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Introduction

Born with big data in the 2010's, data lakes propose a way to store in their native format voluminous and diversely structured data, in an evolutionary storage place allowing later analyses (reporting, visualization, data mining...) [START_REF] Dixon | Pentaho, Hadoop and Data Lakes[END_REF]. The concept of data lake opposes that 1 of data warehousing, which outputs an integrated, highly structured, decision-oriented and subject-oriented database, but has the disadvantage of dividing data into silos [START_REF] Stein | The enterprise data lake: Better integration and deeper analytics[END_REF].

Yet, everyone agrees that a data lake must be well designed. Otherwise, it is doomed to quickly become an inoperable data swamp [START_REF] Alrehamy | Personal Data Lake With Data Gravity Pull[END_REF]9]. That is, a data lake must allow querying data (selection/restriction) with good response times, and not only storing data and handling a "key-value" access. However, actual solutions are more or less non-existent in the literature and pertain to undisclosed industrial practices. This is why [START_REF] Pathirana | Modeling territorial knowledge from web data about natural and cultural heritage[END_REF] proposed a conceptual metadata model that allows indexing and efficiently querying an industrial heritage data lake constituted of XML data, texts, floorplans and pictures. This multidimensional model is similar to snowflake models used in data warehouses or datamarts, but only stores metadata, not the document corpus itself.

This metadata model has been instantiated physically in several NoSQL database management systems (DBMSs) to enable scaling. However, such a data warehouse-like schema cannot evolve easily when data sources evolve themselves, or when new sources pop up, whereas this is a crucial point in the management of a data lake.

Consequently, we propose in this paper:

1. to replace the multidimensional model of [START_REF] Pathirana | Modeling territorial knowledge from web data about natural and cultural heritage[END_REF] by an ensemble model, more precisely a data vault [START_REF] Linstedt | Super Charge your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault[END_REF]8,[START_REF] Eshetu | Data Vault Modelling: An Introductory Guide[END_REF][START_REF] Linstedt | Building a Scalable Data Warehouse with Data Vault 2[END_REF], which is a data model allowing easy schema evolutions and has, to the best of our knowledge, never been used in the context of metadata management; 2. to evaluate, the feasibility, on one hand, and the effectiveness of this model in terms of metadata query response (as an index), on the other hand, because it induces many joints. For this sake, we translate our conceptual metadata vault into different logical (i.e., relational and document-oriented) and physical (i.e., PostgreSQL1 and MongoDB2 ) models, which also helps compare the respective efficiency of the two physical models.

The remainder of this paper is organized as follows. Section 2 is devoted to a state of the art concerning data lakes and metadata management, on one hand, and ensemble modeling and data vaults in particular, on the other hand. Section 3 presents our conceptual metadata vault model, as well as its logical and physical translations. Section 4 details the experiments we conducted to validate the feasibility of our approach and compare the PostgreSQL and MongoDB physical models in terms of storage and metadata query response time. Finally, Section 5 concludes this paper and hints at research perspectives.

Related Work

Data Lakes and Metadata

Data lakes aim at quickly integrate very large volumes of mixed types data, i.e., from structured to unstructured data [START_REF] Dixon | Pentaho, Hadoop and Data Lakes[END_REF][START_REF] O'leary | Embedding AI and Crowdsourcing in the Big Data Lake[END_REF]9]. However, they are not only a storage technology, i.e., mostly the Hadoop Distributed File System (HDFS), but offer a new data ecosystem that allows cross-analyzing data on demand [START_REF] Ganore | [END_REF], without needing costly preprocessing tasks as in data warehousing processes. Data are immediately accessible through the schema-on-read (or late binding) approach [START_REF] Fang | Managing Data Lakes in Big Data Era: What's a data lake and why has it became popular in data management ecosystem[END_REF], unlike, again, in data warehouses that are periodically refreshed through an Extraction, Transformation and Loading (ETL) phase (schema-on-write) that may be expensive [START_REF] Miloslavskaya | Big Data, Fast Data and Data Lake Concepts[END_REF].

In summary, data lakes manage data with variety for on-demand, ad-hoc analyses; while data warehouses manage structured data for recurring, industrialized analyses. Data lakes are typically subdivided into three components [START_REF] Stein | The enterprise data lake: Better integration and deeper analytics[END_REF][START_REF] Alrehamy | Personal Data Lake With Data Gravity Pull[END_REF]:

1. a storage system: very often HDFS, though NoSQL DBMSs are also an option [9, 14]; 2. a metadata system, which we focus on below;

3. an access and analysis system generally relying on MapReduce or Spark [10].

By contrast, [9] proposes an architecture with respect to data types, made of so-called data ponds for raw data, analog (stream) data, application data (i.e., a data warehouse), textual data and archived data, respectively. In such a context, database research on querying multistore systems [START_REF] Bondiombouy | Query Processing in Multistore Systems: an overview[END_REF][START_REF] Tan | Enabling Query Processing across Heterogeneous Data Models: A Survey[END_REF] looks highly relevant. Data lakes mostly bear a "flat" architecture, where each data element has a unique identifier and a set of characterizing tags [START_REF] Miloslavskaya | Big Data, Fast Data and Data Lake Concepts[END_REF]. Such tags are actually essential metadata to help comprehend data and access data [START_REF] Alrehamy | Personal Data Lake With Data Gravity Pull[END_REF], not to mention query effectiveness.

The advantage of data tagging is that new data and new sources can be inserted on the fly. Once data are tagged, they just need to be connected to already stored data. This feature allows users to formulate queries directly, without needing the help of a business intelligence expert. Yet, this feature requires that the metadata system can manage this evolutive data structure.

Ensemble Modeling and Data Vaults

Ensemble modeling is an approach dating back from the early 2010's, which aims to renormalize data warehouses to bring them closer to the business concepts they model; and to allow better evolutivity, both in terms of data and schema [START_REF] Rönnbäck | Comparing Anchor Modeling with Data Vault Modeling[END_REF].

The two prominent approaches in ensemble modeling are data vaults [START_REF] Linstedt | Super Charge your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault[END_REF]8,[START_REF] Eshetu | Data Vault Modelling: An Introductory Guide[END_REF][START_REF] Linstedt | Building a Scalable Data Warehouse with Data Vault 2[END_REF] and anchor modeling [START_REF] Regardt | Anchor Modeling. In 28 th International Conference on Conceptual Modeling (ER 2009)[END_REF][START_REF] Rönnbäck | Anchor modeling -Agile information modeling in evolving data environments[END_REF]. Both are actually very close [START_REF] Rönnbäck | Comparing Anchor Modeling with Data Vault Modeling[END_REF], with a somewhat easier evolutivity and a non-destructive schema evolution for anchor modeling, but a larger number of objects to manage because of a sixth normal form (6NF) model, as well as non-automated maintenance procedures for timestamps. Data vaults are closer to traditional multidimensional models (they adopt the third normal form -3NF) and are supported by a greater number of tools, which made us select data vaults in this work. However, this choice is not definitively settled. Data vaults were invented to meet industrial needs [START_REF] Linstedt | Super Charge your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault[END_REF]. A data vault is defined at the relational, logical level as a linked set of normalized, detail-oriented and history-tracking tables that support one or more functional domains in an organization. It is a hybrid approach encompassing 3NF and the star schema [START_REF] Linstedt | Super Charge your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault[END_REF]8,[START_REF] Eshetu | Data Vault Modelling: An Introductory Guide[END_REF][START_REF] Linstedt | Building a Scalable Data Warehouse with Data Vault 2[END_REF]. This architecture allows incremental low-cost schema construction (making easy to modify business rules), seamless integration of unstructured data and loading in near real time. Data vaults also allow petabyte-scale big data management [START_REF] Linstedt | Building a Scalable Data Warehouse with Data Vault 2[END_REF]. Finally, artificial intelligence and data mining methods can easily and directly be applied to a data vault [START_REF] Linstedt | Data Vault Basics[END_REF].

More concretely, a data vault consists of the following main elements [START_REF] Linstedt | Super Charge your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault[END_REF]8,[START_REF] Eshetu | Data Vault Modelling: An Introductory Guide[END_REF][START_REF] Linstedt | Building a Scalable Data Warehouse with Data Vault 2[END_REF].

• A hub is a basic entity that represents a business concept (a dimension hierarchy level in a classical data warehouse, e.g., customer or product). A hub mainly contains a business key.

• A link materializes an association between two or more hubs. It would correspond to a fact entity in a classical data warehouse.

• A satellite contains the various descriptive data related to a hub or link.

Finally, note that, although they are defined at the logical level by [START_REF] Linstedt | Super Charge your Data Warehouse: Invaluable Data Modeling Rules to Implement Your Data Vault[END_REF], these concepts can easily be transposed to the conceptual [11] and physical [START_REF] Krneta | A direct approach to physical Data Vault design[END_REF] levels. An example of conceptual data vault model is shown in Figure 1.

Metadata Vault Model

Data Corpus

To illustrate our proposal with a use case that can serve as a proof of concept, we exploit the data corpus constituted by the TECTONIQ project, which aims to highlight the textile industrial heritage of the Lille Metropolis in northern France [START_REF] Kergosien | Vers l'interopérabilité des données hétérogènes liées au patrimoine industriel textile[END_REF][START_REF] Kergosien | TEchnologies de l'information et de la communication au Coeur du Ter-ritOire NumérIQue pour la valorisation du patrimoine[END_REF]. This corpus gathers heterogeneous data, supplied by different sources (Table 1) and must allow various types of analyses. Thence, the corpus is stored in a data lake whose metadata are multidimensionally modeled [START_REF] Pathirana | Modeling territorial knowledge from web data about natural and cultural heritage[END_REF]. We propose in this paper to make these metadata evolutive when new data sources pop up.

Conceptual Model

Although the multidimensional metadata model by [START_REF] Pathirana | Modeling territorial knowledge from web data about natural and cultural heritage[END_REF] is too large to be reproduced here, let us describe it briefly. It is designed around a set of dimensions with hierarchies: Date/Epoch, Figure 1 illustrates our conceptual metadata vault model, which exploits the conceptual modeling of data vaults' logical, relational concepts [11]. Blue rounded rectangles represent hubs, gray rectangles satellites and the green hexagon a link. Associations between hubs and links are of cardinality "many to many" to ensure the greatest generality, while associations betweens hubs or links and satellites are of cardinality "one to many".

To identify hubs, which are the most important and most used entities in queries, we target the metadata related to the characteristics of each input document, which are most susceptible to constitute keys. Thus, we select title (Hub Title), location (Hub Location), date (Hub Date)

and document category (Hub Category).

Then, we associate with each of these hubs a satellite that contains the hub's descriptive attributes. For example, the satellite connected to Hub Title, Sat Title, contains the Title, Authors, Description and Keywords attributes.

Hub Category is associated with four satellites that form a classification corresponding to each of the data sources we have. The descriptive attributes of these satellites are specific to each source.

Link Document allows to associate all hubs.

Finally, since our model concerns only metadata, each entity (hub, link, satellite) is described by a direct reference (Source) to a document (physical file) in the data lake. All data access are made through this reference.

Thanks to ensemble modeling, any new data source or schema evolution within the data corpus can be supported by adding satellites, in the simplest cases, or even hubs and links.

In addition, entities that would become obsolete are simply identified by their timestamp 

Logical and Physical Models

To show that our conceptual model can adapt to different contexts, and to compare them, we translate it into two types of logical and physical models: a relational model with PostgreSQL and a document-oriented NoSQL model with MongoDB.

The relational metadata model (Table 2)3 is classically translated from the conceptual model (Figure 1). Let us only note that, in Table 2, the elements of the attributes column that are postfixed by id are foreign keys, and that satellite primary keys are also foreign keys that reference the corresponding hub's primary key. Eventually, the Datetime and Source attributes featured in all tables are not repeated for clarity. The document-oriented metadata model (Table 3) exploits the notion of collection. Each hub, link and satellite is translated into a collection comprising various documents, each having an identifier (ObjectID). In the MongoDB physical model, this identifier is generated automatically when the document is created. As in the relational case, the Datetime and Source fields present in all collections are not repeated for clarity.

Each hub is associated with both Link Document and its satellite(s) through its ObjectID.

For example, Hub Title is associated with Link Document and Sat Title through Title id.

Finally, Figure 2 presents an example of translation from the document-oriented logical model into the MongoDB physical model in JavaScript Object Notation (JSON) format.

{ "Sat_Book": { "00000C842_001": { "dc:relation": "http://www.sudoc.fr/122661389", "dc:creator": [ "Petit, Jules", "Chambre de commerce et d'industrie (Boulogne-sur-Mer, Pas-de-Calais).", "Commission du projet de chemin de fer direct de Calais a Marseille" ], "dc:subject": "Calais-Marseille, Chemin de fer (France).", "dc:publisher": "Villeneuve d'Ascq : SCD Lille 3", "dc:date": "[2008]", "dc:format": "application/pdf", "dc:language": "fre", "dc:rights": "domaine public", "dc:title": "Projet de chemin de fer de Calais a Marseille rapport fait a la Chambre de commerce de Boulogne, le 25 novembre 1881", "dc:type": "text", "dc:source": "Bibliotheque Georges Lefebvre" } } } 

Experimental Validation

The objective of this section is to show the feasibility of our metadata vault model and to compare the physical models of Section 3.3 in terms of storage space and query response time.

We conduct our experiments on an Intel Core i5-5300U 2.30 GHz PC with 8 GB of memory, running Windows 64-bit. The DBMSs we use are PostgreSQL 9.6.2-1 and MongoDB ssl 3.4.3.

The data corpus in this test set is the one presented in Table 1.

Storage Volume

After inserting metadata in the chosen DBMSs' native format, we measure the storage volume required by PostgreSQL and MongoDB (Table 4). Our measurements take into account indexes automatically created by the DBMSs (e.g., on primary keys in PostgreSQL; no other index is created), unused memory space, and the space that is released when deleting or moving data.

5. Retrieve all titles containing the word "factory", and then the corresponding documents, whatever their category (data sources: Hub Title, Sat Title, Hub Category, Sat IHRIS and/or Sat VoixDuNord and/or Sat Inventory and/or Sat Book, Link Document).

The translation of all queries in SQL and MongoDB's query language are provided in Appendices A and B, respectively. Figure 3 features the average execution time of queries #1 to #4 under PostgreSQL and MongoDB, respectively. We execute each query 100 times (in the order indicated above) to compensate for any variation in execution time. Figure 3 shows tremendously low response times for MongoDB, while those obtained with PostgreSQL seem to evolve exponentially. 

Conclusion

From the modeling of data lake metadata as a multidimensional schema, noticing that schema evolution is not guaranteed, we instead propose in this paper an ensemble model, more precisely a metadata vault.

The translation of our conceptual metadata model into logical and physical models, as well as experiments carried out on the TECTONIQ corpus, help demonstrate the feasibility of our modeling choice in terms of metadata storage volume and response time to queries formulated on the metadata.

The comparison of two physical models (PostgreSQL and MongoDB) also reveals the superiority of document-based models for storing this type of metadata.

The perspectives that this preliminary work is opening are numerous. In particular, it would be necessary to test the robustness of the metadata model when source data scale up, add data sources to verify the relevance of data vault modeling and test the model with queries more complex than projections/restrictions. Moreover, although the supporters of anchor modeling argue that 6NF modeling allows good response times thanks to the join eliminating technique used in modern optimizers [START_REF] Paulley | Exploiting Functional Dependence in Query Optimization[END_REF], it is also important to compare query efficiency over data vault and anchor models vs. classical star-like schemas, with a benchmark that allows significant database scale-up.

Finally, various alternative metadata models, independently from the modeling techniques used, could be considered and compared. Schemas of the TECTONIQ documents could also be automatically extracted to enrich the metadata. Introduction To The Concept Of Data Lake And Its Benefits. https://www.esds.co.in/blog/ introduction-to-the-concept-of-data-lake-and-its-benefits/, February 2015.
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 1 Figure 1: Metadata vault conceptual model
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 344 Figure 3: Average response times of queries #1 to #4
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 4 Figure 4: Average response time of query #5

  Link_Document LD, Hub_Title HT, Sat_Title ST, Hub_Location HL, Sat_Location SL WHERE LD.Title_id = HT.Title_id AND LD.Location_id = HL.Location_id AND HT.Title_id = ST.Title_id AND HL.Location_id = SL.Location_id AND Title LIKE '%factory%' AND Address = 'Tourcoing' --3 SELECT * FROM Link_Document LD, Hub_Title HT, Sat_Title ST, Hub_Location HL, Sat_Location SL, Hub_Date HD, Sat_Date SD WHERE LD.Title_id = HT.Title_id AND LD.Location_id = HL.Location_id AND LD.Date_id = HD.Date_id AND HT.Title_id = ST.Title_id AND HL.Location_id = SL.Location_id AND HD.Date_id = SD.Date_id AND Title LIKE '%factory%' AND Address = 'Tourcoing' AND DATE_TRUNC('year', DepositDate) = 2010 --4 SELECT * FROM Link_Document LD, Hub_Title HT, Sat_Title ST, Hub_Location HL, Sat_Location SL, Hub_Date HD, Sat_Date SD, AND DATE_TRUNC('year', DepositDate) = 2010 AND SB.Category_id = 'book' Link_Document LD, Hub_Title HT, Sat_Title ST WHERE LD.Title_id = HT.Title_id AND HT.Title_id = ST.Title_id AND Title LIKE '%factory% LOOP FOR cat IN EXECUTE "SELECT * FROM Hub_Category HC, Sat_" || doc.category_id || " SL WHERE HC.Category_id = SL.Category_id" LOOP --Tuples doc and cat together provide full document info. id", as : "sat_location" }}, {$unwind : "$hub_location"}, {$match : {'hub_location.location': /Tourcoing/}}, sat_date" }}, {$unwind : "$hub_date"}, {$match : {'hub_date.depositdate': /2010id", as : "satellite" }}, { $lookup : {

Table 1 :

 1 TECTONIQ corpus features

	Source	Inventory	La Voix du Nord
	Description	Industrial building	Press articles related to the
		descriptions	textile industry
	Number of documents	49	1
	Number of instances	49	30
	Overall size	120 KB	92 KB
	Format	XML (data)	XML (documents)
	Source	IHRIS Pictures	Books
	Description	Photos and plans of buildings	Public domain French history
		and monuments related to the	books
		textile industry	
	Number of documents	30	165
	Number of instances	30	165
	Overall size	2.78 MB	1011.25 MB
	Format	JPEG	PDF

Keyword, Location/District/City, Source, Reference/Author; on which "fact" entities (without measures) that correspond to the data sources from Table

1

plug in.

Table 2 :

 2 Metadata vault relational logical model

	Table	Primary key	Attributes
			Hubs
	Hub Title	Title id	
	Hub Date	Date id	
	Hub Location	Location id	
	Hub Category	Category id	
			Link
	Link Document	Document id	Title id, Location id, Date id, Category id
			Satellites
	Sat Title	Title id, Datetime	Title, Authors, Description, Keywords
	Sat Date	Date id, Datetime	Epoch, DepositDate, UpdateDate
	Sat Location	Location id, Datetime Address, AdditionalInfo, Reference
	Sat IRHIS	Category id, Datetime CodePhoto, Provenance
	Sat VoixDuNord Category id, Datetime Language, Note
	Sat Inventory	Category id, Datetime Property, Link
	Sat Book	Category id, Datetime Rights, Publisher

Table 3 :

 3 Metadata vault document-oriented logical model

	Collection	ObjectID	Fields
			Hubs
	Hub Title	Title id	
	Hub Date	Date id	
	Hub Location	Location id	
	Hub Category	Category id	
			Link
	Link Document	Document id	
		Satellites
	Sat Title	Title id	Title, Authors, Description, Keywords
	Sat Date	Date id	Epoch, DepositDate, UpdateDate
	Sat Location	Location id	Address, AdditionalInfo, Reference
	Sat IRHIS	Category id	CodePhoto, Provenance
	Sat VoixDuNord Category id	Language, Note
	Sat Inventory	Category id	Property, Link
	Sat Book	Category id	Rights, Publisher

https://www.postgresql.org

https://www.mongodb.com

We adopt this unusual table presentation to have a uniform representation with the document-oriented model (Table3) and facilitate the comparison of the two logical models.
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We first note that the volume of metadata generated for 245 files is small (less than 1 MB) in both cases. In addition, MongoDB systematically requires less space than PostgreSQL. This is explained by the use of the JSON format, which is very light, in MongoDB. In contrast, in PostgreSQL, each table is stored as a page vector of predetermined size (8 KB), resulting in pages that are not fully filled.

Response Time

To measure the performance of the proposed metadata model, we formulate five queries of increasing complexity with respect to the number of hubs involved (and, therefore, to joins via Link Document), which we apply on both physical models.

1. Retrieve all documents whose title contains the word "factory" (data sources: Hub Title, Sat Title).

2. Retrieve all documents whose title contains the word "factory" and whose address is "Tourcoing" (data sources: Hub Title, Sat Title, Hub Location, Sat Location, Link Document).

3. Retrieve all documents whose title contains the word "factory", whose address is "Tourcoing" and whose deposit date is in 2010 (data sources: Hub Title, Sat Title, Hub Location, Sat Location, Hub Date, Sat Date, Link Document).

4. Retrieve all documents whose title contains the word "factory", whose address is "Tourcoing", whose deposit date is in 2010 and that belong to the "book" category (data sources: