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Abstract:	� In the context of increasing the strength-to-mass ratio of lightweight 
structures, the adhesively bonded joining technology appears to be 
an attractive solution. Nevertheless, the adhesive bonding method is 
important when the structural integrity of joints has to be ensured. In 
the literature, the cohesive zone models (CZMs) are shown to be able to 
predict both the static and fatigue strengths of adhesively bonded joints. 
The strength prediction is dependent on material laws and associated 
material parameters, characterizing the bondline behaviour mainly under 
pure mode I, mode II and mixed-mode I/II. The characterization methods 
are thus crucial. This paper aims at assessing the capabilities to identify 
the parameters of a particular CZM for both the inverse method, based on 
the energy balance associated with the path independent J-integral, and of 
a direct method described in this present work. The particular CZM has a 
classical shape based on the definition of a bilinear law for each of both pure 
modes, associated with pure mode interaction energy laws for initiation and 
propagation under mixed-mode I/II. The methodology used in this paper is 
based on a numerical test campaign only, involving the macro-element (ME) 
technique. A new approach for the fast formulation and implementation of 
ME modelling of two bonded beams is described.

Keywords:	� Adhesively bonded joint, cohesive zone model, macro-element, mode I, 
mode II, mixed-mode I/II, inverse method, direct method

1  Introduction

In the frame of structural design, the proper choice of joining technology is deci-
sive for guaranteeing the integrity of the manufactured structure. The mechanical 
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fastening, such as riveting or screwing, appears to be the reliable solution for the 
designers. Nevertheless, alone or in combination with the mechanical fastening, 
the adhesive bonding technology may offer significantly improved mechanical 
performance in terms of stiffness, static strength and fatigue strength [1–2]. This 
higher level of mechanical performance allows for the design of lighter joints. In 
other words, the adhesive bonding offers the possibility to reduce the structural 
mass while ensuring the mechanical strength. The optimization of the strength-
to-mass ratio is a challenge for several industrial sectors, such as aerospace, 
automotive, rail or naval transport industries. But, the reduction of structural mass 
makes sense only if the structural integrity is ensured. So to obtain the benefit from 
the adhesive bonding in view of mass reduction, it is required to be able to predict 
the strength of bonded joints.

The strength prediction consists in the comparison of computed strength cri-
teria with allowable design values. The strength criteria could be based on theo-
retical, empirical, semi-empirical investigations and possibly including in-service 
feedback. The stress analysis allows for the computation of input data, necessary 
for the assessment of strength criteria. The experimental characterization allows 
then for the definition of allowable design values as well as of mechanical behav-
ior to be used as input data for the mechanical analysis. As highlighted in [3], the 
strength of a joining system at the macroscale depends on the experimental test 
specimen and procedure used. According to recent literature [4–8] the cohesive 
zone model (CZM) appears to be one of the most suitable approaches that is able 
to model both the static and the fatigue behaviors of adhesive joints. A CZM offers 
thus the possibility to experimentally investigate both local and global mechani-
cal behaviors. Based on Damage Mechanics and Fracture Mechanics, the CZM 
enables a diagnostic of the current state of the adhesive damage along the over-
lap. The damage associated with micro-cracks and/or voids coalescence results 
in a progressive degradation of the material stiffness before failure. Contrary to 
approaches based on Fracture Mechanics, the CZM does not require the hypoth-
esis of the existence of an initial flaw. The localization of critical sites is an output 
of CZM-based approaches.

The characterization of CZM parameters makes use of a pre-cracked bonded 
overlap specimen loaded under various loadings, which are classically used in the 
frame of Fracture Mechanics.

Indeed, the end notched flexure (ENF) and double cantilever beam (DCB) test 
configurations are most frequently used for characterizing the CZM parameters of 
the adhesive employed in a thin adhesive layer loaded in pure mode I and pure 
mode II [7]. The characterization under mixed-mode I/II loading through mixed 
mode cantilever beam (MCB) and mixed mode bending (MMB) test configurations 
offers the possibility to subject the adhesive layer to a wide range of mixed-mode 
ratios while almost keeping the same experimental settings [9–13].

To characterize the CZM parameters, the inverse method based on the computa-
tion of the path independent J-integral [15] along a closed contour of specifically 
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designed specimens has been suggested [12-13,15-20]. The inverse method is 
based on experimental measurements of relative displacements at the crack tip 
of the bonded interface as a function of the reaction force. The use of the classical 
model of a beam on an elastic foundation allows for a simple computation of the 
J-integral and thus for an assessment of the CZM. Nevertheless, it suffers from 
some limitations mainly due to the hypotheses on which the J-integral is defined. 
A direct method has been previously suggested in [21]. Similarly to the inverse 
method, it makes use of both the experimental measurements of the displacement 
field at the bonded interface crack tip and of the model of beam on an elastic foun-
dation. It allows for the characterization of CZM parameters assuming sufficiently 
accurate experimental measurements.

This paper aims at assessing the capabilities to identify the parameters of a 
CZM by the inverse method and the direct method. The CZM selected in this 
paper has a classical shape, based on the definition of a bilinear law for each of the 
two pure modes, associated with pure mode interaction energy laws for initiation 
and propagation under mixed-mode I/II. The methodology is based on a numeri-
cal test campaign performed only on the MCB test configuration. In other words, 
numerical tests are employed instead of experimental tests to evaluate both char-
acterization methods. The numerical analysis uses the macro-element (ME) tech-
nique [22–24], through a home-made computer code implemented on SCILAB. 
This technique has already been successfully assessed against the Finite Element 
(FE) analysis in a similar context [21, 23–24]. Moreover, a new approach for an 
easy and fast implementation of the ME technique for the modelling of a bonded 
overlap is provided.

2  Numerical Test Campaign

2.1  Test Configuration

In the frame of the numerical test campaign presented in this paper, the MCB 
test configuration has been selected. It has been suggested by Högberg and 
Stigh [12, 13]. Similarly to the DCB test configuration, the loading consists in 
a pair of forces (termed F), being of the same magnitude but in opposite direc-
tions. Nevertheless, the action direction of the pair of forces is defined by an 
angle a, which allows for the adhesive layer to be subjected to pure mode I, 
pure mode II and mixed-mode I/II (see Figure 1). In this paper, contrary to the 
MCB test configuration described in [13], the two forces are not applied at the 
middle plane of the specimen but at neutral lines of each adherend. This MCB 
test configuration with a = p/2 corresponds to a DCB test configuration, while it 
leads with a = 0 to zero peel stress at the crack tip where the CZM parameters 
are measured.

The selected specimen design, including geometrical and material parameters, 
corresponds to the one described by Högberg and Stigh [13]. The crack length a=0 
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is then chosen (see Figure 1). The geometrical parameters are provided in Table 1 
in conjunction with Figure 1.

The adherends are made of steel with a Young’s modulus E = 200 GPa and a 
Poisson’s ratio n = 0.3. The design is such that the adherends will remain in their 
linear elastic domain. The adhesive is assumed to have a classical bilinear damage 
evolution law following [25], involving interaction energy laws for both initiation 
and propagation under mixed-mode:
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where n is a material parameter to be identified, GIc and GIIc are the fracture ener-
gies in mode I and mode II, GIe and GIIe are the elastic strain energies stored in mode 
I and mode II and GI and GII are related to the strain energy release rates in mode I 
and mode II, respectively.

The fracture energies in mode I and mode II and the elastic stiffnesses under peel 
and shear, termed kI and kII respectively are the same as those used by Högberg and 
Stigh [13]. Nevertheless, the adhesive maximal peel and shear stresses, termed Smax 
and Tmax, are different, to ensure a right energy dissipation during loading [26]. It is 
indicated that the law by Allix and Ladevèze [25] already includes this condition.  
It is then chosen to keep the same maximal shear stress Tmax= 26 MPa, resulting in a 
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Figure 1  MCB test configuration considered in this paper and the definitions of geometrical 
parameters.

Table 1  Geometrical parameters of the MCB specimen [14].

a in mm b in mm e in mm t in mm L in mm

0 4 0.2 8 100
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maximal peel stress Smax = 36.6 MPa, instead of 20 MPa. The choice of keeping Smax to 
its original value instead of Tmax does not change qualitatively the results provided 
in his paper. The material parameters of the adhesive layers are given in Table 2. 

2.2  Numerical Analysis

2.2.1  Macro-Element Technique Overview

The numerical analysis is performed using the macro-element (ME) technique 
for the modelling of bonded overlap [22–24]. This technique has been developed 
for the simplified stress analysis of hybrid (bolted/bonded) joints [22, 27]. The ME 
technique is inspired by the Finite Element (FE) method and differs in the sense 
that the interpolation functions are not assumed, since they take the shape of the 
solutions of the governing differential equations system. A direct consequence is 
that only one ME is sufficient to mesh a complete bonded overlap in the frame 
of a linear stress analysis. The bonded overlap is then modelled by a four-node 
ME – also called bonded-beams element – the nodes of which are located at the 
extremities of the overlap on the neutral axes of adherends (see Figure 2). This ME 
involves 3 degrees of freedom per node or a total of twelve for a 1D-beam analysis.

The main work is thus the formulation of the elementary stiffness matrix of the 
bonded-beams element. Indeed once the stiffness matrix of the complete struc-
ture is assembled from the elementary matrices and the boundary conditions are 

Table 2  Adhesive material parameters.

GIe

GIc

δvfδve

Smax

Stress

kI

Mode I

Displacement jump

GIIe

GIIc

δufδue

Tmax

Stress

kII

Mode II

Displacement jump

GIe in N/mm GIe in N/mm GIIe in N/mm GIIe in N/mm

0.76 3.128 E-2 3.464 E-2 2.30

dve in mm dvf in mm due in mm duf in mm

1.71 E-3 4.15 E-2 7.28 E-3 1.77 E-1

kI in GPa/mm Smax in MPa kII in GPa/mm Tmax in MPa

21.4 36.6 3.57 26



E. Paroissien et al: A Direct Method for the Assessment of Cohesive Zone Models

6    Rev. Adhesion Adhesives�     CC BY-NC - Creative Commons

DOI: 10.7569/RAA.2018.097301

applied, the minimization of the potential energy provides the solution, in terms 
of distributions along the overlap of adhesives stresses, internal forces and dis-
placements in the adherends.

2.2.2  Hypotheses and Formulation of the Elementary Stiffness Matrix

An approach for the formulation of the stiffness has already been described in 
detail in previous papers [22–24]. Nevertheless, this approach could be long to 
set up. In this paper, a new approach is provided for a fast and easy implementa-
tion within a mathematical software such as SCILAB for example. Compared with 
the early approach, the shape of solutions in terms of displacements and internal 
loads is not provided. Nevertheless, in the frame of nonlinear material analyses 
such as the one presented in this paper, the bonded overlap has to be meshed in 
order to locally update the material parameters within an iterative computation 
procedure (see section 2.2.3). As a result, the displacements and internal loads will 
be read directly at nodes. Moreover, the following description is useful for the 
derivation of the direct method.

It is assumed that the thickness of the adhesive is constant along the length ∆ of 
the macro-element. Moreover, the adherends are simulated as linear elastic Euler-
Bernoulli laminated beams.The general shape of the constitutive equations for the 
adherend j=1,2 provides the six first differential equations:
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Figure 2  Modelling of a bonded overlap by a bonded-beams element [22–24].
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where Nj (Mj) is the normal force (bending moment) of the adherend j and uj (vj, qj) 
is the longitudinal displacement (deflection, bending angle) of the adherend j. For 
the adherend j, Aj represents the extensional stiffness, Dj the bending stiffness and 
Bj the coupling stiffness and Dj=AjDj-BjBj≠0. In this paper, the coupling stiffnesses 
remain equal to zero and A1=A2=Etb and D1=D2=Et3b/12. It is indicated that the 
Euler-Bernoulli kinematics is employed by Högberg and Stigh in [13]. 

The adhesive layer is simulated by an infinite number of elastic shear and trans-
verse springs attached at both adherend interfaces. The adhesive shear stress – 
denoted T – and the adhesive peel stress – denoted S – are then given by:
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where hj is the half thickness of adherend j. In this paper, h1=h2=t/2.
The classical local equilibrium from Goland and Reissner [28] is used and pro-

vides the six last differential equations for j=1,2 (see Figure 3):
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where Vj is the shear force of the adherend j.

Tbdx

N1+dN1

M1+dM1
V1+dV1

N2+dN2

M2+dM2
V2+dV2

V1

V2

M2

N2

N1

x

M1y +

Tbdx

Sbdx

Figure 3  Free-body diagram of infinitesimal elements of the adherend 1 (top) and adherend 
2 (bottom).
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Considering the local equilibrium equations Eqs. (4), the adhesive stresses are 
replaced by their expressions as functions of adherend displacements Eqs. (3). In 
conjunction with Eqs (2), it results in a system of twelve linear first-order ordinary 
differential equations:
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This system can be written as 
dX
dx

AX=  where A is 12×12 matrix with real 

constant components and the unknown vector X is such that  tX=(u1 u2 v1 v2 q1 
q2 N1 N2 V1 V2 M1 M2). But the elementary stiffness matrix corresponds to the 
relationship between the vector of nodal forces and the vector of nodal displace-
ments [22–24], such as:
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The fundamental matrix of A, termed FA, is computed at x=0 and x=∆; using the 
SCILAB software, the associated command is “expm”:
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From these two 12*12 matrices, two matrices M’ and N’ are extracted. M’ (N’) is 
composed of the lines related to the nodal displacements (forces). For each, a first 
block of six lines and twelve rows comes from FA(x=0) and the second block of six 
lines and twelve rows comes from FA(x=∆), such that:

	

M
x

x
U

A i j

A i

’ ,
, , , , , ; :

,

= ( ) =
=( ) 

=( ) 

= =

=

F
F

F
0

0
1 2 3 4 5 6 1 12

1

∆
∆

22 3 4 5 6 1 12

7 8 9 1
0

0

, , , , ; :

, , ,
’ ,

j

F

A i
N

x

=

=













= ( ) =
=( ) 

F
F

∆
00 11 12 1 12

7 8 9 10 11 12 1 12

, , ; :

, , , , , ; :

j

A i j
x

=

= =
=( ) 












F ∆ 















� (8)

where i (j) indicates the line (row) number.
As KBBe is defined according to ([u1(0) u2(0) u1(∆) u2(∆) v1(0) v2(0) v1(∆) v2(∆) q1(0) θ 

2(0) q 1(∆) q2(∆)]), a simple rearrangement of the order of lines of M’ is performed to 
produce the matrix M. Similarly, the matrix N’ is subjected to the same operation. In 
a similar way, the terms related to nodal forces at x=0 are multiplied by -1 to follow 
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the arrangement ([-N1(0) -N2(0) N1(∆) N2(∆) -V1(0) -V2(0) V1(∆) V2(∆) -M1(0) -Μ 2(0) 
Μ 1(∆) M2(∆)]). It leads to the definition of the matrix N. The elementary stiffness 
matrix KBBe is equal to the product of N and the inverse of M [22-24]: KBBe=N.M-1.

Even if it is not the topic of this paper, it is obvious that this previous approach 
can be easily used to develop ME, under different local equilibrium equations 
(e.g. Hart-Smith [29], Luo and Tong [30]) or under different constitutive equations 
(e.g. Tsaï et al. [31]) and/or including different number of layers of adhesives and 
adherends (e.g. double lap joint configuration). 

2.2.3  Mesh and Boundary Conditions

The bonded overlap is regularly meshed with a parametrical number n_ME of 
bonded-beams elements. One extremity is clamped and the load is applied under 
displacement (termed H) at the other extremity [24] (see Figure 4). This choice of 
boundary conditions does not correspond to those experienced during experimen-
tal tests [12]. However, it is necessary to prescribe relevant degrees of freedom to 
run any analysis. In view of the application of the inverse method, it is mandatory 
that the adhesive layer does not deform at the joint extremity where the load is 
not applied. Clamping conditions avoid both peel and shear deformations. The 
inverse and direct methods are then applied by taking into account these bound-
ary conditions (see section 3.1).

The results are not presented in this paper but a study on the influence of mesh 
size up to a maximal mesh density of twenty MEs per mm was performed under a 
pure linear elastic analysis under pure mode I (a = p/2). The conclusions are that (i) 
the original approach and the present approach for the formulation of the elemen-
tary stiffness matrix of ME provides exactly the same results, and (ii) the computed 
reaction as well as the adhesive peak stresses do not vary at all with the mesh 
density.

2.2.4  Nonlinear Computation Management

The use of a nonlinear adhesive material implies that the computation is nonlinear. 
A detailed description of the nonlinear algorithm used is provided in [24]. Only 

n_ME

y + u = 0
v = 0
θ = 0x

H

H

–a

–a

Figure 4  Applied displacement H and fixed displacement applied to an MCB test 
configuration.
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a brief overview is given here. The algorithm is based on the Newton-Raphson 
method and uses the secant stiffness matrix with an update at each iteration. In 
particular, the damage parameter is computed at each nodal abscissa according to 
the introduced adhesive material law. The norm of displacement jump (in mm) of 
interface l is defined by:

	 l d d= ( ) + ( )v u
2 2 � (9)

where dv (du) is the displacement jump of the interface (see Table 2)  along the y-axis 
(x-axis). A mixity parameter b is defined by:

	 b d
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The mixity parameter is representative of the level of sliding displacement at the 
interface compared with the opening displacement at the interface. At each iteration, 
the mixity parameter b is updated. Under the current local mixity parameter, it is 
assumed that the material law is bilinear, such that the damage parameter d is:

	 d f e
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where le (lf) is the displacement jump (in mm) of the interface at initiation (propa-
gation). In order to compute le (lf), the interaction laws Eq. (1) are used while clas-
sically assuming that the projections on pure modes of the mixed mode evolution 
law under the current local mixity are bilinear (see Table 2):
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The damage parameter is computed only if dv is positive. Each ME is then 
updated with the damaged elastic stiffness taken as the maximal value of both 
damage parameters computed at each extremity of the ME.

Finally, the displacement is linearly applied as a function of the numerical 
time. All the numerical test results presented in this paper are obtained from 
a simulation run involving one hundred time steps, with a constant numerical 
time step dt.
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3  Characterization Method

3.1  The Inverse Method

The inverse method is based on the energy balance associated with the computa-
tion of the path independent J-integral [14] on a closed contour G:

	 J Wdy T
dU
dx

ds= −∫ � (13)

where W is the strain energy density, T n= s  is the traction vector, σ is the stress 
tensor, U is the displacement vector, n is the normal unit vector directed outward 
to the path G, and (x,y) is the specified two-dimensional coordinate system. From 
the fundamental work by Fraisse and Schmit [32] it is shown that the J-integral 
parameter can be computed from stress analysis based on a model of beam on an 
elastic foundation as:

	 J T d S du v u v u u v v

u v

d d d d d d d d
d d

, , ,( ) = ( ) + ( )∫ ∫
0 0

� (14)

In the frame of the inverse method:

(i) the adhesive peel stress is obtained from experimental tests under pure mode I 
loading as [17]:

	 S
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(ii) the adhesive shear stress is obtained from experimental tests under pure 
mode II loading as [15]:

	 T
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(iii) the adhesive peel and shear stresses are obtained from experimental tests 
under mixed-mode I/II loading as [12–13]:
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An advantage of this method is that it offers the possibility to monitor the evo-
lution of the adhesive stress at the crack tip from the measurements of macro-
scopic quantities possibly measurable from experimental test fixtures, such as the 
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applied load (in N) or the evolution of displacement jump (in mm) at the crack 
tip. The related expressions can be found in [12–13, 15–20]. In order to address 
the constraints inherent to the numerical analysis (see section 2.2.3) the following 
approximate expression for the J-integral parameter, deduced from the work by 
Fraisse and Schmit [32] after the relevant adaptations to the Euler-Bernoulli frame-
work (the same as ME) is used:
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This expression is valid when A1=A2=A, D1=D2=D, B1=B2=0 and t1=t2=t=2h. Even 
if the previous expression can be computed using the output from the stress analy-
sis, it is nevertheless suitable for the analysis of experimental tests, which needs 
the application data reduction scheme [33–34]. In addition, the required differen-
tiation of the J-integral parameter to obtain the adhesive peel and shear stresses 
at x=L is taken as the ratio of the difference between two consecutive computed 
J over the difference between two consecutive computed displacement jump du 
or dv:
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This is the reason why the chosen numerical time step is elevated (dt = 100).

3.2  The Direct Method

This method is presented in [21]. It is based on the measurement around the crack 
tip of the displacement of the neural axis according to the x-axis and the y-axis. 
Contrary to the inverse method, no spatial integration of equilibrium equations is 
required. It is assumed that the coupling stiffness remains equal to zero B1=B2=0; 
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the expressions for the adhesive shear stress including the coupling stiffnesses are 
provided in Appendix A.

In the case of pure mode I loading, the adhesive shear stress vanishes so that the 
local equilibrium of adherends can be reduced to the following set of differential 
equations for j=1,2:
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As a result:
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Using the constitutive relationship, the adhesive peel stress can be expressed as:

	 S
D

b

d w

dx
j j j

= −( )1
4

4
� (23)

In the case of pure mode II loading, the adhesive  peel stress vanishes so that the 
local equilibrium of adherends can be reduced to the following set of differential 
equations for j = 1,2:
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As a result:

	 T
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Using the constitutive relationships, the adhesive shear stress can be 
expressed as:
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In the case of mixed-mode I/II loading, the local equilibrium of adherends is 
given by Eq. (4). The following expressions for the adhesive peel and shear stresses 
are obtained:
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In the frame of this paper, the stress analysis provides the nodal displacements 
only, due to the approach chosen for the formulation of the elementary stiffness 
matrix. The consecutive differentiation of nodal displacements at the crack tip 
requires assessing the adhesive peel and shear stresses which are computed as the 
ratio of the difference between the displacements at the node located at x=L and 
the node at x=L-L/n_ME over L-L/n_ME.

3.3  Test Campaign

The assessment of both inverse and direct methods is performed through five dif-
ferent loading conditions, corresponding to five different values of the angle α (see 
Figure 4):

i.	pure mode I with a = p/2;
ii.	mixed-mode I/II with a = p/4;

iii.	 mixed-mode I/II with a = p/8;
iv.	 mixed-mode I/II with a = p/16;
v.	 pure mode II with a = 0.

For each of the five loading conditions, four virtual tests are performed and 
post-processed. Each of the virtual tests is associated with a mesh refinement or a 
density of mesh per mm:

i.	one ME per mm;
ii.	 two MEs per mm;

iii.	 four MEs per mm; 
iv.	 eight MEs per mm.

The results of the test campaign are presented and discussed in section 4. The 
results denoted as theoretical are related to the input data provided to the model 
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based on the constitutive behavior of the adhesive material. The results denoted as 
computed are related to direct output data of the numerical analysis as the adhesive 
stress distribution (using Eq. (3)), the reaction force or the J-integral parameter. 
Finally, results obtained from the inverse method and from the direct method are 
provided on the basis of computed results as described in section 3.1 and section 
3.2 respectively. For each loading condition, the results are given up to the propa-
gation beginning at x=L (it means d=1 at x=L). 

4  Results and Discussion

4.1  Pure Mode I and Pure Mode II

As a function of the displacement jump at x=L and up to the propagation begin-
ning at x=L (it means d=1), the computed reaction forces F under pure mode I and 
pure mode II are provided for the four mesh densities in Figure 5 and Figure 6. It 
appears that the mesh density has a significant influence on the accuracy of predic-
tions under pure mode I: a maximal relative difference of -11% in the reaction force 
is obtained for a mesh density of eight MEs per mm. The reaction force tends to 
stabilize with increase in mesh density. On the contrary, this influence appears as 
very limited under pure mode II, for the range of mesh density selected; a maximal 
relative difference of -1.1% in the reaction force is obtained for a mesh density of 
eight MEs per mm. However, the difference in the computed reaction forces with 
one ME per mm and eight MEs per mm remains similar for the pure mode I and 
pure mode II: 82 N and 84 N respectively. But the reaction force in pure mode II is 
about ten times higher than in pure mode I. As a result, the relative difference in 
pure mode II appears as much reduced.
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Figure 5  Reaction force as a function of the displacement jump at x=L for the four mesh 
densities under mode I.
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The peel (shear) stress distributions as a function of the displacement jump 
at x=L predicted by the inverse method and by the direct method are provided 
in Figure 7 (Figure 8) for a mesh density of eight MEs per mm. Moreover, they 
are compared with the theoretical and the computed ones. Under pure mode I, 
the four peel stress distributions appear as superimposed. Similarly, under pure 
mode II, the four shear stress distributions appear as very close. Only the inverse 
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Figure 6  Reaction force as a function of the displacement jump at x=L for the four mesh 
densities under mode II.
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a mesh density of 8 MEs per mm.
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method overestimates the maximal stress, before a slight underestimation at 
higher jump displacements. The relative differences in the maximal peel (shear) 
stresses obtained with the inverse and direct methods from the theoretical peel 
(shear) stress peaks are given in Figure 9 (Figure 10) as a function of the mesh 
density. Under pure mode I, the increase of mesh density tends to reduce the dif-
ference from the theoretical value for both methods and to reduce the rate of this 
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Figure 8  Shear stress at x=L as a function of the displacement jump. Comparison of 
distributions among the theory, computation, the direct method and the inverse method for 
a mesh density of 8 MEs per mm. 
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evolution. This behaviour is observed for the direct method under pure mode II 
too. For the inverse method, if the increase in the mesh density reduces the evolu-
tion rate, the relative difference from the theoretical value tends to increase by up 
to 6.7%, which is not considered as significant.

It can be concluded firstly that the adhesive stress evolution computed as a 
function of displacement jump at x=L, referred to as the adhesive constitutive evo-
lution, corresponds to the theoretical ones under pure mode I and pure mode II. 
Secondly, the direct method provides the theoretical adhesive constitutive evolu-
tion under pure mode I and pure mode II. Thirdly, if the inverse method provides 
the theoretical adhesive constitutive evolution under pure mode I, it provides 
under pure mode II a relevant adhesive constitutive evolution along the linear 
range and along a large part of the softening part of the constitutive behavior 
with possibly a slight overestimation of the maximal stresses. Nevertheless, from 
Figure 10, it is shown that the inverse method is able to predict the theoretical 
maximal stress, by selecting a coarser mesh density. 

4.2  Mixed-Mode I/II

In this section, quadratic initiation and propagation criteria are used; this means 
n=2 in Eq. (1). The computed reaction forces F for the three mixed-mode loading 
conditions defined by a = p/4, a = p/8 and a = p/16 are provided as functions of the 
norm of the displacement jump of both interfaces at x = L for the four mesh densi-
ties in Figure 11.  Similarly to the pure mode II case, the influence of the mesh den-
sity on the computed reaction force appears as very limited, for the range selected, 
due to the increase of the level of the reaction force (see section 4.1). The reaction 
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Figure 10  Relative difference in % in the maximal shear stress obtained with the inverse 
and direct methods from the theoretical shear stress peak as a function of mesh density.
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force computed for a mesh density of one ME per mm is different from the one for 
a mesh density of eight MEs per mm, i.e., –2.4%, –1.8% and –1.2% for α=π/4, α=π/8 
and a = p/16, respectively. 

The adhesive peel and shear stress distributions as a function of the displacement 
jump at x = L predicted by the inverse method and by the direct method are 
provided in Figure 12 and Figure 13 respectively, for a mesh density of eight 

Figure 11  Reaction force as a function of the norm of displacement jump at x=L for the four 
mesh densities under mixed-mode loading conditions a = p/4, a = p/8 and a = p/16.
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Figure 12  Peel stress at x = L as a function of the displacement jump under a loading condition 
a = p/16. Comparison of distributions among the theorical pure mode I, computation, the 
direct method and the inverse method for a mesh density of 8 MEs per mm.
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MEs per mm and under a loading condition a = p/16. Moreover, the pure mode 
evolutions are also shown in the figures. 

It is shown that the predictions by the direct method and the inverse method 
are different. Of course, the direct method predicts the computed results, since the 
direct method and the numerical simulations based on ME use the same hypoth-
eses. The accuracy of direct method predictions is related to the post-processing 
approach and thus to the mesh refinement (see Figure 14). The adhesive constitu-
tive evolutions in peel and in shear under mixed-mode identified by the inverse 
method are significantly different from the computed ones. The reason is that the 
way the shear and peel stresses are obtained in the inverse method under mixed-
mode are not mathematically true in general. Indeed, Eq. (14) does not lead to Eq. 
(17) and Eq. (18) in general. The particular CZM used in this paper to model the 
behaviour of the adhesive layer in the bonded joint is thus a case for which it is 
not true. When it is true, the adhesive peel and shear stresses are derivable from a 
potential energy [35]. For the particular CZM used in this paper, the adhesive peel 
and shear stresses appear as not derivable from a potential energy so that the work 
of separation is path-dependent.

Moreover, the constitutive adhesive evolutions in peel and shear computed and 
predicted by the direct method are given for a mesh density of eight MEs per mm 
and for the three loading conditions in Figure 15 and Figure 16 respectively. Under 
the mixed-mode loading conditions a = 11 p/4 and a = p/8, the adhesive constitutive 
evolution in peel remains very close to the pure mode I (see Figure 15): with no 
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Figure 13  Shear stress at x = L as a function of the displacement jump under a loading 
condition a = p/16. Comparison of distributions among the theoretical pure mode II, 
computation, the direct method and the inverse method for a mesh density of 8 MEs per 
mm. 
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more than a small difference of –1.7%. from the maximal theoretical peel stress. On 
the contrary, the variation in mixed-mode loading conditions is clearly shown in the 
adhesive constitutive evolution in shear (see Figure 16). It can thus be deduced that 
loading conditions close to the pure mode II are relevant choices for the experimen-
tal characterization of the mechanical behavior of the adhesive layer under mixed-
mode loading conditions, if the MCB test configuration is chosen.
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Figure 14  Peel stress computed from the direct method at x = L as a function of the 
displacement jump under a loading condition a = p/16 for 1 ME per mm and 8 MEs per mm.
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Figure 15  Peel stress at x=L as a function of the displacement jump for the three mixed-
mode loading conditions. 
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The actual level of mixity at x=L has been investigated. A local mixity angle y 
relevant to the actual description of loading conditions (angle α) is defined as:

	
y p b= − −

2
1tan � (29)

As already shown in [13], the local mixity angle at x=L differs from the loading 
condition a for the crack length selected (see Figure 17). Moreover, as a function of 
the increase of the damage parameter at x=L, the local mixity angle at x=L decreases 
to reach a value close to a. This evolution of the local mixity angle should lead to 
the shapes of the peel and shear stresses (see Figure 15 and Figure 16) which devi-
ate from those of pure mode ones.

4.3  Assessment of Mixed-Mode I/II Criterion 

There are several shapes of initiation and propagation [10–11, 21, 36]. An approach 
could consist in choosing a shape for the initiation and propagation and then to 
best fit the related parameters to the assessed peel and shear stresses. The energy 
criterion for initiation and propagation in this paper uses only one material 
parameter, the exponent n (see Eq. (1)). A comparison of the reaction force, adhesive 
peel and shear stress as a function of jump displacement is then provided between 
n=1 and n=2 in Figure 18 to Figure 20. The loading condition α=π/16 and a mesh 
density of eight MEs per mm are chosen. When the damage propagates at x=L, 
the reaction force computed with n=1 shows a relative difference of -4.9% from 
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Figure 16  Shear stress at x=L as a function of the displacement jump for the three mixed-
mode loading conditions. 
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the one with n=2. As a result, a small difference is thus shown on the macroscopic 
measurement due to the choice of the mixed-mode model. Qualitatively, the 
shape of the adhesive constitutive evolution in peel and shear is similar for n=1 
and n=2, although a slight variation in the slopes after the initiation is observed. 
Nevertheless, a clear difference appears quantitatively in terms of level of stress 
and jump displacement. A relative difference of -10% (-17%) for the case with n=2 
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Figure 17  Local mixity angle at x = L as a function of the damage parameter at x = L. 
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Figure 18  Computed reaction force as a function of the displacement jump under mixed-
mode loading condition α = π/16 for n = 1 and n = 2 with a mesh density of eight MEs 
per mm.
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is obtained for the maximal peel (shear) stress, respectively. As a result, it could be 
thought that models for the initiation and propagation could be assessed through 
the use of both the direct method and the numerical analysis. Finally, since the 
inverse method cannot always be used under mixed mode loading, it could be 
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Figure 19  Computed peel stress at x = L as a function of the displacement jump under 
mixed-mode loading condition a = p/16 for n = 1 and n = 2 with a mesh density of eight 
MEs per mm.
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Figure 20  Computed shear stress at x = L as a function of the displacement jump under 
mixed-mode loading condition a = p/16 for n = 1 and n = 2 with a mesh density of eight 
MEs per mm.
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thought that the assessment provided by the direct method could be restricted 
to a particular combination of geometrical parameters, material parameters and 
boundary conditions under consideration.

5  Summary and Conclusions

In order to identify the parameters of CZM for thin adhesive layers, the inverse 
method and the direct method have been tested through a numerical test cam-
paign. The numerical test campaign is based on the ME technique. A new approach 
for a fast formulation of the elementary stiffness matrix of bonded-beams element 
is provided in this paper. It can be concluded firstly that both inverse method 
and direct method are able to predict the adhesive constitutive evolution in both 
pure modes I and II. Secondly, the direct method provides accurate predictions 
under mixed-mode loading conditions. Thirdly, the inverse method fails in the 
assessment of the adhesive shear and peel stresses as a function of displacement 
jump under mixed-mode loading, with the particular CZM (but having a clas-
sical shape) used in this paper to model the adhesive layer in the bonded over-
lap. The use of the inverse method should then be restricted to the assessment 
of the adhesive constitutive evolution under pure modes only. Considering the 
J-integral framework, other restrictions should be considered when using the 
inverse method such as loading and unloading scheme or material time-depend-
ent characteristics. Although the direct method appears as attractive, it could be 
difficult to apply in practice. Indeed, third-order and fourth-order differentiations 
of measured displacements are required, so dedicated methods to process the 
recorded signals should be employed. Under pure mode I and pure mode II, the 
order of differentiation could be reduced if the strain field on the external skin of 
adherends is recorded [3]. From [37], it is clear that the experimental measurement 
of values such as applied force as a function of displacement jump is not sufficient 
for an accurate assessment of debonding problems. Nevertheless, assuming that 
the practical means are available to post-process the experimental test results for a 
reliable assessment of successive differentiations of measured displacements, the 
direct method would offer the possibility to investigate the CZM for thin adhesive 
layers. In particular, the experimental characterization of the shapes of constitu-
tive adhesive evolutions under pure mode I, pure mode II and mixed-mode I/II 
could lead to validate the CZM available in the literature or to develop other ones 
by changing some of the underlying hypotheses. For this objective, the shape of 
the constitutive adhesive stress is of highest interest. That is why the authors of 
this paper are currently investigating this topic. The use of a novel experimental 
test technique [38] allowing for the application of a wide range of mixed-mode 
ratios could be considered in conjunction with the direct method. It is indicated 
that the use of a series of loading and unloading schemes could help in a refined 
understanding of the mechanical behaviour of thin adhesive layers. Finally, when 
an adhesive layer needs to be characterized, its material behaviour is unknown 
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a priori. As a result, a preliminary and iterative step including experimental and 
numerical tests has to be conducted to design the test specimen to demonstrate the 
ability to obtain relevant experimental data. The use of the ME technique could 
help in reducing the computation time for numerical tests to virtually explore 
the design possibilities associated with the loading conditions geometries and 
adhesive constitutive behaviour laws. The implementation of an ME using the 
Timoshenko model instead of Euler-Bernoulli model could improve the relevance 
of the assessment of constitutive laws, especially when using thicker adherends.
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Appendix A

The expressions for the adhesive peel and shear stresses including the coupling stiff-
nesses are obtained as explained in section 3.2 by using the constitutive equations 
of adherends (Eq. (2)) and the local equilibrium equations of adherends (Eq. (4)).

Under pure mode I, the adhesive shear stress vanishes, so that:
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Under pure mode II, the adhesive peel stress vanishes, so that:
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Under pure mixed-mode I/II, the adhesive peel and shear stresses are given by:
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Nomenclature and Units

Aj	 extensional stiffness (N) of adherend j
Bj	 extensional and bending coupling stiffness (N.mm) of adherend j
Dj	 bending stiffness (N.mm2) of adherend j
E	 adherend Young’s modulus (MPa)
F	 magnitude of applied force (N)
GI	 strain energy release rate (energy per unit area: mJ or N/mm) in peel 
GII	 strain energy release rate (energy per unit area: mJ or N/mm)in shear
GIc	 adhesive fracture energy (energy per unit area: mJ or N/mm)in peel 
GIe	� adhesive elastic strain energy stored (energy per unit area: mJ or N/mm)

in peel 
GIIc	 adhesive fracture energy (energy per unit area: mJ or N/mm)in shear
GIIe	� adhesive elastic strain energy stored (energy unit area: mJ or N/mm)in 

shear
H	 magnitude of applied displacement (mm)
J	 J-integral parameter
KBBe	 elementary stiffness matrix of a bonded-beam element
L	 length (mm) of bonded overlap
Mj	 bending moment (N.mm) in adherend j around the z direction
Nj	 normal force (N) in adherend j in the x direction
S	 adhesive peel stress (MPa)
Smax	 maximal adhesive peel stress (MPa)
T	 adhesive shear stress (MPa)
Tmax	 maximal adhesive shear stress (MPa)
Vj	 shear force (N) in adherend j in the y direction
a	 crack length (mm) 
b	 width (mm) of the adherends
d	 damage parameter
e	 thickness (mm) of the adhesive layer
hj	 half thickness (mm) of adherend j 
kI	 adhesive elastic stiffness (MPa/mm) in peel 
kII	 adhesive elastic stiffness (MPa/mm) in shear 
n	 power usd in the adhesive material law
n_ME	 number of macro-elements
t	 adherend thickness (mm) 
uj	 displacement (mm) of adherend j in the x direction
vj	 displacement (mm) of adherend j in the y direction
D	 overlap length (mm) of a macro-element
Dj	 characteristic parameter of adherend j in N2.mm2

a	 angle (rad) used for the definition of the load application in MCB test
b	 mixed-mode parameter
dt	 numerical time step (s) 
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du	 displacement jump (mm) of the interface along the x-axis
due	 displacement jump (mm) of the interface along the x-axis at initiation
duf	 displacement jump (mm) of the interface along the x-axis at propagation
dv	 displacement jump (mm) of the interface along the y-axis
dve	 displacement jump (mm) of the interface along the y-axis at initiation
dvf	 displacement jump (mm) of the interface along the y-axis at propagation
l	 norm of displacement jump (mm) of the interface
le	 norm of displacement jump (mm) of the interface at initiation
lf	 norm of displacement jump (mm) of the interface at propagation
n	 adherend Poisson’s ratio
qj	 bending angle (rad) of the adherend j around the z direction
y	 local mixity angle (rad)
(x,y,z)	 system of axes
CZM	 cohesive zone model
DCB	 double cantilever beam
ENF	 end notched flexure
FE	 Finite Element
MCB	 mixed mode cantilever beam
ME	 macro-element
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