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Performance of machine-learning 
scoring functions in structure-based 
virtual screening
Maciej Wójcikowski1, Pedro J. Ballester2,3,4,5 & Pawel Siedlecki1,6

Classical scoring functions have reached a plateau in their performance in virtual screening and binding 
affinity prediction. Recently, machine-learning scoring functions trained on protein-ligand complexes 
have shown great promise in small tailored studies. They have also raised controversy, specifically 
concerning model overfitting and applicability to novel targets. Here we provide a new ready-to-use 
scoring function (RF-Score-VS) trained on 15 426 active and 893 897 inactive molecules docked to a 
set of 102 targets. We use the full DUD-E data sets along with three docking tools, five classical and 
three machine-learning scoring functions for model building and performance assessment. Our results 
show RF-Score-VS can substantially improve virtual screening performance: RF-Score-VS top 1% 
provides 55.6% hit rate, whereas that of Vina only 16.2% (for smaller percent the difference is even 
more encouraging: RF-Score-VS top 0.1% achieves 88.6% hit rate for 27.5% using Vina). In addition, RF-
Score-VS provides much better prediction of measured binding affinity than Vina (Pearson correlation of 
0.56 and −0.18, respectively). Lastly, we test RF-Score-VS on an independent test set from the DEKOIS 
benchmark and observed comparable results. We provide full data sets to facilitate further research in 
this area (http://github.com/oddt/rfscorevs) as well as ready-to-use RF-Score-VS (http://github.com/
oddt/rfscorevs_binary).

Structure-based Virtual Screening (VS)1,2 aims at identifying compounds with previously unknown affinity for a 
target from its three-dimensional (3D) structure. Docking techniques are typically used to carry out this in silico 
prediction using their embedded scoring functions (SFs). When applied to VS, SFs seek to rank compounds 
based on their predicted affinity for the target as a way to discriminate between binders and non-binders. Despite 
the well-known limitations of SFs1,3–5, their application has been beneficial in many VS projects and successful 
applications have been reported3,6–9.

Although the classical SFs used in VS experiments have often proven useful, improved accuracy requires novel 
approaches. Usage of more than one SF to evaluate and rank ligands from chemical libraries is now standard 
practice in VS. Unfortunately, SFs do not account well for conformational entropy or solvation energy contribu-
tions, which is detrimental for binding affinity prediction10. Often, an empirical or knowledge-based SF is used to 
generate an ensemble of viable docking poses followed by a seemingly more rigorous energy-based SF, which is 
applied for re-scoring the poses to rank the corresponding ligands. The choice of appropriate SF is not obvious in 
such usage scenarios, since the predictive accuracy of a SF varies between protein families. SFs uniquely calibrated 
for the data set under study are often preferred to universal SFs1,11. Unfortunately, full training of classical SFs 
is often not possible. Many of them are provided in a way that does not permit changing the regression model, 
although a number of control parameters can be adjusted to tailor the SF to a particular target. Importantly, the 
underlying linear regression model employed by classical SFs has been shown to be unable to assimilate large 
amounts of structural and binding data12.

By contrast, machine-learning SFs provide clear advantages over these classical SFs13. Given a set of active 
and inactive ligands for training, SFs such as RF-Score14, NNScore15 and SFCscore16,17 can be trained to distin-
guish between known ligands by potency with high accuracy. Indeed, the degree with which machine-learning 
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SFs have outperformed classical SFs at binding affinity prediction has been highlighted by several reviews13,18–20. 
Research has been carried out on various aspects of machine-learning SFs for binding affinity prediction: how 
target diversity affects predictive performance21, the impact of structure-based feature selection on predictive 
performance22, how to build machine-learning versions of classical SFs23, how predictive performance increases 
with the size of the training data in both types of SFs12, how the quality of structural and binding data influences 
predictive performance24, which machine learning (ML) methods generate more predictive SFs25, how to correct 
the impact of docking pose generation error on predictive performance26 or the implementation of webservers27 
and stand-alone software26,28 to make these tools freely available. It is important to note that the validation of 
machine-learning SFs has generally been much more rigorous than that of most classical SFs13. For example, in 
building RF-Score v3 for binding affinity prediction, no overlapping between training and test sets is permitted 
by construction12. Importantly, any adjustable parameter of the machine-learning SF is selected from data not 
used to estimate the performance of the model13 (e.g. k-fold cross-validation29 is done for either model selection 
or estimating generalization performance, but not both). Typically, neither of these safeguards against model 
overfitting is enforced when measuring the performance of classical SFs30.

Machine-learning SFs have also shown advantages over classical SFs in structure-based VS. On retrospec-
tive VS studies, SVM-SP has strongly outperformed Glide, ChemScore, GoldScore and X-Score on HIV pro-
tease31. Another prime example is that of MIEC-SVM retrospectively outperforming Glide and X-Score32 on 
40 DUD2 targets, in a study that also showed that VS performance increases with training set size as expected. 
This machine-learning SF has also been found superior to classical SFs in prospective VS studies on kinases33. 
It is still not clear however how different modelling choices affect predictive performance on particular targets. 
For instance, a recent study has found that the VS performance on HSP90 of a Neural Network-based SF is just 
comparable to that of Vina34.

In this work, we investigate what is the influence of including negative data instances (inactive molecules 
docked to targets) on machine learning SF. Such chimeric complexes are currently discarded from training proce-
dures. Here we present an in-depth analysis of machine-learning SFs with respect to their classical counterparts, 
both in terms of VS and binding affinity prediction. We use the full DUD-E5 data sets for model building and 
performance assessment across 102 targets using three docking tools to generate the corresponding poses. Three 
machine-learning SFs using structural features with different degrees of complexity are used12,14,22 and compared 
to five classical SFs. We assess the VS performance of the SFs in both established-target and novel-target settings, 
either tailored for broad application or for a specific target.

Materials and Methods
Data provenance. Benchmarking platform Directory of Useful Decoys – Enhanced (DUD-E) resource was 
used to generate various classes of non-overlapping training and testing sets intended to simulate possible appli-
cation scenarios (data accessed 01.08.2016). The data set consisted of 102 protein targets, with a group of active 
molecules for each target (224 ligands on average) and decoys (50 decoys per active ligand). A ligand is consid-
ered active if its affinity (IC50, EC50, Ki, or Kd) is 1 μ M or better. DUD-E decoys comprise ligands selected based on 
similarity to physical properties of known actives (for a particular target), but dissimilar in terms of 2D-topology. 
Though the inactivity of decoys has not been experimentally confirmed, these are likely to be inactive and thus 
this procedure minimizes the risk of selecting false negatives5.

Training and test sets. Classical SFs are used off-the-shelf on the DUD-E benchmark test sets, which means 
that there might be a number of protein-ligand complexes in common with their training sets. However, this 
overlap should be small as these training sets contain at most a few hundred complexes (this is because the under-
lying linear regression model cannot learn beyond this point12). By contrast, machine learning is able to exploit 
much larger training data sets, which would lead to a much larger overlap. Consequently, we use cross-validations 
on the DUD-E sets to avoid any protein-ligand complexes in common between training and test sets.

With the purpose of representing different common scenarios with respect to how much data is available for 
the target, we have introduced three different kinds of stratified 5-fold cross-validations (see Fig. 1) (1) per-target 
– in this approach, we generate 102 unique machine-learning SFs, each created independently for a single protein 
target (trained only on its active and decoys ligands); (2) horizontal split – both training and test sets contain data 
from all targets, i.e. each target has its ligands both in training and test sets. Such approach mimics experiments 
where docking is performed on targets for which there are already known ligands; (3) vertical split – the training 
and test data are created independently, i.e. there are no shared targets between training and test data. The vertical 
split represents the scenario, where SFs estimate whether a molecule binds to a target with no known ligands. As 
both machine-learning and classical SFs employ regression models, each SF returns a predicted real-valued score 
for each DUD-E protein-ligand pair that is thereafter used to rank them prior to apply the inactive cutoff and 
evaluate classification performance.

Validation. The k-fold cross-validation (CV) is a commonly used strategy to reduce model overfitting. It 
also serves to assess applicability and generalization of predictions. Throughout this work we used 5-fold CV, 
which corresponds to an 80:20 test and training set ratio. This means that 80% of the data is used for training the 
machine-learning SF, which is afterwards tested on the remaining 20%. Such cross validation is repeated 5 times, 
meaning the whole dataset is divided into 5 groups (folds) of target-ligand complexes of approximately equal 
size. The folds are stratified – the proportions of actives/inactives preserved from original dataset. The function 
is learned on 4/5 of the groups and tested on 1/5 of the remaining complexes (on average). Importantly, each 
protein-ligand complex was present in training and test sets at some point, but never in both sets concurrently 
(i.e. in a single fold). This way training and test sets never overlap.
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Data normalization and compounds labelling. Molecules from DUD-E are considered inactive when 
their activity on the target is weaker (i.e. lower) than pKd/i =  6 (this is the same activity cutoff which was used by 
the DUD-E authors5). In order to adapt RF-Score to VS, its regression model needs to be trained on a large pro-
portion of inactive protein-ligand pairs. Therefore, all training decoys were assigned an identical inactive value 
of pKd/i =  5.95 (less than 1% under the activity cutoff). We have also tested lower inactive cutoffs, also reported 
elsewhere18, but found these to be suboptimal (data not shown). Following common convention, data points were 
converted to pKd/i units (this customary step had no significant impact on predictions made by the SFs).

Ligand poses generation. Ligand 3D conformations were generated with three docking programs; 
AutoDock Vina (the Smina implementation, [http://smina.sf.net/])35,36, Dock 3.637 and Dock 6.637–39. Dock 3.6 
was not run in-house, instead the DUD-E docked conformations and scores were downloaded from the database 
website (http://dude.docking.org). Vina and Dock 6.6 software were used with default parameters. Target proteins 
were prepared using UCSF Chimera23 DockPrep tool. Docking box was constrained to 10 Å around the ligand 
(which was included in the crystallographic structure of every protein target). Ligands were prepared and sani-
tized using OpenBabel40. 50 conformations were generated with each docking methodology.

Classical Scoring Functions. Ligand-receptor complexes were scored using several classical, commonly 
used SFs. We used internal SFs implemented in the three docking programs used (Vina, Dock3.6, Dock6.6). 
Additionally we used the CScore module of SybylX 2.141 which implements: D_Score38, G_score (known as 
GoldScore42), ChemScore43 and PMF_Score44. All of the above SFs have been widely used in VS.

Descriptors and machine learning models. RF-Score is currently one of the best performing SFs at 
binding affinity prediction12,13. We used the descriptors from RF-Score versions v114, v222 and v312. All versions 
use the same distance cutoff; a pair is tallied as interacting when the distance between the atoms falls within the 
12 Å cutoff. They differ in the number of bins used. Bins divide the basal cutoff into smaller ranges, e.g. 2 Å bins 
(used by v2) translates to bins of following sizes: 0–2 Å, 2–4 Å, 4–6 Å, 6–8 Å, 8–10 Å, 10–12 Å. Versions v1 and v3 
use only one bin. Finally, v3 is enriched with Autodock Vina partial scores.

Each RF-Score-VS version was trained on one best scoring ligand pose (meaning the lowest score from cor-
responding docking software). The number of trees in random forest (RF) was set to 500 as in the original imple-
mentation (this setting has been shown to be robust45). The number of features to consider when looking for the 
best split in each RF tree (“mtry”) was optimized using out-of-bag predictions (OOB). The optimized values are: 
15 for v1 and v3 and 100 for v2 used in this study (i.e. we do not tune RF to DUD-E data). All RF-Score-VS cal-
culations were done using ODDT28.

External dataset validation. DEKOIS 2.03 database was used as external validation dataset. Four over-
lapping structures between DUD-E and DEKOIS 2.0 were filtered out: A2A: “2p54”, HDAC2: “3l3m”, PARP-1: 
“3eml”, PPARA: “3max”. Protein SIRT2 had no crystal ligand, thus was also excluded. The final, non-overlapping 
dataset consisted of 76 targets. In addition, we have filtered out any ligand or decoy, which was found to be nearly 
identical (Tanimoto score of at least 0.99; OpenBabel FP2 fingerprints) to any ligand/decoy present in DUD-E. 
Originally each DEKOIS protein was associated with 40 ligands and 1200 decoys, our pruning removed on aver-
age 18.6 (46.5%) ligands and 188 (15.7%) decoys.

Figure 1. Per-Target, Horizontal and vertical split of DUD-E targets. Each barrel represents all the protein-
ligand complexes (actives and decoys) associated with a different target. The training sets are coloured red, the 
test sets with green.

http://smina.sf.net/
http://dude.docking.org
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Protein files were prepared according to DEKOIS 2.0 publication3 using Schrödinger Maestro suite. 
Afterwards ligands and decoys were docked using Autodock Vina with default settings, as previously done with 
DUD-E. Docked poses were rescored with RF-Score-VS v2 and v3 scoring functions.

Metrics. Enrichment factor (EF) is a fraction of active molecules within a given percentile of ranking list 
divided by random hit-rate. In DUD-E database there are 50 decoys per active ligand, hence random hit-rate is 
~2%. DEKOIS database after pruning on average contains 21 actives and 1012, which translates to the same ~2% 
random hit rate as in DUD-E. Enrichment Factor, the area under Receiver Operating Characteristic curve (ROC 
AUC) and other metrics were calculated using ODDT28.

Results and Discussion
The aim of the work was to mimic VS campaigns using diverse targets having a number of active and inactive 
ligands. It is well known that in practice the number of inactives of a target is much larger than that of actives. 
DUD-E dataset5 was built primarily to test performance of docking and scoring software, but it also fits into the 
constrains of a screening dataset described above. It contains of 102 targets associated with 22,886 ligands with 
measured activity. The target types are quite diverse and consist of receptors (GPCR, chemokine and nuclear), 
globular enzymes, kinases and virus proteases among others. It is also heterogeneous in case of ligand abundance; 
Catechol O-methyltransferase (COMT) has only 41 active compounds, compared to MAP kinase p38 alpha 
(MK14) which has 578 unique, dissimilar compounds. On average there are 224 ligands per target and for each 
of them 50 decoys were generated according to procedure described by Mysinger et al.5. These decoy compounds 
are presumed inactive because their chemical structures are dissimilar to those of known ligands. However, they 
are designed to share the same physiochemical features (number of donors/acceptors, etc.), so that discrimination 
between actives and inactives is not trivial. So in this setup, an average screening campaign would search through 
11 200 compounds to find 224 active ligands.

The most common measure of retrospective VS performance is the enrichment factor (EF) of a method 
applied to a particular benchmark. When a large database of compounds is screened one takes the best scored 
compounds at the top of the ranked list for further evaluation. The number of experimentally tested compounds 
is chosen depending on various criteria, but it is usually the top of the list which is pursued (e.g. top 1%, 0.1%, 
etc.). Therefore, it is not the overall performance of a scoring method on the whole database, such as ROC AUC, 
which is most relevant for VS, but rather the performance in the top of the list, i.e. how many active compounds 
are among the best scored compounds. In our assessment, we focused on EF1% (fold change of active molecules 
percentage within the top 1% of ranking list over random distribution) as the most relevant estimate of screening 
performance and machine learning predictive power.

We perform a stratified 5-fold cross validation (see materials and methods for more details), to avoid model 
overfitting which hampers the performance on data sets other than the training set46. It is important to note that, 
while all target-ligand complexes are present at some point in training and test sets, they are never in both simul-
taneously (see Materials and Methods, validation section). Finally, the mean value of the performance in 5 inde-
pendent folds is calculated, which estimates how a model will perform on independent datasets. This prevents 
testing the SF on complexes used for training and reporting artificially boosted performance.

The first experiment we conducted was to train the SFs on horizontally split data. This approach mimics 
experiments where docking is performed on targets for which there are already known active ligands and VS is 
done to find new ones. Therefore, training was done on 4/5 of ligands from all 102 DUD-E targets and the model 
was tested on the remaining 1/5 (Fig. 1B). In this setup only a single, unique model (generic SF) is built for the 
whole DUD-E dataset. Such model can be directly compared to a classical SF as they are also single model func-
tions, trained on a defined set of protein-ligand complexes and developed to work with diverse targets.

Our results show a dramatic increase of EF1% performance between the best classical compared to 
machine-learning SF trained on horizontally split dataset: around two- to even 15-times increases depending 
on the docking engine and SF (Fig. 2). It is worth noting that the classical SF do not perform similarly here, 
as the obtained EF1% varied significantly both in value and standard deviation. RF-Score v3, which is one of 
the best performing machine-learning SF to predict binding affinities on PDBbind, yields EF1% similar to best 
performing classical approaches despite being trained on X-ray crystal structures and thus not incorporating 
any negative data (i.e. docked inactives) into the training set. In contrast, novel machine-learning methodol-
ogy was much more robust in terms of protein-ligand complexes provided by the three docking algorithms. 
Independently from the docking engine the EF1% values for the developed SFs osculated mostly well above 30. The 
worst machine-learning screening combination (Dock 6.6 and RF-Score-VS v1) was still almost two-times better 
than the best performing classical combination (Dock 3.6 and its native SF). This trend holds even for smaller top 
percentages. EF0.1% for the best performing classical Dock 3.6 compared to horizontal RF-Score-VS v2 is twofold 
smaller (29.39 to 61.42). See Supplementary File for more results comparison.

As expected, when looking more deeply into the obtained data it was clear that results from different targets 
can vary significantly. There are targets that seem to be hard for the SF; defined as those with EF1% <  20. On the 
other end, there are also easy targets, the SF showing outstanding performance, i.e. EF1% >  60. There was not 
obvious correlation between the number of active ligands among hard or easy targets. What we found however is 
that the hard targets are difficult very much independently from the employed docking software or ML training 
approach. Thus, the problem might be due to to inaccurate 3D representation of receptor-ligand complexes or 
inappropriate choice of binding site for some ligands.

We also investigated the question: whether it is beneficial to train machine-learning SFs only on data specific 
to a particular target and then use it for screening rather than using a generic function trained on all targets. Put 
differently: do tailored functions perform significantly better than a generic function to justify the additional 
effort undertaken for training? To answer these questions, we trained a separate SF for each of the DUD-E targets 



www.nature.com/scientificreports/

5Scientific RepoRts | 7:46710 | DOI: 10.1038/srep46710

Figure 2. Comparison of EF1% results obtained from classical SFs: D_score, Chemscore, G_score, PMF_
score, native score (i.e. which was used to by docking software), with results from three versions of RF-
Score-VS. Unlike RF-Score-VS, RF-Score v3 does not train on any negative data (this SF for binding affinity 
prediction was exclusively trained on X-ray crystal structures12). Each boxplot shows five EF1% values for a 
given SF resulting from the five 80:20 data partitions (i.e. five non-overlapping test sets collectively comprising 
all data). All train-test splitting scenarios are present, namely vertical, horizontal and per-target. A dramatic 
increase in machine-learning scoring performance (measured as EF1%) can be seen in RF-Score-VS compared to 
classical SFs.
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and compared its performance with the generic SF (obtained with horizontal split sketched in Fig. 1). The results 
of these experiments are presented in Figs 2 and 3. On Fig. 3, we demonstrate pairwise comparison of per-target 
and horizontal SFs. Every point is a cross-validated predictions for single DUD-E protein.

To our surprise most of the per-target functions tend to perform only slightly better than the generic, unique 
function, trained on all available data. Almost 2/3 of targets (64 out of 95 – some targets failed to dock with default 
Vina settings, thus 95 not 102) had its EF1% increased less than 10%, regardless of the docking program used. As 
before, this is tested with 5-fold cross-validation and an average of test splits is the final result. Contrary to com-
mon assumption there was little advantage in training machine learning scoring for most of the targets vs using a 
single generic approach (trained on the horizontal split dataset). This was especially visible for targets with greater 
number of active molecules.

In the case of hard targets, most of them did not improve by per target training. However, a subset of hard 
targets, generally having a lower number of active molecules (between 1 and 200), seem to benefit from such 
per-target training. Figure 3 shows clearly that in those cases per target training can improve performance signif-
icantly. This result might come as a surprise, as in principle if a target has less data to train on, then it should be 
better predicted using additional data from other targets’ complexes. Figure 3 shows this is usually not the case. 
One explanation of these results could be that per-target training is done on a small but very specific set of inter-
actions; These might be much more important for this particular target, but their low abundance in others can 
decrease their weight in a generic (horizontal) function. Can we improve the performance of hard targets by using 
additional data, but only from targets with similar active site structures? Such questions are still open.

Finally, we look at the question of how suitable machine-learning scoring is for newly discovered targets 
characterized by scarce data on active ligands. To answer this question, the training and test data are created 
independently, i.e. there are no shared targets between training and test data. We call this experiment the “Vertical 
split”, where machine learning SFs were not trained with any complex involving the target of interest.

As expected this significantly influences the results. Figure 2 shows that there is a drop in EF1% performance 
between horizontal SF (which was oscillating around 35–40 and more) and Vertical RF (which is in the area 
between 10 and 15). The results from different versions of RF-Score descriptors were also less robust to the influ-
ence of conformations provided by docking engines. Nevertheless, this dispersion is still smaller than obtained 
from a classical approach.

In the case of Dock 6.6 (Fig. 2A), the best classical SF (PMF-Score) obtained an EF1% comparable to vertical 
RF-Score-VS v1. RF-Score-VS v3 however performed significantly better than PMF, twofold better compared to 
the second best ChemScore function (11.4 vs. 4.9 respectively) and 3 to 4-times better than the remaining three 
functions (D-Score, G_Score and Dock 6.6 built-in function). In fact, a similar pattern can be observed with 
all three docking algorithms (Fig. 2B and C); ChemScore and PMF-Score are the best performing classical SFs 
with EF1% comparable to vertical RF-Score-VS v1. Nevertheless, RF-Score-VS v2 and v3 outperform all classical 
approaches in this scenario. Interestingly, the EF1% value obtained with Dock3.6 and its built-in native function 
(Fig. 2B, Dock 3.6 Score) was unexpectedly high in comparison with other classical SFs. Dock3.6 was the only 
SF that we did not run ourselves, as both its docked molecules and predicted scores were downloaded directly 
from DUD-E website. Therefore, we assume that there was some kind of tailored procedure for each target prior 
or after docking, which is a potential source of overfitting. In our procedure (as described in the materials and 
methods section), we have not done any work on the receptor nor ligand datasets. In addition, we have only used 
the default settings for all the SFs that we have tested, including the two other docking algorithms Dock 6.6 and 
Autodock Vina.

The results obtained from the vertical split experiments show that machine-learning SF (such as RF-Score-VS 
v3) trained on data from other targets is: 1) able to outperform the five tested classical SF without the need for any 

Figure 3. Comparison of EF1% results from Per-Target and Horizontal-split models. Each data point is a 
separate corresponds to the performance of both models on a particular DUD-E target. The darker is the colour 
of DUD-E target is, the more active ligands it has. Docking conformations were obtained from Autodock Vina. 
Dashed red line denotes equal performance, and dotted green line show 5-unit intervals. For most targets and 
contrary to common assumption, there is little advantage in training machine machine-learning SFs for per-
target vs using a more generic approach (in this case horizontal split), especially for targets with greater number 
of active molecules.
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calibration steps and 2) less sensitive to docking conformation than the classical SFs. These results are relevant 
for the case where in silico screening is used with a novel target with no known active ligands. As shown, using 
RF-Score-VS v3 would make screening much more simple (no need to use different docking, tailor them to each 
target or SF) and still produce better results.

In the case of Dock 3.6 results, it would seem that a manually calibrated VS experiment using carefully chosen 
classical SF may be capable of performing as well as RF-Score-VS v3 when absolutely no complex of the predicted 
target is used. This is a rare situation that simulates structure-based VS on completely new targets. For such tar-
gets there is simply not enough data to properly calibrate the classical procedure, and so there is no simple way 
to make an educated guess on which combination of docking parameters and SFs to choose. In fact, the Dock 3.6 
case is an example where model selection and performance measurement are both carried out on the training 
data, which is known to lead to an unrealistically high estimation of the generalization error of the model (in this 
context, how well the SF with exactly the same settings will rank other molecules docked to the same target). It is 
therefore worth mentioning that even in such extreme setup as described above (the control parameters tuned on 
data not available to machine-learning procedure) RF-Score-VS v3 results were still comparable to the overfitted 
classical SF.

Validation on an independent test set. We have also tested RF-Score-VS trained with the entire DUD-E 
(15 426 active molecules and 893 897 inactive molecules across 102 targets) on an external data set. Such data set 
is hard to find as either most of the targets overlap between sets or they provide a small number of ligands per 
target. In contrast, the DEKOIS 2.0 benchmark overcomes both obstacles: only 4 of the 81 DEKOIS targets are 
also in the DUD-E benchmark (see Methods section for further details).

The results of early enrichment for 76 DEKOIS targets are summarized on Fig. 4. Autodock Vina, which in 
previous experiments was the best scoring function run in-house, achieved EF1% =  3.95 and RF-Score v3 scored 
EF1% =  2.94. These results are in line with what was obtained with DUD-E data. By contrast, RF-Score-VS v2 and 
v3 performances were EF1% =  9.84 and EF1% =  7.81, respectively, thus more than doubling the active compounds 
yield in the top 1%. Despite the achieved improvement, structure-based VS remains a challenging problem on a 
number of targets, where all three SFs fail to find any active within the top 1% of their ranked lists. Therefore, it is 
clear that more work is needed to advance further in this problem.

Top results analysis. Boxplots in Fig. 2 show summaries of the classification data. If a compound was in the 
top 1% of ranking list and it was active the enrichment factor (EF1%) value increased, if it was a decoy (presumed 
inactive) EF1% decreased. These plots however do not show if these top 1% molecules are actually the most active 
ones. Thus, we can check whether machine-learning methodology predict binding affinity better than a classical 
SF. The scatter plots presented in Fig. 5 address these questions. We took the original 1% of the best in silico pre-
dictions for each DUD-E target (i.e. on average about 86 compounds per target) and assessed how their scores 
correlate with experimentally measured activity (derived from DUD-E database per-target).

Figure 5A displays the results obtained with the best classical SF, among those ran in-house (Autodock 
Vina and its native SF) compared to two training versions of RF-Score-VS: the generic (horizontal split) func-
tion Fig. 5B and to the novel target (vertical split) function Fig. 5C. The results indicate a clear advantage of 
score-affinity correlation for both training cases, compared to the best classical approach. Autodock Vina and 
its native SF obtains a Pearson correlation of Rp =  − 0.18 (this is actively a positive correlation as low Vina scores 
aim at being indicative of high binding affinity), where RF-Score-VS v2 horizontal split receives an impressive 
Rp =  0.56. Even in the less favourable scenario, the obtained vertical split is already Rp =  0.2. This can also be seen 
on the supporting ordinate and abscissae plots where compounds distribution resembles a normal distribution, 
while with classical SF the decoys clearly overwhelm the actives counts.

Figure 4. Boxplots presenting EF1% for Autodock Vina, RF-Score v2 and novel RF-Score-VS v2 and 
v3 training on negative data on the part of the DEKOIS 2.0 benchmark not overlapping with DUD-E 
benchmark (i.e. different targets, ligands and decoys). 



www.nature.com/scientificreports/

8Scientific RepoRts | 7:46710 | DOI: 10.1038/srep46710

More importantly, machine-learning SFs trained with a high proportion of inactive instances (red dots) are 
much better at discriminating between actives (green dots) and inactives (red dots). For example, in Fig. 5A 
many inactives are nevertheless predicted to be active by Vina, but this is not the case with horizontally-trained 
RF-Score-VS v2. In the Vertical split more decoys are present but still much fewer than with classical approach 
and only few of them have high predicted affinities. When taken together, in the top 1% of all target screens, the 
horizontal split RF-Score-VS v2 obtained 55.6% (4875/8816) active compounds, whereas in the classical approach 
only 16.2% (1432/8816) of compounds where active. Moreover, the proportion of actives of RF-Score-VS is even 
more impressive with 88.6% (825/931) for the top 0.1% results, a much higher hit rate than that of Vina (27.5%; 
256/931).

These results demonstrate how large is the improvement introduced compared to a widely-used classical SF– 
the novel approach has over three times greater yield of active ligands.

Conclusions
The presented analysis demonstrates that previously implemented machine-learning SFs using RF-Score descrip-
tors can excel at VS, if appropriate care is taken. Several cross-validation scenarios show that in any application 
RF-Score-VS comfortably outperforms classical SFs, even when using the most crude RF-Score v1 features14,22.

We report average enrichment factors (EF1%) across DUD-E targets to be 39 for generalized- (horizon-
tal split) and 43.43 for specialized SF (per-target model), whereas the best classical approach (Dock 3.6) yields 
EF1% =  16.86. This result translate to over 2.2 fold improvement in early enrichment showing exceptional advan-
tage of RF-Score-VS in VS. Discriminating between actives and inactives is not the only task at which our pro-
posed methods excel, as we also show the scoring and ranking power of our novel method. Pearson correlation of 
RF-Score-VS is three times better at reproducing top scored affinities (Rp =  0.56 for RF-Score-VS v2 vs Rp =  − 0.18 
for Autodock Vina). For smaller top percentage, i.e. 0.1%, hit-rate advance of RF-Score-VS is even more evident 
−88.6% vs 27.5%.

In addition, we present results evidencing that it is not true that SFs based on RF-Score descriptors are “unable 
to enrich virtual screening hit lists in true actives upon docking experiments”46. We also comment on a statement 
made in a recent review47, where a 10% hit-rate was considered to be an upper limit to what SFs can nowadays 
deliver. In this study, RF-Score-VS achieves a hit rates as high as 88.6% across DUD-E targets, which is an out-
standing performance. In addition to VS performance, we also show that docking equipped with cutting-edge 
machine-learning SFs will predict binding affinity accurately (Rp =  0.56) in the context of structure-based VS.

Developing new descriptors and validating other models is out of scope of this publication. However, we 
acknowledge that RF-Score v1 descriptors are not optimal, e.g. the generous 12 A cutoff might be in fact less sensi-
tive to detecting subtle structural changes in protein-ligand complex. RF-Score v1 descriptors were only intended 
to show that the sophisticated descriptors that have dominated the research in this area generally add very little 
to performance, as it can be clearly seen here in terms of VS and binding affinity prediction. On the other hand, 
supplementing v1 descriptors with Vina partial scores is in most cases as beneficial as using v2, therefore a com-
bination of them might be the most fruitful.

Research on the optimal application of machine learning to structure‐based VS is highly promising, but it is 
still in its infancy due to being a more complex endeavour than binding affinity prediction from crystal structure 
of protein-ligand complexes. Indeed, training data sets for structure-based VS are much larger than those used 
binding affinity prediction and require prior docking of each considered molecule. Future work in this area is 
expected to yield particular insight in terms of improving our ability to discriminate between actives and inactives 
across targets. Even larger amounts of data can be used following the described procedure. Many other machine 
learning techniques can be applied to structure-based VS. This is not only restricted to regression techniques, but 
also classifiers. For example, state-of-the-art multi-category classifiers48. Another promising avenue for future 

Figure 5. Predicted vs measured activity. Top 1% of compounds predicted to be active for each target in 
DUD-E by (A) the Autodock Vina and its native SF (Rp =  − 0.18); (B) RF-Score-VS v2 trained on horizontally 
split dataset (Rp =  0.56); and (C) RF-Score-VS v2 trained on vertically split dataset (Rp =  0.2). Red points 
represent decoys (putative inactive compounds), green points – compounds with measured activity. Predicted 
values for machine-learning SFs are taken from the relevant cross-validation split.
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research is feature selection, not only in terms of the performance improvement but also considering the stability 
of the predictors49.

All data (docked poses) and workflow scripts required to recreate the generation of descriptors and train-
ing of machine-learning models are released here to the relevant research communities, making our software 
reproducible and for others to build upon it (http://github.com/oddt/rfscorevs). We also propose a standalone 
machine-learning based SFs RF-Score-VS v2 and v3, as a general purpose and target independent VS tools. To 
the best to our knowledge, RF-Score-VS is the best performing SF in terms of early enrichment EF1% on DUD-E. 
RF-Score-VS can be downloaded from https://github.com/oddt/rfscorevs_binary (it is provided as standalone 
binary for Windows, Mac and Linux without any further dependency, with wide range of supported molecular 
formats). Alternatively RF-Score-VS may be used with ODDT toolkit environment as a drop-in replacement for 
any other SF in custom workflows and other software.
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