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Abstract

Lemma 4.8 in the article [1] contains a mistake, which implies a weaker reg-
ularity estimate than the one stated in Proposition 4.11. This does not affect the
proof of Theorem 2.1, but Theorems 2.2 and 2.3 only follow from the given proof
if either the space dimension d is equal to 2, or the nonlinearity F(U,V) is linear
in V. To fix this problem and provide a proof of Theorems 2.2 and 2.3 valid in
full generality, we consider an alternative formulation of the fixed-point problem,
involving a modified integration operator with nonlocal singularity and a slightly
different regularity structure. We provide the multilevel Schauder estimates and
renormalisation-group analysis required for the fixed-point argument in this new
setting.

1 Set-up and mistake in the original article [1]

In [1], we considered FitzHugh-Nagumo-type SPDEs on the torus T¢, d € {2,3}, of the
form

ou = Agu+ Fu,v) + £,
O = aqu + asv (1.1)

where F'(u,v) is a cubic polynomial, £&° denotes mollified space-time white noise, and
ai,az € R are scalar parameters (in the case of vectorial v, a; is a vector and a3 is a
square matrix). Duhamel’s formula allows us to represent (mild) solutions of (1.1) on
a bounded interval [0, T as

up = /Ot S(t—s)[& + F(us,vs)] ds + S(t)uo ,

t
vy = / Q(t — s)usds +e' 2 ug , (1.2)
0

where S denotes the heat semigroup and Q(t) := a; €2 x(¢), where x : Ry — [0,1] is
a smooth cut-off function supported on [0, 27] such that x(¢) = 1 for all ¢ € [0, T].
In [1], we used a lift of (1.2) to a regularity structure of the form

U= (Ksy+RR)RT[E+ F(U,V)] + Guo ,
V =KSRYU + Quo (1.3)



where K5 is the standard lift of the heat kernel (cf. [2, Sect. 5]), and IC%2 is a new
operator lifting time-convolution with Q.

The problem is that [1, Lemma 4.8] is incorrect (it wrongly assumed translation
invariance of the model for space-time white noise). As a consequence, [1, Proposi-
tion 4.11] does not prove that IC§2 maps D" into itself for any v € (0,1 + 2). Instead,
it only shows that ICg2 maps D7 into DY for some ~" < ~ that can at best be slightly
less than 1/2.

If we look for a fixed point of (1.3) with U € D", we have in particular to deter-
mine the regularity of F(U,V). Let « be the regularity of the stochastic convolution,

that is,
—K ifd=2,
o= 1 ] (1.4)

Using [2, Prop. 6.12] and 21 4+ a > 3n A (7 + 2a), we find that U3 € DY +23nA\(n+2q),
while

Ve D'y/,n ’ V2 c D7/+a,2?7/\(77+0£) , V3 c D’7/+2a,377/\(77+205) ) (15)
This implies that

1. If d = 2, then F(U,V) is still in a space of modelled distributions D' +2¢:31A(1+2¢)
with positive exponent 7’ + 2a. This is sufficient to carry out the fixed-point
argument stated in [1, Prop. 6.5], which relies in particular on [2, Thm. 7.1],
that requires this exponent to be positive.

2. If d = 3 and F(U,V) is linear in V, then F(U,V) € DO+20)N3uA+20) - Gince
(v 4 2a) A+ > 0, the fixed-point argument again holds.

3. If d = 3 and F(U,V) contains terms in V2 or V3, however, we can no longer as-
sume that F'(U, V) is in a space of modelled distributions with positive exponent,
and we cannot apply [2, Thm. 7.1].

We thus conclude that [1, Thm. 2.1], which concerns the standard FitzHugh-
Nagumo case with F(U,V) = U + V — U3, still follows from the given proof. The-
orems 2.2 and 2.3, however, are only proved if either d = 2 or F' does not contain any
terms in V2 or V3.

2 Corrected results

We now provide a different argument allowing to prove the results in full generality.
Consider the system (1.1) on the 3-dimensional torus, for a general cubic nonlinearity
of the form

F(u,v) = aju + agv + Bru? + Bouv + B3v? + yiud + youv + yzuv? + 402 . (2.1)
Its renormalised version is given by

Ou® = Agu® + [F(uf,0%) + co(e) + cre)u® + eae)v®] + €7,

Ov® = a1u® + agv® (2.2)



where ¢ = g, * £ is a mollification of space-time white noise, with mollifier o. (¢, x) =
£7%0(e7%t,e'z) for a compactly supported function ¢ : R* — R of integral 1. Below
we provide a proof of the following result, which is in fact a slight generalisation of [1,
Thm. 2.2].

Theorem 2.1. Assume ug € C" for some n > —% and vy € C7 for some v > 1. Then
there exists a choice of constants cy(g), ci(¢) and co(¢) such that the system (2.2)
with initial condition (ug,vo) admits a sequence of local solutions (u®,v®), converging
in probability to a limit (u,v) as € — 0. The limit is independent of the choice of
mollifier p.

This result is more general than [1, Thm. 2.2] because we do not assume that
v2 = 0, even though we are in dimension d = 3. The renormalisation constants ¢;(¢)
are given by

co(e) = —P1[Ci(e) + 311 Ca(e)]
c1(e) = =31 [Ci(e) + 31 Ca(e)] , (2.3)
ca(e) = —y2[Ch(e) + 3 Ca(e)] ,

where

2

o) = [ G(2)2dz,  Cye) = 2/ G(z)( Go(21)Ca (21 — 2) dz1> Az . (2.4)
R4 R4 R4

Here G denotes the heat kernel in dimension d = 3, and G. = G * g.. It is known that

C1(¢) diverges as ¢! while Cy(¢) diverges as log(e1).

An analogous result holds for vectorial variables v, in the same way as in [1,
Thm. 2.3], but without the restriction on F(u,v) having no terms in u?v;. In that case,
~v2 and cz(¢) become row vectors of the same dimension as v. Since all arguments are
virtually the same, we do not present here the details for this situation.

The main idea for proving Theorem 2.1 is to replace (1.2) by another fixed-point
equation, which always involves convolution in space and time. The price to pay is
that this leads to an integral kernel with a singularity that is no longer concentrated
at the origin, but “smeared out” along the time axis. Therefore we need to rederive
the multilevel Schauder estimates for this type of kernel, which we do in Section 3.
The resulting fixed-point argument is then considered in Section 4, and the effect of
renormalisation is addressed in Section 5.

3 Alternative integral equation

There is an alternative to using the fixed-point equation (1.3). Indeed, substituting
the expression for u; in (1.2) in the expression of v; and rearranging, we find that v,
can also be represented as

¢
v = / St — s) (65 + F(us, vs)] ds + S9(t)ug + €' vy (3.1)
0

where

SQt) = /OtQ(t — 5)S(s)ds . (3.2)

3



Our aim is thus to lift the operation of convolution with S to the regularity structure,
in order to obtain an equivalent fixed-point equation of the form

U= (Ky+RR)RY[E+ F(U,V)| + Guy ,

V = (K9 + RIR)RT[Z + F(U,V)] + G%up + Quo , (3.3)
for some suitable kernels IC%2 and Rg . We already know that S is represented by
convolution with a kernel G = K + R. Hence S¥ corresponds to convolution with a
kernel G¢ = K% + R?, where the superscript  always indicates time-convolution

with Q). Thus we have to define the lift ICg2 of K9 to the regularity structure, meaning
that it should map D" into D77 for some suitable 7, 7 and satisfy

RKSf =K9«Rf . (3.4)

3.1 Decomposition of the kernel

The difficulty is that since K¢ is obtained by convolution in time of K with Q, its
singularity is no longer concentrated at the origin, but is “smeared out” along the
time axis. In fact, we have the following decomposition result replacing [2, Assump-
tion 5.1]. Note that here and below, we write z = (¢, x) for space-time points.

Proposition 3.1. Assume ( is supported on [0,27T] for a given T' > 0, fix a scaling
s = (so,%1,...,84), and let K be a regularizing kernel of order (3 (cf. [2, Ass. 5.1]). The
kernel K€ obtained by convoluting @ and K in time can be decomposed as

K%)= > KZ.(2), (3.5)
(n,m)en

where Mt = {(n,m) € Z?: n > 0,—1 < m < 1+ 272%"} and the K&, have the following
properties.

e Let hpym = (m27°0",0). For all n,m, K&, is supported on the ball
{2 € R ||z — hymlls < (1 +21/%)277) (3.6)
e For any multiindex k, there exists a constant C¢ such that
‘Dk Kr?m(z)} < CQ2(|5|*5075+V€\5)” (3.7)
holds uniformly over all (n,m) € M and all z € R4*!,

e For any two multiindices k and /, there exists a constant C¢ such that

/ ZDFKE (2)dz| < Cp2~(Bteon (3.8)
]Rd‘H

holds uniformly over all (n, m) € M.

We give the proof in Appendix A. Note the extra sy in the bound (3.7), which
compensates the fact that m takes of the order of 2°°™ values.

Remark 3.2. We only need these results in the case 8 = 2, and for the parabolic
scaling s = (2,1,1,1). However, since there is no difficulty in dealing with this more
general setting, we may as well do so here. O
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3.2 Extension of the regularity structure

In order to lift convolution with K9 to the regularity structure, we need to enlarge
the model space of the Allen-Cahn equation (cf. [1, Sec. 3 and Table 1]) by adding
new elements of the form Z%(7) whenever |7|; ¢ Z. By convention, Z%¢(r) then has
homogeneity |Z%(7)|; = |7|s + f.
In order to extend the model, we proceed as in [2, Sect. 5] by first introducing
functions
Xk
JO)r= ) oTh Y (L7, DFKZ.(z—)) (3.9)

|kls<a+8  (n,m)eN

where « = |7|s. Then the model is formally given by
(ILZ97)(2) = (IL,7, K9(z — -)) — (ILJ9(2)7)(2) . (3.10)

The precise formulation of this relation is that for any test function v,

(LI 9) = > /R o (er K )u(2) dz (3.11)
(n,m)en
where ) i
K3 () =KZ,(:-2)— > (Z_k,z) DFKQ (z—2). (3.12)
|k|s<a+8 '

We still need to verify that all these definitions make sense for the new kernel. We can
however exploit the fact that in practice, we will only need to apply this construction
to symbols 7 whose model is base-point independent, in the sense that II,7 = II;7 for
every z,z € R

Lemma 3.3. Assume that 7 € T, is such that1l,,,, 7w = Il.7 for all time shifts hy,
and that o« + 8 ¢ N. Then the series in (3.9) and (3.11) are absolutely convergent.
Furthermore,

[(ILZ7,¢2)] S A7 lass, (3.13)
holds uniformly over z € R*™ and X € (0,1], where ¢ (2) = S,¥(%) and £, is the ball
of radius 2 centred in z. Here S} (%, . .., Zq) = Al NT50(Zg — ), ..., A5 (Zg — 2q)).

The proof of this result is very similar to the proof of [2, Lem. 5.19], but there are a
few differences due to the nonlocal singularity of K< which we explain in Appendix B.
The constant in (3.13) does not depend on ||I'|| owing to the fact that IT is base-point
independent.

In order to also extend the structure group, we first extend the coproduct via

Xk Xt
AT = @9RIAM) + Y G ® T (3.14)
|k+L)s<a+8 ’

where the j,fiﬂ are new symbols satisfying

(fo, TOT) = —(TL.7, D' K9z — ) . (3.15)



Recall that the f, are linear forms allowing to define the structure group by setting
I, = F;ng, where
F,r=(def,)AT. (3.16)

In the particular case 7 = Z, we obtain that Z®7 =: } satisfies A(}) = ! ® 1 and thus
F3=%, T,%t=°". (3.17)

The model space can then be extended in the usual way to monomials in ' and %, with
the usual additivity rule of homogeneities and product rule for the canonical model.
Then we can again apply Z and Z to these monomials.

In what follows, it will be useful to have explicit expressions for the action of
the structure group on such monomials. Such an expression is provided by the next
result, proved in Appendix C.

Lemma 3.4. Assume that 7 € T,, has a base-point independent model 11,7 = IIT and
satisfies A(t) = 7 ® 1. Then the structure group acts via

Q@ Q XLk (2= 2)" jye,o
79 =7%+ ) ST ) - > ) (3.18)
|kls <o+B [€]s<a+B—|k|s
where 5 (z) = (7, D K& (2 —-))
X7\Z (n,m)en \HT nm{% :

Remark 3.5. This result illustrates the fact that [1, Lem. 4.8] is incorrect in general.
For instance, in the case 7 = ‘" we obtain

MY = 4 () =% (2)]1. (3.19)
Since x% (z+h)—x% (z+h) # x% (2) —x% (2), the operator I'.; is indeed not translation
invariant. O

3.3 Lifting the convolution operator

Following the strategy in [2, Section 5], it is natural to look for a lift of the operation
of convolution with K¢ given for f € D" by

(K9 f)(2) =T (2) + T9(2)f () + NP F)(2) (3.20)
where the nonlocal operator ./\/'7Q is defined by
Xk:
WPNE = Y. S 2. (RF-ILf(2).D" K. (2= ). (3.21)
|k|s<v+B (nm)eN

The problem with this definition is that in general, if f is defined on a sector of regu-
larity o, we can only prove a bound of the form

{(Rf—ILf(2),DF KQ, (2 — )| < 2(klsms0a=fn (3.22)

instead of 2(kls=7=8)n a5 in [2, Eq. (5.42)]. The reason for this weaker bound is that
in general K,?m(z — +) is not supported near the origin, so that shifting the model as



in the proof of [2, Lem. 5.18] produces an additional factor of order || hp, || “, which
can have order 1 instead of order 2-("~%" as in that Lemma.

The bound (3.22) proves convergence of the sum in (3.21) only for |k|s < a + (. If
for instance f(z) = a(z)%/, in dimension d = 3 the sector has regularity « = —1 — 2k,
and thus only the term with k£ = 0 is well-defined. Restricting the sum over £ to only
the term k£ = 0, however, results in IC%2 f belonging only to some D77 with 4 < 1, which
is not sufficient to carry out the fixed-point argument for a general cubic F(U, V) for
d=3.

A way out of this situation is to work with shift operators. Define, for any h € R4*1,
an operator T}, : Cg' — CJ* by

(Tho, ) = (v, ¥(- = h)) (3.23)

for any test function ¢. In case v is a function, this amounts to setting Tpv(z) =
v(z + h). Denote the shifted model 711 by II" and assume we can define, on some
sector of D7"(II), a map 7T;, taking values in D7"(IT") and satisfying

’R,h’ﬁl =T,R, (3.24)
where R" is the reconstruction operator on D7"(II"). Setting R := R"»m we have
(REDFKEZ (2 =) = (R frum, D" K&, (2 — ) (3.25)

where fp,, = Tp,,,, f and
K (2) = K2, (2 + ham) (3.26)

is a shifted kernel, supported in a ball of radius of order 27" around the origin. Finally,
let II"™ = II"»m = Tj, TI denote the time-shifted models, and assume that for each
hynm, we can define an operator K%nm from DY (I1"™) to DYA1(11) satisfying

RKS = K2, # R™™ (3.27)
Then the operator
K= > K20nTh (3.28)
(n,m)en

maps D7(II) into D7 A7(IT) and satisfies the required identity RKY = K9 x R.

The property (3.27) can be achieved by defining Kﬁnm as in (3.20), but replacing
the model, kernel and reconstruction operator in (3.21) and (3.9) by their shifted
versions. This has the advantage of improving the bound (3.22), since the kernel f(ﬁm
is now supported near the origin. A drawback is that this forces us to introduce a
countable infinity of new symbols L?mr, for T in the sector under consideration. We
will now show that in the case of FitzHugh-Nagumo-type SPDEs of the form (1.1),
one can indeed construct a shift map realising (3.24) on a specific sector of negative
homogeneity. Then we will check that the introduction of infinitely many new symbols
does not pose a problem for the renormalisation procedure.



3.4 Multilevel Schauder estimates for FitzHugh-Nagumo-type SPDEs

We now particularise to the FitzHugh-Nagumo-type SPDE (1.1) in dimension d = 3.
We consider modelled distributions in D7 of the form

FR) =D e+ Y ar(D)T+e()1+ Y a(2)r

TEF1 TEF2 TEF3
 F1(2) + fo2) + ()1 + fal2) (3.29)

where

FIZ{W7W7$7.(§?}7
Fo= {15, %, X,V i\, X% i e {1,2,3)) (3.30)

and F3 is such that any 7 € F3 satisfies the diagonal identity

lim (TI7,¢) = 0. (3.31)
A—=0

The reason why we only include polynomial elements X; in the spatial directions in F»
is that owing to the polynomial scaling, |Xy|s = 2 and thus | Xy % |s; > 0. By linearity,
we may define separately the action of IC»? on fi, fo, ¢1, and fs. In the case of f; and
1, we use the standard definition (3.20), which takes here the form

K9f1(2) = Y e [T9 +X2(2)1] (3.32)
TeF1
Xk
KPpl(z) = > (e D K —). (3.33)
lkls<v+8

Here we have set N, fi = 0, since we may choose R f; = IL. fi(z) = > reF, CrllT, owing
to the fact that f; does not depend on z. Furthermore, we have used the fact that
thanks to the vanishing-moments condition, 7%(z)1 = 0 and (II,1,D* K9 (z — -)) = 0.
For f3 we simply set
K9 fs3(z) =0, (3.34)
which is allowed thanks to the diagonal identity (3.31).
It thus remains to define ICE;2 f2(z). Here we use the procedure based on shift
operators, as outlined above. Owing to the fact that the only polynomial terms X;
occurring in Fy are purely spatial, all 7 € F3 satisfy the time-homogeneity relation

I,tp,,, 7 =II,7. As a consequence, one can check that the map 7, can be realised
by

ﬁbnme(Z) = Z CLT(Z + hnm)T . (3.35)

TEF2
In this way, we obtain

K9fa(z) = Y { 3 aT(z+hnm)[ ERE DY ),;kx’i,nm(z)]

(n,m)eN ~ T€F2 |kls<|T|s+8

k
L SthaG} (3.36)

|k|s<vy+B



where

“ (Z) = <H2m7_7 Dk Kgm('z - )> 3

XT,nm

me(z) = <anfnm =I5 frum (2), D" Kr?m(z - )> . (3.37)

Furthermore, the I,?mr are new symbols with model

> k
A _ Z—=Zz) .
UEZRICEP MO PEicais e (3.38)
|kls<|7|s+B '

Since 71|, 1 is now infinite-dimensional for 7 € F, the choice of norm on these
subspaces matters, and we choose it to be the supremum norm.

In this setting, we can now state our central result, which is the following exten-
sion of the multilevel Schauder estimates in [2, Thm. 5.12]. Here the notations for
W Wymzs 15 Fllymr @and || Z 5 Z||.0 are as in [2, Def. 6.2] and [2, Sec. 7.1] with P the
hyperplane {t = 0}, see also [1, Sec. 4.3].

Theorem 3.6. Let oy = |V|s be the regularity of the sector defining f. Assume

f € D' is of the form (3.29), wheren < ag/Av, and v+ 0,7+ & N. Then RYKSR*f €
'D7+5777+B and

(RKYRYf)(2) = (K9« RRTf)(2) (3.39)

holds for every z = (t,z) such thatt > 0. Furthermore, we have
IRTKSRY flypar S TNy (3.40)

whenever i = n + 3 — x with x > 0. Finally, if Z = (II,T") is a second model satisfying
O,.p,,7 = U,7 forall T € F; UF, and all (n,m) € N, and f € D¥(T) is of the
form (3.29), then

IRTKORT S RYRSR [l 5.0 ST (If i Flyr + 125 Z000) - (3.41)

The proof is given in Appendix D. Note that we have assumed 1 < ag to simplify
the notation (otherwise we need to take 77 = (nAagp)+ 3 — k). Note also the extra factor
Rt(t,2) = 1{4>0y, which is needed because the translation operators shift singularities
along the time axis.

4 Fixed point argument

Assume the nonlinearity has the general cubic form (2.1). Note in particular that if
p(z) and ¢(z) are polynomial terms, and ®(z) and ¥(z) are terms of fractional, strictly
positive homogeneity, then

F(T+p(2) +@(2), ¥ +q(2) + 9(2)) = fi(2) + fa(2) + F(p(2),q(2) + f3(2) ,  (4.1)
where

fi(2) =V + 7% + 9% 41 ¥,
f2(2) = b1(2)V + bo(2) N +b3(2) % +a1(2)T +az(2)? 4.2)



with

b1(2) = B1 + 31p(2) +12q(2) ,

ba(2) = B2 + 272p(2) + 2739(2) ,

b3(z) = B3 + 3p(2) + 3aq(z) .

a1(2) = ay + 281p(2) + B2q(2) + 371p(2)* + 2v2p(2)q(2) + 13q(2)?
(2)

)
az(z )+ ’Vgp(z)2 + 2v3p(2)q(z) + 374(](2’)2 . (4.3)

ag + Bop(z) + 2B3q(z (
)

)
Furthermore, all terms of f3(z) contain at least a factor ®(z) or a factor ¥(z). Thus if
the model II satisfies the two properties

72| S 2 — 27k )7, Ta(nm) = ML(r)TL(r2) (4.4)

for all 7,7, 7 € T, then f3 satisfies the diagonal identity (3.31).

Let D]"(I1) denote the subspace of modelled distributions in D7 (II) whose com-
ponents of negative homogeneity are of the form c¢; 1 + co? for constants c;,co € R.
Consider the map M(U,V) = (M;(U, V), M2(U,V)) defined on D;""(II) x DI"(II) by

My(U, V) = RY(Ks + R,R)RTF(U,V) + W1 ,
Ma(U,V) = RY(KE + RIR)RTF(U,V) + Ws, (4.5)

where W; and W5 are placeholders for the stochastic convolution and the initial con-
ditions (we only need the case where W; — ! and W5 — ¢ take values in the polynomial
part of the regularity structure). By iterating the map (4.5), we find that if it admits a
fixed point, then it necessarily has the form

UR) =1+ o1+ 1T +7T +3F + 0w+ )Y +02)Y +b3(2) ] + ...
V)=t + 91+ Y + 77+ +7.7) (4.6)

+ ) iz 4 ham) Y nm o+ b2(2 A+ ) ¥ i+ b3(2 + Bon) ¥ ] 4
(n,m)en

where the b;(z) are as in (4.3) with p(z) = ¢(z), ¢(z) = ¥(z), and the dots indicate
terms of homogeneity at least 1. As in [1, Prop. 5.2], it is rather straightforward to
show that if (U, V') satisfies the fixed-point equation (3.3) with U and V in some D"
then (u,v) = (RU, RV) satisfies (1.2).

[1, Prop. 5.6] is then replaced by the following result, which is all we need for the
fixed-point argument to work. Its proof is very similar to the proof of [1, Prop. 5.6],
so we omit it here.

Proposition 4.1. Let Il be a model satisfying (4.4), and assume —% <n<a< —%,
N+ 2a > —2 and v > —2«. Then for any Wy, Wy € D""(I) of regularity «, there exists
a time T > 0 such that M admits a unique fixed point (U*,V*) € D}""(I1) x D}"(I1) on
(0,T). Furthermore, the solution map Sy : (Wi, Ws, Z) — (U*,V*) is jointly Lipschitz
continuous.

Note that in the case
W1 = (K5 + RyR)RTE + Guy ,
Wa = (K2 + R,R)RYE + G%p + Quo , (4.7)
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the fixed point (U*,V*) of M is indeed a fixed point of (3.3). As pointed out in [1,
Rem. 5.7], the assumptions on ug and vy guarantee that W; and W5 belong to the
right functional space.

5 Renormalisation

It remains to check that the fact that we have modified the regularity structure by
adding a countable infinity of symbols does not cause any problems as far as the
renormalisation procedure is concerned, and to derive the renormalised equations.
We define a renormalisation transformation, depending on two parameters, given
by
Ms’r = eXp{—Cl(é‘)LlT — CQ(&‘)LQT} N (5.1)
where the generators L; and L are defined by applying the substitution rules (called

contractions)
Li:V =1, Ly:<—1 (5.2)

as many times as possible, so that for instance L; " = 3'. In particular, we obtain
Msxnm: 'X'nm_cl(g)ynm . (53)

Other examples of the action of M. are given in [1, (6.12)]. Note that there are no
generators acting by contracting symbols that contain at least one edge associated to
79, implying that for instance M.% = % and M. %nm = %nm. The fact that these
symbols do not require additional renormalisation constants is a consequence of [1,
Lem. 6.2] and Lemma 5.1 below.

The renormalisation map M. induces a renormalised model fI* = IT™: which can
be computed as described in [2, Sect. 8.3] and [1, Sect. 6.1]. In particular, we find

T () = TE(Y )T (V) (5.4)
Here the canonical model for ITE( Ynm) can be computed using (3.38), which yields

(HZYRW)(E) = A(]V,nm(g) - AQ/,nm(Z>
= (g™ K2, (2 =) = K2,(2 =)
= (I5V K2 (2 =) = K2 (2 =)

= /[K,?m(z —21) — K,(;?m(z — zl)] [(KE * f)(zl)]2 dz (5.5)

where K. = K * g., and we have used the expression for the canonical model of % in
the last line, which is base-point independent, cf. [1, (6.28)]. It follows that

I (< ) (2) = /[Kfﬁn(Z —21) = KQ,(z — 20)] [(Kz % €)(21)]* dz
X ([(KE <))’ - (5)) . (5.6)

The renormalised models of other symbols are obtained in a similar way, using the
expressions given in [1, (6.13)].
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We now have to show that the renormalised models converge, for an appropriate
choice of the renormalisation constants Cj(¢) and Cs(¢), to a well-defined limiting
model. This amounts to showing that the Wiener chaos expansions of the renor-
malised models satisfy the bounds [1, (6.20)]. To a large extent, the computations
have already been made in [1, Prop. 6.4], so that we only discuss one representative
case involving an infinite collection of symbols. Proceeding as in [1, (6.39)], we find
that the contribution to the zeroth Wiener chaos of ﬁi( %nm) is given by

WED X (2) = 2/// (2—21) — K@, (2 — 21)] (5.7)

X Kg(zl — ZQ)KE(Zl — Zg)Kg(Z — ZQ)KE(E — 23) le dZQ ng .

As in [1, Prop. 6.4], the crucial term is the one involving Kf?m(z — z1), which can be
rewritten as 2lo%mm(a), where

Ié% () = /Kgm(zl)Qg(zl)z dz , Q5(2) = /Kg(zl)KE(zl —z)dz; . (5.8)

Note that if K&, is replaced by K, we obtain the renormalisation constant Cs(¢),
which diverges like log(¢™1), cf. (2.4). The following lemma implies that no renormal-
isation is needed in the case of -X'nm.

Lemma 5.1. For all (n,m) € N, the bound
2—2n

‘ OOnm ‘ ~ m+2 (5.9)

holds uniformly in € € [0, 1].

The proof is given in Appendix E.1. The important point is that the bound (5.9) is
square-summable over all (n,m) € N, which is related to the fact that K%(z;)Q5(z1)?
is integrable uniformly in ¢. This is essential in establishing the following convergence
result.

Proposition 5.2. Let C1(¢) and Cs(e) be the constants defined in (2.4). Then there
exists a random model Z = (II,T"), independent of the choice of mollifier o, such that
for any 6 < —% — a9 = k and any compact set K, one has

EIZ°; Zllyn S €° (5.10)
provided v < (, where ( is such that all moments of K up to parabolic degree ( vanish.

Proof. The proof follows along the lines of [1, Prop. 6.4], which is closely based on [2,
Thm. 10.22]. The crucial point to note here is that [2, Thm. 10.7] can still be applied
in this case, even though there is a countable infinity of symbols such as e that
need to be renormalised. Indeed, the bound [2, (10.4)] involves a sum, over all basis
vectors 7 of a given sector, of the p-th power of the second moment of <ﬁ07, w()\). To
be applicable, the bounds

<ﬁz%nm,¢z>

< C )\2|T\s+n 7

29}\2‘T|5+H (511)
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should hold for some k,0 > 0, with proportionality constants C’?lm that are summable
over all (n,m) € M, cf. [2, (10.2), (10.3)]. By [2, Prop. 10.11], this is the case if the
Wiener chaos expansion of these 7 satisfies the bounds

(VO ) (), VY ) (2))] < O D (s +1171e) Nz = 25>
>0
(V) Do) (2), (VR o) (2))] < O™ Dol + l12la) = = 2152
>0
(5.12)

for some &,0 > 0, where a = \\X-nmh and the sums run over finitely many positive .
This in turns follows from the square-summability of integrals such as (5.9). O

The final step is to compute the renormalised equations corresponding to the
renormalisation map M.. It is straightforward to check that Lemma 6.5 and Proposi-
tion 6.7 in [1] still hold in the present situation. It is thus sufficient to compute the
non-positive-homogeneous part ﬁ(U, V) of M.F(U,V), for a cubic nonlinearity F' as
in (2.1). This yields the following result, which is proved in Appendix E.2.

Proposition 5.3. In the situation just described, we have

~

F(u,v) = F(u,v) 4+ co(e) + c1(e)u + ca2(e)v (5.13)
where the ¢;(¢) are defined in (2.3).

The proof of Theorem 2.1 now follows in the same way as in [1, Sec. 7].

Acknowledgements. We would like to thank Tom Holding and Martin Hairer for
pointing out the error in [1, Lem. 4.8], and Tom, Martin, Yvain Bruned, Cyril Labbé
and Hendrik Weber for their advice on preliminary versions of this erratum.

A Proof of Proposition 3.1

Let ¢ : R — [0, 1] be a partition of unity, i.e., a function satisfying

* is of class C* and of compact support, say [—1, 1];

» for any ¢ € R one has

> pmtt)=1. (A.1)

meZ

Remark A.1. An example of such a function would be a smooth even function, satis-
fying p(0) =1 — ¢(1 — 0) for any 6 € [0, 1]. For instance one can take

1 1 1 1
and set ¢(0) =1, p(0) =0 for # > 1 and ¢(—0) = ¢(0) for all 6. O
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Given such a function ¢, we set
on(0) = p(2°70) (A.3)

for all n € Ny. Then ¢, is supported on [—27%" 27%"]  Observe that for any n € Ny
and any t € R, we have

> a7 m ) =1, (A.4)
meZ

and thus

> Qun(t)=Q(t)  where Qum(t) = Q(t)pn(2 " m +1) . (A.5)

meZ

Since (@ is compactly supported, the above sum only contains a finite number of terms,
of order 2°°™, In fact, for any given ¢, there are at most two nonzero terms in the sum,
and @, is supported on the interval

[(m —1)27%" (m + 1)27%07] . (A.6)
Recall that the kernel K being regularizing of order 5 means that K and its derivatives
satisfy the bounds given in [2, Assumption 5.1]. Thus if we define for n € Ny, m € Z
t 2T

K@ (t,x) = tiZTQnm(t—s)Kn(s,x)ds: i Qum (WK (t —u, ) du ,

then we obtain a decomposition

1+4-272%0™

E9)=>" > KZ.(2), (A7)

n=>0 m=-—1

where the range of m is due to (A.6) and the fact that @ is supported on [0, 277.
First note that since @), is supported on the interval given in (A.6), Kr?m(t, x) can
be nonzero only if
(m—2)27°" <t < (m+2)27°%0" (A.8)

and z is in a ball of radius 27". The condition on ¢ is equivalent to [t —m27%0"| < 21—%n,
from which (3.6) follows.
Since ¢ takes values in [0, 1], we have

Qi (1) < [Q(H)] < [|Qlo := sup [Q(#)] . (A.9)

t€[0,27)

Therefore, by Condition (5.4) in [2, Assumption 5.1], we have

. (m+1)2-%0" .
DFKQ,(2)] < / Qu (1) |[DF Kot — )] du
(m_1)2—507l
(m+1)2—%0"
< CQ(ISBJrks)n/ Qi (0)| duu
(m—1)2-50m
< 202sl=s0=B+kln 10l (A.10)
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which implies (3.7) with Cg = 2C|Q|| .
Finally, we have

(m+1) son
/RdJrl ZDFKQ (2)dz = /( by Qrm(u) /RdH DM K, (t — u, ) dzdu

(m+1)2—%0m
=/ Qnm(U)/ (Z+ (u,0)’D* K, (2)dzdu . (A.11)
( son Rd+1

m—1)27*

It follows from Condition (5.5) in [2, Assumption 5.1], applied to all ¢’ of degree less
or equal ¢, that there exists a constant C’, depending only on k and ¢, such that
the absolute value of the integral over R%*! is bounded by C’2~#" uniformly in n.
Therefore, (3.8) follows with Cg = 2C". O

B Proof of Lemma 3.3

As in [2, Lem. 5.19], the cases 27" > X and 27" < A are treated differently. We start
by dealing with the case 27" > A. The assumption Il 7 = II,7 implies

(I, D* K9, (2 — )} = (W4, 7 DF KL, (2 — 1)) . (B.1)

Since the singularity of Kgm(z — -) is located at z + A, we can apply [2, Rem. 2.21],
which together with the bound (3.7) on |[D¥ K$,| yields

(IIr, D" K2, (2 — )| < |||y, 2(Fle 5070 Am (B.2)

Note that owing to base-point independence of the model, we have avoided making
use of I" as in [2, Lem. 5.18]. We now use the Taylor expansion representation of [2,
Appendix A] to get

K30 ()= /RM D'KQ (z+h—2)Q"(z—z,dh) (B.3)
LedA

where A = {/: |{|; < a + #} and QF is a measure with total mass ||z — ZH‘fls. It follows
from (B.2) that

R s ——
(I, KS02)] S s, Y 12— 2|y e2(lemsoma=b)n (B.4)
LeDA

Together with the fact that

/ Iz — 2| (2) dz < Ale (B.5)
Rd‘H

this yields

>

L, (O K DI D e

(n,m)eNn LeDA (n,m)eN
27>\ 27>\
S AT | g, - (B.6)
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In the case 27" < A, we use the representation

/+ (Ir, K2 2 (2)dz = (Ir Y ) = > (TIr, Z),) (B.7)
]Rd 1

[f|s<a+B

where

/ (z— 2 )(z)dz,
Rd+1
> J4
Zf)l\m;f(zl) =D’ Kr?m(g — Zl) / Lo
Ra+1

Here one readily checks that the arguments used in the proof of [2, Lem. 5.19] to
bound (IIr,Y;},) and (IIr, Z) ) are not affected by the location of the support of

T Tnm

MNz)dz . (B.8)

K,?m so that as a result we obtain in the same way as there the bounds

(7, Yy, )| S Ave=(othn

’<H7‘, Z7/1\m;€>| < Aso(ltls—so—a=p)n (B.9)
This yields
/ (TIr, Ko )2 (2) dz| S 27somaets N~ (agmltlmad (B.10)
R+t [ts<atB
and summing over (n,m) with 27" < X gives the result. O

C Proof of Lemma 3.4
Using the fact that (f., X*) = (—2)¢ and multiplicativity of (f.,-), we obtain

(. X T2 ) = ()X (2) . (C.1)

From the expression (3.14) of A(IQT) we thus deduce

0 0 ) XF(=2)" e
FI% = [ef)AI%) =T% - ) (). (C.2)
|[k+Ll|s<a+pB

In the basis ({Xk}|k|5<a+ﬁ,IQT) we can thus identify I, and its inverse with matrices

R (T TO) g (M7 TOIE) o

Here T'(z), which represents the action of F, on monomials X k,is an upper triangular
matrix with elements

| |
[T(2)],; = m(—@]‘k : (C.4)

while T} (z) is a column vector given by the coefficients of X* in the sum on the right-
hand side of (C.2). It follows that I',; is represented by the matrix

FolFs = (T(Z)‘OIT(Z) T(Z)‘I[T*(f) - TAZN) . (C.5)
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Since F, ! = F_, for elements of the polynomial part of the regularity structure, one
has T(z)~! = T(—z). A direct computation of the upper right matrix element then
yields the result, making use of the binomial identity. O

Remark C.1. Another way of deriving the result is by using the identity

_ X+
F'19 =19+ ) ﬁX’;(z) : (C.6)
|k|s<a+8
which can be readily checked by showing that F, ' F, = Id. %

D Proof of Theorem 3.6

It follows from [2, Prop. 6.16 and Thm. 7.1] that ng f1 and IC%2 1 satisfy the theorem.
It thus remains to prove the statement for IC$2 fo and check the convolution identity
for fs. By linearity, it is sufficient to consider the case

3
fo(2) = a(2)r + > ai(z)Xim, TE{V,V, W}, (D.1)
=1

the cases f2(z) = a(z)7 with 7 € {?, %} being similar but simpler. Therefore we fix
a = |7|s = —1 — 2. To further simplify the notations, we will drop the notation $77_,
and not indicate the dependence of proportionality constants on ||II|| and ||T'||.

It is crucial to keep track of the sign of the first component ¢ of z. We write
Rt f5(z) = a®(2)7 + af (2)X;7, where a¥(z) = a(z)1{;50} and similarly for a; (z), and
ty = tly~0y. We also use the notations f,!,(2) = fa(2 + hum)1 >0y and

byt (z) = (R fif, =TI fE(2),DF K2 (2 — 1) (D.2)
Forall 2,z € RA+1, (n,m) € M and 7 as in (D.1), we have the relations
7" =17"r, IR X = 12X + (7 — 2) 12" (D.3)

and the estimates

X am(2)| S 2(kls—s0—a=fin (D.4)
X irmm (2)] S 2(klems0ma=f=1n (D.5)
|RFVE (2)] < (LAt 0500 g o2lklsmso=Bn Rt )| o (D.6)

Indeed, the first two bounds follows in the same way as (B.2) (using the fact that
z; — z; = 0 for time-translations), while the last one is a consequence of the improved
reconstruction theorem [2, Lem. 6.7], (3.7) and the fact that f,;, € D7 (II"™). This
shows that the infinite series in the definition (3.36) of ICf;2 are indeed convergent.
Note that this is exactly the point where the introduction of shifted models is neces-
sary, since otherwise bf;m would only satisfy a weaker bound of the form (3.22), which
guarantees summability only for |k|s < a + 5.
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D.1 Bounds on |HR+/C§) R*f [y

Since I',z7 = 7 and I',: X;7 = X;7 + (2; — z;)7, the fact that fo € D?" implies that

@ () S (AN )T IR foll i (D.7)
i ()] S (LAt iR
ja*(2) = a*(2) = (zi = 2)ai (2)] S |1z = 21T (U At AED) T 1 g IR foll i
jai (2) = af ()| S llz = 213707 A At AT Ty g IR foll, i

holds for all z,Z € R (the 1-fattening of £). We start by estimating

|RTKS RT f|5

R"*'ICQR+ ma; - D.8
| fally+8.m8 = ZGE&e{a+5a+ﬂ+1X0, 81} 1/\t(J:;—§)/\0 (D.8)
In the case § = a + 3, we have
IRTKSRY fo(2)lass = sup |a™t (2 + hum) 1m0
(n,m)eNn
< (A L)1 RY R 5 (D.9)

For 7 = n+ (3, this provides the first bound required to obtain R"‘ICg2 Rt fy € DYTBNFE,
Note that the factor 1.y, which is due to the first R, is required to kill the singu-
larities of a* (z+ hy,,) for negative time. In the particular case & = Oy = (—oo, T] xR¢,
we can further bound the factor (1 A t4)7=9/%01 g by T/ (1 Aty )1ma=m/s0] o,
with Or instead of R since the kernel is non-anticipative. This yields one of the bounds
required to prove (3.40). The case § = o + [ + 1 is treated similarly.

For polynomial components of exponent ¢ € N, (3.36) implies

1
IRTKSRT fa(2)le S ) o
|k|s=2

> [ rereny + T+ hun) (D)L (ecas5)
n,m)en

+a (z+ hnm)f(l)cfinnm(Z)l{f<a+ﬂ+l}:| ’1{t>0} :
(D.10)

1/50

Here we treat separately the cases 1A#}/™ > 27" and 1A ti/ﬁo < 27", In the first case,

we use the bounds

(1 Aty )m—a)/s09( .y

) S (1
< 1/\t+ 77 a— 1)/502(|k| s—S0—a—[— nWR+f2”’

a’ (2 + hpm)X (z
‘ |
’ (D.11)

‘az‘ Z+ hnm XX T ,nm Z v, R

which follow directly from (D.4), (D.5) and (D.7). Using (D.6) and summing over the
relevant (n, m) yields indeed a bound of order (1 At )(7+#=Ikls)A0l/0 for (D.10), and in
the case 8 = Or we can again extract a factor /% by decreasing 7.

In the case 1 A tfr/ﬁo <27, if ¢ < a+ B we use (3.37) to get

bﬁg(z) + a+(z + hnm)f(ﬁ,nm(z) =+ az—‘i_(z + hnm)f(l)c(ﬁ,nm(z) = <anf1jmv D* K??m(z - )> .
(D.12)
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Here we apply [2, Prop. 6.9], which states that R"" f,\ € CJ, showing that the above
quantity has order 2(kls—so=A=mn " Gince by assumption |kls — 8 —n # 0, regardless
of its sign, summing over (n,m) yields a bound of order (1 A t)(7+B=Ikls)A0l/s0  1f
a+pB<f<a+p+1, weuse

b'IrCL;jL_(Z) + a:r(z + hnm)f(])c(n,nm(z) = <anf1—1i_m’ Dk K’r?m(z - )> - a’+(Z + hnm)f(ﬁ,nm(z) ’
(D.13)
so that a bound of the same order follows by combining the two previous estimates.
The case ¢ > o+ [ + 1 is treated similarly.

It remains to obtain estimates involving two different points z,z. Here we first
note that the definition of Rp entering the definition of || f|| implies that if (z,z) € Kp
then t and ¢ necessarily have the same sign and are comparable. Thus we only need
to consider the case where both ¢ and ¢ are strictly positive, and we may drop one of
the factors RT.

Lemma 3.4 extends naturally to 7S, and F,.(2). Proceeding similarly as in Ap-
pendix C, but in the basis ({Xk}|k|5<a+5,l7?m7, L?mXiT), we also obtain

.29 (Xir) = I9 (Xi) + (21 — %)IC, T
Xk (z—2)° _
bY e X BTG

|kls<a+B+1 [€]s<a+B+1—|k|s

T (i a)xi,nm(z)lﬂms@w}] | (D.14)

This yields the expression

KIR*fo(z) ~T:KIRYfo(2) = ) {Q%ﬂ (2, 2) T + Qut7 (2, 2) I3, (Xi7)

(n,m)en
Xk B
+ D (%2 (D.15)
|k|s<y+8
where
Qg;;ﬂ(Z’ zZ) = a+(z + hum) — @™ (Z 4+ hpm) — (2 — Z)ai (Z+ hom)
QP (2,2) = af (2 + hum) — af (2 + hym)
_ (z —2)* _
Qhn(zn2) =t ()= > B
[€]s<B+y—Ik|s
+ QP (2, 2)XE i (2) 1 ks <at 5}
+ Qo (2, 2) i (D) Lo <a+ 541} (D.16)

(note that the terms in a*(z 4 hnm) X557, (2) stemming from I.:Z%, and I'.:X* in the

first sum over k in (3.36) cancel). For the components of non-integer regularity, we
obtain using (D.7) the required bounds

Qo (2| S llz = 21T WAt AE)TVOIRY )] 5

Qo (22| Sz =2l A Aty AT TR RY fo (D.17)

R 0
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from which a factor 7%/ can be extracted as before.

Finally, in the case of polynomial terms, we now consider three different regimes,
depending on the value of 27" compared to ||z — z||s and 3 (1 Aty Af;)Y/*) (recall that
for (z,%) € Ap we always have ||z — Z||s < (1 Aty At )Y/%0). In the case 27" < ||z — 2
we again estimate separately the summands in Q’;m(z, zZ), yielding the bound

5

S QD) Szl T M WAt AT IR Sl 5. (D18)

(n,m)en
2= <)) 721l

For ||z — 2ls < 27" < 3(L Aty Af4)Y/%0 and |k|s < a + B, we use the fact that

Q. (2,2) = (RM™ff —TI2™ fit (), K& (D.19)

m nm;zz

where K97 is defined as in (3.12), but with D* K<, instead of K%,,. It thus admits

nm;zz

the integral representation
Egnd ()= / ) DFYKS (z+h—2)Q%z — z,dh) (D.20)
teoa /R

where A = {{: |k + ¢|s < v+ [}. Here we use an argument similar to the one used in
the proof of Lemma 3.3. Owing to lack of translation invariance, however, we have to
decompose, writing z = z + h,

(R fob =™ [ 1 (2), DM KD (2 =)

= (R fib, =TI fb (2), DM KR (2 =)
+ <Hgm[ ntn(g) - ng Jm(z)]v DkJrg Rgm(g - )> . (D.21)

For the first term on the right-hand side, we apply again the improved reconstruction
theorem [2, Lem. 6.7] to obtain a bound of order (1A ) (1=7)/502(k+lls—s0=7=B)n Gince
Q(z — 2,-) is supported on values of h such that ||hl|s < ||z — 2|[s < S(L Aty AL)Y%,
we can replace ¢4 by t4 A{ in this expression. For the second term, we use the fact
that

Lz fihn(2) = [aY(Z+ hom) + (Zi — Z)ab (24 hom) |7 + 0™ (2 + B ) XiT (D.22)
as well as (D.7), (D.4) and (D.5) to get the bound
12 — 2]|77%(1 Aty ATy )0/ s09(k+Hs—s0—a=B)n (D.23)

Again, we can replace . by t,, and also bound ||z — z[|7”® by 2-("~®)"_ Adding the

1]
5

last two bounds and using the fact that Q°(z — 2, -) has total mass ||z — Z||s *, we obtain

Qo (2, 2)| S (LAt AT/ 37 |1z — g leolkttla—so=y=Bn R py |
LeDA

v - (D.24)

Summing over the relevant values of (n,m), we again obtain a bound as in the right-
hand side of (D.18). The same bound holds also in the case |k|; > a + (, by combining

the previous arguments.
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In the last case 27" > 2(1 Aty A t,)'/#0, we have the bound

’<anf;rm - Hgmfrirm<2)7 Dk+£ Kgm(z - )>} S 2(|k+£|575077]76)n‘”R+f2 ”| (D.25)

yR

Indeed, such a bound holds separately for [(R™™ £+ DFH K9, (z—.))| since R"™ f €
¢J, and for [(T12™ £ (2), DM K (2 — 1)),
tion on 27". Substituting in the integral expression (D.20) shows that

Q. (2,2)|
=~ 65 s —nN— _
<Y |z — g2kt tlmsomn=Bn g p) (D.26)
LeOA
_nB+y—Ilk|s 5 o—
< HZ—ZHE v=Ik| Z(l/\t A T ) (FHls=B=7)/s09(1k+ls—s0—n— ﬁ)n”|R+f2|”7777

LeoA

Summing over the relevant values of (n,m) yields again a bound of the form (D.18).
This completes the proof of the fact that R"‘IC? Rtf, € DV, As before, a factor 7"/
can be extracted when & = Op, which also completes the proof of (3.40).

The proof of (3.41) is very similar to the one just given, using the estimate [2,
(3.4)] of the reconstruction theorem in place of [2, (3.3)].

D.2 Convolution identity

It remains to prove that the convolution identity (3.39) holds. This will follow from
the next result, combined with the reconstruction theorem.

Lemma D.1. For every z = (t,x) € R4 such thatt > 0, the bound
(ILKYRT f2(2) — K9« RRT fo,92)] < NHP(1 A ¢)(n=)/s0 (D.27)
holds uniformly in X € (0,1 A t'/%0].
Proof. Using the representation
(K9« RRY fo,42) = ( ZW/RM R K9 (2 — )0 (2) dz (D.28)
n,m)e

and the definition (3.38) of the model, we obtain

<HZ/C$R+f2( ) — K< *RR+f27’l/]Z = Z /Rd+1 (2,2 ¢Z( z)dz (D.29)

(n,m)en

with Q0 = as in (D.19). Since ¢ is supported in the set {Z: ||z — z||s < A}, whenever
A< 2 < (L AtAE)Y50, (D.24) provides the bound

Q0 (2, 2)| S (L AEAT) /0 N7 o g ool gt gy o (D.30)
le0A
where A = {{: [¢|; < v+ B}. For27" > L(1 At A£)1/%0, (D.26) yields
Q0 (2,2)] S Nz = 28T > (A atng) =R fsogllsmsomn=Fm g po)l . (D.31)

LedA
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Combining this with (B.5), we obtain

/ Q0 (2, 20 (2) dz| < XL A )00 (0.32)
Rd+1

Finally, in the case 27" < A, we use the same argument as in (B.7), yielding

Qnm (2, 2)02(2) dz = (R fi1 =T £ (2). Yoo = D Zomy) - (D33)

Rd+1
[€]s<y+B

Here we obtain bounds similar to (B.9), but with v instead of a and an extra factor
(1A t)(”*'Y)/ %0, Summing over m and n yields again a bound as on the right-hand side
of (D.32). O

Combining (D.27) with [2, Lem. 6.7], we obtain
(RKYRY fo(z) — K9« RRY fo, 2 )| S NP At)m)/50 (D.34)

which proves the convolution identity by the uniqueness part of the reconstruction
theorem.

To complete the proof of Theorem 3.6, we have to show that (K9 x RR1f3)(z) =0
for all z = (¢, x) such that ¢ > 0. Here we use the fact that

(K« RRY f3,92) Z /Rd+1 (RRY f5, VK, (2 — 2)dz . (D.35)
(n,m)en

Since by the diagonal identity (3.31)
. A : A
lim (ILR* f3(2),02) = lim 3 af (2)(I7,92) =0, (D.36)

TEF3

the reconstruction theorem implies that (RR*f3,v?)) converges to 0 as well, and the
desired conclusion follows. O

E Proofs for Section 5

E.1 Proof of Lemma 5.1

Applying Proposition 3.1 with |s| = 5, 50 = 2 and 5 = 2, we find that Kffm(t, x) is
supported in the ball ||(t,z) — (m272",0)|s < (1 ++/2)27", and is of order 2". Using
the bound on Q(z) given in [1, Lem. 6.2], it follows that

(m+1)2727 1
S o~ dxdt (E.1)
} 00; mn ‘ /(m_1)22n /m”§2n ‘t‘ + ||-’L‘”2 + 52

(m+1)272" 27" 2
< gn / / ey (E.2)
(m71)2*2" 0 |t| + 7"2 + 52

where we have used polar coordinates, and the equivalence of the ¢! norm |z| and
the Euclidean norm ||z||. For m < 2, we obtain a bound of order 272" by bounding
[t| + r% + &2 below by r2. For m > 2, bounding [t| + r% + ¢2 below by r% + (m — 1)272"
yields a bound of order 272"m =1 < 21727 (m + 2)7 L, O
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E.2 Proof of Proposition 5.3

It suffices to apply the renormalisation map M. to all monomials in U and V of degree
2 and 3, when U and V are given by (4.6). Using the expressions [1, (6.12)] for the
action of M., one obtains

M.U? =U? - Cy(e)1,
M.U? = U? = 3[¢Ci () + b1Ca(e)|1 — 3[C1(g) + 371 Ca(e) | T — 9792Ca(e) ¥ + ops (U, V),
MUV = UV —¢Ci(e)1 — Ci(e)t + op2y (U, V), (E.3)

where g3 (U, V') and gg2y, (U, V') are remainder terms of strictly positive homogeneity.
All other monomials are invariant under M. up to remainders of strictly positive ho-
mogeneity. The result follows, using the expression (4.3) for b; with p = ¢ and g = v,
and the expansion (4.6) in order to express ! and ¢ in terms of U and V. O
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