a surface S of singularity,
based on the rays of projection that are tangent to the sphere. Concerning the reconstruction, we guess, from
this surface S, three regimes representing respectively the noise, the useful reconstruction, and the artifacts:

• the reconstructed value should be in general low;
• the reconstructed value should be high at the points of the initial surface ∂K that are projected on
a ray of S;

• the reconstructed value can be high along some lines of projection which are tangent to the surface
∂K, with a condition (that we determine) on the tangent plane.

The numerical results consider three kinds of data:

• projections with discontinuities due to the geometry or due to the projected texture;
• projections which are smoothed and thus without discontinuities;
• projections of a �uctuating texture which keep the discontinuities of the silhouettes.

The main conclusion of these tests is again that the heuristics looks essentially like a backprojection of the
discontinuities of the projections, at their true location in space.

1.4. Impact of this work.

1.4.1. In Mathematics. This work does not aim at �lling de�nitively the mathematical gap described in the
previous section. But it introduces several ingredients for further studies. Geometric problems of interest
have been de�ned in a proper way, and we have extended the observations of the discussion under the
form of conjectures. We suggest approaches to explore this new kind of geometric problems. Proofs based
on asymptotic expansions are currently under study [2], while microlocal analysis [12, 26] should be also a
relevant framework: we have seen that the singularities play a central role. This work lays the foundation
for more advanced studies of the subject.

By the way, geometric tomography establishes a correspondence between transmission tomography and
some geometric problems [17]. In this work, this correspondence goes further: the proposed heuristics
directly uses algorithms from the �rst class of problems to solve problems of the second class: algorithms of
transmission tomography solve e�ciently geometric problems! More generally we could imagine extensions
of the principle to solve e�ciently other geometric problems.

1.4.2. In Optics. The proposed geometric problems are the core of the solver in re�ective tomography. Hence
understanding them is important for optical applications: it is a way to strengthen the subject, and it may
yield improvements of the solver, such as denoising, artifact reduction, or acceleration.

Here we have seen that the structure of the projections, especially the singularities, is more important
than the values themselves. This has a strong impact: re�ective tomography is very robust. It enables
active/passive imagery, reconstruction of active surfaces, and so on.

1.5. Organization. The paper is organized as follows. In the �rst part, we transfer the ideas of re�ective
tomography from optics to geometry; in particular we propose a heuristics for problems of geometric tomog-
raphy. In the second part, we examine in details the heuristics on the silhouettes of a ball. In the third
part, we present several numerical tests which emphasize the impact of the discontinuities. To �nish with,
we formulate conjectures that must be investigated in further studies.
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2. Mathematical framework

2.1. Geometric problems.

2.1.1. Geometric inversion. We represent a scene of one or several objects by a compact set K ⊂ R3. We
will project such a scene along rays. An opacity constraint is taken into account using a notion of visibility:

De�nition 1. A ray is a half-line L = {x0 + tu, t > 0} with x0 ∈ R3 and u ∈ S2; L and (x0, u) ∈ R3 × S2
are identi�ed.

De�nition 2 (Visible point). Let K ⊂ R3 be a compact set, and let L(x0, u) ∈ R3 × S2 be a ray which
intersects K: L∩K 6= ∅. The visible point vK(L) of K along the ray L is de�ned by: vK(L) = arg min{(v−
x0) · u, v ∈ L ∩K}; in particular, vK(L) ∈ ∂K ∩ L. We adopt the convention that vK(L) =∞ if K ∩ L = ∅.

Roughly speaking, for every ray L(x0, u), the visible point of K is the �rst point of K when we travel from
x0 in the direction u: see Figure 3.

L

vK(L)

K

K

x0
u

x0
u

x0 + uuT (z − x0)

K r

z vK(L)

Figure 3. Left: visible point vK(L) ∈ ∂K ∩ L(x0, u). Right: vK(L) when K is the ball of
radius r centered at z.

De�nition 3 (Re�ective projection). Let K ⊂ R3 be a compact set. Let f : ∂K × S2 → R be a function; we
adopt the convention that f(∞, ·) = 0. The re�ective projection of f is

P[f ] : R3 × S2 −→ R
L(x0, u) 7−→ f(vK(L), u).

Remark 1. The values P[f ](L), or more generally the restrictions of P[f ] will be also called re�ective pro-
jections.

Roughly speaking, along the ray L(x0, u), the re�ective projection P[f ](L) = f(vK(L), u) represents
an information which travels from the visible point vK(L) toward the origin x0, in the direction −u. This
information depends on the visible point vK(L) but also on the direction u. If L does not meetK, P[f ](L) = 0
due to the convention. We propose now a name dedicated to graphical representations of re�ective projections:

De�nition 4. Let F = P[f ] be a re�ective projection. A re�ectogram of F (or of f) is a graphical represen-
tation of F .

Such representations have peculiarities. If v ∈ ∂K, the set of rays whose visible point is v is {L : vK(L) =
v}. If we follow this set through a re�ectogram of P[f ], we observe the intensities of projection of v: f(v, ·).
In general the set {L : vK(L) = v} does not cross the whole re�ectogram due to the de�nition of the visible
point: occlusions appear.

We can now formulate a problem of reconstruction from a set of re�ective projections:

Problem 1 (Geometric inversion of re�ective projections). Let K ⊂ R3 be a compact set, f : ∂K×S2 → R,
and let L ⊂ R3 × S2 be a set of rays. For every L ∈ L, we record the re�ective projection P[f ](L). We
assume that K and f are unknown, while L and P[f ]|L are known. Question: reconstruct the set ∂K from
P[f ]|L.
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This problem is in general di�cult. The transform of this problem:

P : [f : ∂K × S2 → R] 7→ P[f ]|L,

is in general neither invertible, nor linear. Nonetheless we will see a heuristics which can e�ciently solve such
a problem.

Remark 2. Similar concepts can be analogously introduced for the two-dimensional case in R2. We use the
same terminology and the same notations:

Problem (Geometric inversion of re�ective projections in 2D). Let K ⊂ R2 be a compact set, f : ∂K×S1 →
R, and let L ⊂ R2 × S1 be a set of rays. For every L ∈ L, we record the re�ective projection P[f ](L). We
assume that K and f are unknown, while L and P[f ]|L are known. Question: reconstruct the set ∂K from
P[f ]|L.

2.1.2. Scanning geometries. We now formulate two special choices for the set of rays L in Problem 1. The
�rst choice de�nes the cone beam scan. This case occurs when we consider a camera that turns around a
scene on a circle: assuming a pinhole model for the camera, each image is a perspective projection, while the
optical center scans a circle.

De�nition 5 (Cone beam scan). Let r, a, b > 0. For every β ∈ [0, 2π], we set: θ(β) = (cosβ, sinβ, 0),
θ⊥(β) = (sinβ,− cosβ, 0), e3 = (0, 0, 1), x0(β) = rθ(β). For every (y⊥, y3) ∈ [−a, a] × [−b, b], we set
y = y⊥θ⊥(β) + y3e3; the unit vector that points from x0 to y ∈ θ(β)⊥ is u(β, y⊥, y3) = y−x0

|y−x0| . The set of

rays LCB(r, a, b) = {(x0(β), u(β, y⊥, y3)), β ∈ [0, 2π], (y⊥, y3) ∈ [−a, a] × [−b, b]} de�nes the rays of a cone
beam scan.

Here, for every β, the rays (x0(β), u(β, y⊥, y3)), (y⊥, y3) ∈ [−a, a] × [−b, b], are rays of a perspective
projection through x0(β): see Figure 4. Furthermore the optical center x0(β) scans the horizontal circle
{x21 + x22 = r2, x3 = 0} when β scans [0, 2π].

θθ⊥

0

e3

u(β, y2, y3)

θ⊥
x0(β) = rθ

y = y⊥θ⊥ + y3e3

θ

θ⊥

0 x0(β) = rθ(β)

e3 = θ⊥ ∧ θ

Figure 4. Cone beam scan: perspective rays (x0, u) through the optical center x0 (left);
the optical center x0(β) scans {x21 + x22 = r2, x3 = 0} (right).

When r becomes large compared to the size of K, the perspective projections of K look like orthographic
projections along parallel rays. Then we mention a scan with orthographic projections; this is often used
in order to approximate perspective projections, when the distance scene-camera is large compared to the
distances in the scene.

De�nition 6 (Orthographic scan). Let r, a, b > 0. For every β ∈ [0, 2π], we set: θ(β) = (cosβ, sinβ, 0),
θ⊥(β) = (sinβ,− cosβ, 0), e3 = (0, 0, 1), u(β) = −θ(β). For every (y⊥, y3) ∈ [−a, a] × [−b, b], we set
x0(β, y⊥, y3) = rθ(β)+y⊥θ⊥(β)+y3e3. The set of rays L‖(r, a, b) = {(x0(β, y⊥, y3), u(β)), β ∈ [0, 2π], (y⊥, y3) ∈
[−a, a]× [−b, b]} de�nes the rays of an orthographic scan.
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Here we can see that the problem of 3D reconstruction from an orthographic scan L‖(r, a, b) can be reduced
to problems of 2D reconstruction from orthographic scans in 2D. Indeed, if L = L‖(r, a, b), the knowledge of
P[f ]|L is equivalent to the knowledge of the horizontal cross-sections:

P[f |Hy3
]|L∩Hy3

, Hy3 = {((x, y3), (u, 0)), x ∈ R2, u ∈ S1}, y3 ∈ [−b, b].

This motivates the problem of reconstruction from orthographic re�ective projections in 2D [3].

2.2. Tomography.

2.2.1. General formulation. The standard model of transmission tomography is based on the X-ray transform:

De�nition 7 (X-ray transform). Let f : R3 → R (integrable over lines). The X-ray transform of f is:

R[f ] : R3 × S2 −→ R
(x, u) 7−→

∫
R f(x+ tu)dt.

Here a point v gives a contribution for every ray of the set {L : v ∈ L}; a graphical representation of such
tomographic data is often called a tomogram, or a sinogram.

Problem 2 (Inversion of X-rays). Let f : R3 → R, and let L ⊂ R3 × S2 be a set of rays. For every L ∈ L,
we record R[f ](L). Question: reconstruct f from R[f ]|L.

This problem is now linear. We can �nd in the literature e�cient reconstruction procedures, at least
for some sets of rays L, such as the rays of a cone beam scan, or the rays of an orthographic scan. The
analogous bi-dimensional problem is the Radon inversion, which is often solved by the well-known �ltered
backprojection algorithm [25].

Problem 1 and Problem 2 are not the same, but the geometry of the re�ective projection P[·]|L and the
geometry of the X-ray transform R[·]|L have similarities: the scene is projected along the rays of L. The main
idea of re�ective tomography is to use methods which solve Problem 2 in order to solve e�ciently Problem 1:

Heuristics (Principle of re�ective tomography). We consider Problem 1. We assume that A is an operator
which solves Problem 2 for the corresponding rays: AR[·]|L ≈ I (identity). Then the volumic function
AP[f ]|L : R3 → R is an empirical representation of the original set ∂K.

The main question that arises now concerns the meaning and the description of AP[f ]|L. How does it
represent the shape ∂K?

2.2.2. Case of a cone beam scan. We present the speci�c case of a cone beam scan.

Problem (Cone Beam Computed Tomography). We measure partially the X-ray transform of f : R3 → R,
by cone beam scanning: R[f ]|LCB(r,a,b). Question: reconstruct f from R[f ]|LCB(r,a,b).

The FDK algorithm presented page 8 is a very popular heuristics which solves this problem. Roughly
speaking, it provides a �ltered backprojection operator A = BΦ such that

BΦR[f ]|LCB(r,a,b) ≈ f, f : R3 → R.

It is also known that if r is large, then such an operator behaves like the �ltered backprojection for ortho-
graphic projections in 2D, per horizontal cross-section.

Let us consider now Problem 1 with L = LCB(r, a, b) being the rays of a cone beam scan. We measure the
re�ective projection P[f ]|LCB(r,a,b) where f : ∂K × S2 → R and ∂K are unknown; we would like to recover
∂K. Following the principle of re�ective tomography, we use the reconstruction operator BΦ of Problem 2:
the reconstructed ∂K is represented by the volumic function

BΦP[f ]|LCB(r,a,b) : R3 → R.

This solves e�ciently a nonlinear geometric problem with a linear operator: this can be fastly computed on
Graphics Processing Units. But proving mathematically in what extent BΦP[f ]|LCB(r,a,b) is a true represen-
tation of the original ∂K is still an open question. We now discuss this heuristic representation.
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FDK algorithm.

Input. Projection F : LCB(r, a, b)→ R, measured by a cone beam scan.

Step 1.a) Compute the weighted data set Fw:

Fw(β, y⊥, y3) = w(y⊥, y3)F (x0(β), u(β, y⊥, y3)), w(y⊥, y3) = r
(r2+y⊥2+y32)0.5 .

Step 1.b) Compute the horizontal �ltering ΦF :

ΦF (β, y⊥, y3) := F−1(|σ| ĥ(σ)F(Fw(β, y⊥, y3))(σ)) y3 ∈ [−b, b], β ∈ [0, 2π],

where F(g)(σ) =
∫
g(y⊥)e−iσy⊥dy⊥ is the Fourier transform, and ĥ is an even windowing function

with compact support.

Step 2) Compute the backprojection BΦF , where B is a weighted summation over lines through
x:

BG(x) =

∫ 2π

0

r2

(r − x · θ)2
G(β, y⊥, y3)dβ,

with y⊥ = rx·θ⊥
r−x·θ , y3 = rx3

r−x·θ , θ = (cosβ, sinβ, 0).

Output. FDK reconstruction BΦF .

silhouette

shadow

Figure 5. Silhouette of a ball: if K is a ball, with f = 1, the perspective projection
P[f ](x0(β), u(β, ·, ·)) represents a silhouette and a shadow.

3. Reconstruction from silhouettes

3.1. Cone beam scan of a ball.

3.1.1. Re�ective projection. We consider Problem 1, where: K = {|x− z| 6 r} is the ball of radius r > 0
centered at z ∈ R3, ∂K = {|x− z| = r} is the corresponding sphere, f : (v, u) ∈ ∂K × S2 7→ 1 is constant,
L = LCB(R,M,M) with R,M > 0 (large enough). In that case, the re�ective projection for a �xed angle
β0, P[f ]|L∩{β=β0}, represents the silhouette, or the shadow, of the object K: see Figure 5. It is clear that
P[f ] and R[χ(K)] have the same support, and that P[f ] = χ(suppR[χ(K)]), where χ is the characteristic
function and supp denotes the support [17].

We use the parametrization of LCB (see De�nition 5): a ray of the scan takes the form L(x0(β), u(β, y⊥, y3)) ∈
L, with (β, y⊥, y3) ∈ [0, 2π]× [−M,M ]2. The projection is

P̃[f ](β, y⊥, y3) := P[f ](x0(β), u(β, y⊥, y3)).

As in Figure 3 (right), L∩K 6= ∅ ⇔ |x0 − z|2−|(x0 − z) · u|2 6 r2; in this case, the visible point is vK(x0, u) =
x0 + [(z − x0) · u− C(x0, u)]u where C(x0, u) > 0 is the unique number > 0 such that vK(x0, u) ∈ ∂K. Let
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y3

y⊥

β

y3

y⊥

y3

β

y⊥

β

Figure 6. Re�ectogram from silhouettes of a ball: three cross-sections of P̃[f ](β, y⊥, y3).

In light gray, P̃[f ] = 0 and ψ > 0, in dark gray, P̃[f ] = 1 and ψ < 0; in black, the interface
ψ = 0 (or more precisely: |ψ| < τ).

ψ(β, y⊥, y3) = |x0 − z|2 − |(x0 − z) · u|2 − r2; we get:

P̃[f ](β, y⊥, y3) = χ(ψ−1({t 6 0})(β, y⊥, y3) =

{
1 if ψ(x0, u) 6 0,

0 otherwise.

In other words {P̃[f ] = 1} = {ψ 6 0}, and {P̃[f ] = 0} = {ψ > 0}.

3.1.2. Discontinuities. The interface between these two pieces is S := ∂{ψ 6 0} ∩ ∂{ψ > 0}. We show that

S = {ψ = 0}. The inclusion S ⊂ {ψ = 0} is due to the continuity of ψ. By the way, ∂ψ
∂(y⊥,y3)

does not vanish

on {ψ = 0}: by the chain rule,

∂ψ

∂(y⊥, y3)
= −2[(x0 − z) · u](x0 − z)T

∂u

∂(y⊥, y3)
, with

∂u

∂(y⊥, y3)
=

1

|y − x0|
(I − uuT )[θ⊥, e3],

where y = y⊥θ⊥ + y3e3, and I − uuT is the orthogonal projection on u⊥. If R is large enough, then
(x0 − z) · u 6= 0; so ∂ψ

∂(y⊥,y3)
= 0⇔ (I − uuT )(x0 − z) ⊥ span(θ⊥, e3) = θ⊥. But due to the condition ψ = 0,

x0 − z and u are linearly independent and so (I − uuT )(x0 − z) ∈ u⊥ \ {0}. Then

∂ψ

∂(y⊥, y3)
= 0⇔ u ∈ θ⊥.

But u /∈ θ⊥ and so ∂ψ
∂(y⊥,y3)

6= 0 . Hence the sign of ψ changes across {ψ = 0}, and then {ψ = 0} ⊂ ∂{ψ 6
0} ⊂ S. This also proves that the rank of the jacobian of ψ is one on S. And thus S is a surface.

P̃ [f ] is a piecewise constant function and its discontinuities occur at the surface S. In Figure 6, we get a

re�ectogram of P[f ] by the means of three cross-sections of P̃[f ]. Here we have emphasized the interface S
by drawing {|ψ| < τ} where τ > 0 is a small threshold. This interface S encodes the same information than

P̃[f ], so it is an object of interest. One can check that

ψ = 0⇔ x0 + uuT (z − x0) ∈ ∂K.

Hence

S = {(β, y⊥, y3) : (x0(β), u(β, y⊥, y3)) is tangent to ∂K}.
If (β, y⊥, y3) ∈ S, the visible point is vK = x0 + uuT (z − x0) (and u · (vK − z) = 0). In Figure 3 (right), it
means that vK and x0 + uuT (z − x0) are equal.

3.2. Heuristic reconstruction of the sphere. We now investigate the e�ect of the FDK algorithm on
P̃[f ].
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y3

y⊥

β

y3

y⊥

y3

β

y⊥

β

Figure 7. Cross-sections of the �ltered projection ΦP[f ]; the same cross-sections for P̃ [f ]
before �ltering are on Figure 6.

S : ψ = 0

ψ > 0

ψ < 0

−
−
−
−

+
+
+

+

ΦP [f ] ≈ 0

ΦP [f ] :

Figure 8. The �ltered projection ΦP[f ] looks like a zero-crossing detection of S : ψ = 0.

3.2.1. Filtering. The �rst step computes the �ltered projection ΦP[f ]: see Figure 7 for cross-sections. We

observe that this step especially detects and emphasizes the singularity S. The �lter F−1(|σ| ĥ(σ))(y⊥) is
indeed the derivative ∂y⊥ , followed by a regularized Hilbert transform in y⊥ [25]. As a result, for all β and

y3, this step emphasizes the contours of y⊥ 7→ P̃[f ](β, y⊥, y3); it is a zero-crossing detection. The signi�cant
values of ΦP[f ] are located near the surface S : ψ = 0 and the sign of ΦP[f ] is expected to change across S
(zero-crossing). See Figure 8.

3.2.2. Backprojection. The second step computes the backprojection BΦP[f ]; see Figure 9 for orthogo-
nal cross-sections in this reconstruction, and Figure 10 for Maximum Intensity Projections. For every
point x, the reconstruction BΦP[f ](x) is especially a summation through ΦP[f ], along the curve γ(β) =

(β, x̂⊥(β), x̂3(β)), β ∈ [0, 2π]; here, x̂⊥(β) = Rx·θ⊥
R−x·θ , x̂3(β) = Rx3

R−x·θ denotes the coordinates of the projection
of x: Rθ, x and x̂⊥θ⊥ + x̂3e3 are aligned. In general this is a summation of arbitrary signed values. Theses
values are small far from S, but are large in a neighborhood of S. The summation �cancels� the values in
general. But for special circumstances, high values of the same sign are accumulated without being compen-
sated and thus the sum is high. We want to identify such high contributions. So we study the cancellation
of the function ψ along γ, by considering ψ ◦ γ(β) = |x− z|2 − |(x− z) · u|2 − r2, with u = x−Rθ

|x−Rθ| .

Case a. Firstly, ψ ◦ γ(β) = 0⇔ x+ uuT (z − x) ∈ ∂K ⇔ the line (Rθ, x) is tangent to K. In particular,
if the line (Rθ(β), x) is far from the tangents of K, then ΦP[f ](γ(β)) is small and of arbitrary sign; it does
not provide a signi�cant value at x.
Case b. Secondly, we study the case where the line (Rθ(β0), x) is tangent to K, i.e. (x, β0) is such that

ψ ◦ γ(β0) = 0. The derivative of ψ ◦ γ is:

d

dβ
ψ ◦ γ(β) = −2[(x− z) · u] (x− z) · du

dβ
,

du

dβ
=

1

|x−Rθ|
(I − uuT )Rθ⊥.

Then d
dβψ(γ(β)) = 0⇔ (x− z) · u = 0 or θ⊥ · (I − uuT )(x− z) = 0. Therefore d

dβψ ◦ γ(β0) = 0 if, and only

if, x ∈ ∂K or the plane Rθ(β0) + span(θ⊥(β0), u(β0)) is tangent to K. See Figure 11.
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Figure 9. Cross-sections of the reconstruction BΦP[f ] of the sphere.
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x2

Figure 10. Maximum Intensity Projections of the reconstruction BΦP[f ] of the sphere.

u

Rθ

K

x

z
u

Rθ
θ⊥

x

x+ uuT (z − x)

K

z

Figure 11. Left - case b.(2-3): the ray (Rθ, u) is tangent to K at x. Right - case b.(3): the
ray (Rθ, u) and the plane Rθ + span(θ⊥, u) are tangent to K at x+ uuT (z − u).

(1) If ψ(γ(β0)) = 0 but the other conditions are violated, then d
dβψ ◦ γ(β0) 6= 0, the sign of ψ ◦ γ(β)

changes when β crosses β0, and the curve γ crosses the surface S at γ(β0). In that case the (weighted)
values of ΦP[f ](γ(β)) on either side of β0 are expected to be high but with di�erent signs; they should
o�set themselves by summation, and they should not contribute signi�cantly at x. See Figure 12
(left).

(2) On the contrary, if (Rθ(β0), x) is tangent to K at x ∈ ∂K (left of Figure 11) and Rθ(β0) +
span(θ⊥(β0), u(β0)) is not tangent to K, then the second derivative is:

d2ψ ◦ γ
dβ2

|β=β0 = −2

(
(x− z) · du

dβ
|β=β0

)2

< 0.

So the curve γ is tangent at S at the point γ(β0); furthermore ψ ◦γ > 0 in a deleted neighborhood of
β0. In that case the (weighted) values of ΦP[f ](γ(β)) on either side of β0 are expected to be high but
with the same sign; they should be accumulated by summation and give a signi�cant contribution
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S : ψ = 0

ψ < 0

ψ > 0∇ψ

+
+
+

−
−−

γ̇
γ

−

ΦP [f ] :

S : ψ = 0

ψ < 0

ψ > 0∇ψ
γ̇

γ

ΦP [f ] :

+

+

+

+

Figure 12. Left - case b.(1): if ψ(γ(β0)) = 0 but dψ◦γ
dβ (β0) 6= 0, the values of ΦP[f ](γ(β))

should o�set themselves by summation. Right - case b.(2): if ψ(γ(β0)) = 0 and dψ◦γ
dβ (β0) = 0,

the values of ΦP[f ](γ(β)) should be accumulated by summation.

at x. See Figure 12 (right). This part explains the emphasized circles (slices of the reconstructed
sphere) in Figure 9.

(3) The last case occurs when the line (Rθ(β0), x) and the plane Rθ(β0)+span(θ⊥(β0), u(β0)) are tangent
toK (right of Figure 11). Then ψ◦γ(β0) = d

dβψ◦γ(β0) = 0 and we can expect signi�cant contributions

as before, but now along the line (Rθ(β0), x). This case describes eventual artifacts. Such lines are
slightly remarkable in the vertical views of Figures 9 and 10.

4. Numerical results

4.1. Contribution of the discontinuities. To observe the contribution of the discontinuities, we create
synthetic data sets where the projected pattern f is piecewise constant with discontinuities. We increase the
number of jumps from a data set to the next one.

Here, the shape ∂K is a sphere with a dent. To create this object, we deform the sphere |x| = 1,
in spherical coordinates (ψ,ϕ, ρ), where ψ ∈ [−π, π] is the azimuth, ϕ ∈ [−π2 ,

π
2 ] is the elevation, and

ρ > 0 is the radius. For all points of the sphere (ψ,ϕ, ρ = 1), the point of the considered surface ∂K is

(ψ,ϕ, ρ := 1 + 0.75(r − 1)11r<1), with 0.08r := (ψπ + 1/4)2 + ( 2ϕ
π + 1/6)2. This object is computed from a

discrete version of the sphere, discretized with 6402 patches. For all integer m, we de�ne on this surface the
following piecewise constant pattern, in spherical coordinates:

(ψ,ϕ) 7→ pm(ψ)pm(ϕ), with pm(s) = 0.5 + 0.2511(ms−bmsc)<0.5.

We project this pattern: for each ray L(x0, u), the projection is

P[f ](L) = f(vK , u) := pm(ψ)pm(ϕ),

where (ψ,ϕ, ρ) are the spherical coordinates of the visible point vK ∈ ∂K. We simulate an orthographic
scan of this re�ective projection, using plots of surfaces with Matlab. We consider a uniform discretization
(constant steps) of size 801× 201× 201, 801 being the number of angles of projection, and 201× 201 being
the size of each image.

Increasing m increases the number of jumps; we simulate data sets for several values of m: 0, 1, 2, 4, 8
and 16. On the �rst line of Figure 13, we represent one image of the sequence, for the successive values of m.
Of course we distinguish here two kinds of jumps in the images: jumps due to discontinuities of the pattern
f , and geometrical jumps due to the shape (interface object/background).

We apply the heuristics on these data sets. For the visualization, the reconstructions are re-projected, using
a Maximum Intensity Projection (MIP). In order to improve the visual perception of the dent, we restrict
the domain to a half-space before visualization: our full volume being a set of voxels (i, j, k) ∈ [1, 201]3, we
keep only the j > 91. On the second line of Figure 13, we represent a vertical view of the reconstructions,
associated with the view of the data sets. More jumps in the input can improve the visual perception of
the object, for both the input and the output. The heuristics computes much more than just a convex
hull. A remarkable property here is that the dent is even more perceptible in the reconstruction than in
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the re�ectogram. This is because the boundary (ψπ + 1/4)2 + ( 2ϕ
π + 1/6)2 = 0.08 of the dent introduces

geometrical jumps in many input images; the heuristics combines them, and so the boundary is emphasized
in the reconstruction.

4.2. Contribution of the smooth variations. Realistic images of realistic scenes have often jumps and
smooth variations. Here we would like to observe the contribution of the smooth variations alone, and to
observe what happens without discontinuities. So we create synthetic data sets whose images are smooth,
and whose frequency increases from a data set to the next one.

We consider the sphere ∂K : |x| = 1, which is discretized using 6402 patches as before. We project a
smooth pattern, given in spherical coordinates by:

(ψ,ϕ) 7→ 1 + 0.5 cosm(ψ + ϕ),

with m = 2i, 1 6 i 6 6, playing the role of a �xed frequency. As before, by rotating over 360 degrees, we
simulate an orthographic scan of size 801 × 201 × 201. The simulated images are smooth, except at the
interface object/background where discontinuities occur. For the purpose of this subsection, we weight the
data in order to obtain smooth images. For a pixel (i, j) ∈ [1, 201]× [1, 201], the weight is (r+1)2(r−1)211r<1,
with 99r(i, j) = ((i − 100)2 + (j − 100)2)0.5. On the �rst line of Figure 14, we represent one smooth image
of the sequence that we get, for the successive values of m.

We apply the heuristics on these data sets. On the second line of Figure 14, we represent a vertical view
(MIP) of the reconstructions, associated with the view of the data sets. From the visual point of view, it is
easier to identify the original sphere for large m. For smooth data, the result of the heuristic may be poor
for low frequency components, but is meaningful when the frequency is large enough. In any case, smooth
variations in the input produce contributions which add contrasts in the renderings; they can be useful for the
visual perception. The results also emphasize the importance of singularities: here, we have seen that without
the discontinuities at the interface object/background in the projections, it is more di�cult to reconstruct
the shape.

4.3. Test of robustness. We show how the method deals with changes in the forward problem during the
acquisition, by considering a randomized �uctuating pattern. This pattern could represent active surfaces
whose re�ectance properties are random.

For all σ = 0, 2j ,−2 6 j 6 2, we consider an orthographic scan Fσ(β, y⊥, y3) of the Stanford Bunny
∂K [29]; the size of this scan is 801 × 200 × 157. For each ray of projection (x0, u) such that the angle of
projection is β (and thus u = (− cosβ,− sinβ, 0), see De�nition 6), the projected surfacic pattern is:

fσ(v, u) = 1 + (0.2 + ση1(β)) sin(πση2(β) + 20π |v|), v ∈ ∂K,

where the ηi(β) are independent realizations of the Gaussian N (0, 1). The σηi(β) correspond to some
modi�cations of the amplitude and the phase of the pattern. Increasing σ increases the dependency in β for
the projected pattern. If v ∈ ∂K is a �xed point, then along the set of rays that sees v, i.e. {(β, y⊥, y3) :
vK(x0, u) = v}, the intensity level of v randomly varies with a standard deviation which increases when σ
increases. To observe this, see the �rst line of Figure 15, where we represent re�ectograms: horizontal slice
y3 = 0 in the re�ective projections.

We apply the heuristics on these data sets. On the second line of Figure 15, we represent a vertical
view of the reconstructions (MIP). Despite changes in the forward problem, the silhouette of the object still
appears under the form of discontinuities in the re�ective projection. As a result the heuristics successfully
reconstructs the shape. By the way, the jumps at the discontinuities do not have the same values. Thus
the reconstruction is better than the shape alone: surfacic contrasts are perceived. This is even true for
large disturbances: see the last case, where the level of disturbance is about 4 times the intensity level of the
original signal.
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Figure 13. E�ect of jumps for a sphere with a dent. From the left to the right: the
projected pattern has more and more discontinuities, m = 0, 2i, 0 6 i 6 4. On the �rst line:
one image of the sequence; on the second line: associated heuristic reconstruction.

Figure 14. E�ect of smooth variations for a sphere. From the left to the right: the frequency
parameter is larger and larger: m = 2i, 1 6 i 6 6. On the �rst line: one image of the
sequence; on the second line: associated heuristic reconstruction.

Figure 15. Test of robustness: from the left to the right, the level of disturbance is σ =
0, 2j ,−2 6 j 6 2. On the �rst line, re�ectograms (β, y⊥) 7→ Fσ(β, y⊥, 0). On the second
line: a vertical view computed by the heuristics.
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5. Conjectures

We would like to extend the previous discussions to more general con�gurations. The �rst thing to do
is to �nd a framework which describes the structure of a re�ective projection, and more particularly its
singularities. The following conjecture deals with an extension for several smooth convex objects:

Conjecture 1. Let (Ki)16i6N be a family of compact sets such that K̊i = Ki and Ki ∩Kj = ∅ if i 6= j. Let
(fi)16i6N be a family of distinct numbers. We assume that the Ki are convex and smooth. Let K = ∪Ni=1Ki,
and let f : ∂K × S2 → R, such that f |∂Ki

= fi, 1 6 i 6 N . Let M,R > 0 be large enough. We conjecture
that the re�ective projection P[f ]|LCB(R,M,M) is piecewise constant. We conjecture that its singularities are
included in the set of the rays of LCB(R,M,M) that are tangent to one of the Ki's (at least), and that they
describe pieces of surfaces.

The next step is to understand the e�ect of the heuristics. The following conjecture states that the method
is based on the singularities of the data set:

Conjecture 2. Let F = P[f ]|LCB(R,M,M) be a cone-beam scan of the re�ective projection of f : ∂K×S2 → R.
We assume that F is piecewise smooth. Let S ⊂ LCB(R,M,M) denotes the set of rays L ∈ LCB(R,M,M)
such that F is singular at L. We conjecture that the FDK reconstruction BΦF emphasizes several points,
including the points vK(L) ∈ ∂K,L ∈ S, which are the visible points at the singularities.

The meaning of emphasize must be precised. Essentially we have seen that the method consists in �ac-
cumulating coherent information�, and in �cancelling incoherent one�. We know that methods of stationary
phase provide a mathematical framework to describe such phenomena. This option is explored in ongoing
works: [2] focuses on asymptotic expansions with respect to the cut-o� frequency of the �ltering (width of the
spectral windowing). Another idea is to study the problem in a framework of microlocal analysis: describe
the singularities of the re�ective projection and the singularities of the empirical reconstruction.

Such studies will strengthen the heuristics by proving what it exactly does. In particular a full description
of the emphasized points will also describe the artifacts: the emphasized points that do not belong to ∂K.
We see here that the subject meets again the problems of Radon inversion, where such ideas are currently
developed to describe and reduce incompleteness artifacts [12].
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