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1. Introduction 1.1. Three-dimensional optical imaging. There is a considerable interest in the development of new optical imaging systems that are able to give three-dimensional images. Potential applications range across the eld of defense and security for the recognition of targets, the medical eld for the detection of subcutaneous and cutaneous tumors or the archaeological eld for the discovery of remains in forests. The framework is the following: given a set of bi-dimensional images in the visible to near-infrared band, construct a threedimensional model of the original scene. This eld is related to several topics. 1.1.1. Radiometry. The rst one deals with image formation [START_REF] Horn | Robot vision[END_REF][START_REF] Mohammad-Djafari | Problèmes inverses en imagerie et en vision[END_REF]. This subject, called radiometry, is about the modeling of an optical image. In this eld, a camera is often modeled as an ideal pinhole, which realizes an ideal perspective projection of the scene [START_REF] Ma | An invitation to 3-D vision: from images to geometric models[END_REF]; this provides a geometric model of an image by the means of rays of projection. In radiometry the irradiance represents the amount of light incident on a surface: it is the power per unit area (W.m -2 ) incident on the surface. The radiance represents the amount of light radiated from a surface: it is the power per unit area per unit solid angle (W.m -2 .sr -1 ). The sensors of a camera measure the (incident) irradiance. Since light is an electromagnetic wave, the Maxwell equations govern its propagation and its behavior at interfaces between media. For a scene of several meters and visible to near-infrared wavelengths (0.4µm-3µm), light is often scattered from surfaces, due to subsurface volumic diusion and due to the rugosity of the surface. The models of radiometry take often this phenomenon into account, by the means of the Bidirectional Reectance Distribution Function (BRDF): the BRDF is a surfacic function dened as the ratio of radiance to irradiance; the incident direction and the radiation direction are arguments of the BRDF. It tells how the surface reects light toward a radiation direction when it is illuminated from an incident direction. In particular the BRDF can encode the specular reections on a perfect mirror (Snell-Descartes law); while an ideal matte surface, called a Lambertian surface, is encoded by a BRDF which does not depend on the radiation angle. In order to take into account the eects due to the polarization of light, some models go further by using a vectorized version: the interaction of light with a surface is expressed by the means of a Mueller matrix, or a polarimetric BRDF, which acts on a Stokes vector [START_REF] Chipman | Polarimetry, chapter 22 in: Handbook of optics[END_REF][START_REF] Flynn | Polarized surface scattering expressed in terms of a bidirectional reectance distribution function matrix[END_REF][START_REF] Shell | Polarimetric remote sensing in the visible to near infrared[END_REF]. For a polarized light, incident on a rough surface, some other scattering models are based on the Small Slope Approximation [START_REF] Berginc | Scattering models for range proling and 2D-3D laser imagery[END_REF][START_REF] Voronovich | Wave Scattering from Rough Surfaces[END_REF].

1.1.2. Reconstruction. The second main topic deals with inverse problems: reconstruct the 3D scene by combining the 2D projections. In the eld of computer vision, this problem is the so-called multiple-view reconstruction; standard strategies establish a correspondence of features, such as corners or edges, between the frames; the reconstruction algorithm takes benet of these correspondence, thanks to linear algebra considerations [START_REF] Ma | An invitation to 3-D vision: from images to geometric models[END_REF]. Other methods are based on a voxelized 3D reconstruction. In the shape-from-silhouette problem, the input images are binary; volumic intersection of the corresponding viewing cones, which is a way of backprojecting the images, reconstructs the visual hull of the scene [START_REF] Baumgart | Geometric modeling for computer vision[END_REF][START_REF] Laurentini | The visual hull concept for silhouette-based image understanding[END_REF]. Some other methods carve iteratively a 3D volume by checking consistency of the input irradiances [START_REF] Kutulakos | A theory of shape by space carving[END_REF]. In this paper we will discuss reective tomography, which enters also in the class of methods which computes a voxelized reconstruction.

And we mention a method which reconstructs a surface and its irradiance by an iterative tting algorithm [START_REF] Yezzi | Stereoscopic segmentation[END_REF].

1.1.3. Tomography. In transmission tomography, the records are projections containing the X-ray transform of an attenuation; they are processed to provide a reconstruction. The reconstruction method looks like a Radon inversion formula, which is often implemented under the form of a ltered backprojection algorithm [START_REF] Natterer | Mathematical methods in image reconstruction[END_REF]. This is the basis of tomography, while many variants exist. Exact or heuristic inversion formula dedicated to special geometry of acquisition are derived. For instance the famous FDK algorithm [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF] and its renements such as [START_REF] Zheng | A New Heuristic Weighting Function for FDK-based reconstruction of Cone Beam Tomography[END_REF] are heuristic methods dedicated to cone beam (perspective) projections. Also some other imaging modalities are modeled by related transforms; for instance, in emission tomography, the considered transform is an X-ray transform with attenuation [START_REF] Natterer | Mathematical methods in image reconstruction[END_REF].

The so-called reective tomography draws a parallel with transmission tomography: the records are projections with similar geometries. Then the idea is to compute a reconstruction by the means of a ltered backprojection from transmission tomography [START_REF] Knight | Tomographic Techniques Applied to Laser Radar Reective Measurements[END_REF]. This heuristics is successful for several kinds of reective data [START_REF] Knight | Tomographic Techniques Applied to Laser Radar Reective Measurements[END_REF]; the principle has also been proposed in object modeling from photographies [START_REF] Gering | Object modeling using tomography and photography[END_REF]. A recent patented technology is based on 3D reective tomography [START_REF] Berechet | Method for 3D reconstruction of an object in a scene[END_REF][START_REF] Berechet | Procédé de discrimination et d'identication par imagerie 3D d'objets d'une scène[END_REF][START_REF] Berginc | Optronic system and method dedicated to identication for formulating three-dimensional images[END_REF]; it can reconstruct surfaces from 2D optical images [911], and it recovers partially occluded objects [START_REF] Berginc | Optical 3D imaging and visualization of concealed objects[END_REF].

1.1.4. Example. The following example illustrates the eciency of reective tomography. We consider a sequence of 360 images of size 342 × 181, measured by turning around the scene, one degree step (courtesy of Thales Optronique SA). These images have been recorded by a real laser system. See Figure 1 for samples of the sequence. Using a home-made software, the FDK reconstruction from these 360 images takes 2.6 seconds on a Graphics Processing Unit (Nvidia Tesla C2075). Then the reconstruction is displayed in real-time, using a volume rendering method (Maximum Intensity Projection [START_REF] Wallis | Three-Dimensional Display in Nuclear Medicine and Radiology[END_REF]). In the Figure 2, we represent snapshots of such re-projections. The representations of the reconstruction contains clearly features and details that are useful for the recognition. 1.2.1. X-ray inversion in the visible to near-infrared band. The usual imaging methods, such as multipleview reconstruction, shape-from-silhouette, or transmission tomography, tries to invert some forward model, to nd respectively the location of features, the visual hull, or the attenuation. This is not the case for reective tomography which is an empirical approach. This last heuristics inherits characteristics of the previous methods, without being an exact inversion procedure: it applies the inversion formula of transmission tomography, it contains a backprojection step as shape-from-silhouette, and it recovers features of the original This has a strong consequence. In general, a point of the scene is not visible on each plane of projection, due to occlusions: thus the data are incomplete [START_REF] Rigaud | Reective Imaging Solved by the Radon Transform[END_REF]. Not only applies reective tomography an X-ray inversion on other things than X-ray projections, but also the data are incomplete. By the way, it is known in the eld of transmission tomography that serious diculties appear for incomplete data, such as instabilities and formation of artifacts [START_REF] Natterer | Mathematical methods in image reconstruction[END_REF]. In particular, despite transmission tomography has been extensively studied over the past decades, there are still ongoing works about the Radon inversion of incomplete data: it can characterize the artifacts, and then strategies of artifact reduction can be derived [START_REF] Borg | Full Characterization of Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data[END_REF][START_REF] Frikel | Characterization and reduction of artifacts in limited angle tomography[END_REF]. For that point, the problem of reective tomography meets the trendy problem of limited Radon data. A study of reective tomography in a well-suited framework should also be a way to describe its artifacts.

1.3. Contributions of this work.

1.3.1. From Optics to Mathematics. In this work, we transfer results from optical engineering to applied mathematics. We dene geometric problems and a heuristic solver inspired from reective tomography. We formulate in a proper way a geometrical version of problems that arise in this eld.

We dene an original class of geometric problems. For that purpose we dene a new transform that we call the reective projection; it encodes a geometric version of the incident irradiance on sensors in optics.

The main geometric problem is to invert this transform: reconstruct the initial surfaces of a scene, from the (partial) knowledge of a reective projection of the surfaces. In this way, we have transferred a problem from optical imaging to a problem of geometric tomography: Geometric tomography is the area of mathematics dealing with the retrieval of information about a geometric object from data about its sections, or projections, or both, Gardner [START_REF] Gardner | Geometric tomography[END_REF].

Furthermore, concerning the inversion of the reective projection, we transfer the heuristic principle of reective tomography: apply an algorithm from transmission tomography, for the right geometry of acquisition. In this way, we propose a scheme, in general linear (ltered backprojection), which solves eciently an original non-linear geometric problem. Then the main question is to understand the result of this heuristics.

1.3.2. Discussion about the heuristics. We combine analytic calculations for a canonical case and numerical results in order to discuss the eect of the heuristics. Roughly speaking, this discussion reveals that the heuristics computes a volumic reconstruction, in which some features of the original surfaces are enlightened; these features come from the backprojection of the discontinuities of the data set.

The canonical case concerns the reconstruction of a sphere ∂K from its silhouettes, for a horizontal cone beam scan. We determine the exact structure of such a reective projection: we nd a surface S of singularity, based on the rays of projection that are tangent to the sphere. Concerning the reconstruction, we guess, from this surface S, three regimes representing respectively the noise, the useful reconstruction, and the artifacts:

• the reconstructed value should be in general low;

• the reconstructed value should be high at the points of the initial surface ∂K that are projected on a ray of S; • the reconstructed value can be high along some lines of projection which are tangent to the surface ∂K, with a condition (that we determine) on the tangent plane.

The numerical results consider three kinds of data:

• projections with discontinuities due to the geometry or due to the projected texture;

• projections which are smoothed and thus without discontinuities;

• projections of a uctuating texture which keep the discontinuities of the silhouettes.

The main conclusion of these tests is again that the heuristics looks essentially like a backprojection of the discontinuities of the projections, at their true location in space.

1.4. Impact of this work.

1.4.1. In Mathematics. This work does not aim at lling denitively the mathematical gap described in the previous section. But it introduces several ingredients for further studies. Geometric problems of interest have been dened in a proper way, and we have extended the observations of the discussion under the form of conjectures. We suggest approaches to explore this new kind of geometric problems. Proofs based on asymptotic expansions are currently under study [START_REF] Bellet | Analyse asymptotique et géométrique de la tomographie réective[END_REF], while microlocal analysis [START_REF] Borg | Full Characterization of Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data[END_REF][START_REF] Ramm | Reconstructing singularities of a function from its Radon transform[END_REF] should be also a relevant framework: we have seen that the singularities play a central role. This work lays the foundation for more advanced studies of the subject.

By the way, geometric tomography establishes a correspondence between transmission tomography and some geometric problems [START_REF] Gardner | Geometric tomography[END_REF]. In this work, this correspondence goes further: the proposed heuristics directly uses algorithms from the rst class of problems to solve problems of the second class: algorithms of transmission tomography solve eciently geometric problems! More generally we could imagine extensions of the principle to solve eciently other geometric problems.

1.4.2. In Optics. The proposed geometric problems are the core of the solver in reective tomography. Hence understanding them is important for optical applications: it is a way to strengthen the subject, and it may yield improvements of the solver, such as denoising, artifact reduction, or acceleration.

Here we have seen that the structure of the projections, especially the singularities, is more important than the values themselves. This has a strong impact: reective tomography is very robust. It enables active/passive imagery, reconstruction of active surfaces, and so on.

1.5. Organization. The paper is organized as follows. In the rst part, we transfer the ideas of reective tomography from optics to geometry; in particular we propose a heuristics for problems of geometric tomography. In the second part, we examine in details the heuristics on the silhouettes of a ball. In the third part, we present several numerical tests which emphasize the impact of the discontinuities. To nish with, we formulate conjectures that must be investigated in further studies.

Mathematical framework

2.1. Geometric problems.

2.1.1. Geometric inversion. We represent a scene of one or several objects by a compact set K ⊂ R 3 . We will project such a scene along rays. An opacity constraint is taken into account using a notion of visibility: Denition 1. A ray is a half-line L = {x 0 + tu, t 0} with x 0 ∈ R 3 and u ∈ S 2 ; L and (x 0 , u) ∈ R 3 × S 2 are identied.

Denition 2 (Visible point). Let K ⊂ R 3 be a compact set, and let L(x 0 , u) ∈ R 3 × S 2 be a ray which

intersects K: L ∩ K = ∅. The visible point v K (L) of K along the ray L is dened by: v K (L) = arg min{(v - x 0 ) • u, v ∈ L ∩ K}; in particular, v K (L) ∈ ∂K ∩ L. We adopt the convention that v K (L) = ∞ if K ∩ L = ∅.
Roughly speaking, for every ray L(x 0 , u), the visible point of K is the rst point of K when we travel from x 0 in the direction u: see Figure 3.

L v K (L) K K x 0 u x 0 u x 0 + uu T (z -x 0 ) K r z v K (L) Figure 3. Left: visible point v K (L) ∈ ∂K ∩ L(x 0 , u). Right: v K (L) when K is the ball of radius r centered at z.
Denition 3 (Reective projection). Let K ⊂ R 3 be a compact set. Let f : ∂K × S 2 → R be a function; we adopt the convention that f (∞, •) = 0. The reective projection of f is

P[f ] : R 3 × S 2 -→ R L(x 0 , u) -→ f (v K (L), u).
Remark 1. The values P[f ](L), or more generally the restrictions of P[f ] will be also called reective projections.

Roughly speaking, along the ray L(x 0 , u), the reective projection P[f ](L) = f (v K (L), u) represents an information which travels from the visible point v K (L) toward the origin x 0 , in the direction -u. This information depends on the visible point v K (L) but also on the direction u. If L does not meet K, P[f ](L) = 0 due to the convention. We propose now a name dedicated to graphical representations of reective projections: We can now formulate a problem of reconstruction from a set of reective projections: Problem 1 (Geometric inversion of reective projections). Let K ⊂ R 3 be a compact set, f : ∂K × S 2 → R, and let L ⊂ R 3 × S 2 be a set of rays. For every L ∈ L, we record the reective projection P[f ](L). We assume that K and f are unknown, while L and P[f ]| L are known. Question: reconstruct the set ∂K from P

[f ]| L .
This problem is in general dicult. The transform of this problem:

P : [f : ∂K × S 2 → R] → P[f ]| L ,
is in general neither invertible, nor linear. Nonetheless we will see a heuristics which can eciently solve such a problem. Remark 2. Similar concepts can be analogously introduced for the two-dimensional case in R 2 . We use the same terminology and the same notations: Problem (Geometric inversion of reective projections in 2D). Let K ⊂ R 2 be a compact set, f : ∂K × S 1 → R, and let L ⊂ R 2 × S 1 be a set of rays. For every L ∈ L, we record the reective projection P[f ](L). We assume that K and f are unknown, while L and P[f ]| L are known. Question: reconstruct the set

∂K from P[f ]| L .
2.1.2. Scanning geometries. We now formulate two special choices for the set of rays L in Problem 1. The rst choice denes the cone beam scan. This case occurs when we consider a camera that turns around a scene on a circle: assuming a pinhole model for the camera, each image is a perspective projection, while the optical center scans a circle. Denition 5 (Cone beam scan). Let r, a, b > 0. For every β ∈ [0, 2π], we set: θ(β) = (cos β, sin β, 0), θ ⊥ (β) = (sin β, -cos β, 0), e 3 = (0, 0, 1), x 0 (β) = rθ(β). For every (y

⊥ , y 3 ) ∈ [-a, a] × [-b, b], we set y = y ⊥ θ ⊥ (β) + y 3 e 3 ; the unit vector that points from x 0 to y ∈ θ(β) ⊥ is u(β, y ⊥ , y 3 ) = y-x0 |y-x0| . The set of rays L CB (r, a, b) = {(x 0 (β), u(β, y ⊥ , y 3 )), β ∈ [0, 2π], (y ⊥ , y 3 ) ∈ [-a, a] × [-b, b]} denes the rays of a cone beam scan.
Here, for every β, the rays (x 0 (β), u(β, y ⊥ , y 3 )), (y ⊥ , y 3 ) ∈ [-a, a] × [-b, b], are rays of a perspective projection through x 0 (β): see Figure 4. Furthermore the optical center x 0 (β) scans the horizontal circle When r becomes large compared to the size of K, the perspective projections of K look like orthographic projections along parallel rays. Then we mention a scan with orthographic projections; this is often used in order to approximate perspective projections, when the distance scene-camera is large compared to the distances in the scene. Here we can see that the problem of 3D reconstruction from an orthographic scan L (r, a, b) can be reduced to problems of 2D reconstruction from orthographic scans in 2D. Indeed, if L = L (r, a, b), the knowledge of P[f ]| L is equivalent to the knowledge of the horizontal cross-sections:

{x 2 1 + x 2 2 = r 2 , x 3 = 0} when β scans [0, 2π]. θ θ ⊥ 0 e 3 u(β, y 2 , y 3 ) θ ⊥ x 0 (β) = rθ y = y ⊥ θ ⊥ + y 3 e 3 θ θ ⊥ 0 x 0 (β) = rθ(β) e 3 = θ ⊥ ∧ θ
P[f | Hy 3 ]| L∩Hy 3 , H y3 = {((x, y 3 ), (u, 0)), x ∈ R 2 , u ∈ S 1 }, y 3 ∈ [-b, b].
This motivates the problem of reconstruction from orthographic reective projections in 2D [START_REF] Bellet | Reective ltered backprojection[END_REF].

2.2. Tomography.

2.2.1. General formulation. The standard model of transmission tomography is based on the X-ray transform: Denition 7 (X-ray transform). Let f : R 3 → R (integrable over lines). The X-ray transform of f is:

R[f ] : R 3 × S 2 -→ R (x, u) -→ R f (x + tu)dt.
Here a point v gives a contribution for every ray of the set {L : v ∈ L}; a graphical representation of such tomographic data is often called a tomogram, or a sinogram.

Problem 2 (Inversion of X-rays). Let f : R 3 → R, and let L ⊂ R 3 × S 2 be a set of rays. For every L ∈ L,

we record R[f ](L). Question: reconstruct f from R[f ]| L .
This problem is now linear. We can nd in the literature ecient reconstruction procedures, at least for some sets of rays L, such as the rays of a cone beam scan, or the rays of an orthographic scan. The analogous bi-dimensional problem is the Radon inversion, which is often solved by the well-known ltered backprojection algorithm [START_REF] Natterer | Mathematical methods in image reconstruction[END_REF]. The FDK algorithm presented page 8 is a very popular heuristics which solves this problem. Roughly speaking, it provides a ltered backprojection operator A = BΦ such that

BΦR[f ]| LCB(r,a,b) ≈ f, f : R 3 → R.
It is also known that if r is large, then such an operator behaves like the ltered backprojection for orthographic projections in 2D, per horizontal cross-section. F w (β, y ⊥ , y 3 ) = w(y ⊥ , y 3 )F (x 0 (β), u(β, y ⊥ , y 3 )), w(y ⊥ , y 3 ) = r (r 2 +y ⊥ 2 +y3 2 ) 0.5 .

Let us consider now

Step 1.b) Compute the horizontal ltering ΦF : ΦF (β, y ⊥ , y 3 ) := F -1 (|σ| ĥ(σ)F(F w (β, y ⊥ , y 3 ))(σ))

y 3 ∈ [-b, b], β ∈ [0, 2π],
where F(g)(σ) = g(y ⊥ )e -iσy ⊥ dy ⊥ is the Fourier transform, and ĥ is an even windowing function with compact support.

Step 2) Compute the backprojection BΦF , where B is a weighted summation over lines through x:

BG(x) = 2π 0 r 2 (r -x • θ) 2 G(β, y ⊥ , y 3 )dβ, with y ⊥ = rx•θ ⊥ r-x•θ , y 3 = rx3 r-x•θ , θ = (cos β, sin β, 0).
Output. FDK reconstruction BΦF . 3.1.1. Reective projection. We consider Problem 1, where: K = {|x -z| r} is the ball of radius r > 0

centered at z ∈ R 3 , ∂K = {|x -z| = r} is the corresponding sphere, f : (v, u) ∈ ∂K × S 2 → 1 is constant, L = L CB (R, M, M ) with R, M > 0 (large enough).
In that case, the reective projection for a xed angle β 0 , P[f ]| L∩{β=β0} , represents the silhouette, or the shadow, of the object K: see Figure 5. It is clear that P[f ] and R[χ(K)] have the same support, and that P

[f ] = χ(supp R[χ(K)]
), where χ is the characteristic function and supp denotes the support [START_REF] Gardner | Geometric tomography[END_REF]. We use the parametrization of L CB (see Denition 5): a ray of the scan takes the form L(x 0 (β), u(β, y ⊥ , y

3 )) ∈ L, with (β, y ⊥ , y 3 ) ∈ [0, 2π] × [-M, M ] 2 . The projection is P[f ](β, y ⊥ , y 3 ) := P[f ](x 0 (β), u(β, y ⊥ , y 3 )).
As in Figure 3 ψ(β, y ⊥ , y 3 ) = |x 0 -z| 2 -|(x 0 -z) • u| 2 -r 2 ; we get:

(right), L∩K = ∅ ⇔ |x 0 -z| 2 -|(x 0 -z) • u| 2 r 2 ; in this case, the visible point is v K (x 0 , u) = x 0 + [(z -x 0 ) • u -C(x 0 , u)]u where C(x 0 , u) 0 is the unique number 0 such that v K (x 0 , u) ∈ ∂K. Let
P[f ](β, y ⊥ , y 3 ) = χ(ψ -1 ({t 0})(β, y ⊥ , y 3 ) = 1 if ψ(x 0 , u) 0, 0 otherwise.
In other words { P[f ] = 1} = {ψ 0}, and { P[f ] = 0} = {ψ > 0}.

3.1.2. Discontinuities. The interface between these two pieces is S := ∂{ψ 0} ∩ ∂{ψ > 0}. We show that S = {ψ = 0}. The inclusion S ⊂ {ψ = 0} is due to the continuity of ψ. By the way, ∂ψ ∂(y ⊥ ,y3) does not vanish on {ψ = 0}: by the chain rule,

∂ψ ∂(y ⊥ , y 3 ) = -2[(x 0 -z) • u](x 0 -z) T ∂u ∂(y ⊥ , y 3 ) , with ∂u ∂(y ⊥ , y 3 ) = 1 |y -x 0 | (I -uu T )[θ ⊥ , e 3 ],
where y = y ⊥ θ ⊥ + y 3 e 3 , and I -uu T is the orthogonal projection on u ⊥ . If R is large enough, then (x 0 -z) • u = 0; so ∂ψ ∂(y ⊥ ,y3) = 0 ⇔ (I -uu T )(x 0 -z) ⊥ span(θ ⊥ , e 3 ) = θ ⊥ . But due to the condition ψ = 0, x 0 -z and u are linearly independent and so (I

-uu T )(x 0 -z) ∈ u ⊥ \ {0}. Then ∂ψ ∂(y ⊥ , y 3 ) = 0 ⇔ u ∈ θ ⊥ .
But u / ∈ θ ⊥ and so ∂ψ ∂(y ⊥ ,y3) = 0 . Hence the sign of ψ changes across {ψ = 0}, and then {ψ = 0} ⊂ ∂{ψ 0} ⊂ S. This also proves that the rank of the jacobian of ψ is one on S. And thus S is a surface.

P [f ] is a piecewise constant function and its discontinuities occur at the surface S. In Figure 6, we get a reectogram of P[f ] by the means of three cross-sections of P[f ]. Here we have emphasized the interface S by drawing {|ψ| < τ } where τ > 0 is a small threshold. This interface S encodes the same information than P[f ], so it is an object of interest. One can check that

ψ = 0 ⇔ x 0 + uu T (z -x 0 ) ∈ ∂K. Hence S = {(β, y ⊥ , y 3 ) : (x 0 (β), u(β, y ⊥ , y 3 )) is tangent to ∂K}. If (β, y ⊥ , y 3 ) ∈ S, the visible point is v K = x 0 + uu T (z -x 0 ) (and u • (v K -z) = 0).
In Figure 3 (right), it means that v K and x 0 + uu T (z -x 0 ) are equal.

3.2. Heuristic reconstruction of the sphere. We now investigate the eect of the FDK algorithm on before ltering are on Figure 6. 

P[f ].
S : ψ = 0 ψ > 0 ψ < 0 - - - - + + + + ΦP[f ] ≈ 0 ΦP[f ] :
(β) = (β, x⊥ (β), x3 (β)), β ∈ [0, 2π]; here, x⊥ (β) = Rx•θ ⊥ R-x•θ , x3 (β) = Rx3 R-x•
ψ • γ(β) = |x -z| 2 -|(x -z) • u| 2 -r 2 , with u = x-Rθ |x-Rθ| . Case a. Firstly, ψ • γ(β) = 0 ⇔ x + uu T (z -x) ∈ ∂K ⇔ the line (Rθ, x) is tangent to K. In particular, if the line (Rθ(β), x) is far from the tangents of K, then ΦP[f ](γ(β)
) is small and of arbitrary sign; it does not provide a signicant value at x.

Case b. Secondly, we study the case where the line (Rθ

(β 0 ), x) is tangent to K, i.e. (x, β 0 ) is such that ψ • γ(β 0 ) = 0. The derivative of ψ • γ is: d dβ ψ • γ(β) = -2[(x -z) • u] (x -z) • du dβ , du dβ = 1 |x -Rθ| (I -uu T )Rθ ⊥ . Then d dβ ψ(γ(β)) = 0 ⇔ (x -z) • u = 0 or θ ⊥ • (I -uu T )(x -z) = 0. Therefore d dβ ψ • γ(β 0 ) = 0 if,
and only if, x ∈ ∂K or the plane Rθ(β 0 ) + span(θ ⊥ (β 0 ), u(β 0 )) is tangent to K. See Figure 11. x 3

x 2

x 3

x 1 x 1

x 2 3): the ray (Rθ, u) and the plane Rθ + span(θ ⊥ , u) are tangent to K at x + uu T (z -u).

(1) If ψ(γ(β 0 )) = 0 but the other conditions are violated, then d dβ ψ • γ(β 0 ) = 0, the sign of ψ • γ(β) changes when β crosses β 0 , and the curve γ crosses the surface S at γ(β 0 ). In that case the (weighted) values of ΦP[f ](γ(β)) on either side of β 0 are expected to be high but with dierent signs; they should oset themselves by summation, and they should not contribute signicantly at x. See Figure 12 (left).

(2) On the contrary, if (Rθ(β 0 ), x) is tangent to K at x ∈ ∂K (left of Figure 11) and Rθ(β 0 ) + span(θ ⊥ (β 0 ), u(β 0 )) is not tangent to K, then the second derivative is:

d 2 ψ • γ dβ 2 | β=β0 = -2 (x -z) • du dβ | β=β0 2 < 0.
So the curve γ is tangent at S at the point γ(β 0 ); furthermore ψ • γ > 0 in a deleted neighborhood of β 0 . In that case the (weighted) values of ΦP[f ](γ(β)) on either side of β 0 are expected to be high but with the same sign; they should be accumulated by summation and give a signicant contribution (3) The last case occurs when the line (Rθ(β 0 ), x) and the plane Rθ(β 0 )+span(θ ⊥ (β 0 ), u(β 0 )) are tangent to K (right of Figure 11). Then ψ•γ(β 0 ) = d dβ ψ•γ(β 0 ) = 0 and we can expect signicant contributions as before, but now along the line (Rθ(β 0 ), x). This case describes eventual artifacts. Such lines are slightly remarkable in the vertical views of Figures 9 and10.

S : ψ = 0 ψ < 0 ψ > 0 ∇ψ + + + - - - γ γ - ΦP[f ] : S : ψ = 0 ψ < 0 ψ > 0 ∇ψ γ γ ΦP[f ] : + + + + Figure 12. Left -case b.(1): if ψ(γ(β 0 )) = 0 but dψ•γ dβ (β 0 ) = 0,

Numerical results

4.1. Contribution of the discontinuities. To observe the contribution of the discontinuities, we create synthetic data sets where the projected pattern f is piecewise constant with discontinuities. We increase the number of jumps from a data set to the next one.

Here, the shape ∂K is a sphere with a dent. To create this object, we deform the sphere |x| = 1, in spherical coordinates (ψ, ϕ, ρ), where ψ ∈ [-π, π] is the azimuth, ϕ ∈ [-π 2 , π 2 ] is the elevation, and ρ > 0 is the radius. For all points of the sphere (ψ, ϕ, ρ = 1), the point of the considered surface ∂K is (ψ, ϕ, ρ := 1 + 0.75(r -1)1 1 r<1 ), with 0.08r := ( ψ π + 1/4) 2 + ( 2ϕ π + 1/6) 2 . This object is computed from a discrete version of the sphere, discretized with 640 2 patches. For all integer m, we dene on this surface the following piecewise constant pattern, in spherical coordinates:

(ψ, ϕ) → p m (ψ)p m (ϕ), with p m (s) = 0.5 + 0.251 1 (ms-ms )<0.5 .

We project this pattern: for each ray L(x 0 , u), the projection is

P[f ](L) = f (v K , u) := p m (ψ)p m (ϕ),
where (ψ, ϕ, ρ) are the spherical coordinates of the visible point v K ∈ ∂K. We simulate an orthographic scan of this reective projection, using plots of surfaces with Matlab. We consider a uniform discretization (constant steps) of size 801 × 201 × 201, 801 being the number of angles of projection, and 201 × 201 being the size of each image.

Increasing m increases the number of jumps; we simulate data sets for several values of m: 0, 1, 2, 4, 8 and 16. On the rst line of Figure 13, we represent one image of the sequence, for the successive values of m.

Of course we distinguish here two kinds of jumps in the images: jumps due to discontinuities of the pattern f , and geometrical jumps due to the shape (interface object/background).

We apply the heuristics on these data sets. For the visualization, the reconstructions are re-projected, using a Maximum Intensity Projection (MIP). In order to improve the visual perception of the dent, we restrict the domain to a half-space before visualization: our full volume being a set of voxels (i, j, k) ∈ [1, 201] 3 , we keep only the j 91. On the second line of Figure 13, we represent a vertical view of the reconstructions, associated with the view of the data sets. More jumps in the input can improve the visual perception of the object, for both the input and the output. The heuristics computes much more than just a convex hull. A remarkable property here is that the dent is even more perceptible in the reconstruction than in the reectogram. This is because the boundary ( ψ π + 1/4) 2 + ( 2ϕ π + 1/6) 2 = 0.08 of the dent introduces geometrical jumps in many input images; the heuristics combines them, and so the boundary is emphasized in the reconstruction. We consider the sphere ∂K : |x| = 1, which is discretized using 640 2 patches as before. We project a smooth pattern, given in spherical coordinates by:

(ψ, ϕ) → 1 + 0.5 cos m(ψ + ϕ), with m = 2 i , 1 i 6, playing the role of a xed frequency. As before, by rotating over 360 degrees, we simulate an orthographic scan of size 801 × 201 × 201. The simulated images are smooth, except at the interface object/background where discontinuities occur. For the purpose of this subsection, we weight the data in order to obtain smooth images. For a pixel (i, j) ∈ [1, 201]× [START_REF] Baumgart | Geometric modeling for computer vision[END_REF]201], the weight is (r +1) 2 (r -1) 2 1 1 r<1 , with 99r(i, j) = ((i -100) 2 + (j -100) 2 ) 0.5 . On the rst line of Figure 14, we represent one smooth image of the sequence that we get, for the successive values of m.

We apply the heuristics on these data sets. On the second line of Figure 14, we represent a vertical view (MIP) of the reconstructions, associated with the view of the data sets. From the visual point of view, it is easier to identify the original sphere for large m. For smooth data, the result of the heuristic may be poor for low frequency components, but is meaningful when the frequency is large enough. In any case, smooth variations in the input produce contributions which add contrasts in the renderings; they can be useful for the visual perception. The results also emphasize the importance of singularities: here, we have seen that without the discontinuities at the interface object/background in the projections, it is more dicult to reconstruct the shape. 4.3. Test of robustness. We show how the method deals with changes in the forward problem during the acquisition, by considering a randomized uctuating pattern. This pattern could represent active surfaces whose reectance properties are random.

For all σ = 0, 2 j , -2 j 2, we consider an orthographic scan F σ (β, y ⊥ , y 3 ) of the Stanford Bunny ∂K [START_REF] Turk | Zippered polygon meshes from range images[END_REF]; the size of this scan is 801 × 200 × 157. For each ray of projection (x 0 , u) such that the angle of projection is β (and thus u = (-cos β, -sin β, 0), see Denition 6), the projected surfacic pattern is:

f σ (v, u) = 1 + (0.2 + ση 1 (β)) sin(πση 2 (β) + 20π |v|), v ∈ ∂K,
where the η i (β) are independent realizations of the Gaussian N (0, 1). The ση i (β) correspond to some modications of the amplitude and the phase of the pattern. Increasing σ increases the dependency in β for the projected pattern. If v ∈ ∂K is a xed point, then along the set of rays that sees v, i.e. {(β, y ⊥ , y 3 ) : v K (x 0 , u) = v}, the intensity level of v randomly varies with a standard deviation which increases when σ increases. To observe this, see the rst line of Figure 15, where we represent reectograms: horizontal slice y 3 = 0 in the reective projections.

We apply the heuristics on these data sets. On the second line of Figure 15, we represent a vertical view of the reconstructions (MIP). Despite changes in the forward problem, the silhouette of the object still appears under the form of discontinuities in the reective projection. As a result the heuristics successfully reconstructs the shape. By the way, the jumps at the discontinuities do not have the same values. Thus the reconstruction is better than the shape alone: surfacic contrasts are perceived. This is even true for large disturbances: see the last case, where the level of disturbance is about 4 times the intensity level of the original signal. 

Conjectures

We would like to extend the previous discussions to more general congurations. The rst thing to do is to nd a framework which describes the structure of a reective projection, and more particularly its singularities. The following conjecture deals with an extension for several smooth convex objects:

Conjecture 1. Let (K i ) 1 i N be a family of compact sets such that Ki = K i and K i ∩ K j = ∅ if i = j. Let (f i ) 1 i N be a family of distinct numbers. We assume that the K i are convex and smooth. Let K = ∪ N i=1 K i , and let f : ∂K × S 2 → R, such that f | ∂Ki = f i , 1 i N . Let M, R > 0 be large enough. We conjecture that the reective projection P[f ]| LCB(R,M,M ) is piecewise constant. We conjecture that its singularities are included in the set of the rays of L CB (R, M, M ) that are tangent to one of the K i 's (at least), and that they describe pieces of surfaces. We assume that F is piecewise smooth. Let S ⊂ L CB (R, M, M ) denotes the set of rays L ∈ L CB (R, M, M ) such that F is singular at L. We conjecture that the FDK reconstruction BΦF emphasizes several points, including the points v K (L) ∈ ∂K, L ∈ S, which are the visible points at the singularities.

The meaning of emphasize must be precised. Essentially we have seen that the method consists in accumulating coherent information, and in cancelling incoherent one. We know that methods of stationary phase provide a mathematical framework to describe such phenomena. This option is explored in ongoing works: [START_REF] Bellet | Analyse asymptotique et géométrique de la tomographie réective[END_REF] focuses on asymptotic expansions with respect to the cut-o frequency of the ltering (width of the spectral windowing). Another idea is to study the problem in a framework of microlocal analysis: describe the singularities of the reective projection and the singularities of the empirical reconstruction. Such studies will strengthen the heuristics by proving what it exactly does. In particular a full description of the emphasized points will also describe the artifacts: the emphasized points that do not belong to ∂K.

We see here that the subject meets again the problems of Radon inversion, where such ideas are currently developed to describe and reduce incompleteness artifacts [START_REF] Borg | Full Characterization of Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data[END_REF].

Figure 1 .

 1 Figure 1. A few images of a sequence of real laser images.

Figure 2 .

 2 Figure 2. Volume rendering of a 3D tomographic reconstruction from 2D laser images.

Denition 4 .

 4 Let F = P[f ] be a reective projection. A reectogram of F (or of f ) is a graphical representation of F . Such representations have peculiarities. If v ∈ ∂K, the set of rays whose visible point is v is {L : v K (L) = v}. If we follow this set through a reectogram of P[f ], we observe the intensities of projection of v: f (v, •). In general the set {L : v K (L) = v} does not cross the whole reectogram due to the denition of the visible point: occlusions appear.

Figure 4 .

 4 Figure 4. Cone beam scan: perspective rays (x 0 , u) through the optical center x 0 (left); the optical center x 0 (β) scans {x 2 1 + x 2 2 = r 2 , x 3 = 0} (right).

Denition 6 (

 6 Orthographic scan). Let r, a, b > 0. For every β ∈ [0, 2π], we set: θ(β) = (cos β, sin β, 0), θ ⊥ (β) = (sin β, -cos β, 0), e 3 = (0, 0, 1), u(β) = -θ(β). For every (y ⊥ , y 3 ) ∈ [-a, a] × [-b, b], we set x 0 (β, y ⊥ , y 3 ) = rθ(β)+y ⊥ θ ⊥ (β)+y 3 e 3 . The set of rays L (r, a, b) = {(x 0 (β, y ⊥ , y 3 ), u(β)), β ∈ [0, 2π], (y ⊥ , y 3 ) ∈ [-a, a] × [-b, b]} denes the rays of an orthographic scan.

Problem 1 and

 1 Problem 2 are not the same, but the geometry of the reective projection P[•]| L and the geometry of the X-ray transform R[•]| L have similarities: the scene is projected along the rays of L. The main idea of reective tomography is to use methods which solve Problem 2 in order to solve eciently Problem 1: Heuristics (Principle of reective tomography). We consider Problem 1. We assume that A is an operator which solves Problem 2 for the corresponding rays: AR[•]| L ≈ I (identity). Then the volumic function AP[f ]| L : R 3 → R is an empirical representation of the original set ∂K. The main question that arises now concerns the meaning and the description of AP[f ]| L . How does it represent the shape ∂K? 2.2.2. Case of a cone beam scan. We present the specic case of a cone beam scan. Problem (Cone Beam Computed Tomography). We measure partially the X-ray transform of f : R 3 → R, by cone beam scanning: R[f ]| LCB(r,a,b) . Question: reconstruct f from R[f ]| LCB(r,a,b) .

  Problem 1 with L = L CB (r, a, b) being the rays of a cone beam scan. We measure the reective projection P[f ]| LCB(r,a,b) where f : ∂K × S 2 → R and ∂K are unknown; we would like to recover ∂K. Following the principle of reective tomography, we use the reconstruction operator BΦ of Problem 2: the reconstructed ∂K is represented by the volumic function BΦP[f ]| LCB(r,a,b) : R 3 → R. This solves eciently a nonlinear geometric problem with a linear operator: this can be fastly computed on Graphics Processing Units. But proving mathematically in what extent BΦP[f ]| LCB(r,a,b) is a true representation of the original ∂K is still an open question. We now discuss this heuristic representation.

  FDK algorithm. Input. Projection F : L CB (r, a, b) → R, measured by a cone beam scan.Step 1.a) Compute the weighted data set F w :

Figure 5 .

 5 Figure 5. Silhouette of a ball: if K is a ball, with f = 1, the perspective projection P[f ](x 0 (β), u(β, •, •)) represents a silhouette and a shadow.

3. Reconstruction from silhouettes 3 . 1 .

 31 Cone beam scan of a ball.

Figure 6 .

 6 Figure 6. Reectogram from silhouettes of a ball: three cross-sections of P[f ](β, y ⊥ , y 3 ). In light gray, P[f ] = 0 and ψ > 0, in dark gray, P[f ] = 1 and ψ < 0; in black, the interface ψ = 0 (or more precisely: |ψ| < τ ).

Figure 7 .

 7 Figure 7. Cross-sections of the ltered projection ΦP[f ]; the same cross-sections for P [f ]

Figure 8 .

 8 Figure 8. The ltered projection ΦP[f ] looks like a zero-crossing detection of S : ψ = 0.

3. 2 . 1 .

 21 Filtering. The rst step computes the ltered projection ΦP[f ]: see Figure7for cross-sections. We observe that this step especially detects and emphasizes the singularity S. The lter F -1 (|σ| ĥ(σ))(y ⊥ ) is indeed the derivative ∂ y ⊥ , followed by a regularized Hilbert transform in y ⊥[START_REF] Natterer | Mathematical methods in image reconstruction[END_REF]. As a result, for all β and y 3 , this step emphasizes the contours of y ⊥ → P[f ](β, y ⊥ , y 3 ); it is a zero-crossing detection. The signicant values of ΦP[f ] are located near the surface S : ψ = 0 and the sign of ΦP[f ] is expected to change across S (zero-crossing). See Figure8. 3.2.2. Backprojection. The second step computes the backprojection BΦP[f ]; see Figure 9 for orthogonal cross-sections in this reconstruction, and Figure 10 for Maximum Intensity Projections. For every point x, the reconstruction BΦP[f ](x) is especially a summation through ΦP[f ], along the curve γ

  θ denotes the coordinates of the projection of x: Rθ, x and x⊥ θ ⊥ + x3 e 3 are aligned. In general this is a summation of arbitrary signed values. Theses values are small far from S, but are large in a neighborhood of S. The summation cancels the values in general. But for special circumstances, high values of the same sign are accumulated without being compensated and thus the sum is high. We want to identify such high contributions. So we study the cancellation of the function ψ along γ, by considering

2 Figure 9 .

 29 Figure 9. Cross-sections of the reconstruction BΦP[f ] of the sphere.

Figure 10 .Figure 11 .

 1011 Figure 10. Maximum Intensity Projections of the reconstruction BΦP[f ] of the sphere.

  Figure 12. Left -case b.(1): if ψ(γ(β 0 )) = 0 but dψ•γ dβ (β 0 ) = 0, the values of ΦP[f ](γ(β)) should oset themselves by summation. Right -case b.(2): if ψ(γ(β 0 )) = 0 and dψ•γ dβ (β 0 ) = 0, the values of ΦP[f ](γ(β)) should be accumulated by summation.

4. 2 .

 2 Contribution of the smooth variations. Realistic images of realistic scenes have often jumps and smooth variations. Here we would like to observe the contribution of the smooth variations alone, and to observe what happens without discontinuities. So we create synthetic data sets whose images are smooth, and whose frequency increases from a data set to the next one.

Figure 13 .

 13 Figure 13. Eect of jumps for a sphere with a dent. From the left to the right: the projected pattern has more and more discontinuities, m = 0, 2 i , 0 i 4. On the rst line: one image of the sequence; on the second line: associated heuristic reconstruction.

Figure 14 . 6 .

 146 Figure 14. Eect of smooth variations for a sphere. From the left to the right: the frequency parameter is larger and larger: m = 2 i , 1 i 6. On the rst line: one image of the sequence; on the second line: associated heuristic reconstruction.

Figure 15 . 2 .

 152 Figure 15. Test of robustness: from the left to the right, the level of disturbance is σ = 0, 2 j , -2 j 2. On the rst line, reectograms (β, y ⊥ ) → F σ (β, y ⊥ , 0). On the second line: a vertical view computed by the heuristics.

  The next step is to understand the eect of the heuristics. The following conjecture states that the method is based on the singularities of the data set: Conjecture 2. Let F = P[f ]| LCB(R,M,M ) be a cone-beam scan of the reective projection of f : ∂K ×S 2 → R.