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In the context of increasing the strength-to-mass ratio of lightweight structures, the adhesively bonded joining technology appears to be an attractive solution. Nevertheless, the adhesive bonding method is important when the structural integrity of joints has to be ensured. In the literature, the cohesive zone models (CZMs) are shown to be able to predict both the static and fatigue strengths of adhesively bonded joints. The strength prediction is dependent on material laws and associated material parameters, characterizing the bondline behaviour mainly under pure mode I, mode II and mixed-mode I/II. The characterization methods are thus crucial. This paper aims at assessing the capabilities to identify the parameters of a particular CZM for both the inverse method, based on the energy balance associated with the path independent J-integral, and of a direct method described in this present work. The particular CZM has a classical shape based on the definition of a bilinear law for each of both pure modes, associated with pure mode interaction energy laws for initiation and propagation under mixed-mode I/II. The methodology used in this paper is based on a numerical test campaign only, involving the macro-element (ME) technique. A new approach for the fast formulation and implementation of ME modelling of two bonded beams is described.

Introduction

In the frame of structural design, the proper choice of joining technology is decisive for guaranteeing the integrity of the manufactured structure. The mechanical Rev. Adhesion Adhesives CC BY-NC -Creative Commons DOI: 10.7569/RAA.2018.097301 fastening, such as riveting or screwing, appears to be the reliable solution for the designers. Nevertheless, alone or in combination with the mechanical fastening, the adhesive bonding technology may offer significantly improved mechanical performance in terms of stiffness, static strength and fatigue strength [START_REF] Hart-Smith | Design methodology for bonded-bolted composite joints[END_REF][START_REF] Kelly | Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints[END_REF]. This higher level of mechanical performance allows for the design of lighter joints. In other words, the adhesive bonding offers the possibility to reduce the structural mass while ensuring the mechanical strength. The optimization of the strengthto-mass ratio is a challenge for several industrial sectors, such as aerospace, automotive, rail or naval transport industries. But, the reduction of structural mass makes sense only if the structural integrity is ensured. So to obtain the benefit from the adhesive bonding in view of mass reduction, it is required to be able to predict the strength of bonded joints.

The strength prediction consists in the comparison of computed strength criteria with allowable design values. The strength criteria could be based on theoretical, empirical, semi-empirical investigations and possibly including in-service feedback. The stress analysis allows for the computation of input data, necessary for the assessment of strength criteria. The experimental characterization allows then for the definition of allowable design values as well as of mechanical behavior to be used as input data for the mechanical analysis. As highlighted in [START_REF] Jumel | Instrumented end notched flexure -Crack propagation and process zone monitoring. Part I: Modelling and analysis[END_REF], the strength of a joining system at the macroscale depends on the experimental test specimen and procedure used. According to recent literature [START_REF] Khoramishad | A generalized damage model for constant amplitude fatigue loading of adhesively bonded joints[END_REF][START_REF] Khoramishad | Fatigue damage modeling of adhesively bonded joints under variable amplitude loading using cohesive zone model[END_REF][START_REF] Li | Mixed-mode cohesive zone models for fracture of an adhesively bonded polymer matrix composite[END_REF][START_REF] Da Silva | Advances in numerical modeling of adhesive joints[END_REF][START_REF] Campilho | Modelling adhesive joints with cohesive zone models: Effects of the cohesive law shape of the adhesive layer[END_REF] the cohesive zone model (CZM) appears to be one of the most suitable approaches that is able to model both the static and the fatigue behaviors of adhesive joints. A CZM offers thus the possibility to experimentally investigate both local and global mechanical behaviors. Based on Damage Mechanics and Fracture Mechanics, the CZM enables a diagnostic of the current state of the adhesive damage along the overlap. The damage associated with micro-cracks and/or voids coalescence results in a progressive degradation of the material stiffness before failure. Contrary to approaches based on Fracture Mechanics, the CZM does not require the hypothesis of the existence of an initial flaw. The localization of critical sites is an output of CZM-based approaches.

The characterization of CZM parameters makes use of a pre-cracked bonded overlap specimen loaded under various loadings, which are classically used in the frame of Fracture Mechanics.

Indeed, the end notched flexure (ENF) and double cantilever beam (DCB) test configurations are most frequently used for characterizing the CZM parameters of the adhesive employed in a thin adhesive layer loaded in pure mode I and pure mode II [START_REF] Da Silva | Advances in numerical modeling of adhesive joints[END_REF]. The characterization under mixed-mode I/II loading through mixed mode cantilever beam (MCB) and mixed mode bending (MMB) test configurations offers the possibility to subject the adhesive layer to a wide range of mixed-mode ratios while almost keeping the same experimental settings [START_REF] Hadavinia | The prediction of crack growth in bonded joints under cyclic-fatigue loading II. Analytical and finite element studies[END_REF][START_REF] Reeder | Mixed-mode bending method for delamination testing[END_REF][START_REF] Kenane | Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading[END_REF][START_REF] Högberg | Mixed-mode testing of adhesive layer[END_REF][START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF].

To characterize the CZM parameters, the inverse method based on the computation of the path independent J-integral [START_REF] Alfredsson | An experimental method to determine the complete stress-deformation relation for a structural adhesive layer loaded in shear[END_REF] along a closed contour of specifically CC BY-NC -Creative Commons 3 DOI: 10.7569/RAA.2018.097301 designed specimens has been suggested [START_REF] Högberg | Mixed-mode testing of adhesive layer[END_REF][START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF][START_REF] Alfredsson | An experimental method to determine the complete stress-deformation relation for a structural adhesive layer loaded in shear[END_REF][START_REF] Alfredsson | On the instantaneous energy release rate of the end notched flexure adhesive joint specimen[END_REF][START_REF] Anderson | The stress-elongation relation for an adhesive loaded in peel using equilibrium of energetic forces[END_REF][START_REF] Leffler | Shear behavior of adhesive layers[END_REF][START_REF] Cui | Constitutive law of adhesive layer measured with mixed-mode bending test[END_REF][START_REF] Cui | Delamination and debonding failure of laminated composite T-joints[END_REF]. The inverse method is based on experimental measurements of relative displacements at the crack tip of the bonded interface as a function of the reaction force. The use of the classical model of a beam on an elastic foundation allows for a simple computation of the J-integral and thus for an assessment of the CZM. Nevertheless, it suffers from some limitations mainly due to the hypotheses on which the J-integral is defined. A direct method has been previously suggested in [START_REF] Lélias | Mechanical behavior of adhesively bonded joints: Modeling, simulation and experimental characterization[END_REF]. Similarly to the inverse method, it makes use of both the experimental measurements of the displacement field at the bonded interface crack tip and of the model of beam on an elastic foundation. It allows for the characterization of CZM parameters assuming sufficiently accurate experimental measurements.

This paper aims at assessing the capabilities to identify the parameters of a CZM by the inverse method and the direct method. The CZM selected in this paper has a classical shape, based on the definition of a bilinear law for each of the two pure modes, associated with pure mode interaction energy laws for initiation and propagation under mixed-mode I/II. The methodology is based on a numerical test campaign performed only on the MCB test configuration. In other words, numerical tests are employed instead of experimental tests to evaluate both characterization methods. The numerical analysis uses the macro-element (ME) technique [START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF], through a home-made computer code implemented on SCILAB. This technique has already been successfully assessed against the Finite Element (FE) analysis in a similar context [START_REF] Lélias | Mechanical behavior of adhesively bonded joints: Modeling, simulation and experimental characterization[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. Moreover, a new approach for an easy and fast implementation of the ME technique for the modelling of a bonded overlap is provided.

Numerical Test Campaign

Test Configuration

In the frame of the numerical test campaign presented in this paper, the MCB test configuration has been selected. It has been suggested by Högberg and Stigh [12,[START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF]. Similarly to the DCB test configuration, the loading consists in a pair of forces (termed F), being of the same magnitude but in opposite directions. Nevertheless, the action direction of the pair of forces is defined by an angle a, which allows for the adhesive layer to be subjected to pure mode I, pure mode II and mixed-mode I/II (see Figure 1). In this paper, contrary to the MCB test configuration described in [START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF], the two forces are not applied at the middle plane of the specimen but at neutral lines of each adherend. This MCB test configuration with a = p/2 corresponds to a DCB test configuration, while it leads with a = 0 to zero peel stress at the crack tip where the CZM parameters are measured.

The selected specimen design, including geometrical and material parameters, corresponds to the one described by Högberg and Stigh [START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF]. The crack length a=0 Rev. Adhesion Adhesives CC BY-NC -Creative Commons DOI: 10.7569/RAA.2018.097301 is then chosen (see Figure 1). The geometrical parameters are provided in Table 1 in conjunction with Figure 1.

The adherends are made of steel with a Young's modulus E = 200 GPa and a Poisson's ratio n = 0.3. The design is such that the adherends will remain in their linear elastic domain. The adhesive is assumed to have a classical bilinear damage evolution law following [START_REF] Allix | Damage mechanics of interfacial media: Basic aspects, identification and application to delamination, in Damage and Interfacial Debonding in Composites[END_REF], involving interaction energy laws for both initiation and propagation under mixed-mode:

G G G G G G G G I Ie n II IIe n I Ic n II IIc n       +       =       +       = 1 1         (1) 
where n is a material parameter to be identified, G Ic and G IIc are the fracture energies in mode I and mode II, G Ie and G IIe are the elastic strain energies stored in mode I and mode II and G I and G II are related to the strain energy release rates in mode I and mode II, respectively. The fracture energies in mode I and mode II and the elastic stiffnesses under peel and shear, termed k I and k II respectively are the same as those used by Högberg and Stigh [START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF]. Nevertheless, the adhesive maximal peel and shear stresses, termed S max and T max , are different, to ensure a right energy dissipation during loading [START_REF] Turon | Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness[END_REF]. It is indicated that the law by Allix and Ladevèze [START_REF] Allix | Damage mechanics of interfacial media: Basic aspects, identification and application to delamination, in Damage and Interfacial Debonding in Composites[END_REF] already includes this condition. It is then chosen to keep the same maximal shear stress T max = 26 MPa, resulting in a Table 1 Geometrical parameters of the MCB specimen [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF]. 

a

Numerical Analysis

Macro-Element Technique Overview

The numerical analysis is performed using the macro-element (ME) technique for the modelling of bonded overlap [START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. This technique has been developed for the simplified stress analysis of hybrid (bolted/bonded) joints [START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | Simplified stress analysis of hybrid (bolted/bonded) joints[END_REF]. The ME technique is inspired by the Finite Element (FE) method and differs in the sense that the interpolation functions are not assumed, since they take the shape of the solutions of the governing differential equations system. A direct consequence is that only one ME is sufficient to mesh a complete bonded overlap in the frame of a linear stress analysis. The bonded overlap is then modelled by a four-node ME -also called bonded-beams element -the nodes of which are located at the extremities of the overlap on the neutral axes of adherends (see Figure 2). This ME involves 3 degrees of freedom per node or a total of twelve for a 1D-beam analysis.

The main work is thus the formulation of the elementary stiffness matrix of the bonded-beams element. Indeed once the stiffness matrix of the complete structure is assembled from the elementary matrices and the boundary conditions are applied, the minimization of the potential energy provides the solution, in terms of distributions along the overlap of adhesives stresses, internal forces and displacements in the adherends.

Hypotheses and Formulation of the Elementary Stiffness Matrix

An approach for the formulation of the stiffness has already been described in detail in previous papers [START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. Nevertheless, this approach could be long to set up. In this paper, a new approach is provided for a fast and easy implementation within a mathematical software such as SCILAB for example. Compared with the early approach, the shape of solutions in terms of displacements and internal loads is not provided. Nevertheless, in the frame of nonlinear material analyses such as the one presented in this paper, the bonded overlap has to be meshed in order to locally update the material parameters within an iterative computation procedure (see section 2.2.3). As a result, the displacements and internal loads will be read directly at nodes. Moreover, the following description is useful for the derivation of the direct method. It is assumed that the thickness of the adhesive is constant along the length ∆ of the macro-element. Moreover, the adherends are simulated as linear elastic Euler-Bernoulli laminated beams.The general shape of the constitutive equations for the adherend j=1,2 provides the six first differential equations: where N j (M j ) is the normal force (bending moment) of the adherend j and u j (v j , q j ) is the longitudinal displacement (deflection, bending angle) of the adherend j. For the adherend j, A j represents the extensional stiffness, D j the bending stiffness and B j the coupling stiffness and D j =A j D j -B j B j ≠0. In this paper, the coupling stiffnesses remain equal to zero and A 1 =A 2 =Etb and D 1 =D 2 =Et 3 b/12. It is indicated that the Euler-Bernoulli kinematics is employed by Högberg and Stigh in [START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF].

The adhesive layer is simulated by an infinite number of elastic shear and transverse springs attached at both adherend interfaces. The adhesive shear stressdenoted T -and the adhesive peel stress -denoted S -are then given by:

S k v v T k u u h h

I II = - ( ) = -- - ( )      1 2 2 1 2 2 1 1 q q (3)
where h j is the half thickness of adherend j. In this paper, h 1 =h 2 =t/2. The classical local equilibrium from Goland and Reissner [START_REF] Goland | The stresses in cemented joints[END_REF] is used and provides the six last differential equations for j=1,2 (see Figure 3):

dN dx bT dV dx bS dM dx V bh T j j j j j j j = - ( ) = - ( ) + + =          + 1 1 0 1 ( 4 
)
where V j is the shear force of the adherend j. Considering the local equilibrium equations Eqs. ( 4), the adhesive stresses are replaced by their expressions as functions of adherend displacements Eqs. (3). In conjunction with Eqs (2), it results in a system of twelve linear first-order ordinary differential equations:

Tbdx N 1 +dN 1 M 1 +dM 1 V 1 +dV 1 N 2 +dN 2 M 2 +dM 2 V 2 +dV 2 V 1 V 2 M 2 N 2 N 1 x M 1 y + Tbdx Sbdx
du dx D N B M du dx D N B M dv dx dv dx d d 1 1 1 1 1 1 1 2 2 2 1 2 2 2 1 1 2 2 1 = + = + = = ∆ ∆ ∆ ∆ q q q x x B N A M d dx B N A M dN dx bk u bk h b II II = + = + = + - 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 11 ∆ ∆ ∆ ∆ q q k k u bk h dN dx bk u bk h bk u bk h dV dx II II II II II II 2 2 2 2 1 11 2 2 2 1 + = - - + - q q q = = - = - + = + - bk v bk v dV dx bk v bk v dM dx bh k u bk h h b I I I I II II 1 2 2 1 2 1 1 1 1 1 1 q h h k u bk h h V dM dx bh k u bk h h bh k u b II II II II II 1 2 1 2 2 1 2 2 1 2 2 1 2 2 + - = + - + q q k k h h V II 2 2 2 2 q -                                    (5) 
This system can be written as

dX dx AX =
where A is 12×12 matrix with real constant components and the unknown vector X is such that

t X=(u 1 u 2 v 1 v 2 q 1 q 2 N 1 N 2 V 1 V 2 M 1 M 2 )
. But the elementary stiffness matrix corresponds to the relationship between the vector of nodal forces and the vector of nodal displacements [START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF], such as: 
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The fundamental matrix of A, termed F A , is computed at x=0 and x=∆; using the SCILAB software, the associated command is "expm":

F F A A x expm A x expm A = ( )= ( ) = ( )= ( )    0 0 . . ∆ ∆ (7) 
From these two 12*12 matrices, two matrices M' and N' are extracted. M' (N') is composed of the lines related to the nodal displacements (forces). For each, a first block of six lines and twelve rows comes from F A (x=0) and the second block of six lines and twelve rows comes from F A (x=∆), such that: ,,,,,; :

M x x U A i j A i ' , , , , , , ; : , = ( )= 
j A i j x = = = = ( )            F ∆            (8) 
where i (j) indicates the line (row) number.

As K BBe is defined according to ([u 1 (0) u 2 (0) u 1 (∆) u 2 (∆) v 1 (0) v 2 (0) v 1 (∆) v 2 (∆) q 1 (0) q 2 (0) q 1 (∆) q 2 (∆)]
), a simple rearrangement of the order of lines of M' is performed to produce the matrix M. Similarly, the matrix N' is subjected to the same operation. In a similar way, the terms related to nodal forces at x=0 are multiplied by -1 to follow 

(0) -N 2 (0) N 1 (∆) N 2 (∆) -V 1 (0) -V 2 (0) V 1 (∆) V 2 (∆) -M 1 (0) -Μ 2 (0) Μ 1 (∆) M 2 (∆)]
). It leads to the definition of the matrix N. The elementary stiffness matrix K BBe is equal to the product of N and the inverse of M [START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]:

K BBe =N.M -1 .
Even if it is not the topic of this paper, it is obvious that this previous approach can be easily used to develop ME, under different local equilibrium equations (e.g. Hart-Smith [START_REF] Hart-Smith | Adhesive bonded single lap joints[END_REF], Luo and Tong [START_REF] Luo | Analytical solutions for nonlinear analysis of composite single-lap joints[END_REF]) or under different constitutive equations (e.g. Tsaï et al. [START_REF] Tsai | Improved theoretical solutions for adhesive lap joints[END_REF]) and/or including different number of layers of adhesives and adherends (e.g. double lap joint configuration).

Mesh and Boundary Conditions

The bonded overlap is regularly meshed with a parametrical number n_ME of bonded-beams elements. One extremity is clamped and the load is applied under displacement (termed H) at the other extremity [START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF] (see Figure 4). This choice of boundary conditions does not correspond to those experienced during experimental tests [START_REF] Högberg | Mixed-mode testing of adhesive layer[END_REF]. However, it is necessary to prescribe relevant degrees of freedom to run any analysis. In view of the application of the inverse method, it is mandatory that the adhesive layer does not deform at the joint extremity where the load is not applied. Clamping conditions avoid both peel and shear deformations. The inverse and direct methods are then applied by taking into account these boundary conditions (see section 3.1).

The results are not presented in this paper but a study on the influence of mesh size up to a maximal mesh density of twenty MEs per mm was performed under a pure linear elastic analysis under pure mode I (a = p/2). The conclusions are that (i) the original approach and the present approach for the formulation of the elementary stiffness matrix of ME provides exactly the same results, and (ii) the computed reaction as well as the adhesive peak stresses do not vary at all with the mesh density.

Nonlinear Computation Management

The use of a nonlinear adhesive material implies that the computation is nonlinear. A detailed description of the nonlinear algorithm used is provided in [START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF]. Only a brief overview is given here. The algorithm is based on the Newton-Raphson method and uses the secant stiffness matrix with an update at each iteration. In particular, the damage parameter is computed at each nodal abscissa according to the introduced adhesive material law. The norm of displacement jump (in mm) of interface l is defined by:

l d d = ( ) + ( ) v u 2 2 (9) 
where d v (d u ) is the displacement jump of the interface (see Table 2) along the y-axis (x-axis). A mixity parameter b is defined by:

b d d q q = = -- - - u v u u h h v v 2 1 2 2 1 1 1 2 (10) 
The mixity parameter is representative of the level of sliding displacement at the interface compared with the opening displacement at the interface. At each iteration, the mixity parameter b is updated. Under the current local mixity parameter, it is assumed that the material law is bilinear, such that the damage parameter d is:

d f e f = - ( ) - ( ) l l l l l l ( 11 
)
where l e (l f ) is the displacement jump (in mm) of the interface at initiation (propagation). In order to compute l e (l f ), the interaction laws Eq. ( 1) are used while classically assuming that the projections on pure modes of the mixed mode evolution law under the current local mixity are bilinear (see Table 2): ( 

1 1 1 2 2 2 1 2 2 
) ) + ( ) ( ) + ( )                      2 
The damage parameter is computed only if d v is positive. Each ME is then updated with the damaged elastic stiffness taken as the maximal value of both damage parameters computed at each extremity of the ME.

Finally, the displacement is linearly applied as a function of the numerical time. All the numerical test results presented in this paper are obtained from a simulation run involving one hundred time steps, with a constant numerical time step d t .
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Characterization Method

The Inverse Method

The inverse method is based on the energy balance associated with the computation of the path independent J-integral [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF] on a closed contour G:

J Wdy T dU dx ds = - ∫ ( 13 
)
where W is the strain energy density, T n = s is the traction vector, σ is the stress tensor, U is the displacement vector, n is the normal unit vector directed outward to the path G, and (x,y) is the specified two-dimensional coordinate system. From the fundamental work by Fraisse and Schmit [START_REF] Fraisse | Use of J-integral as fracture parameter in simplified analysis of bonded joints[END_REF] it is shown that the J-integral parameter can be computed from stress analysis based on a model of beam on an elastic foundation as:

J T d S d u v u v u u v v u v d d d d d d d d d d , , , 
( )= ( ) + ( ) ∫ ∫ 0 0 (14) 
In the frame of the inverse method:

(i) the adhesive peel stress is obtained from experimental tests under pure mode I loading as [START_REF] Anderson | The stress-elongation relation for an adhesive loaded in peel using equilibrium of energetic forces[END_REF]:

S J v u v v d d d d ( )= ∂ ( ) ∂ , (15) 
(ii) the adhesive shear stress is obtained from experimental tests under pure mode II loading as [START_REF] Alfredsson | An experimental method to determine the complete stress-deformation relation for a structural adhesive layer loaded in shear[END_REF]:

T J u u v u d d d d ( )= ∂ ( ) ∂ , (16) 
(iii) the adhesive peel and shear stresses are obtained from experimental tests under mixed-mode I/II loading as [START_REF] Högberg | Mixed-mode testing of adhesive layer[END_REF][START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF]:

S J v u v v d d d d ( )= ∂ ( ) ∂ , ( 17 
)
T J u u v u d d d d ( )= ∂ ( ) ∂ , (18) 
An advantage of this method is that it offers the possibility to monitor the evolution of the adhesive stress at the crack tip from the measurements of macroscopic quantities possibly measurable from experimental test fixtures, such as the CC BY-NC -Creative Commons 13 DOI: 10.7569/RAA.2018.097301 applied load (in N) or the evolution of displacement jump (in mm) at the crack tip. The related expressions can be found in [START_REF] Högberg | Mixed-mode testing of adhesive layer[END_REF][START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF][START_REF] Alfredsson | An experimental method to determine the complete stress-deformation relation for a structural adhesive layer loaded in shear[END_REF][START_REF] Alfredsson | On the instantaneous energy release rate of the end notched flexure adhesive joint specimen[END_REF][START_REF] Anderson | The stress-elongation relation for an adhesive loaded in peel using equilibrium of energetic forces[END_REF][START_REF] Leffler | Shear behavior of adhesive layers[END_REF][START_REF] Cui | Constitutive law of adhesive layer measured with mixed-mode bending test[END_REF][START_REF] Cui | Delamination and debonding failure of laminated composite T-joints[END_REF]. In order to address the constraints inherent to the numerical analysis (see section 2.2.3) the following approximate expression for the J-integral parameter, deduced from the work by Fraisse and Schmit [START_REF] Fraisse | Use of J-integral as fracture parameter in simplified analysis of bonded joints[END_REF] after the relevant adaptations to the Euler-Bernoulli framework (the same as ME) is used:

J b N L A M L D b N L A M L D u v d d , ( )= ( ) + ( )         + ( ) + ( )     1 2 1 2 1 2 1 2 2 2 2 2      - ( )+ ( ) ( ) + ( )+ ( )+ ( ) -( ) ( )      1 2 0 0 2 0 0 2 0 0 1 2 2 1 2 2 1 b N N A M M h N N               + ( ) ( )+ ( ) ( )     - ( ) ( ) 2 1 1 2 2 1 1 8 1 1 0 0 D b V L L V L L b V q q q + + ( ) ( )     V 2 2 0 0 q (19)
This expression is valid when A 1 =A 2 =A, D 1 =D 2 =D, B 1 =B 2 =0 and t 1 =t 2 =t=2h. Even if the previous expression can be computed using the output from the stress analysis, it is nevertheless suitable for the analysis of experimental tests, which needs the application data reduction scheme [START_REF] Sarrado | An experimental data reduction method for the mixed mode bending test based on the J-integral approach[END_REF][START_REF] Azari | Fracture load predictions and measurements for toughened epoxy adhesive joints[END_REF]. In addition, the required differentiation of the J-integral parameter to obtain the adhesive peel and shear stresses at x=L is taken as the ratio of the difference between two consecutive computed J over the difference between two consecutive computed displacement jump d u or d v :

S t J t J t t t T t J t J t v t v v t u t u d d d d d d d d ( ) ( ) = ( ) -- ( ) ( ) - - ( ) ( ) ( ) = ( ) -- ( ) t t t u t ( ) - - ( )        d d (20) 
This is the reason why the chosen numerical time step is elevated (d t = 100).

The Direct Method

This method is presented in [START_REF] Lélias | Mechanical behavior of adhesively bonded joints: Modeling, simulation and experimental characterization[END_REF]. It is based on the measurement around the crack tip of the displacement of the neural axis according to the x-axis and the y-axis. Contrary to the inverse method, no spatial integration of equilibrium equations is required. It is assumed that the coupling stiffness remains equal to zero B 1 =B 2 =0;

CC BY-NC -Creative Commons DOI: 10.7569/RAA.2018.097301 the expressions for the adhesive shear stress including the coupling stiffnesses are provided in Appendix A.

In the case of pure mode I loading, the adhesive shear stress vanishes so that the local equilibrium of adherends can be reduced to the following set of differential equations for j=1,2: 

+ =          + 0 1 0 1 ( 21 
)
As a result:

S b d M dx j j = - ( ) 1 1 2 2 (22) 
Using the constitutive relationship, the adhesive peel stress can be expressed as:

S D b d w dx j j j = - ( ) 1 4 4 (23) 
In the case of pure mode II loading, the adhesive peel stress vanishes so that the local equilibrium of adherends can be reduced to the following set of differential equations for j = 1,2:

dN dx bT dV dx dM dx V bh T j j j j j j = - ( ) = + + =          1 0 0 (24) 
As a result:

T b dN dx j j = - ( ) 1 1 (25) 
Using the constitutive relationships, the adhesive shear stress can be expressed as: In the case of mixed-mode I/II loading, the local equilibrium of adherends is given by Eq. ( 4). The following expressions for the adhesive peel and shear stresses are obtained: 

1 2 2 ( 28 
)
In the frame of this paper, the stress analysis provides the nodal displacements only, due to the approach chosen for the formulation of the elementary stiffness matrix. The consecutive differentiation of nodal displacements at the crack tip requires assessing the adhesive peel and shear stresses which are computed as the ratio of the difference between the displacements at the node located at x=L and the node at x=L-L/n_ME over L-L/n_ME.

Test Campaign

The assessment of both inverse and direct methods is performed through five different loading conditions, corresponding to five different values of the angle α (see Figure 4): i. pure mode I with a = p/2; ii. mixed-mode I/II with a = p/4; iii. mixed-mode I/II with a = p/8; iv. mixed-mode I/II with a = p/16; v. pure mode II with a = 0.

For each of the five loading conditions, four virtual tests are performed and post-processed. Each of the virtual tests is associated with a mesh refinement or a density of mesh per mm: based on the constitutive behavior of the adhesive material. The results denoted as computed are related to direct output data of the numerical analysis as the adhesive stress distribution (using Eq. ( 3)), the reaction force or the J-integral parameter. Finally, results obtained from the inverse method and from the direct method are provided on the basis of computed results as described in section 3.1 and section 3.2 respectively. For each loading condition, the results are given up to the propagation beginning at x=L (it means d=1 at x=L).

Results and Discussion

Pure Mode I and Pure Mode II

As a function of the displacement jump at x=L and up to the propagation beginning at x=L (it means d=1), the computed reaction forces F under pure mode I and pure mode II are provided for the four mesh densities in Figure 5 and Figure 6. It appears that the mesh density has a significant influence on the accuracy of predictions under pure mode I: a maximal relative difference of -11% in the reaction force is obtained for a mesh density of eight MEs per mm. The reaction force tends to stabilize with increase in mesh density. On the contrary, this influence appears as very limited under pure mode II, for the range of mesh density selected; a maximal relative difference of -1.1% in the reaction force is obtained for a mesh density of eight MEs per mm. However, the difference in the computed reaction forces with one ME per mm and eight MEs per mm remains similar for the pure mode I and pure mode II: 82 N and 84 N respectively. But the reaction force in pure mode II is about ten times higher than in pure mode I. As a result, the relative difference in pure mode II appears as much reduced. The peel (shear) stress distributions as a function of the displacement jump at x=L predicted by the inverse method and by the direct method are provided in Figure 7 (Figure 8) for a mesh density of eight MEs per mm. Moreover, they are compared with the theoretical and the computed ones. Under pure mode I, the four peel stress distributions appear as superimposed. Similarly, under pure mode II, the four shear stress distributions appear as very close. Only the inverse method overestimates the maximal stress, before a slight underestimation at higher jump displacements. The relative differences in the maximal peel (shear) stresses obtained with the inverse and direct methods from the theoretical peel (shear) stress peaks are given in Figure 9 (Figure 10) as a function of the mesh density. Under pure mode I, the increase of mesh density tends to reduce the difference from the theoretical value for both methods and to reduce the rate of this evolution. This behaviour is observed for the direct method under pure mode II too. For the inverse method, if the increase in the mesh density reduces the evolution rate, the relative difference from the theoretical value tends to increase by up to 6.7%, which is not considered as significant.

It can be concluded firstly that the adhesive stress evolution computed as a function of displacement jump at x=L, referred to as the adhesive constitutive evolution, corresponds to the theoretical ones under pure mode I and pure mode II. Secondly, the direct method provides the theoretical adhesive constitutive evolution under pure mode I and pure mode II. Thirdly, if the inverse method provides the theoretical adhesive constitutive evolution under pure mode I, it provides under pure mode II a relevant adhesive constitutive evolution along the linear range and along a large part of the softening part of the constitutive behavior with possibly a slight overestimation of the maximal stresses. Nevertheless, from Figure 10, it is shown that the inverse method is able to predict the theoretical maximal stress, by selecting a coarser mesh density.

Mixed-Mode I/II

In this section, quadratic initiation and propagation criteria are used; this means n=2 in Eq. ( 1). The computed reaction forces F for the three mixed-mode loading conditions defined by a = p/4, a = p/8 and a = p/16 are provided as functions of the norm of the displacement jump of both interfaces at x = L for the four mesh densities in Figure 11. Similarly to the pure mode II case, the influence of the mesh density on the computed reaction force appears as very limited, for the range selected, due to the increase of the level of the reaction force (see section 4.1). The reaction force computed for a mesh density of one ME per mm is different from the one for a mesh density of eight MEs per mm, i.e., -2.4%, -1.8% and -1.2% for α=π/4, α=π/8 and a = p/16, respectively.

The adhesive peel and shear stress distributions as a function of the displacement jump at x = L predicted by the inverse method and by the direct method are provided in Figure 12 and Figure 13 respectively, for a mesh density of eight It is shown that the predictions by the direct method and the inverse method are different. Of course, the direct method predicts the computed results, since the direct method and the numerical simulations based on ME use the same hypotheses. The accuracy of direct method predictions is related to the post-processing approach and thus to the mesh refinement (see Figure 14). The adhesive constitutive evolutions in peel and in shear under mixed-mode identified by the inverse method are significantly different from the computed ones. The reason is that the way the shear and peel stresses are obtained in the inverse method under mixedmode are not mathematically true in general. Indeed, Eq. ( 14) does not lead to Eq. ( 17) and Eq. ( 18) in general. The particular CZM used in this paper to model the behaviour of the adhesive layer in the bonded joint is thus a case for which it is not true. When it is true, the adhesive peel and shear stresses are derivable from a potential energy [START_REF] Goustanios | Path dependence of truss-like mixed mode cohesive laws[END_REF]. For the particular CZM used in this paper, the adhesive peel and shear stresses appear as not derivable from a potential energy so that the work of separation is path-dependent.

Moreover, the constitutive adhesive evolutions in peel and shear computed and predicted by the direct method are given for a mesh density of eight MEs per mm and for the three loading conditions in Figure 15 and Figure 16 respectively. Under the mixed-mode loading conditions a = 11 p/4 and a = p/8, the adhesive constitutive evolution in peel remains very close to the pure mode I (see Figure 15 more than a small difference of -1.7%. from the maximal theoretical peel stress. On the contrary, the variation in mixed-mode loading conditions is clearly shown in the adhesive constitutive evolution in shear (see Figure 16). It can thus be deduced that loading conditions close to the pure mode II are relevant choices for the experimental characterization of the mechanical behavior of the adhesive layer under mixedmode loading conditions, if the MCB test configuration is chosen. The actual level of mixity at x=L has been investigated. A local mixity angle y relevant to the actual description of loading conditions (angle α) is defined as:

y p b = - - 2 1 tan (29) 
As already shown in [START_REF] Högberg | Specimen proposals for mixed-mode testing of adhesive layer[END_REF], the local mixity angle at x=L differs from the loading condition a for the crack length selected (see Figure 17). Moreover, as a function of the increase of the damage parameter at x=L, the local mixity angle at x=L decreases to reach a value close to a. This evolution of the local mixity angle should lead to the shapes of the peel and shear stresses (see Figure 15 and Figure 16) which deviate from those of pure mode ones.

Assessment of Mixed-Mode I/II Criterion

There are several shapes of initiation and propagation [10-11, 21, 36]. An approach could consist in choosing a shape for the initiation and propagation and then to best fit the related parameters to the assessed peel and shear stresses. The energy criterion for initiation and propagation in this paper uses only one material parameter, the exponent n (see Eq. ( 1)). A comparison of the reaction force, adhesive peel and shear stress as a function of jump displacement is then provided between n=1 and n=2 in Figure 18 the one with n=2. As a result, a small difference is thus shown on the macroscopic measurement due to the choice of the mixed-mode model. Qualitatively, the shape of the adhesive constitutive evolution in peel and shear is similar for n=1 and n=2, although a slight variation in the slopes after the initiation is observed. Nevertheless, a clear difference appears quantitatively in terms of level of stress and jump displacement. A relative difference of -10% (-17%) for the case with n=2 is obtained for the maximal peel (shear) stress, respectively. As a result, it could be thought that models for the initiation and propagation could be assessed through the use of both the direct method and the numerical analysis. Finally, since the inverse method cannot always be used under mixed mode loading, it could be a priori. As a result, a preliminary and iterative step including experimental and numerical tests has to be conducted to design the test specimen to demonstrate the ability to obtain relevant experimental data. The use of the ME technique could help in reducing the computation time for numerical tests to virtually explore the design possibilities associated with the loading conditions geometries and adhesive constitutive behaviour laws. The implementation of an ME using the Timoshenko model instead of Euler-Bernoulli model could improve the relevance of the assessment of constitutive laws, especially when using thicker adherends. 

Nomenclature and Units

Figure 1

 1 Figure 1 MCB test configuration considered in this paper and the definitions of geometrical parameters.

Figure 2

 2 Figure 2Modelling of a bonded overlap by a bonded-beams element[START_REF] Paroissien | Analytical two-dimensional model of a hybrid (bolted/bonded) single-lap joint[END_REF][START_REF] Paroissien | A simplified stress analysis of bonded joints using macro-elements[END_REF][START_REF] Lélias | An extended semi-analytical formulation for fast and reliable mode I/II stress analysis of adhesively bonded joints[END_REF].

Figure 3

 3 Figure 3 Free-body diagram of infinitesimal elements of the adherend 1 (top) and adherend 2 (bottom).
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Figure 4

 4 Figure 4 Applied displacement H and fixed displacement applied to an MCB test configuration.
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  i. one ME per mm; ii. two MEs per mm; iii. four MEs per mm; iv. eight MEs per mm. The results of the test campaign are presented and discussed in section 4. The results denoted as theoretical are related to the input data provided to the model Rev. Adhesion Adhesives CC BY-NC -Creative Commons DOI: 10.7569/RAA.2018.097301

Figure 5

 5 Figure 5 Reaction force as a function of the displacement jump at x=L for the four mesh densities under mode I.

Figure 6

 6 Figure 6 Reaction force as a function of the displacement jump at x=L for the four mesh densities under mode II.

Figure 7

 7 Figure 7 Peel stress at x=L as a function of the displacement jump. Comparison of distributions among the theory, computation, the direct method and the inverse method for a mesh density of 8 MEs per mm.

Figure 8 Figure 9

 89 Figure 8 Shear stress at x=L as a function of the displacement jump. Comparison of distributions among the theory, computation, the direct method and the inverse method for a mesh density of 8 MEs per mm.

Figure 10

 10 Figure 10Relative difference in % in the maximal shear stress obtained with the inverse and direct methods from the theoretical shear stress peak as a function of mesh density.

Figure 11 Figure 12

 1112 Figure 11 Reaction force as a function of the norm of displacement jump at x=L for the four mesh densities under mixed-mode loading conditions a = p/4, a = p/8 and a = p/16.

Figure 13

 13 Figure 13 Shear stress at x = L as a function of the displacement jump under a loading condition a = p/16. Comparison of distributions among the theoretical pure mode II, computation, the direct method and the inverse method for a mesh density of 8 MEs per mm.

[ 8 Figure 14 Figure 15

 81415 Figure 14 Peel stress computed from the direct method at x = L as a function of the displacement jump under a loading condition a = p/16 for 1 ME per mm and 8 MEs per mm.

to Figure 20 . 8 aFigure 16

 20816 Figure 16 Shear stress at x=L as a function of the displacement jump for the three mixedmode loading conditions.

Figure 17 Figure 18

 1718 Figure 17 Local mixity angle at x = L as a function of the damage parameter at x = L.

Figure 19

 19 Figure 19 Computed peel stress at x = L as a function of the displacement jump under mixed-mode loading condition a = p/16 for n = 1 and n = 2 with a mesh density of eight MEs per mm.

Figure 20

 20 Figure 20 Computed shear stress at x = L as a function of the displacement jump under mixed-mode loading condition a = p/16 for n = 1 and n = 2 with a mesh density of eight MEs per mm.
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 124 Under pure mode II, the adhesive peel stress vanishes, so that: Under pure mixed-mode I/II, the adhesive peel and shear stresses are given by: Rev. Adhesion Adhesives CC BY-NC -Creative Commons DOI: 10.7569/RAA.2018.097301

  d u displacement jump (mm) of the interface along the x-axis d ue displacement jump (mm) of the interface along the x-axis at initiation d uf displacement jump (mm) of the interface along the x-axis at propagation d v displacement jump (mm) of the interface along the y-axis d ve displacement jump (mm) of the interface along the y-axis at initiation d vf displacement jump (mm) of the interface along the y-axis at propagation l norm of displacement (mm) of the interface l e norm of displacement jump (mm) of the interface at initiation l f norm of displacement jump (mm) of the interface at propagation n adherend Poisson's ratio q j bending angle (rad) of the adherend j around the z direction y local mixity angle (rad) (x,y,z) system of axes CZM cohesive zone model DCB double cantilever beam ENF end notched flexure FE Finite Element MCB mixed mode cantilever beam ME macro-element

in mm b in mm e in mm t in mm L in mm

  MPa, instead of 20 MPa. The choice of keeping S max to its original value instead of T max does not change qualitatively the results provided in his paper. The material parameters of the adhesive layers are given in Table2.
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Table 2

 2 Adhesive material parameters.

	Stress		Mode I	Stress		Mode II
	S max	G Ie	G Ic	T max	G IIe	G IIc
	kI			kII		
	δ ve		δ vf	δ ue		δ uf
			Displacement jump			Displacement jump

G Ie in N/mm G Ie in N/mm G IIe in N/mm G IIe in N/mm

  

	0.76	3.128 E-2	3.464 E-2	2.30

d ve in mm d vf in mm d ue in mm d uf in mm

  

	1.71 E-3	4.15 E-2	7.28 E-3	1.77 E-1

k I in GPa/mm S max in MPa k II in GPa/mm T max in MPa

  

	21.4 DOI: 10.7569/RAA.2018.097301 36.6	3.57 CC BY-NC -Creative Commons

  strain energy release rate (energy per unit area: mJ or N/mm) in peel G II strain energy release rate (energy per unit area: mJ or N/mm)in shear G Ic adhesive fracture energy (energy per unit area: mJ or N/mm)in peel G Ie adhesive elastic strain energy stored (energy per unit area: mJ or N/mm) in peel G IIc adhesive fracture energy (energy per unit area: mJ or N/mm)in shear G IIe adhesive elastic strain energy stored (energy unit area: mJ or N/mm)in

	A j	extensional stiffness (N) of adherend j
	B j D j	extensional and bending coupling stiffness (N.mm) of adherend j bending stiffness (N.mm 2 ) of adherend j
	E	adherend Young's modulus (MPa)
	F	magnitude of applied force (N)
	G I	
		shear
	H	magnitude of applied displacement (mm)
	J	J-integral parameter
	K BBe	elementary stiffness matrix of a bonded-beam element
	L	length (mm) of bonded overlap
	M j	bending moment (N.mm) in adherend j around the z direction
	N j	normal force (N) in adherend j in the x direction
	S	adhesive peel stress (MPa)
	S max	maximal adhesive peel stress (MPa)
	T	adhesive shear stress (MPa)
	T max	maximal adhesive shear stress (MPa)
	V j	shear force (N) in adherend j in the y direction
	a	crack length (mm)
	b	width (mm) of the adherends
	d	damage parameter
	e	thickness (mm) of the adhesive layer
	h j	half thickness (mm) of adherend j
	k I	adhesive elastic stiffness (MPa/mm) in peel
	k II	adhesive elastic stiffness (MPa/mm) in shear
	n	power usd in the adhesive material law
	n_ME number of macro-elements
	t	adherend thickness (mm)
	u j	displacement (mm) of adherend j in the x direction
	v j	displacement (mm) of adherend j in the y direction
	D	overlap length (mm) of a macro-element
	D j	characteristic parameter of adherend j in N 2 .mm 2
	a	angle (rad) used for the definition of the load application in MCB test
	b	mixed-mode parameter
	d t	numerical time step (s)
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DOI: 10.7569/RAA.2018.097301 thought that the assessment provided by the direct method could be restricted to a particular combination of geometrical parameters, material parameters and boundary conditions under consideration.

Summary and Conclusions

In order to identify the parameters of CZM for thin adhesive layers, the inverse method and the direct method have been tested through a numerical test campaign. The numerical test campaign is based on the ME technique. A new approach for a fast formulation of the elementary stiffness matrix of bonded-beams element is provided in this paper. It can be concluded firstly that both inverse method and direct method are able to predict the adhesive constitutive evolution in both pure modes I and II. Secondly, the direct method provides accurate predictions under mixed-mode loading conditions. Thirdly, the inverse method fails in the assessment of the adhesive shear and peel stresses as a function of displacement jump under mixed-mode loading, with the particular CZM (but having a classical shape) used in this paper to model the adhesive layer in the bonded overlap. The use of the inverse method should then be restricted to the assessment of the adhesive constitutive evolution under pure modes only. Considering the J-integral framework, other restrictions should be considered when using the inverse method such as loading and unloading scheme or material time-dependent characteristics. Although the direct method appears as attractive, it could be difficult to apply in practice. Indeed, third-order and fourth-order differentiations of measured displacements are required, so dedicated methods to process the recorded signals should be employed. Under pure mode I and pure mode II, the order of differentiation could be reduced if the strain field on the external skin of adherends is recorded [START_REF] Jumel | Instrumented end notched flexure -Crack propagation and process zone monitoring. Part I: Modelling and analysis[END_REF]. From [START_REF] Alfano | On the influence of the shape of the interface law on the application of cohesive-zone models[END_REF], it is clear that the experimental measurement of values such as applied force as a function of displacement jump is not sufficient for an accurate assessment of debonding problems. Nevertheless, assuming that the practical means are available to post-process the experimental test results for a reliable assessment of successive differentiations of measured displacements, the direct method would offer the possibility to investigate the CZM for thin adhesive layers. In particular, the experimental characterization of the shapes of constitutive adhesive evolutions under pure mode I, pure mode II and mixed-mode I/II could lead to validate the CZM available in the literature or to develop other ones by changing some of the underlying hypotheses. For this objective, the shape of the constitutive adhesive stress is of highest interest. That is why the authors of this paper are currently investigating this topic. The use of a novel experimental test technique [START_REF] Costa | Static assessment of the mixed-mode behavior of three epoxy adhesives[END_REF] allowing for the application of a wide range of mixed-mode ratios could be considered in conjunction with the direct method. It is indicated that the use of a series of loading and unloading schemes could help in a refined understanding of the mechanical behaviour of thin adhesive layers. Finally, when an adhesive layer needs to be characterized, its material behaviour is unknown

Appendix A

The expressions for the adhesive peel and shear stresses including the coupling stiffnesses are obtained as explained in section 3.2 by using the constitutive equations of adherends (Eq. ( 2)) and the local equilibrium equations of adherends (Eq. ( 4)).

Under pure mode I, the adhesive shear stress vanishes, so that: