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Abstract 
A multi-scale model is presented for predicting the magnitude and rate of powder mixing in a 
Tote blender. The model combines particle diffusion correlations calibrated from experiments 
with transient advective flow field information from finite element method simulations. 
Predictions of the mixing rate from the multi-scale model compare well quantitatively to 
published experimental data. The multi-scale model, since it does not directly model individual 
particles, is expected to scale well to systems of industrial interest. 
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1 Introduction 
 
Granular material blending plays an important role in many industries ranging from those that 
manufacture pharmaceuticals to those producing agrochemicals. The ability to create 
homogeneous powder blends can be critical to the final product quality. For example, 
insufficient blending of a pharmaceutical formulation may have serious consequences on product 
efficacy and safety. 
 
A wide variety of blenders are available in the marketplace [1,2]. However, predictive 
engineering design of industrial powder blenders remains underdeveloped due to the lack of 
quantitative modeling tools. As a result, design and scale-up of blending equipment often relies 
on empirical studies. Discrete element method (DEM) computational models are considered 
state-of-the-art for predicting blending of particulate materials; however, this modeling approach 
is not well-suited for modeling industrial-scale blenders due to computational limitations [3].  
Moreover, determining particle-level input parameters to use in such models is challenging and 
not widely agreed upon [4–6]. 
 
In recent work by Liu et al. [7], a multi-scale model was developed by combining particle 
diffusion coefficient correlations with advective flow field information from finite element 
method (FEM) simulations. The model was able to quantitatively predict the magnitude and rate 
of powder blending in a two-dimensional rotating drum blender and was computationally faster 
than DEM simulations. The current work extends this multi-scale modeling approach to a more 
complex, three-dimensional blender geometry with transient powder dynamics.  
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2 Background 
 
Most models that track the spatial and temporal evolution of particle blending can be categorized 
as being either of the discrete or continuum type. Discrete algorithms model the dynamics of 
each particle individually while continuum algorithms ignore individual particles and instead 
assume that the particle assembly is a continuum. 
 
The computational discrete element method (DEM) has been used extensively for predicting 
particle blending dynamics and is considered state-of-the-art [8–11]. Although these studies have 
provided valuable qualitative insight, they are limited in their quantitative predictions by 
computational requirements. Even a small, lab-scale blender containing 100 µm particles 
contains more than 109 particles, far exceeding what is possible to model with standard 
computational tools. Typically, modelers will increase the particle size or decrease the 
workspace size in order to reduce the number of particles that must be modeled; however, 
previous work [8,12] has shown that particle size can have an influence on the rate and extent of 
blending. Hence, DEM may not produce quantitatively accurate results for systems of industrial 
interest. 
 
Analytical continuum models have also been proposed for modeling mixing and segregation 
[13–15]. To be tractable analytically, these early models oversimplified the effects of key 
physical properties and the predictions from these purely theoretical studies were not very 
accurate. To improve the accuracy of these models, recent works [16,17] combined DEM-
calculated correlations for particle diffusion and segregation at a local scale with analytically-
derived flow fields. These models have been shown to provide quantitatively accurate 
predictions; however, since they depend on analytical solutions for the macroscopic flow field, 
their use is restricted to simple two-dimensional geometries, such as a simple heap flow.  
 
Recently, researchers have utilized multi-scale modeling approaches to make quantitative 
blending predictions. Bertuola et al. [18] combined velocity field data predicted from finite 
element method (FEM) simulations, which treat the granular material as a generalized 
Newtonian fluid, with local-scale mixing and segregation relations derived from previous works 
[16,19]. Key model parameters needed to be fit to the experimental data for quantitative 
agreement. Bai et al. [20] used an FEM model assuming Mohr-Coulomb constitutive behavior to 
predict the velocity field in a cylindrical, bladed mixer, which was shown to be qualitatively 
accurate compared to DEM simulations. They also predicted the degree of blending by assuming 
convective mixing only (neglecting diffusive mixing), but observed a dependence of the mixing 
rate on FEM mesh size. Liu et al. [7] also investigated particle blending using a multi-scale 
modeling approach. An FEM model, which assumed Mohr-Coulomb material behavior, was 
used to predict the velocity field in a two-dimensional rotating drum. This information was then 
combined with particle diffusion correlations. The model was shown to quantitatively predict the 
magnitude and rate of blending when compared to DEM simulations without the need for back-
fitted parameters.  
 
The current work extends the work by Liu et al. [7] to investigate blending in a more 
industrially-relevant Tote blender. Several key implementation details are also different. First, 
the model utilizes transient velocity field information from the FEM simulations instead of a 
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steady velocity field. Second, the governing equations are extended to three dimensions instead 
of two dimensions. Together, these two modifications greatly increase the flexibility of the 
model. In addition, rotating drum experiments are used to calibrate the diffusion coefficient used 
in the multi-scale model and the model predictions are compared against published experimental 
results. Section 3 of this paper introduces the FEM modeling approach and implementation for 
the current work. Section 4 describes the advection-diffusion equation used in the multi-scale 
model and the numerical method used to solve it. Section 5 describes the material calibration 
methods and experiments. And in Section 6, comparisons are made between published 
experimental results and the multi-scale model predictions. 
 
3 Finite element method model 
 
A three-dimensional, coupled Eulerian-Lagrangian, FEM model is used in the present work to 
provide predictions of the advective flow field in a Tote blender. Previous works [21–25] have 
shown that FEM models can accurately simulate granular material behavior well, including 
advective flow fields [21,22]. Details of the model implementation can be found in previous 
work [7]. The following sub-sections describe the model geometry, boundary conditions, and 
initial conditions. 
 
3.1 Model geometry and boundary conditions 
The commercial FEM package Abaqus/Explicit v6.14 is used to perform the bulk flow 
simulations. The geometry of the simulated Tote blender is based on the experiments by Sudah et 
al. [26]. Those experiments were carried out in a 14-L GEI Gallay Tote blender. Details of the 
geometry and dimensions of the blender are presented in their work [26]. For convenience, the 
dimensions are also shown in Figure 1. 

 

Figure 1. Dimensions of the GEA Gallay Tote blender used in the FEM simulation.  
 

A Mohr-Coulomb elastoplastic model is used in the current work to describe the stress-strain 
behavior of the particulate material. This model has been shown previously to accurately 
describe granular flow fields [21,22]. The material properties needed in the model are bulk 
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density, Young’s modulus, Poisson’s ratio, and material internal friction angle. The methodology 
for obtaining those material properties was described in detail in previous work [7]. 
 
Boundary conditions applied in the model include the material-wall friction angle, the rotational 
speed along the axis of rotation, and the gravitational acceleration (g = 9.8 m/s2 directed in the 
negative y direction in Figure 1). 
 
3.2 Initial conditions 
The coupled Eulerian-Lagrangian approach implemented in Abaqus is adopted in the current 
model. Details of this approach were described in previous work [7]. As shown in Figure 2, the 
Eulerian mesh covers the entire material domain and ensures that no material leaks outside of the 
mesh. The Eulerian Volume Fraction (EVF) value is used to determine the volume of material 
within each element. A value of EVF = 0 indicates that no material is present in the element 
while EVF = 1 indicates that the element is completely filled with material.  

 

Figure 2. A schematic of the FEM model domain. The Eulerian mesh is shown in grey, the Tote 
blender mesh is shown in blue, and the outlines of the initial material domain are shown in red. 

 
The initial bed state is generated by filling a fraction of the elements with material. Details of the 
process can be found in previous work [7]. For monodisperse mixing, material loadings were 
achieved by assigning user-defined field variables at each material point to represent the initial 
material concentration. Details of this field variable approach can be found in the Abaqus 
documentation [27]. An example of left-right initial loading is shown in Figure 3. The color 
represents a field variable value from 0 (blue) to 1 (red). For monodisperse mixing with materials 
A and B, the field variable represents the material concentration of A. A field variable value of 
one indicates that the element is completely filled with material A, while a value of zero 
indicates that the element is completely filled with material B. 
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Figure 3. Initial material concentration for a simulation with left-right loading. The color 
represents field variable value from zero (blue) to one (red). The materials in this simulation 

have homogeneous properties, except for color. 
 
The simulation process consists of two steps. First, the material is allowed to settle as the 
gravitational acceleration is slowly increased from zero to its final value. The blender remains 
stationary during this step. This procedure is used to eliminate the transient oscillations of 
material as it settles and results in a stable bed compressed under its own weight. Next, the 
blender is allowed to rotate immediately at the rotation speed and the simulation is considered 
started. 
 
4 The multi-scale blending model 
 
The current multi-scale model is extended from a previously published two-dimensional model 
[7]. Details of the model description and development can be found in this previous work. The 
following sub-sections summarize the main aspects of the model and highlight its extension to 
transient, three-dimensional problems. 
 
4.1 Advection-diffusion equation 
The advection-diffusion equation is used in the current work to model the spatiotemporal 
evolution of the concentration of a particular material species, c. The governing equation is 
derived as, 

( ) ( )c
c c

t

∂ = ∇ ⋅ ∇ − ∇ ⋅
∂

D v ,         (4.1) 

where c is the local concentration of a particular species of material, D is the diffusion 
coefficient tensor for that species, and v is the local advective velocity vector. Using the local 
mass conservation equation and assuming an incompressible material, i.e.,  

0∇ ⋅ =v ,           (4.2) 
the governing equation can be written in index notation form as, 

ij i
i j i

v
c c c

D
t x x x

−
 ∂ ∂ ∂ ∂=   ∂ ∂ ∂ ∂ 

.          (4.3) 
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The self-diffusion coefficient D is a tensor quantity with components Dij, and with off-diagonal 
components Dij (� ≠ �) an order of magnitude smaller than the diagonal components Dij (� = �) 
[7]. By neglecting off-diagonal components of the self-diffusion coefficient tensor, the index 
notation form of Eq. (4.3) in three-dimensional form is 

2 2 2

2 2 2

yyxx zz
x xx y yy z zz

DD Dc c c c c c c
v D v D v D

t x x x y y y z z z

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂   = − + + − + + − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 . (4.4) 

 
The self-diffusion coefficient D is also proportional to the local shear rate γɺ  and the local mean 

particle diameter d  [7]. The particle diffusivity is approximately 1.9 times larger along the mean 
flow direction than it is in the perpendicular direction, according to work by Utter et al. [28]. 
Thus, the shear rate-dependent diffusion coefficient D can be written as, 
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( )
( )

2 2
1 2

2 2
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= + +
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,        (4.5) 

where ( )x y zv x v xγ = ∂ ∂ + ∂ ∂ɺ , ( )y x zv y v yγ = ∂ ∂ + ∂ ∂ɺ , and ( )z x yv z v zγ = ∂ ∂ + ∂ ∂ɺ .  The 

constant k1 can be found from experiments or small-scale DEM simulations, with k2 = 1.9k1. 
 
4.2 Numerical method 
A finite difference method using a central explicit scheme is used to solve Eq. (4.4) due to its 
simplicity and computational efficiency [7]. Other numerical methods are also available to solve 
the system of partial differential equations, such as the finite element method, finite volume 
method, domain decomposition method, and the matrix mapping method [16,17]. 
 
A second-order Tylor Lax-Wendroff scheme is used to generate the finite difference expression 
of the governing equation [7], 

1 2 2 2 2
0 0

2 2
0 0 0 0 0 0 0

1 1

2 2

1

2

n n n n n n
ijk ijk x x ijk x x x ijk y y ijk y y y ijk

n n n n n
z z ijk z z z ijk x y x y ijk y z y z ijk z x z x ijk

c c c c c c

c c c c c

ν ν µ δ ν ν µ δ

ν ν µ δ ν ν ν ν ν ν

+       = − ∆ − + − ∆ − +      
      

  − ∆ − + + ∆ ∆ + ∆ ∆ + ∆ ∆  
  

,  (4.6) 

where, 
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2
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( )
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zz zzi j k i j k
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D D
D + −

−
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This finite difference formula is illustrated using the computational molecule shown in Figure 4. 
Details of the Taylor series expansion and stability of the numerical computations can be found 
in the previous work [7]. 
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Figure 4. Computational molecule for the second-order, three-dimensional Taylor Lax-Wendroff 

scheme. 
 
It should be emphasized that transient velocity fields are included in the solution to the 
advection-diffusion equation, Eq. (4.4), by extending the work by Liu et al. [7]. Therefore, a C++ 
post-processing script was developed to process the FEM output files (.obd files [27]) and handle 
the large amount of data from these simulations. 
 
As mentioned in Section 3, the initial particle concentrations used in the model are determined 
by the loading conditions, and the user-defined field variable used in the FEM simulation is set 
accordingly, as in Figure 3. Since transient velocity fields are used in the current model, the 
boundaries of the material domain change throughout the entire computation. These boundaries 
are computed within the FEM simulation from the EVF values and, similarly, are determined by 
the advection-diffusion solver, after reading EVF values from the FEM output file at each time 
step. Specifically, the advection-diffusion boundary conditions at the free surface are enforced by 
setting the material concentration of the boundary node equal to the value of the node that is one 
grid point inward in the direction normal to the surface. This approach is similar to the 
polynomial fitting approach often used in computational fluid dynamics (CFD) [29].  
 
Next, a MATLAB program is used to iterate the finite difference form of the advection-diffusion 
equation given in Eq. (4.6). After generating initial particle concentrations using the extracted 
field variable values, the material concentration evolution is iterated using the transient velocity 
field obtained from the FEM simulation for each time step. A threshold is set to ensure the 
material concentration value remains between zero and one, and a small time step is carefully 
chosen to ensure the stability of the explicit scheme. Details of the iteration algorithm were 
presented in the work by Liu et al. [7]. 
 
To achieve a converged result, the number of elements used in the advection-diffusion 
MATLAB program should be much larger than the number of elements in the FEM simulation. 
Hence, a linear interpolation algorithm is introduced in the MATLAB program to generate 
enough elements and ensure convergence. The MATLAB numerical algorithms are parallelized 
to divide the computational domain onto different cores. By using the full processing power of 
an eight-core desktop, the iteration runs approximately 5-8 times faster than on a single core. 
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5 Calibration of material properties 
 
5.1 Material properties for the FEM simulation 
The published experimental work for monodisperse particle mixing by Sudah et al. [26] was 
used to validate the multi-scale model predictions. Those experiments utilized a 14-L GEI Gallay 
Tote blender containing 12-mm diameter glass beads of two different colors. 
 
The material density ρ, elastic modulus E, and Poisson’s ratio ν  are known to have little 
influence on the material flow behavior [7]. Moreover, the mixing process was shown to be 
unaffected by the wall friction angle φw within a rotating blender since the free surface angle 
remains constant. Hence, the material density, elastic modulus, Poisson’s ratio, and wall friction 
angle used in the current FEM simulation are all based on values from previous work for hard 
spheres [7]. In addition, the Mohr-Coulomb dilation angle of the material was set to 0.1°, since 
the dilation of cohesionless granular materials is usually small. 
 
The internal friction angle has been shown to influence the mixing rate [7] and, hence, must be 
calibrated. Previous work has shown that the internal friction angle is not sensitive to particle 
size or consolidation stress for the same material [30–32]. Hence, 1-mm diameter glass beads, as 
opposed to the 12 mm beads used in the Sudah et al. experiments [26], were used in the current 
work to calibrate the internal friction angle. A Schulze Ring Shear Tester (Model RST-XS) was 
used to make these measurements, obtaining values similar to those reported in the literature 
[33,34]. A summary of all of the material parameters used in the FEM simulation is given in 
Table 1. It is worth noting that these parameters are found from independent, standard material 
tests, rather than being back-fit to match experimental data with the multi-scale blending 
simulation results. 
 

Table 1. Parameters used in the FEM simulation. 
Parameter Value 
Material density (kg/m3) 1500 
Young’s modulus (MPa) 3.65 
Poisson’s ratio (-) 0.065 
Internal friction angle (degree) 27.1 
Cohesion (Pa) 87 
Dilation angle (degree) 0.1 
Wall friction coefficient (-) 0.324 

 
5.2 Experimental calibration of the diffusion constant 
One significant parameter needed in the multi-scale model is the spanwise diffusion constant k1. 
To calibrate k1 for glass beads, a lab-scale rotating drum experiment was performed. A 
photograph of the experiment setup is shown in Figure 5. An acrylic circular drum of diameter D 
= 150 mm and width W = 50 mm was used to contain the material, and two shafts were used to 
stabilize and rotate the drum. The driving torque was provided by a gear motor that rotated one 
of the shafts. Rubber bands covered the shafts to prevent slipping. Values for the experiment 
parameters are listed in Table 2. 
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Figure 5. The rotating drum experiment setup. 
 

Table 2. The rotating drum experiment parameters. 
Parameter Value 
Inner drum diameter (mm) 150 
Inner drum width (mm) 50 
Glass sphere diameter (mm) 1 
Filling level (% of max level depth) 32 
Drum rotation speed (rpm) 3.26 

 
As shown in Eq. (4.5), the influence of particle diameter on the diffusion coefficient has been 
included explicitly and thus diffusion constants k1 and k2 should be independent of particle 
diameters. Hence, the drum was filled side by side with 1 mm red and blue glass spheres. To 
facilitate filling of the drum, the front side of the drum was made removable and a separate 
barrier was used to help fill each side of the drum with equal volumes of red and blue glass 
beads. Friction tape was used to seal the drum and to allow the container to rotate smoothly. To 
analyze the degree of mixing, a high-speed camera was used to film the front of the drum. Once 
the drum was filled, the drive shift started to rotate and the mixing process was recorded. Several 
snapshots of the system at different times are shown in Figure 6. Qualitatively, the mixing 
dynamics in the experiment followed the same trend as the simulations reported in previous work 
[7]. 
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Figure 6. Snapshots showing the state of particle mixing for different numbers of drum 
revolutions in the rotating drum experiments. 

 
To compute the segregation intensity as a function of the number of drum revolutions, a 
MATLAB code was developed to analyze the video images and derive the spatial distribution of 
material concentrations. Details of the image processing algorithm are included in Appendix A. 
 
The experimental results were compared with predictions from the 2-D multi-scale model 
developed in the previous work [7]. To justify a comparison, the system geometry and operating 
conditions, such as the drum diameter, drum width, particle diameter, filling level, and rotation 
speed, were consistent between the experiment and the multi-scale model. The material 
parameters used in the FEM simulation are shown in Table 1 for glass beads. 
 
The segregation intensity I was computed to compare the experiment results with the 2-D multi-
scale model predictions and calibrate the spanwise diffusion constant k1. The segregation 
intensity I is defined as, 

2
i
2
0

iI
σ
σ

= ,            (5.1) 

( )22
i ,

1

1

1

M

i i m
m

c c
M

σ
=

= −
− ∑ ,          (5.2) 

( )2
0 1i ic cσ = − ,           (5.3) 

,
1

1 M

i i m
m

c c
M =

= ∑ .          (5.4) 
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In these relations, σi
2 is the measured variance of component i’s concentration (here component i 

is the red particles), σ0
2 is the variance of component i’s concentration for a fully segregated 

system, ci is the measured mean concentration of component i, and M is the total number of 
samples used to calculate the mean and variance. The scale of scrutiny does affect the 
calculation, with larger scales of scrutiny having smaller segregation intensities. Hence, the same 
grid size used to analyze the experiment results, as described in Appendix A, was used in the 2-D 
multi-scale model. Computationally, the concentration values of all the nodes within one grid 
cell were averaged to compute the material concentration for the cell. A cell size of five particle 
diameters was used.  
 
Due to the fact that a continuum is assumed in the FEM simulations, the multi-scale model 
would predict an asymptotic segregation intensity of nearly zero, corresponding to a perfectly 
mixed state. However, a perfectly mixed state is generally not achievably in practice and instead 
a randomly mixed state is the expected asymptotic state. For a randomly mixed system, the 
segregation intensity is derived as, 

2

2
0

1R
RI

N

σ
σ

≈ = ,          (5.5) 

where N is the number of particles in the cell used to calculate the concentration. The segregation 
intensity for a randomly mixed system in the current work is I = 0.04, which is shown in Figure 7 
as the dashed line. To save computation time, the simulation was stopped once the segregation 
intensity reached the randomly mixed state. 
 

 

Figure 7. Segregation intensity with respect to the number of drum revolution for the experiment 
and the 2-D multi-scale model using different k1 values. 

 
Segregation intensity plotted as a function of the number of drum revolutions is plotted in Figure 
7 for different assumed values of the spanwise diffusion constant k1. Figure 8 shows the sum of 
the absolute differences between the segregation intensities measured from experiments and 
computed from the 2-D multi-scale model for different k1 values. It can be seen that the 
segregation intensities computed from the 2-D multi-scale model match best with the values 
measured from experiments when k1 = 0.01. Hence, a calibrated spanwise diffusion constant k1 

for glass beads equal to 0.01 is adopted. Note that the asymptotic value of the experimental 
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results is slightly larger than the value for the randomly mixed state. This difference is because 
the image correction algorithm described in Appendix A introduces some error into the system 
and the perfectly random mixed state cannot be reached. 
 

 

Figure 8. Sum of the absolute differences between the segregation intensities measured from 
experiments and computed from the 2-D multi-scale model for different k1 values. 

 
6 Comparison of the experiments and multi-scale model results 
 
An FEM simulation was performed to predict the advective flow field information for the Sudah 
et al. Tote blender [26] using a rotation speed of 10 rpm and the material properties shown in 
Table 1. Furthermore, since transient velocity field information was used in the current work, the 
velocity components in all three directions needed to be outputted at every time step, which 
generates considerable amounts of data. Although the velocity field is not constant within a Tote 
blender single revolution, the material reaches a periodic steady state condition after a few initial 
revolutions. Table 3 shows the averaged velocity differences between subsequent revolutions, 
defined as, 

1
, ,

1 ,

ave

j jN
i n i n

j
n i ni

i

v v

vv

v N

+

=

−

∆ =
∑

 ,         (6.1) 

where i is the direction of the velocity component, j is the revolution number, and N is the total 
number of nodes within the material domain. It is evident that the periodic steady state condition 
is reached after the first revolution. Therefore, to save computational effort without losing 
accuracy, the FEM simulation was only performed for two revolutions and the velocity fields 
within the second revolution were used in the multi-scale model subsequently. 
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Table 3. The averaged velocity differences between subsequent revolutions. 

Revolution numbers (j, j+1) (1,2) (2,3) (3,4) 

ave
/x xv v∆  3.95% 0.56% 1.85% 

ave
/y yv v∆  2.30% 0.38% 3.03% 

ave
/z zv v∆  2.91% 1.18% 2.53% 

 
In the experiments reported by Sudah et al. [26], materials were initially loaded into the Tote 
blender in two different ways: top-bottom loading and left-right loading. Two filling levels were 
also studied – 40% fill and 60% fill. The same loading conditions and filling levels were 
modeled in the current work, as shown in Figure 9. Figure 10 shows the evolution of the material 
domain within the first revolution for left-right loading and 40% fill.  
 

 

Figure 9. The left-right (a) and top-bottom (b) initial loadings for 40% fill. 
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Figure 10. Snapshots showing the change of the material domain in the FEM simulation (a) and 
multi-scale model (b) for left-right loading and 40% fill. The vertical color scale in (b) is the red 

particle concentration. 
 
The state of mixing predicted by the multi-scale model after different numbers of revolutions is 
shown in Figure 11. As expected, as time increases the degree of mixing increases, with both 
advection and diffusion contributing to the mixing process. Moreover, the top-bottom loaded 
materials mix much faster than the left-right loaded materials since the advective mixing is much 
stronger in the top-bottom loading case. 

 

Figure 11. Snapshots showing the state of mixing at the end of each revolution for (a) left-right 
loading and (b) top-bottom loading and 40% fill. The vertical color scale is the red particle 

concentration for (a) and (b). 
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In the experiments by Sudah et al. [26], mixing curves were constructed by plotting the relative 
standard deviation (RSD) as a function of mixing time. The relative standard deviation is 
calculated as, 

i

RSD
c

σ= ,            (6.2) 

( )22
,

1

1

1

M

i i m
m

c c
M

σ
=

= −
− ∑ .         (6.3) 

In the above equations, σ2 is the measured variance of component i’s concentration, ci is the 
mean concentration of component i, and M is the total number of samples used to calculate the 
mean and variance. The relative standard deviation varies from zero, corresponding to perfect 
mixing, to one, which is a fully segregated state. The RSD value was also computed using the 
multi-scale model to compare with the published experimental results. Note that in the multi-
scale model, every node at which a concentration is calculated is used in the evaluation of the 
segregation intensity, while in the experiments nine core samples were used [26]. Although the 
scale of scrutiny plays a role in the calculated results, as shown in previous work [7], the 
predicted values using different grid sizes are close to each other. 
 
Figure 12 plots the RSD values with respect to the number of revolutions for top-bottom and left-
right initial loading patterns for the multiscale-model and experiments. Results for 40% and 60% 
fill levels were compared. In the current work, one million cells were used to maintain accuracy 
and computational efficiency (i.e., 100 cells in each direction). A mesh dependency study was 
performed to ensure solution convergence and the error was found to be within 5% between one 
million cells (i.e., 100 cells in each direction) and 3.375 million cells (i.e., 150 cells in each 
direction). As shown in Figure 12, there is good quantitative agreement between the multi-scale 
model predictions and experimental measurements, although it does appear that there is some 
offset for the case with 40% fill and top-bottom loading. There is no error information given for 
the experimental results so it is difficult to determine how significant this difference is. The total 
wall-clock time required to run a single case on 10 cores, including the FEM simulation and 
MATLAB processing, was approximately 2.5 days. 
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Figure 12. Mixing state comparison between published experimental results and the multi-scale 
model predictions. The random mixing state is represented by horizontal dashed lines and the 

spanwise diffusion constant is k1 = 0.01. 
 
 
7 Conclusions 
 
In this work, a three-dimensional transient multi-scale modeling approach is described for 
predicting blending in particulate systems. This model is extended from a previously published 
two-dimensional steady model [7]. This three-dimensional model combines, within the 
advection-diffusion equation, finite element method generated transient macroscopic velocity 
fields with experimentally-obtained particle diffusion correlations at a local scale. The model is 
applied here to a three-dimensional Tote blender. Predictions of the mixing rate from the multi-
scale model compare well quantitatively to published experimental data [26].  
 
A significant advantage of the multi-scale blending model over a DEM-only model is that the 
multi-scale model is more computationally efficient for industrially-relevant system sizes. This is 
because the number of DEM particles increases with the cube of the ratio of the system size to 
particle size, while the FEM nodes do not necessarily need to increase since the mesh size 
increases linearly with the system size. Furthermore, if particle size is reduced in the DEM 
simulations, then the integration time step also decreases, further increasing the time required to 
complete DEM simulations. In addition, all of the parameters used in the multi-scale model can 
be measured from independent, standard tests or calibrated from simple two-dimensional 
experiments (such as the material internal friction angle, the wall friction angle, and the diffusion 
constant). No back-fitting of the Tote blender results was used in the current work. 
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Future work should focus on expanding the multi-scale model to consider segregation of 
different materials, which is important in industrial practice. In addition, a simple, standard 
method should be developed to calibrate the diffusion constants. The current work used a two-
dimensional blender experiment, but other systems, such as a 2-D heap flow, may be considered. 
 
Appendix A Image Processing algorithm 
 
A flowchart of the image processing algorithm used in the current work is shown in Figure A1. 
For each image, the material domains (red and blue glass beads) were extracted using the 
freeware program ImageJ [35], which was used to identify only the glass beads among a white 
background. This RGB image was further analyzed to extract only the red component of each 
image’s pixels, with a value ranging between 0 (no red) and 255 (all red).  A threshold value of 
80 was selected to differentiate between the red and blue pixels. A value larger than 80 indicated 
that a pixel corresponded to a red particle while a value smaller than 80 indicated that it was a 
blue particle. This threshold value was chosen to ensure that at any point in time the fraction of 
red pixels in the entire system was 50±5% since the system consisted of 50% red beads. 

 

Figure A1. The image analysis algorithm for a single image. The steps proceed from 1 to 5. 
 
After distinguishing red and blue pixels, a black and white binary image was generated, with 
black corresponding to the blue pixels and white corresponding to the red ones. Note that since 
spherical glass beads were used in the experiment, reflections and shadows were introduced due 
to the light source. An image correction algorithm was developed in the MATLAB program in 
an attempt to account for these effects. 
 
The corrected binary image was used to compute the segregation intensity. A non-overlapping 
grid of square cells was used in the current analysis. The cell size varied from 3 to 10 particle 
diameters on a side. To avoid using samples containing data outside the cylinder boundary, 
boundary flags were used to make sure each sample contained at least 95% material. All of the 
qualified samples were then used to calculate the segregation intensity for the current time step. 



 19

 
References 
 
[1] L.T. Fan, S.J. Chen, C.A. Watson, Solids Mixing, Ind. Eng. Chem. 62 (1970) 53–69. 

doi:10.1021/ie50727a009. 
[2] M. Poux, P. Fayolle, J. Bertrand, D. Bridoux, J. Bousquet, Powder mixing: Some practical 

rules applied to agitated systems, Powder Technol. 68 (1991) 213–234. doi:10.1016/0032-
5910(91)80047-M. 

[3] M. Moakher, T. Shinbrot, F.J. Muzzio, Experimentally validated computations of flow, 
mixing and segregation of non-cohesive grains in 3D tumbling blenders, Powder Technol. 
109 (2000) 58–71. doi:10.1016/S0032-5910(99)00227-2. 

[4] Z. Asaf, D. Rubinstein, I. Shmulevich, Determination of discrete element model 
parameters required for soil tillage, Soil Tillage Res. 92 (2007) 227–242. 
doi:10.1016/j.still.2006.03.006. 

[5] G.K.P. Barrios, R.M. de Carvalho, A. Kwade, L.M. Tavares, Contact parameter 
estimation for DEM simulation of iron ore pellet handling, Powder Technol. 248 (2013) 
84–93. doi:10.1016/j.powtec.2013.01.063. 

[6] C.J. Coetzee, D.N.J. Els, G.F. Dymond, Discrete element parameter calibration and the 
modelling of dragline bucket filling, J. Terramechanics. 47 (2010) 33–44. 
doi:10.1016/j.jterra.2009.03.003. 

[7] Y. Liu, M. Gonzalez, C.R. Wassgren, Modeling granular material blending in a rotating 
drum using a finite element method and advection- diffusion equation multi-scale model 
Yu Liu, Https://Arxiv.Org/Pdf/1704.01219. (2017) 1–24. 

[8] A. Sarkar, C.R. Wassgren, Effect of particle size on flow and mixing in a bladed granular 
mixer, AIChE J. 61 (2015) 46–57. doi:10.1002/aic.14629. 

[9] K. Yamane, Discrete-element method application to mixing and segregation model in 
industrial blending system, J. Mater. Res. 19 (2004) 623–627. 
doi:10.1557/jmr.2004.19.2.623. 

[10] P.Y. Liu, R.Y. Yang, A.B. Yu, DEM study of the transverse mixing of wet particles in 
rotating drums, Chem. Eng. Sci. 86 (2013) 99–107. doi:10.1016/j.ces.2012.06.015. 

[11] R. Chandratilleke, A. Yu, J. Bridgwater, K. Shinohara, Flow and mixing of cohesive 
particles in a vertical bladed mixer, Ind. Eng. Chem. Res. 53 (2014) 4119–4130. 
doi:10.1021/ie403877v. 

[12] J. Bridgwater, D.F. Bagster, S.F. Chen, J.H. Hallam, Geometric and dynamic similarity in 
particle mixing, Powder Technol. 2 (1969) 198–206. doi:10.1016/0032-5910(69)80013-6. 

[13] J. Bridgwater, W.S. Foo, D.J. Stephens, Particle mixing and segregation in failure zones-
theory and experiment, Powder Technol. 41 (1985) 147–158. doi:10.1016/0032-
5910(85)87033-9. 

[14] S.B. Savage, C.K.K. Lun, Particle size segregation in inclined chute flow of dry 
cohesionless granular solids, J. Fluid Mech. 189 (1988) 311–335. 
doi:10.1017/S002211208800103X. 

[15] J.M.N.T. Gray, V.A. Chugunov, Particle-size segregation and diffusive remixing in 
shallow granular avalanches, 2006. doi:10.1017/S0022112006002977. 

[16] Y. Fan, C.P. Schlick, P.B. Umbanhowar, J.M. Ottino, R.M. Lueptow, Modelling size 
segregation of granular materials: The roles of segregation, advection and diffusion, J. 
Fluid Mech. 741 (2014) 252–279. doi:10.1017/jfm.2013.680. 



 20

[17] C.P. Schlick, Y. Fan, P.B. Umbanhowar, J.M. Ottino, R.M. Lueptow, Granular 
segregation in circular tumblers: Theoretical model and scaling laws, J. Fluid Mech. 765 
(2015) 632–652. doi:10.1017/jfm.2015.4. 

[18] D. Bertuola, S. Volpato, P. Canu, A.C. Santomaso, Prediction of segregation in funnel and 
mass flow discharge, Chem. Eng. Sci. 150 (2016) 16–25. doi:10.1016/j.ces.2016.04.054. 

[19] S.K. Hajra, D. Shi, J.J. McCarthy, Granular mixing and segregation in zigzag chute flow, 
Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 86 (2012) 1–7. 
doi:10.1103/PhysRevE.86.061318. 

[20] L. Bai, Q.J. Zheng, A.B. Yu, FEM simulation of particle flow and convective mixing in a 
cylindrical bladed mixer, Powder Technol. 313 (2017) 175–183. 
doi:10.1016/j.powtec.2017.03.018. 

[21] Q.J. Zheng, A.B. Yu, Modelling the granular flow in a rotating drum by the Eulerian finite 
element method, Powder Technol. 286 (2015) 361–370. 
doi:10.1016/j.powtec.2015.08.025. 

[22] Q.J. Zheng, A.B. Yu, Finite element investigation of the flow and stress patterns in conical 
hopper during discharge, Chem. Eng. Sci. 129 (2015) 49–57. 
doi:10.1016/j.ces.2015.02.022. 

[23] S. Swaminathan, J. Hilden, B. Ramey, C. Wassgren, Modeling the Formation of Debossed 
Features on a Pharmaceutical Tablet, J. Pharm. Innov. 11 (2016) 214–230. 
doi:10.1007/s12247-016-9257-6. 

[24] S. Swaminathan, B. Ramey, J. Hilden, C. Wassgren, Characterizing the powder punch-
face adhesive interaction during the unloading phase of powder compaction, Powder 
Technol. 315 (2017) 410–421. doi:10.1016/j.powtec.2017.04.003. 

[25] Y. Liu, C. Wassgren, Modifications to Johanson’s roll compaction model for improved 
relative density predictions, Powder Technol. 297 (2016) 294–302. 
doi:10.1016/j.powtec.2016.04.017. 

[26] O.S. Sudah, P.E. Arratia, A. Alexander, F.J. Muzzio, Simulation and experiments of 
mixing and segregation in a tote blender, AIChE J. 51 (2005) 836–844. 
doi:10.1002/aic.10448. 

[27] Dassault Systèmes, Abaqus analysis user’s manual, Rhode Island, 2007. 
[28] B. Utter, R.P. Behringer, Self-diffusion in dense granular shear flows, Phys. Rev. E - Stat. 

Nonlinear, Soft Matter Phys. 69 (2004) 1–12. doi:10.1103/PhysRevE.69.031308. 
[29] T.J. Chung, Computational Fluid Dynamics, Cambridge University Press, Cambridge, 

2015. 
[30] Y. Liu, X. Guo, H. Lu, X. Gong, An investigation of the effect of particle size on the flow 

behavior of pulverized coal, Procedia Eng. 102 (2015) 698–713. 
doi:10.1016/j.proeng.2015.01.170. 

[31] E.M. Kara, Contribution of particles size ranges to sand friction, Eng. Technol. Appl. Sci. 
Res. 3 (2013) 497–501. 

[32] F. Podczeck, Y. Miah, The influence of particle size and shape on the angle of internal 
friction and the flow factor of unlubricated and lubricated powders, Int. J. Pharm. 144 
(1996) 187–194. doi:10.1016/S0378-5173(96)04755-2. 

[33] A. Castellanos, C. Soria-Hoyo, J.M. Valverde, M.A.S. Quintanill, Cohesion and internal 
friction of fine glass beads as affected by small intensity vertical vibration, AIP Conf. 
Proc. 1145 (2009) 707–710. doi:10.1063/1.3180025. 

[34] N. Mitarai, F. Nori, Wet granular materials, Adv. Phys. 55 (2006) 1–45. 



 21

doi:10.1080/00018730600626065. 
[35] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ : 25 years of image 

analysis HISTORICAL commentary NIH Image to ImageJ : 25 years of image analysis, 
Nat. Methods. 9 (2012) 671–675. doi:10.1038/nmeth.2089. 

 


