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Background. Mesenchymal stromal cells (MSC) are fibroblast-like multipotent cells capable of tissue-repair properties. Given the
essentiality of tight junctions (TJ) in epithelial integrity, we hypothesized that MSC modulate TJ formation, via the AMP-activated
kinase (AMPK) pathway. Liver kinase-β1 (LKB1) and Ca2+-calmodulin-dependent protein kinase kinase (CaMKK) represent the
main kinases that activate AMPK.Methods. The in vitro Ca2+ switch from 5μM to 1.8mM was performed using epithelial Madin-
Darby canine kidney (MDCK) cells cultured alone or cocultured with rat bone marrow-derived MSC or preexposed to MSC-
conditioned medium. TJ assembly was measured by assessing ZO-1 relocation to cell-cell contacts. Experiments were conducted
using MDCK stably expressing short-hairpin-RNA (shRNA) against LKB1 or luciferase (LUC, as controls). Compound STO-609
(50 μM) was used as CaMKK inhibitor. Results. Following Ca2+ switch, ZO-1 relocation and phosphorylation/activation of AMPK
were significantly higher in MDCK/MSC compared to MDCK. No difference in AMPK phosphorylation was observed between
LKB1-shRNA and Luc-shRNA MDCK following Ca2+ switch. Conversely, incubation with STO-609 prior to Ca2+ switch
prevented AMPK phosphorylation and ZO-1 relocation. MSC-conditioned medium slightly but significantly increased AMPK
activation and accelerated TJ-associated distribution of ZO-1 post Ca2+ switch in comparison to regular medium.
Conclusions. MSC modulate the assembly of epithelial TJ, via the CaMKK/AMPK pathway independently of LKB1.

1. Introduction

Epithelial tight junctions (TJ) form a seal at the superior pole
of the lateral plasma membrane when cells differentiate and
acquire polarity [1]. TJ regulate the passage of ions and small
molecules through the paracellular pathway [2] and also
restrict the diffusion ofmembrane proteins between the apical
and basolateral compartments. TJ are made of at least 40 dif-
ferent proteins including transmembrane proteins, such as
claudins and occludins, and adaptor proteins, such as mem-
bers of theMAGUK (membrane-associated guanylate kinase)
family, ZO-1, ZO-2, and ZO-3 [3, 4]. At the time of TJ assem-
bly, ZO-1 and ZO-2 have essential roles in both organizing TJ

components and targeting them to their proper location [5].
Many factors have been identified as modulators of TJ
assembly/disassembly, including extracellular Ca2+ [6].
Extracellular Ca2+ is essential for both the development of
new junctions [7] and the stabilization of mature junctions
[8, 9] between epithelial cells [10]. The dependence of TJ
assembly on Ca2+ is probably attributable to the stabilization
of the cell adhesion molecule E-cadherin in its adhesive state.
Numerous pathways have been implicated in TJ regulation,
including the AMP-activated protein kinase [1, 11–16].

AMPK is an ubiquitous heterotrimeric complex made
of 1 catalytic α-subunit and 2 regulatory β- and γ-subunits

Hindawi
Stem Cells International
Volume 2017, Article ID 9717353, 9 pages
https://doi.org/10.1155/2017/9717353

https://doi.org/10.1155/2017/9717353


[17]. AMPK activity is modulated by the intracellular
AMP-to-ATP ratio, as well as by the activity of
upstream AMPK kinases, such as liver kinase-β1 (LKB1) and
Ca2+-calmodulin-dependent protein kinase kinase (CaMKK)
[18–20]. An increased ratio of AMP/ATP induces AMP
binding to the γ-subunit, thereby promoting AMPK phos-
phorylation at a threonine residue (Thr-172) and its acti-
vation [21]. Additionally, in case of energy stress, LKB1
phosphorylates and activates AMPK via the formation of
a complex with the pseudokinase STRAD and the scaffold-
ing protein MO25 [22]. CaMKK activates AMPK in an
AMP-independent manner in response to increased cytosolic
calcium concentration [23, 24]. Note that AMPK auto-
phosphorylation at β-subunit Thr-148 has been reported
[25]. Activated AMPK promotes ATP production by favoring
catabolism and switching off anabolic pathways. Interestingly,
the pharmacological activation of AMPK by AICAR induces
TJ assembly, independently of extracellular Ca2+ or energy
deprivation [11, 18]. This effect might be achieved by
strengthening the trans interactionsmediated by cell adhesion
molecules involved in thenectin–I-afadin system [12, 26] and/
or by modulating cytoskeleton dynamics near the cell mem-
brane [12]. Furthermore, preactivation of AMPK by metfor-
min or AICAR helps preserve the functional integrity of
epithelial cells in the face of ischemia and energy depletion,
as demonstrated in vitro and in vivo [27–29]. TJ disruption
is indeed considered as one of the earliest hallmarks of epithe-
lial injury, leading to the loss of cell polarity and tissue
disorganization.

Cumulative evidence in the field of epithelial injury sup-
ports that mesenchymal stromal cells (MSC) are capable of
tissue-repair properties [30]. MSC represent a heterogeneous
population of adult fibroblast-like multipotent cells [31]. In
addition to their beneficial immunomodulatory and anti-
inflammatory abilities [32], MSC may help epithelial cells
survive, proliferate, and differentiate following injury [30,
33–35]. Hence, recent in vitro observations highlighted the
role of MSC in wound healing of airway epithelium, via direct
cell-cell contacts and paracrine activation of the epidermal
growth factor receptor [36–38]. Also, MSC are known to
release membrane vesicles (MVs) of various size and compo-
sition into the extracellular environment [39]. MSC-derived
MVs may help transfer cytosolic components, including pro-
teins, lipids, RNA, and organelles, from MSC to neighboring
cells, which accelerate tissue repair [40, 41].

In the present study, we first investigated which AMPK
kinases were responsible for AMPK phosphorylation and
activation at the time of a Ca2+ switch. Next, we questioned
the impact of MSC on epithelial TJ regulation in a coculture
system of Ca2+-induced TJ assembly in MDCK cells. Finally,
we studied the impact of MSC-conditioned medium on epi-
thelial TJ assembly. This paper was presented at MiSOT
2016—The 6th Expert Meeting on Therapeutic MSCs for
Immune Modulation.

2. Materials and Methods

2.1. MDCK Culture Conditions. MDCK cells were grown to
confluence in α-MEM supplemented with 10% FBS, 1% L-

glutamine (Lonza), and 1% penicillin (Lonza), in a humidi-
fied atmosphere containing 5% CO2 at 37

°C. MDCK shRNA
for LKB1 and luciferase (Luc, used as controls) were gener-
ated using pSUPER/retro-puro vector, as previously reported
[24]. Stable populations were maintained using puromycin
(2μg/mL; Sigma) as selection agent.

2.2. Isolation and Characterization of Bone Marrow-Derived
MSC. Bone marrow cells were flushed from both femurs
and tibias of male 9-week-old Lewis rats using phosphate-
buffered saline (PBS, Lonza). After homogenization, cell sus-
pension was filtered and centrifuged at 1200 rpm for 10min.
Cells were resuspended in α-MEM medium (Lonza) and
gently sieved through Ficoll (Healthcare Life Sciences). After
an additional 1500 rpm centrifugation for 45min at room
temperature (RT), mononuclear cells were removed from
the gradient interface and suspended in α-MEM solution
before final 1200 rpm centrifugation for 10min. The cells
were then plated in 75 cm2 culture flask containing α-MEM
supplemented with 10% FBS, 1% L-glutamine, and 1% peni-
cillin. MSC were maintained at 37°C in a humidified 5% CO2
incubator. Supplemented α-MEM was changed twice a week.
Cells were trypsinised at 80% of confluence for maximum 8
passages. At confluence, fresh culture medium was poured,
collected at day 3, centrifuged at 1.800 rpm for 5min, and
stored at −80°C for further use. MSC phenotype was tested
according to the criteria of the International Society of Cell
Therapy: (i) plastic adherence, (ii) (non)expression of con-
ventional surface markers using flow cytometry; and (iii) dif-
ferentiation into adipogenic, osteogenic, and chondrogenic
lineages [42]. Flow cytometry was performed on a FACSCa-
libur flow cytometer (BD Biosciences), using Alexa Fluor-
conjugated anti-rat CD29 antibody (BD Pharmingen),
APC-conjugated anti-rat CD90 antibody (BD Pharmingen),
V450-conjugated anti-rat CD45 antibody (BD Horizon),
FITC-conjugated anti-rat CD11b (BD Pharmingen), and
PE-conjugated anti-CD79a antibody (Abcam).

2.3. MSC/MDCK Coculture System. Cell populations were
mixed and seeded on 6-well plates at density 1.5× 105 cells/
well. The seeding ratio of MSC :MDCK was 1 : 3. All experi-
ments were performed at confluence. Alternatively, MDCK
cells were incubated with 2mL of α-MEM medium preex-
posed to MSC for 3 days.

2.4. Ca2+ Switch Experiments. Following steady state, cells
were rinsed and incubated in Ca2+-free S-MEM supple-
mented with 5% dialyzed FBS ([Ca2+], 5μM) for 16h before
being switched back to normal medium (α-MEM; [Ca2+],
1.8mM) for the indicated times. Compounds STO-609
(50μM; Sigma) and dorsomorphin/compound C (50μM;
Sigma) were used as CaMKK and AMPK inhibitors, respec-
tively. Increasing concentrations of dorsomorphin/com-
pound C were tested in order to fully block AMPK
activation (Supplementary Figure, panel A, available online
at https://doi.org/10.1155/2017/9717353). Alternatively,
MDCK cells were exposed to MSC-conditioned medium for
24 h, before exposure to S-MEM for 16h. The Ca2+ switch
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was then realized using MSC-conditioned α-MEM for the
indicated times.

2.5. Western Blot Analysis. Cells were lysed on ice in RIPA
lysis buffer including protease and phosphatase inhibitors
(Roche). Cell lysates were obtained by centrifugation at
13.000 rpm for 30min at 4°C. Supernatant was collected. Pro-
tein concentration was determined using Bradford method.
Protein lysates were mixed with Laemmli buffer (1 : 4) and
heated for 2min at 95°C. Equal amounts of protein (30μg/
lane) were loaded onto stain-free SDS electrophoresis gels
and separated at 100V (Bio-Rad). Gels were exposed to UV
light for 5min (ChemiDoc MP system, Bio-Rad). Proteins
were transferred to PVDF membranes (previously activated
by ethanol) using the Trans-Blot Turbo transfer system for
7min at RT. Blots were blocked with 5% milk in Tris-
buffered saline with Tween 20 (TBS-T) for 1 h and incubated
overnight at 4°C with primary antibodies: pAMPK (T172)
(Cell Signaling), AMPK (Cell Signaling), and pACC (Cell
Signaling) antibodies. Blots were rinsing 5 times with TBS-
T for 5min and incubated with HRP-conjugated anti-rabbit
secondary antibodies (1/4000) for 90min at RT. After rins-
ing, chemiluminescent signals were captured by ChemiDoc
MP system after applying chemiluminescent substrate
(Femto, Thermoscientific) on blots. Image data were ana-
lyzed and quantified (n = 4 for each experimental condition)
using Image Lab 4.1 software. Representative samples were
then run on the same stain-free SDS gels for the sake of pub-
lication, in agreement with the ASBMB policy.

2.6. Immunofluorescence and Quantification of ZO-1
Deposits. Cells grown on coverslips were rinsed twice with
PBS and fixed in cold methanol for 12min. After blockade
with PBS/BSA 5% dilution for 60min at RT and incubated
for 90min with anti-ZO-1 (ThermoFisher Scientific) and
followed by 60min of incubation with Alexa Fluor 488-
conjugated anti-rabbit IgG (Molecular Probes), cells were
visualized on an FSX-100 (Olympus Life Science). Contrast,
brightness, and focus settings were chosen so that all pixels
were in the linear range. To quantify the average ZO-1 length
per cell, 4 fields were randomly selected, and the total length
of ZO-1 in each field was outlined manually on Photoshop,
followed by measurement using Image J software (NIH)
[11–13]. Cell numbers were counted for each field with the
DAPI Fluoromount-G (SouthernBiotech) slide mounting.

2.7. Statistical Analyses. Data were expressed as mean± 1
standard deviation (SD). One-way analysis of variance,
Mann–Whitney, and Student t-test were appropriately per-
formed, with a significant p value set at 0.05 (MedCalc
software).

3. Results

3.1. The Phosphorylation and Activation of AMPK Following
a Ca2+ Switch Depend on CaMKK in MDCK Cells,
Independently of LKB1. Following a Ca2+ switch, we observed
a mean 1.75-fold increase of pAMPK compared to S-MEM
medium (n = 4, p < 0 05) whereas total AMPK remained
unchanged, as previously reported [11] (Figures 1(a) and

1(b)). Mean levels of pACC, a typical substrate of AMPK,
followed a similar pattern, with a 5.3-fold increase following
Ca2+ switch (n = 4, p < 0 05). LKB1 and CaMKK are consid-
ered as the 2 major AMPK kinases [23]. In LKB1-shRNA
MDCK cells, mean levels of pAMPK and pACC were 1.4-fold
and 4.7-fold increase, respectively, in comparison to S-MEM
(n = 4, p < 0 05), with no significant difference with control
Luc-shRNA (n = 4, not significant (ns)) (Figures 1(a) and
1(b)). Of important note, Luc-shRNA MDCK cells behave
similarly as MDCK cells regarding AMPK phosphorylation/
activation and ZO-1 relocation following Ca2+ switch (n = 4,
data not shown). Conversely, pharmacological inhibition of
CaMKK using STO-609 prevented AMPK phosphorylation
and activation after Ca2+ switch, with mean levels of pAMPK
and pACC similar to S-MEM conditions (n = 4, ns). Incuba-
tion of MDCK with AMPK inhibitor, dorsomorphin/com-
pound C (50μM) prevented AMPK autophosphorylation
classically induced by Ca2+ switch (Figures 1(a) and 1(b)).
These observations suggest that CaMKK plays a role in
Ca2+-induced AMPK activation in MDCK cells, indepen-
dently of LKB1.

3.2. Pharmacological Inhibitions of AMPK or CaMKK
Prevent Ca2+-Induced TJ Relocation of ZO-1. During a Ca2+

switch, the translocation of TJ-associated protein ZO-1 from
cell cytosol to cell-cell junctions represents a key and early
step of TJ assembly [5]. Hence, we monitored the length of
ZO-1 membrane deposits following a Ca2+ switch in MDCK
cells exposed to various experimental conditions [11–13]. In
normal conditions, readdition of Ca2+ causes a 4-fold
increase of ZO-1 length compared to S-MEM conditions
(Figures 1(c) and 1(d)). After 2 h of Ca2+ switch, TJ were
largely assembled as a classical chicken-wire network. In
LKB1-shRNA MDCK cells, ZO-1 relocation followed a
pattern similar to control MDCK (n = 4, not significant). By
contrast, pharmacological inhibition of CaMKK (using
STO-609) (n = 4, p < 0 05) or AMPK (dorsomorphin/com-
pound C) (n = 4, p < 0 05) prevented ZO-1 relocation
induced by the Ca2+ switch (Figures 1(c) and 1(d)). These
observations suggest that AMPK and CaMKK kinase activity
participates in Ca2+-induced ZO-1 deposits in MDCK cells,
independently of LKB1.

3.3. The Phosphorylation and Activation of AMPK in MDCK
Cells Are Enhanced in the Presence of MSC, Which Is
Associated with Faster Relocation of ZO-1 to Cell-Cell
Contacts. TJ assembly in epithelial cells may be modulated
by nonepithelial cells [43, 44]. As an example, lymphocytes
have been shown to boost Ca2+-induced activation of AMPK
and accelerate TJ formation [43]. Similarly, we postulated
that MSC may participate in TJ formation, and we investi-
gated whether AMPK was implicated in such a process. In
comparison to MDCK alone, phosphorylation and activation
of AMPK was significantly increased in MDCK/MSC cocul-
ture, as demonstrated by mean levels of pAMPK/AMPK ratio
(n = 4, p < 0 05) and pACC (n = 4, p < 0 05) (Figures 2(a) and
2(b)). Of important note, immunoreactive signals for AMPK
activation and pACC were undetectable in MSC alone, which
suggest that only MDCK AMPK activation pathway is tested
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in our model [45] (Supplementary Figure, panel B). In line
with these observations, we monitored the time-course of
ZO-1 relocation to cell-cell contacts following Ca2+ switch in
the presence or absence of MSC (Figures 2(c) and 2(d)). After
16-hour deprivation of Ca2+, the length of TJ-associated

ZO-1 per cell was 3x higher in MDCK/MSC coculture com-
pared to MDCK cells alone (n = 4, p < 0 05) (Figures 2(c) and
2(d)). After 1 h of Ca2+ switch, ZO-1 relocation to cell-cell
contacts was twice higher in MDCK/MSC than in MDCK
alone (n = 4, p < 0 05). Still, at 2 hours post Ca2+ switch, the

pACC

S-
M

EM

Ca
2+

sw
itc

h

Ca
2+

sw
itc

h

Ca
2+

sw
itc

h

Ca
2+

sw
itc

h

S-
M

EM

S-
M

EM

S-
M

EM

pAMPK

AMPKt

280 kDa

62 kDa

62 kDa

MDCK
MDCK
shRNA
LKB1

MDCK
+

STO-609

MDCK
+

compound C

(a)

0

S-
M

EM

M
D

CK

M
D

CK
 sh

RN
A

 L
KB

1

M
D

CK
+

ST
O

-6
09

M
D

CK
+

co
m

po
un

d 
C

S-
M

EM

M
D

CK

M
D

CK
 sh

RN
A

 L
KB

1

M
D

CK
+

ST
O

-6
09

M
D

CK
+

co
m

po
un

d 
C

0.5

1

1.5

2

2.5

pA
M

PK
/A

M
PK

t r
at

io

ns

0

1

2

3

4

5

6

7

pA
CC

/to
ta

l p
ro

te
in

 ra
tio

ns⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎

(b)

MDCK 

Ca2+ switch 1 h Ca2+ switch 2 hS-MEM 

MDCK shRNALKB1

MDCK+STO-609

MDCK +compound C

(c)

0

S-
M

EM

Ca
2+

 sw
itc

h 
1 

h

Ca
22+

 sw
itc

h 
2 

h
2

4

6

8

10

12

14

16

MDCK
MDCK shRNA LKB1

MDCK+STO-609

ns

ns

§

§Le
ng

th
 o

f Z
O

-1
 (𝜇

m
/c

el
l)

⁎

⁎

MDCK+compound C

(d)

Figure 1: Role of the AMPK kinases, LKB1 and CaMKK, in AMPK activation and ZO-1 relocation following a Ca2+ switch in MDCK cells.
Representative immunoblotting (a) and quantifications (b) of phospho-acetyl-Coa carboxylase (pACC), phospho-AMP-activated protein
kinase (pAMPK), and total AMPK (AMPKt) in low Ca2+ conditions (S-MEM) and following Ca2+ switch using MDCK cells or LKB1-
shRNA MDCK cells. Compounds STO-609 and C were used as CaMKK and AMPK inhibitors, respectively. Quantifications of
immunoreactive signals were performed by stain-free method after normalization to total protein content of each lane. Quantifications of
phospho-ACC, phospho-AMPK, and AMPKt signals following Ca2+ switch were calculated and expressed by the ratio to the
immunoreactive signal of SMEM condition in each individual experiment (a). For the sake of bar-graph clarity (b), SMEM values of all
experiments were normalized to 1 in order to represent mean ratios of phospho-ACC/total protein content and phospho-AMPK/AMPKt
in different experimental conditions (b). Data are presented as mean± SD; ns: not significant, ∗∗p ≤ 0 01, ∗∗∗p ≤ 0 001. Representative
immunofluorescence (c) and quantifications (d) of ZO-1 deposits at increasing time points following Ca2+ switch in similar conditions as
in (a) and (b) (scale bar: 16μm). No statistically significant difference was observed between MDCK and LKB1-shRNA MDCK (ns: not
significant). MDCK exposed to compound C (∗p ≤ 0 01) or STO-609 (§p ≤ 0 01) showed a significant reduction of ZO-1 relocation in
comparison to control MDCK. Data are presented as mean± SD.
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Figure 2: Impact of mesenchymal stromal cells (MSC) on AMPK activation and ZO-1 relocation following a Ca2+ switch in MDCK cells.
Representative immunoblotting (a) and quantifications (b) of phospho-acetyl-Coa carboxylase (pACC), phospho-AMP-activated protein
kinase (pAMPK), and total AMPK (AMPKt) in low Ca2+ conditions (S-MEM) and following Ca2+ switch using MDCK cells or LKB1-
shRNA MDCK cells, with versus without MSC. Compounds STO-609 and C were used as CaMKK and AMPK inhibitors, respectively.
Quantifications of immunoreactive signals were performed by stain-free method after normalization to total protein content of each lane.
Data are presented as mean± SD; ns: not significant, ∗∗p ≤ 0 01, ∗∗∗p ≤ 0 001. Representative immunofluorescence (c) and quantifications
(d) of ZO-1 deposits at increasing time points following Ca2+ switch in similar conditions as in (a) and (b) (scale bar: 16μm). MSC/
MDCK (i.e., MDCK (§p ≤ 0 01) or MDCK LKB1-shRNA (∗p ≤ 0 01)) cocultures show significantly increased ZO-1 deposits at 1-hour post
Ca2+ switch in comparison to MDCK alone. At 2 hours post Ca2+ switch, no significant (ns) difference in ZO-1 lengths is observed
between MDCK and MSC/MDCKs. Data are presented as mean± SD.
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length of membrane-associated ZO-1 per cell was similar
in both groups (n = 4, ns) (Figures 2(c) and 2(d)). Of
note, immunofluorescence signal for ZO-1 was undetect-
able in MSC cultured alone, which suggests that ZO-1
quantification only reflects ZO-1 deposits in MDCK cells
in our model (Supplementary Figure, panel C). As a
whole, these results indicate that MSC may accelerate
ZO-1 deposition to cell-cell contacts at the time of TJ
assembly in MDCK cells.

3.4. MSC-Associated AMPK Activation and ZO-1 Relocation
in MDCK Cells Following Ca2+ Switch Are Prevented by
AMPK and CaMKK Inhibitors Independent of LKB1. Using
LKB1-shRNA and Luc-shRNA MDCK cells cocultured with
MSC, we assessed the role of LKB1 in MSC-enhanced AMPK
activation and ZO-1 relocation. In LKB1-shRNA MDCK
cells, mean levels of pAMPK/AMPK ratio (n = 4, p < 0 05)
and pACC (n = 4, p < 0 05) were, respectively, 1.5-fold
increased and 2-fold in the presence versus absence of
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Figure 3: Impact of mesenchymal stromal cell- (MSC-) conditioned medium (CM) on AMPK activation and ZO-1 relocation following
a Ca2+ switch in MDCK cells. Representative immunoblotting (a) and quantifications (b) of phospho-AMP-activated protein kinase
(pAMPK) and total AMPK (AMPKt) in low Ca2+ conditions (S-MEM) and following Ca2+ switch using MDCK cells exposed to regular
versus MSC-preexposed medium. Quantifications of immunoreactive signals were performed by stain-free method after normalization to
total protein content of each lane. Representative immunofluorescence (c) and quantifications (d) of ZO-1 deposits at increasing time
points following Ca2+ switch in similar conditions as in (a) and (b) (scale bar: 16μm). Data are presented as mean± SD; ∗∗∗p ≤ 0 001
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MSC, to a similar extent of Luc-shRNA MDCK cells
(Figures 2(a) and 2(b)). Furthermore, after a 16-hour depri-
vation of Ca2+, the length of ZO-1 remaining at TJ sites per
cell was 4x higher in MSC cocultured with LKB1-shRNA
MDCK in comparison to MDCK alone (n = 4, p < 0 05)
(Figures 2(c) and 2(d)). After 1 h of Ca2+ switch, the length
of ZO-1 membrane deposits per cell was twice longer in the
presence versus absence of MSC (n = 4, p < 0 05). In strong
contrast, incubation of MSC/MDCK or MDCK cells alone
with CaMKK (STO-609) or AMPK (dorsomorphin/com-
pound C) inhibitors prevented MSC impact on AMPK
activation and ZO-1 distribution, both after Ca2+ deprivation
and Ca2+ switch (Figures 2(a) and 2(d)). These data suggest
that, in a coculture system, MSC modulate Ca2+-induced
CaMKK-mediated AMPK activation at the time of TJ assem-
bly epithelial cells, independently of LKB1.

3.5. MSC-Conditioned Culture Medium Slightly but
Significantly Enhances AMPK Activation and ZO-1
Relocation Following Ca2+ Switch in MDCK Cells. Mecha-
nisms of MSC properties involve both direct cell-cell contacts
and indirect impacts via paracrine factors [46]. To assess
whether the impact of MSC on Ca2+-induced TJ assembly
in MDCK cells requires direct cell-cell interactions, we per-
formed the Ca2+ switch using an α-MEM culture medium
preexposed to MSC for 3 days. Hence, we observed that
MSC-conditioned medium slightly (1.14-fold) but signifi-
cantly (n = 4, p < 0 05) increased AMPK phosphorylation.
Thus, pACC was also increased by 1.7-fold in the coculture
(n = 4, p < 0 05). The relocation of ZO-1 was 1.7-fold acceler-
ated at 1-hour post Ca2+ switch in comparison to untreated
α-MEM (n = 4, p < 0 05) (Figures 3(a) and 3(d)). There was
no difference between MSC-conditioned and untreated α-
MEM at 2 hours post Ca2+ switch (Figures 3(b) and 3(c)).

4. Discussion

The present in vitro observations suggest that bone
marrow-derived MSC modulate epithelial TJ at the time
of their Ca2+-induced assembly. The relocation of TJ-
associated adaptor protein, ZO-1, to MDCK cell-cell contacts
was indeed significantly accelerated in the presence of MSC.
Furthermore, AMPK phosphorylation and activation at the
time of Ca2+-induced epithelial TJ assembly were signifi-
cantly enhanced when MDCK cells were cocultured with
MSC, which could be prevented by the pharmacological
inhibition of CaMKK. Conversely, the depletion of LKB1
did not significantly influence AMPK phosphorylation fol-
lowing Ca2+ switch, with or without MSC coculture.

AMPK activity is modulated by 2 major upstream
kinases, that is, LKB1 and CaMKK [18–20, 47]. Still, the
respective contribution of each of these AMPK kinases in
AMPK activation at the time of a Ca2+ switch remains
unknown [11, 18]. LKB1 provides a high basal level of AMPK
phosphorylation, which is modulated by the binding of AMP
to the AMPK γ-subunit. AMP binding to the γ-subunit allo-
sterically activates AMPK, making it more susceptible for
phosphorylation of the α-subunit activation loop (at residue
Thr172) by LKB1 [48]. Note that AMPK activation

associated with Ca2+-induced TJ assembly is independent of
changes in AMP/ATP ratio or energy privation [11, 18].
Conversely, CaMKK kinase has been shown to trigger AMPK
phosphorylation on Thr172 in response to increased intra-
cellular Ca2+ concentration with no necessary changes in
AMP or ADP levels [21, 49]. Our present in vitro observa-
tions further support a role for CaMKK in the activation of
AMPK during a Ca2+ switch, independently of LKB1 activity.
Hence, the pharmacological inhibition of CaMKK hampered
AMPK phosphorylation and ZO-1 relocation when culture
conditions were shifted from low to high Ca2+ concentration,
whereas the inactivation of LKB1 did not significantly influ-
ence these processes.

Circulating factors and cells have been shown to modu-
late TJ formation and maintenance in epithelia [50, 51].
Hence, lymphocytes accelerate TJ assembly in a coculture
in vitro model compared to epithelial cells alone [43]. This
acceleration was found to be mediated by AMPK, indepen-
dently of changes in cellular ATP levels. Furthermore, it
was found to be activated by the proinflammatory cytokine
TNF-alpha [43]. In line with these observations, coculturing
endometrial epithelial cells with peripheral blood leukocytes
improves both the survival of leukocytes and the epithelial
barrier function, as reflected by a 4-fold increase in the trans-
epithelial resistance as compared to epithelial cells alone [44].
In this study, direct cell-cell contacts were required for the
beneficial impact of immune cells. In our model, we hypoth-
esized that MSCmay also influence TJ of epithelial cells given
the previous reports about their tissue-repair properties in
various organs and tissues [31, 32, 52, 53]. MSC effects are
known to be mediated by both direct cell-cell contacts and
paracrine secretion of MVs [54, 55]. Using a classical model
of Ca2+-induced TJ assembly [8], we found that the presence
of MSC was associated with a significantly faster deposition
of ZO-1 to cell-cell contacts. Furthermore, MSC influence
was abrogated in case of cell incubation with CaMKK or
AMPK inhibitors, suggesting a key role of the AMPK
pathway in such a process. Of important note, AMPK-
dependent and independent roles of compound C have
been reported in a context-dependent manner [56].

These observations could be partly reproduced by incu-
bating epithelial cells with MSC-conditioned medium, which
supports a fractional role for MSC-derived MVs in epithelial
TJ regulation.

5. Conclusion

As a whole, we report on the role of CaMKK as AMPK kinase
at the time of Ca2+-induced assembly of epithelial TJ, inde-
pendently of LKB1. Moreover, we highlight the impact of
MSC in the AMPK-mediated regulation of epithelial TJ, via
both direct cell-cell contacts and MSC-derivated particles
and MSC-derived MVs. These findings open novel research
avenues in the deciphering of MSC repair properties.
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