
HAL Id: hal-01787848
https://hal.science/hal-01787848

Submitted on 7 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Progress-Space Tradeoffs in Single-Writer Memory
Implementations

Damien Imbs, Petr Kuznetsov, Thibault Rieutord

To cite this version:
Damien Imbs, Petr Kuznetsov, Thibault Rieutord. Progress-Space Tradeoffs in Single-Writer Memory
Implementations. 21st International Conference on Principles of Distributed Systems (OPODIS 2017),
Dec 2017, Lisbon, Portugal. �10.4230/LIPIcs.OPODIS.2017.9�. �hal-01787848�

https://hal.science/hal-01787848
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Progress-Space Tradeoffs in Single-Writer
Memory Implementations
Damien Imbs∗1, Petr Kuznetsov∗2, and Thibault Rieutord∗3

1 LIF, Aix-Marseille Université & CNRS, France, and
Bremen University, Germany
damien.imbs@lif.univ-mrs.fr

2 LTCI, Télécom ParisTech, Université Paris Saclay, France
petr.kuznetsov@telecom-paristech.fr

3 LTCI, Télécom ParisTech, Université Paris Saclay, France
thibault.rieutord@telecom-paristech.fr

Abstract
Many algorithms designed for shared-memory distributed systems assume the single-writer multi-
reader (SWMR) setting where each process is provided with a unique register that can only be
written by the process and read by all. In a system where computation is performed by a bounded
number n of processes coming from a large (possibly unbounded) set of potential participants,
the assumption of an SWMR memory is no longer reasonable. If only a bounded number of multi-
writer multi-reader (MWMR) registers are provided, we cannot rely on an a priori assignment of
processes to registers. In this setting, implementing an SWMR memory, or equivalently, ensuring
stable writes (i.e., every written value persists in the memory), is desirable.

In this paper, we propose an SWMR implementation that adapts the number of MWMR
registers used to the desired progress condition. For any given k from 1 to n, we present an
algorithm that uses n+k− 1 registers to implement a k-lock-free SWMR memory. In the special
case of 2-lock-freedom, we also give a matching lower bound of n + 1 registers, which supports
our conjecture that the algorithm is space-optimal. Our lower bound holds for the strictly
weaker progress condition of 2-obstruction-freedom, which suggests that the space complexity for
k-obstruction-free and k-lock-free SWMR implementations might coincide.

1998 ACM Subject Classification C.2.4 Distributed Systems, F.1.1 Models of Computation.

Keywords and phrases Single-writer memory implementation, comparison-based algorithms,
space complexity, progress conditions

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.9

1 Introduction

We consider a model of distributed computing in which at most n participating processes
communicate via reading and writing to a shared memory. The participating processes come
from a possibly unbounded set of potential participants: each process has a unique identifier
(IP address, RFID, MAC address, etc.) which we, without loss of generality, assume to be an
integer value. Given that processes do not have an a priori knowledge of the participating
set, it is natural to assume that they can only compare their identifiers to establish their
relative order, otherwise they essentially run the same algorithm [14]. This model is therefore

∗ This work has been supported by the Franco-German DFG-ANR Project DISCMAT (14-CE35-0010-02)
devoted to connections between mathematics and distributed computing.

© Damien Imbs, Petr Kuznetsov, and Thibault Rieutord;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Progress-Space Tradeoffs in Single-Writer Memory Implementations

called comparison-based [2]. In the comparison-based model with bounded shared memory,
we cannot assume that the processes are provided with a prior assignment of processes to
distinct registers. The only suitable assumption, as is the case for anonymous systems [16], is
that processes have access to multi-writer multi-reader registers (MWMR), without a prior
assignment.

In this paper, we study space complexity of comparison-based algorithms implementing an
abstract single-writer multi-reader (SWMR) memory. The abstract SWMR memory allows
each participating process to write to a private abstract memory location and to read from
the abstract memory locations of all other participating processes. The SWMR abstraction
can be further used to build higher-level abstractions, such as renaming [2] and atomic
snapshot [1].

To implement an SWMR memory, we need to ensure that every write performed by a
participating process on its abstract SWMR register is persistent: every future abstract read
must see the written value, as long as it has not been replace by a more recent persistent
write. To achieve persistence in a MWMR system, the emulated abstract write may have to
update multiple base MWMR registers in order to ensure that its value is not overwritten by
other processes. A natural question arises: How many base MWMR registers do we need?

In this paper, we show that the answer depends on the desired progress condition. It
is immediate that n registers are required for a lock-free implementation, i.e., we want to
ensure that at least one correct process makes progress. Indeed, any algorithm using n− 1
or less registers can be brought into the situation where every base register is covered, i.e., a
process is about to execute a write operation on it [4]. If we let the remaining process pi

complete a new abstract write operation, the other n− 1 processes may destroy the written
value by making a block write on the covered registers (each covering process performs its
pending write operation). Thus, the value written by pi is “lost”: no future read would find
it. It has been recently shown that n base registers are not only necessary, but also sufficient
for a lock-free implementation [8].

A wait-free SWMR memory implementation that guarantees progress to every correct
process can be achieved with 2n − 1 registers [8]. The two extremes, lock-freedom and
wait-freedom, suggest an intriguing question: is there a dependency between the amount of
progress the implementation provides and its space complexity: if processes are guaranteed
more progress, do they need more base registers?

Contributions. In this paper, we give an evidence of such a dependency. Using novel
covering-based arguments, we show that any 2-obstruction-free algorithm requires n+ 1 base
MWMR registers. Recall that k-obstruction-freedom requires that every correct process
makes progress under the condition that at most k processes are correct [15]. The stronger
property of k-lock-freedom [5] additionally guarantees that if more than k processes are
correct, then at least k out of them make progress.

We also provide, for any k = 1, . . . , n, a k-lock-free SWMR memory implementation that
uses only n+ k − 1 base registers. Our lower bound and the algorithm suggest the following:

I Conjecture 1. It is impossible to implement a k-obstruction-free SWMR memory in the
n-process comparison-based model using n+ k − 2 MWMR registers.

An interesting implication of our results is that 2-lock-free and 2-obstruction-free SWMR
implementations have the same optimal space complexity. Given that n-obstruction-freedom
and n-lock-freedom coincide with wait-freedom, we expect that, for all k = 1, . . . , n,
k-obstruction-free and k-lock-free (and all progress conditions in between [5]) require the

D. Imbs, P. Kuznetsov, and T. Rieutord 9:3

same number n+ k − 1 of base MWMR registers. Curiously, our results highlight a contrast
between complexity and computability, as we know that certain problems, e.g., consensus,
can be solved in an obstruction-free way, but not in a lock-free way [11].

Related work. There has been a lot of work on space complexity in distributed computing,
e.g., [12, 10, 17].

Delporte et al. [9] studied the space complexity of anonymous k-set agreement using
MWMR registers, and showed a dependency between space complexity and progress con-
ditions. In particular, they provide a lower bound of n− k +m MWMR registers to solve
anonymous repeated k-set agreement in the m-obstruction-free way, for k < m. Delporte et
al. [7] showed that obstruction-free k-set agreement can be solved in the n-process comparison-
based model using 2(n− k) + 1 registers. This upper bound was later improved to n− k+m

for the progress condition of m-obstruction-freedom (m ≤ k) by Bouzid, Raynal and Sutra [3].
In particular, their algorithm uses less than n registers when m < k.

To our knowledge, the only lower bound on the space-complexity of implementing an
SWMR memory has been given by Delporte et al. [8] who showed that lock-free comparison-
based implementations require n registers.

Delporte et al. [8] proposed two SWMR memory implementations: a lock-free one, using n
registers, and a wait-free one, using 2n − 1 registers. These algorithms are used in [6] to
implement a uniform SWMR memory, i.e., assuming no prior knowledge on the number of
participating processes. Assuming that p processes participate, the algorithms use 3p+ 1
and 4p registers for, respectively, lock-freedom and wait-freedom.

Roadmap. The paper is organized as follows. Section 2 defines the system model and states
the problem. Section 3 presents a k-lock-free SWMR memory implementation. Section 4
shows that a 2-obstruction-free SWMR memory implementation requires n + 1 MWMR
registers and hence that our algorithm is optimal for k = 2. Section 5 concludes the paper
with implications and open questions. Secondary proofs, similar to those from [8], are
delegated to the appendix.

2 Model

We consider the asynchronous shared-memory model, in whicha bounded number n > 1 of
asynchronous crash-prone processes communicate by applying read and write operations to a
bounded number m of base atomic multi-writer multi-reader atomic registers. An atomic
register i can be accessed with two memory operations: write(i, v) that replaces the content
of the register with value v, and read(i) that returns its content. The processes are provided
with unique identifiers from an unbounded name space. Without loss of generality, we assume
that the name space is the set of positive integers.

2.1 States, configurations and executions

An algorithm assigned to each process is a (possibly non-deterministic) automaton that
accepts high-level operation requests as an application input. In each state, the process is
poised to perform a step, i.e., a read or write operations on base registers. Once the step is
performed, the process changes its state according to the result the step operation, possibly
non-deterministically and possibly to a step corresponding to another high-level operation.

OPODIS 2017

9:4 Progress-Space Tradeoffs in Single-Writer Memory Implementations

A configuration, or system state, consists of the state of all processes and the content of
all MWMR registers. In the initial configurations, all processes are in their initial states,
and all registers carry initial values.

We say that a step e by a process p is applicable to a configuration C, if e is the pending
step of p in C, and we denote by Ce the configuration reached from C after p performed e.
A sequence of steps e1, e2, . . . is applicable to C, if e1 is applicable to C, e2 is applicable
to Ce1, etc. A (possibly infinite) sequence of steps applicable to a configuration C is called
an execution from C. A configuration C is said to be reachable from a configuration C ′,
and denoted C ∈ Reach(C ′), if there exists a finite execution α applicable to C ′, such
that C = C ′α. If omitted, the starting configuration is the initial configuration, and we
write C ∈ Reach() if C is a reachable configuration for our algorithm.

Processes that take at least one step of the algorithm are called participating. A process is
called correct in a given (infinite) execution if it takes infinitely many steps in that execution.
Let Correct(α) denote the set of correct processes in the execution α.

2.2 Comparison-based algorithms
We assume that the processes are allowed to use their identifiers only to compare them with
the identifiers of other processes: the outputs of the algorithm only depend on the inputs, the
relative order of the identifiers of the participating processes, and the schedule of their steps.
Formally, we say that an algorithm is comparison-based, if, for each possible execution α, by
replacing the identifiers of participating processes with new ones preserving their relative
order, we obtain a valid execution of the algorithm. Notice that the assumption does not
preclude using the identifiers in communication primitives, it only ensures that decisions
taken in the algorithm’s run are taken only based on the their relative order of the identifiers.

In this model, m MWMR registers can be used to implement a wait-free m-component
multi-writer atomic-snapshot memory [1]. The memory exports operations Update(i, v)
(updating position i of the memory with value v) and Snapshot() (atomically returning the
contents of the memory). In the comparison-based atomic-snapshot implementation, easily
derived from the original one [1], Update(i, v) writes only once, to register i, and Snapshot()
is read-only. For convenience, in our upper-bound algorithm we are going to use atomic
snapshots instead of read-write registers.

2.3 SWMR memory
A single-writer multi-reader (SWMR) memory exports two operations: Write() that takes
a value as a parameter and Collect() that returns a multi-set of values. It is guaranteed
that, in every execution, there exists a reading map π that associates each complete Collect
operation C, returning a multi-set V = {v1, . . . , vs}, with a set of s Write operations
{w1, . . . , ws} performed, respectively, by distinct processes p1, . . . , ps such that:

The set {p1, . . . , ps} contains all processes that completed at least one write operation
before the invocation of C;
For each i = 1, . . . , s, wi is either the last write operation of process pi preceding the
invocation of C or a write operation of pi concurrent with C.

Note that our definition does not guarantee atomicity of SWMR operations. Moreover,
we do not require that processes are allocated with a unique MWMR register that can be
used as a single writer register. Instead, we simply require that processes are able to simulate
the use of single writer registers through implementing the SWMR memory.

D. Imbs, P. Kuznetsov, and T. Rieutord 9:5

Intuitively, a collect operation can be seen as a sequence of reads on regular registers [13],
each associated with a distinct participating process. Such a collect object can be easily
transformed into a single-writer atomic snapshot abstraction [1].

2.4 Progress conditions

In this paper we focus on two families of progress conditions, both generalizing the wait-free
progress condition, namely k-lock-freedom and k-obstruction-freedom.

An execution α satisfies the property of k-lock-freedom [5] (1 ≤ k ≤ n) if at least
min(k,Correct(α)) correct processes make progress in it, i.e., complete infinitely many high-
level operations (in our case, Writes and Collects). The special case of n-lock-freedom is
called wait-freedom. The property of k-obstruction-freedom [11, 15] requires that every correct
process makes progress, under the condition that there are at most k correct processes. (If
more than k processes are correct, no progress is guaranteed.)

In particular, k-lock-freedom is a stronger requirement than k-obstruction-freedom (strictly
stronger for 1 ≤ k < n). Indeed, both require that every correct process makes progress
when there are at most k correct processes, but k-lock-freedom additionally requires that
some progress is made even if there are more than k correct processes.

3 Upper bound: k-lock-free SWMR memory with n + k − 1 registers

Consider a full-information algorithm in which every process alternates atomic snapshots and
updates, where each update performed by a process incorporates the result of its preceding
snapshot. Every value written to a register will persist (i.e., will be present in the result of
every subsequent snapshot), unless there is another process poised to write to that register.
The pigeonhole principle implies that k processes can cover at most k distinct registers at the
same time. Thus, if, at a given point of a run, a value is present in n registers, then the value
will persist. This observation implies a simple n-register lock-free SWMR implementation in
which a high-level Write operation alternates snapshots and updates of all registers, one by
one in the round-robin fashion, until the written high-level value is present in all n registers.
A high-level Collect operation can simply return the set of the most recent values (defined
using monotonically growing sequence numbers) returned by a snapshot operation. 0+0 The
wait-free SWMR memory implementation in [8] using 2n− 1 registers follows the n-register
lock-free algorithm but, intuitively, for each participating process, replaces register n with
register n − 1 + pos where pos is the rank of the process among the currently observed
participants. This way, there is a time after which every participating process has a dedicated
register to write, and each value it writes will persist. In particular, every value it writes will
be seen by all processes and will eventually be propagated to the n− 1 first registers.

To implement a k-lock-free SWMR memory using n+ k − 1 registers, a process should
determine, in a dynamic fashion, to which out of the last k − 1 registers to write. In our
algorithm, by default, a Write operation only uses the first n registers, but if a process
observes that its value is absent from some registers in the snapshot (some of its previous
writes have been overwritten by other processes), it uses extra registers to propagate its
value. The number of these extra registers depends on how many other processes have been
observed as making progress.

OPODIS 2017

9:6 Progress-Space Tradeoffs in Single-Writer Memory Implementations

Algorithm 1: k-lock-free SWMR implementation using n+ k− 1 MWMR registers.
1 View : list of triples of type (ValueType, IdType,N), initially set to ∅;
2 opCounter ∈ N, initially set to 0;

3 Write(v):
4 ActiveProcs = {id};
5 View = View ∪ (v, id, opCounter);
6 WritePos = 0;
7 WritePosMax = n;
8 do
9 Snap = MEM .snapshot();

10 ActiveProcs = ActiveProcs ∪ {pid, ∃(_, pid, c) ∈ Snap, ∀(_, pid, c′) ∈ View, c > c′};
11 View = View ∪ Snap;
12 Update(MEM [WritePos], View);
13 WritePos = WritePos + 1 (mod WritePosMax);
14 WritePosMax = min(n + |ActiveProcs| − 1, n + k − 1);
15 while |{m ∈ {1, . . . , n + k − 1}, (v, id, opCounter) ∈ Snap[m]}| < n;
16 opCounter = opCounter + 1;
17 End Write;

18 Collect():
19 Reads = MEM .snapshot();
20 V = ∅;
21 forall pid such that (_, pid, _) ∈ Reads do
22 V = V ∪ {v} with v such that (v, pid, max{c ∈ N, (_, pid, c) ∈ Reads}) ∈ Reads;
23 Return V ;
24 End Collect;

3.1 Overview of the algorithm

Our k-lock-free SWMR implementation, which uses n + k − 1 base MWMR registers, is
presented in Algorithm 1.

In a Write operation, the process adds the operation to be performed to its local
view (line 5). The process then attempts to add its local view, together with the outcome of
a snapshot, to each of the first WritePosMax registers, where WritePosMax is initially set
to n and then adapts to the number of processes observed as concurrently active (lines 8–15).
The writing process continues to do so until its Write operation value is present in at least n
registers (line 15).

In this algorithm, the k − 1 extra registers are used according to the liveness observed
by blocked processses. In order to be allowed to use the last register, a process must fail to
complete its write while observing at least k − 1 other processes completing their own. This
ensures that when a process access this last register, a kth process is able to be observed by
processes completing operations and thus will be helped to eventually complete.

The Collect operation is rather straightforward. It simply takes a snapshot of the memory
and, for each participating process observed in the memory, it returns its most recent value
(selected using associated sequence numbers, line 22).

D. Imbs, P. Kuznetsov, and T. Rieutord 9:7

3.2 Safety
At a high level, the safety of Algorithm 1 relies on the following property of register content
stability:

I Lemma 2. Let, at some point of a run of the algorithm, value (v, id, c) be present in some
register r and such that no process is poised to execute an update on r (i.e., no process is
between taking the snapshot of MEM (line 9) and the update of r (line 12)), then at all
subsequent times (v, id, c) ∈ r, i.e., the value is present in the set of values stored in r.

The persistence of the values in a specific uncovered register (Lemma 2) can be used to
show the persistence of the value of a completed Write operation in MEM:

I Lemma 3. If process p returns from a Write operation (v, id(p), c) at time τ , then for any
time τ ′ ≥ τ there is a register containing (v, id(p), c).

The proofs of the two above lemmas follow the path proposed in [8] and are delegated to
the appendix.

With Lemma 3, we can derive the safety of our SWMR memory implementation (Sec-
tion 2.3):

I Theorem 4. Algorithm 1 safely implements an SWMR memory.

Proof. It can be easily observed that a triplet (v, id, c) corresponds to a unique Write
operation of a value v, performed by the process with identifier id. Therefore, a Collect
operation returns a set of values proposed by Write operations from distinct processes, and
thus the map π is well-defined.

By Lemma 3, the value (v, id, c) corresponding to a Write operation completed at time τ
is present in some register r for any time τ ′ > τ , thus, the set of values resulting from any
snapshot operation performed after time τ contains (v, id, c). Thus, for any complete Collect
operation C, π(C) contains a value for every process which completed a Write operation
before C was invoked. Also, as each value returned by a Collect is the one associated to the
greatest sequence number for a given process, it comes from the last completed Write or
from a concurrent one. J

3.3 Progress
We will show, by induction on k, that Algorithm 1 satisfies k-lock-freedom. We first show,
as in [8], that Write operations of Algorithm 1 are 1-lock-free (the proof is delegated to the
appendix):

I Lemma 5. Write operations in Algorithm 1 satisfy 1-lock-freedom.

The induction step relies primarily on the helping mechanism. This mechanism guarantees
that a process making progress eventually ensures that the processes it observes as having a
pending operation also make progress (the mechanism is similar to the one of the wait-free
implementation of [8]; the proof is also delegated to the appendix):

I Lemma 6. If a process q performing infinitely many operations sees (v, id(p), c), and if p
is correct, then p eventually completes its cth Write operation.

By the base case provided by Lemma 5 and Lemma 6, we have:

I Lemma 7. Write operations in Algorithm 1 satisfy k-lock-freedom.

OPODIS 2017

9:8 Progress-Space Tradeoffs in Single-Writer Memory Implementations

Proof. We proceed by induction on k, starting with the base case of k = 1 (Lemma 5).
Suppose that Write operations satisfy `-lock-freedom for some ` < k. Consider a run in
which at least `+ 1 processes are correct, but only ` of them make progress (if such a run
doesn’t exist, the algorithm satisfies (`+ 1)-lock-freedom). In this run, at least one correct
process is eventually blocked in a Write operation. According to Lemma 6, the ` processes
performing infinitely many Write operations eventually do not observe new values written
by other processes. By the algorithm, these processes eventually never write to the last
k − ` > 0 registers.

A correct process that never completes a Write operation will execute the while loop
(lines 8–15) infinitely many times, and thus, will infinitely often take a snapshot and update its
local view (line 9). In particular, it will eventually observe a new Write operation performed
by each of the ` processes completing infinitely many Write operations. It will then eventually
include at least `+ 1 processes in its set of active processes (i.e., the ` processes performing
infinitely many Write operations and itself). It will therefore eventually write to the (n+ `)th

register infinitely often. In the considered run, this register is written infinitely often only by
correct processes which do not complete new Write operations. The value from at least one
of such process will then be observed by the ` processes making progress. By Lemma 6, this
process will eventually complete its Write operation — a contradiction. J

Collect operations in Algorithm 1 clearly satisfy wait-freedom as there are no loops and
MWMR snapshot operations are wait-free. Thus Lemma 7 and the wait-freedom of Collect
operations imply:

I Theorem 8. Algorithm 1 is a k-lock-free implementation of an SWMR memory for n
processes using n+ k − 1 MWMR registers.

4 Lower bound: impossibility of 2-obstruction-free SWMR memory
implementations with n MWMR registers

The algorithm in Section 3 gives an upper bound of n+k−1 on the number of MWMR registers
required to implement an SWMR memory satisfying the k-lock-free progress condition in
the comparison-based model. In this section, we present a lower bound on the number
of MWMR registers required in order to provide a 2-obstruction-free, and hence also a
2-lock-free, SWMR memory implementation.

4.1 Overview of the lower bound
Our proof relies on the concepts of covering and indistinguishability.

A register is covered at a given point of a run if there is at least one process poised to
write to it (we say that the process covers the register). Hence, a covered register cannot
be used to ensure persistence of written data: by awakening the covering process, the
adversarial scheduler can overwrite it. This property alone can be used to show that n
registers are required for an obstruction-free (and hence also for a 1-lock-free) SWMR memory
implementation [4], but not to obtain a lower bound of more than n shared resources as
there is always one which remains uncovered.

Indistinguishability captures bounds on the knowledge that a process has of the rest of the
system. Two system states are indistinguishable for a process if it has the same local state in
both states and if the shared memory includes the same content. Thus, in an SWMR memory
implementation, a Write operation can safely terminate only if, in all indistinguishable states,
its value is present in a register that is not covered (by a process unaware of that value).

D. Imbs, P. Kuznetsov, and T. Rieutord 9:9

In our proof, we work with a composed notion of covering and indistinguishability. The
idea is to show that there is a large set of reachable system states, indistinguishable to a given
process p, in which different sets of registers are covered. Intuitively, if a set of registers is
covered in one of these indistinguishable states, p must necessarily write to a register outside
of this set in order to complete a new Write operation. Hence, if such indistinguishable states
exist for all register subsets, then p must write its value to all registers. To perform infinitely
many high-level Write operations, p must then write infinitely often to all available registers.
But then any other process p′ taking steps can be masked by the execution of p (i.e., any
write p′ makes to a MWMR register can be scheduled to be overwritten by p). This way we
establish that no 2-obstruction free implementation exists, as it requires that at least two
processes must be able to make progress concurrently.

4.2 Preliminaries
Assume, by contradiction, that there exists a 2-obstruction-free SWMR implementation
using only n registers. To establish a contradiction, we consider a set of runs by a fixed
set Π of n processes in which every process performs infinitely many Write operations with
monotonically increasing arguments. Let R denote the set of n available registers.

Indistinguishability

A configuration C is said to be indistinguishable from a configuration C ′ for a set of
processes P , if the content of all registers and the states of all processes in P are identical
in C and C ′. Given a set of configurations D, let I(D, P) denote that any two configurations
from D are indistinguishable for P .

We say that an execution is P -only, for a set of processes P , if it consists only of steps by
processes in P . We say that a set of processes P is hidden in an execution α if all writes
in α performed by processes in P are overwritten by some processes not in P , without any
read performed by processes not in P in between. Given a sequence of steps α and a set of
processes P , let α|P be the sub-sequence of α containing only the steps from processes in P .

I Observation 9. If a P -only execution α is applicable to a configuration C from a set of
configurations D indistinguishable for P , i.e., C ∈ D and I(D, P), then α is applicable to
any configuration C ′ ∈ D, and it maintains the indistinguishability of configurations for P ,
i.e., I({C ′α,C ′ ∈ D}, P).

Let us denote as Dα the set of all configurations reached from C ∈ D by applying α. A
similar observation can be made concerning hidden executions:

IObservation 10. Given an execution α applicable to C with C from a set of configurations D
indistinguishable for P, if processes in Π \ P are hidden in α, then α|P is applicable to
any C ′ ∈ D, and I({C ′α|P , C ′ ∈ D}, P).

Coverings and confusion

We say that a set of processes P covers a set of registers R in some configuration C, if for
each register r ∈ R, there is a process p ∈ P such that the next step of p in C is a write on r
(the predicate is denoted Cover(R,P,C)).

Our lower bound result relies on a concept that we call confusion. We say that a set
of processes P are confused on a set of registers S in a set of reachable configurations D,
denoted Confused(P, S,D), if and only if:

OPODIS 2017

9:10 Progress-Space Tradeoffs in Single-Writer Memory Implementations

r1

r2

r3

r4

r5

r6

r7

r8

p1

p2

p3
p4

r1

r2

r3

r4

r5

r6

r7

r8

p1

p2

p3
p4

Figure 1 Processes {p5, p6, p7, p8} are confused on registers {r1, r2, r3, r4, r5}; an example of a
possible covering is given on the right.

1. I(D, P).
2. |S|+ |P | = n+ 1.
3. For any process p ∈ Π \ P , there exist two registers rp, r

′
p ∈ S such that, for any

configuration D ∈ D, there exists D′ ∈ D, such that p covers rp in D and r′p in D′, or
vice versa, and D and D′ are indistinguishable to all other processes:

∀p ∈ Π \ P,∃rp, r
′
p ∈ S,∀D ∈ D,∃r ∈ {rp, r

′
p} :

Cover({r}, {p}, D) ∧ (∃D′ ∈ D, I({D,D′},Π \ {p}) ∧ Cover({rp, r
′
p} \ {r}, {p}, D′)).

4. For any strict subset R of S, there exists D ∈ D such that R is covered by Π \ P in D:

∀R (S, ∃D ∈ D : Cover(R,Π \ P,D).

Intuitively, processes in P are confused on S in D, if D is a set of indistinguishable
configurations for P , such that any strict subset of S is covered by Π\P in some configuration
of D (Conditions 1 and 4). Additionally, we require that as much processes are confused
as possible (Condition 2) and that the property holds for a set of configurations D where
processes not in P might be covering only one out of 2 given registers and may be covering
them independently of other processes states in D (Condition 3).

In Figure 1, we give an example of confusing set of configuration D for 8 processes and 8
registers. Processes {p5, p6, p7, p8} are confused on registers {r1, r2, r3, r4, r5}. Registers are
represented as nodes, and pairs of registers that a process might be covering are represented
as edges. The set of indistinguishable configurations D for {p5, p6, p7, p8} are defined via
composition of states for p1, p2, p3 and p4 in which they, respectively, cover registers in
{r1, r2}, {r2, r3}, {r2, r4} and {r4, r5}. An example of a covering of {r1, r2, r3, r5} for some
particular execution is presented on the right side of Figure 1.

First, we are going to provide an alternative property for Condition 4 of the definition
of Confused(P, S,D). The idea is that, given (P, S,D) satisfying Conditions 1, 2 and 3,
Condition 4 is satisfied if and only if the graph induced by the sets of registers that may
be covered by processes in Π \ P (as represented in Figure 1) forms a connected component
over S. More formally, that Condition 4 is satisfied if and only if, for any partition of S
into two non-empty subsets S1 and S2, there is a process in Π \ P for which the set of two
registers it may be covering in D intersects with both S1 and S2:

I Lemma 11. ∀P ⊆ Π,∀S ⊆ R,∀D ⊆ Reach() satisfying Conditions 1, 2 and 3 of the
confusion definition, we have ∀R (S, ∃D ∈ D : Cover(R,Π \ P,D) if and only if:

∀S1, S2 ⊆ S, (S1 6= ∅ ∧ S2 6= ∅ ∧ S1 ∪ S2 = S ∧ S1 ∩ S2 = ∅) :

∃r1 ∈ S1, r2 ∈ S2, p ∈ Π \P,D1, D2 ∈ D : (Cover({r1}, {p}, D1)∧Cover (({r2}, {p}, D2)) .

D. Imbs, P. Kuznetsov, and T. Rieutord 9:11

Proof. Let us fix some P ⊆ Π, S ⊆ R, and D ⊆ Reach() satisfying Conditions 1, 2 and 3 of
the confusion definition.

First, let us assume that Condition 4 is also satisfied and consider any partition of S
into non-empty subsets S1 and S2 (i.e., S1 6= ∅, S2 6= ∅, S1 ∩ S2 = ∅ and S1 ∪ S2 = S).
Assume now that there does not exist any process p ∈ Π \ P such that p might be covering
a register from S1 or a register from S2 in D. This implies that processes in Π \ P can be
partitioned into two subsets Q1 and Q2 (with Q1 ∩Q2 = ∅ and Q1 ∪Q2 = Π \ P) such that
processes in Q1, respectively Q2, may cover registers from S1, respectively S2, in D. By
construction of the partitions, we have |Q1|+ |Q2| = |Π \ P | and |S1|+ |S2| = |S|. Using
the fact that Condition 2 is satisfied by P and S we obtain from |S| + |P | = n + 1 that
|S1|+ |S2|+ (n− (|Q1|+ |Q2|)) = n+ 1, and thus, that |S1|+ |S2| = |Q1|+ |Q2|+ 1. This
implies that either |Q1| < |S1| or |Q2| < |S2|, w.l.o.g., let |Q1| < |R1|. Now consider r ∈ S2,
S \ {r} is a strict subset of S, and therefore Condition 4 implies that there exists D ∈ D such
that Cover(S \ {r},Π \ P,D). As registers in S1 can only be covered by processes from Q1,
then we have Cover(S1, Q1, D). Recall that, by the pigeonhole principle, a set of processes
cannot cover more registers than processes it contains. But |Q1| < |R1| — a contradiction.

Now let us assume that given any partition of S into non-empty subsets S1 and S2, there
exists a process p ∈ Π \ P such that p might be covering a register in S1 or a register in S2
in D. Let us show that any strict subset R of S is covered in some configuration from D and,
hence, that Condition 4 is satisfied. The idea consists in inductively selecting a subset of the
configurations in D by fixing a process in Π \ P to cover a new register of R. The trick is
to select a process which remains with a single choice if it wants to cover a register not yet
covered in all remaining configurations by other processes.

Let S0 be a non-empty subset of S. Let p0 be a process from Π\P which might be covering
a register r0 in S0 or a register r′0 in S \ S0 in D. Let us assume that such a process exists
and consider D0 to be the subset of D including all configurations in which p0 is covering r′0.
Now let S1 = S0 ∪{r′0} and repeat this process by selecting some p1 and computing D1 using
the same procedure, etc... As long as a process can be selected satisfying the condition, the
sets Si keeps increasing with i. Consider the round j at which the procedure fails to find
such a process. This implies that there is no process which might be covering a register from
either Sj or S \ Sj in Dj−1. Note that by construction Dj−1 is a non-empty subset of D.

If Sj 6= S, then Sj and S \ Sj forms a partition of S into two non-empty subsets. Thus,
by assumption, there exists a process q which might be covering a register rq in Sj or a
register r′q in S \ Sj in D. Consider some configuration D ∈ Dj−1. According to Condition 3
of the confusion definition, as D ∈ D, q is covering either rq or r′q in D, and there exists a
configuration D′ in which q is covering the other register in {rq, r

′
q}, relatively to D, and such

that D and D′ are indistinguishable to all other processes. As in D and D′, all processes
except q are in the same local state, either D′ ∈ Dj−1 or else q was a process selected in
some early iteration. But if q was selected in an earlier iteration, both rq and r′q would be
included in Sj . Thus D and D′ belong to Dj−1 and therefore q is a valid selection for pj .
This contradiction implies that therefore Sj = S.

By construction, all registers in Sj \ S0 are covered in all configurations in Dj−1. As
this is true for any non-empty S0 and as Sj = S, any strict subset of S is covered in some
configuration of D and therefore Condition 4 is satisfied. J

The alternative formulation of Condition 4 provided by Lemma 11 can be used to show
that, given any confusion for some non-empty P , S and D, we can identify a process p ∈ Π\P
and a register r ∈ S such that P ∪ {p} is confused on S \ {r} for a subset D′ of D:

OPODIS 2017

9:12 Progress-Space Tradeoffs in Single-Writer Memory Implementations

I Lemma 12. Given P (Π, S ⊆ R and D ⊆ Reach():
Confused(P, S,D) =⇒ (∃p ∈ Π \ P,∃r ∈ S,∃D′ ⊆ D : Confused(P ∪ {p}, S \ {r},D′)).

Proof. Note that, according to Condition 3, a process may be covering exactly two registers
from S in D, thus, the sum of how many distinct processes may be covering each register
in S equals 2|Π \ P | = 2(n − |P |). But any register r ∈ S must be potentially covered at
least by one process in Π \ P in D as any strict subset of S may be covered (Condition 4).
Therefore, there exists a register rc ∈ S which can be covered by a single process pc ∈ Π \ P
in D. Indeed, if all registers in S might be covered by two distinct processes then the sum,
equal to 2(n− |P |), would be greater than or equal to 2|S|. This is not possible as according
to Condition 2, |P |+ |S| = n+ 1 and thus n− |P | < |S|.

Let us fix some Dc ∈ D and let Dc be the subset of D which includes all configurations in D
that are indistinguishable to pc from Dc. Let us show that Confused(P ∪{pc}, S \ {rc},Dc).
Condition 1 holds as by construction all configurations in Dc are indistinguishable to pc and
as they are indistinguishable to all processes in P , since Dc is a subset of D. It is immediate,
as we add a register and remove a process, that Condition 2 holds.

Now consider any process p ∈ Π \ (P ∪{pc}) and any configuration D ∈ Dc. As p ∈ Π \P
and D ∈ D, Condition 3 of the confusion definition implies that that there exists D′ ∈ D,
I({D,D′},Π \ {p}), such that p covers rp and r′p in D and D′ (respectively of vice-versa).
Since I({D,D′},Π \ {p}), D′ ∈ Dc, and since pc is the only process which may cover rc in D,
rp and r′p belong to S \ {rc}. Thus Condition 3 is verified for P ∪ {p}, S \ {rc} and Dc.

Lastly, let us consider some partition of S \ {rc} into two non-empty subsets S1 and S2.
Both (S1∪{rc},S2) and (S1,S2∪{rc}) form a partition of S in two non-empty subsets. Thus,
as Confused(P, S,D), we can apply Lemma 11 and obtain that ∃p1, p2 ∈ Π \ P such that p1,
respectively p2, might cover registers from either S1 ∪ {rc} or S2, respectively either S1 or
S2 ∪ {rc}, in D. It follows that pc cannot be both p1 and p2 as pc might cover only two
registers in D, one of which is rc. Thus, depending whether the other register belongs to S1
or S2, p1 or p2 is disctinct from pc. W.l.o.g, assume that it is p1. As pc is the only process
which may be covering rc, this implies that p1 might be covering a register from either S1
or S2. Furthermore, since Conditions 1, 2 and 3 applies to P ∪ {p}, S \ {rc} and Dc, we can
apply Lemma 11 to obtain that Condition 4 is also verified. J

We now show that the characterization can be used to increase the number of registers
that processes are confused on, by decreasing the number of confused processes:

I Lemma 13. Let P (Π, S ⊆ R and D ⊂ Reach() such that Confused(P, S,D).
Given C ∈ D, if ∃p ∈ P, r1 ∈ S, r2 ∈ R \ S and if there exists P -only executions α1 and α2,
applicable to C such that I({Cα1, Cα2},Π \ {p}) and such that Cover({r1}, {p}, Cα1) and
Cover({r2}, {p}, Cα2), then we have Confused(P \ {p}, S ∪ {r2}, (Dα1) ∪ (Dα2)).

Proof. Following Observation 9, as α1 and α2 are P -only, and since D satisfies Condition 1
for P , (Dα1) ∪ (Dα2) satisfies Condition 1 for P \ {p}. Condition 2 trivially holds since a
process is removed from P and a register is added to S.

Condition 3 is satisfied for all processes in Π \ P and configurations in (Dα1) ∪ (Dα2)
as α1 and α2 are P -only, and since D satisfies Condition 3 for any process in Π \ P . As
configurations in D are indistinguishable to p, p may only cover r1 if D ∈ Dα1 and cover r2
if D ∈ Dα2. But as given any D ∈ D we have I({Dα1, Dα2},Π \ {p}) (as I(D, P) following
Observation 9), Condition 3 is also satisfied for p.

Since Consition 1, 2 and 3 are satisfied, we can thus apply Lemma 11 to obtain that
Confused(P \ {p}, S ∪ {r2}, (Dα1) ∪ (Dα2)). Indeed, a partition of two non-empty subsets
of S ∪ {r2} can be reduced to a partition of two non-empty subsets of S unless it is the
partition S and {r2}. But p may cover either r1 ∈ S or r2. J

D. Imbs, P. Kuznetsov, and T. Rieutord 9:13

4.3 The lower bound
To establish our lower bound, we show that there is a set of reachable configuration D in
which there is a process confused on all n registers. Intuitively, we proceed by induction on
the number of “confusing” registers. For the base case, we show that the initial configuration
can lead to a confusion of all but one process on two registers:

I Lemma 14. ∃D ∈ Reach(),∃p ∈ Π,∃S ⊆ R : Confused(Π \ {p}, S,D).

Proof. Consider any two processes p1 and p2. Since the algorithm is comparison-based, the
first write the two processes perform in a solo execution is on the same register, let us call
it r. Let p1 execute solo until it is about to write to r and then do the same with p2, let C1
be the resulting configuration. Consider the execution α from C1 in which p1 executes until
it is poised to write to a register r′ 6= r and then p2 executes its pending write on r. This
execution is valid as p1 must eventually write to an uncovered register.

As p1 is hidden in α, C1α and C1α|{p2} are indistinguishable for all processes except p1
(Observation 10). In C1α, p1 is poised to write on r′, but in C1α|{p2}, p1 is poised to write
on r, thus we have Confused(Π \ {p1}, {r, r′}, {C1α,C1α|{p2}}). J

We now prove our inductive step. Given a set of configurations in which a set P of processes
is confused on a set S of registers, we can obtain a set of configurations in which a set P ′ of
processes are confused on a set S′ of strictly more than |S| registers:

I Lemma 15. ∃D ⊆ Reach(), P (Π, S (R : Confused(P, S,D)
=⇒ ∃D′ ⊆ Reach(), P ′ ⊆ Π, S′ ⊆ R, S (S′ : Confused(P ′, S′,D′).

Proof. Given Confused(P, S,D), consider C ∈ D such that exactly |S| − 1 registers in S are
covered by processes in Π \ P . Then we can reach a configuration in which all registers not
in S are covered by processes in P . Indeed, when executed solo starting from C, a process
must eventually write to a register that is not covered in C. Thus, it must eventually write
either to a register in R\S or to the uncovered register in S. Recall that, as |S|+ |P | = n+1,
we have |R \ S| = |P | − 1. Thus, by concatenating solo executions of processes in P until
they are poised to write to uncovered registers, we reach a configuration Cα in which all
registers are covered, and let p be the process in P covering a register in S. Note that, as α
is P -only, we have Confused(P, S,Dα). Thus:

Cover(R \ S, P \ {p}, Cα) ∧ Confused(P, S,Dα}).

Now from this set of configurations, we are going to build a new one in which P is
confused on two distinct sets of registers. By Lemma 12, there exist pc ∈ Π \ P , r ∈ S
and D′ ⊆ D such that Confused(P ∪ {pc}, S \ {r},D′). Note that in D′, the state of pc can
be chosen to be the state from any configuration from D, and as we have Confused(P, S,D)
there must exists a configuration C ′ ∈ D in which pc covers a register rc ∈ S \ {r}. Let us
select D′ such that C ′ ∈ D′.

If p is executed solo from C ′α, it must write infinitely often to all registers in S to ensure
that it writes to an uncovered register. In a {p, pc}-only execution from C ′α, pc can hidden
for arbitrarly many steps as long as pc does not write to a register outside of S. But, as the
algorithm satisfies 2-obstruction-freedom, pc must eventually write to a register outside of S
in such an execution. Consider the {p, pc}-only execution β from C ′α in which pc is hidden
and such that pc execute until it is poised to write to some register r′ ∈ R \ S. Thus, we get
two configurations C ′αβ and C ′αβ|P ,indistinguishable to all processes but pc, in which pc

covers, respectively, r′ ∈ R \ S and rc ∈ S. Thus, the conditions of Lemma 13 hold for D′,

OPODIS 2017

9:14 Progress-Space Tradeoffs in Single-Writer Memory Implementations

pc, αβ and αβ|{p} and so we obtain Confused(P, (S ∪ {r′}) \ {r}, (D′αβ) ∪ (D′αβ|{p})). As
β is {p, pc}-only and pc is hidden in it, we have:

Cover(R \ S, P \ {p}, Cαβ) ∧ Confused(P, S,Dαβ|{p})∧

Confused(P, S ∪ {r′} \ {r}, (D′αβ) ∪ (D′αβ|{p})).

Moreover, all configurations in the formula above are indistinguishable to processes in P ,
because αβ is P ∪ {pc}-only and pc is hidden in it (Observation 10).

Let p′ ∈ P be the process that covers r′ in Cαβ. According to p or p′, every proper subset
of S or S ∪ {r′} \ {r} may be covered at the same time by processes in Π \ (P ∪ {p, p}), and
all other registers are covered by processes in P \ {p, p′}. Thus, from Cαβ, to complete a
Write, p or p′ must write to all registers in one of the sets S, S ∪ {r′} \ {r} or {r, r′}.

Consider any {p, p′}-only extension of Cαβ. If one of {p, p′} covers a register in S \ {r}, r
or r′, then the other process, in any solo extension, must write respectively to all registers in
{r, r′}, S or (S∪{r′})\{r}. In particular, since p′ covers r′ in Cαβ, p running solo from Cαβ

must eventually cover a register in S \ {r} (as |S| > 1, since |P | < n and |P |+ |S| = n+ 1).
Then p′ executing solo afterwards must write to r and r′. Let us stop p′ when it covers a
register r′′ 6= r for the last time before writing to r. Let γ be the resulting execution, and
E = Cαβγ be the resulting configuration. Let E and E ′ denote the sets of configurations
indistinguishable from E to P defined as Dαβ|{p}γ and (D′αβγ) ∪ (D′αβ|{p}γ) respectively.

Now the following two cases are possible:
1. r′′ 6∈ S ∪ {r′}: In this case, we let p continue until it is poised to write on r, and then,

we let the process in P \ {p, p′} which covers r′′ to proceed to its write. Let δ be this
{p, p′}-only execution from E. As p′ covers r ∈ S in Eδ and r′′ ∈ R \ S in Eδ|P\{p′},
as I({Eδ,Eδ|P\{p′}},Π \ {p′}), and as Confused(P, S, E), we can apply Lemma 13 and
obtain Confused(P \ {p′}, S ∪ {r′′}, (Eδ) ∪ (Eδ|P\{p′})).

2. r′′ ∈ S ∪ {r′}, and so r′′ ∈ (S ∪ {r′}) \ {r}: Then we have the following sub-cases:
Some step performed by p in its solo execution from E makes p′ to choose a register
other than r to perform its next write in its solo extension. Clearly, this step of p is
a write. From the configuration in which p is poised to execute this “critical” write,
let p′ run solo until it is poised to write to r and then let p complete its pending write.
Let Eδ be the resulting configuration.
Now consider the execution in which p completes its “critical” write, then p′ runs solo
until it covers a register r′′′ 6= r. Let Eδ′ be the resulting configuration. Note that the
states of the memory in Eδ and Eδ′ are identical. Thus, I({Eδ,Eδ′},Π \ {p′}). Note
that δ and in δ′ are {p, p′}-only executions, and that p′ covers r in Eδ and r′′′ in Eδ′.
a. If r′′′ ∈ S, as we have Confused(P, (S ∪ {r′}) \ {r}, E ′), applying Lemma 13, we

obtain Confused(P \ {p′}, (S ∪ {r′}), (E ′δ) ∪ (E ′δ′)).
b. If r′′′ ∈ R \ S, as we have Confused(P, S, E), applying Lemma 13, we obtain

Confused(P \ {p′}, (S ∪ {r′′′}), (Eδ) ∪ (Eδ′)).
Otherwise, no write of p is “critical”, and we let it run from E until it covers r (recall
that, as p′ covers r′′ ∈ (S ∪ {r′}) \ {r}, p must eventually write to all registers in S
or {r, r′} and, thus, to r). Let then p′ run until it covers r and let δ be the resulting
execution. From Eδ, let p′ run until it becomes poised to write to a register r′′′ 6= r for
the first time, and then let p perform its pending write on r. Let λ be this extension.
Note that as p′ is hidden in λ, we have I({Eδλ,Eδλ|{p′}},Π \ {p}). Also, δ and λ are
{p, p′}-only executions such that p′ covers r in Eδλ|{p} and covers r′′′ in Eδλ.
a. If r′′′ ∈ S, as we have Confused(P, (S ∪ {r′}) \ {r}, E ′), applying Lemma 13, we

obtain Confused(P \ {p′}, (S ∪ {r′}), (E ′δλ) ∪ (E ′δλ|{p})).

D. Imbs, P. Kuznetsov, and T. Rieutord 9:15

b. If r′′′ ∈ R \ S, as we have Confused(P, S, E), applying Lemma 13, we obtain
Confused(P \ {p′}, (S ∪ {r′′′}), (Eδλ) ∪ (Eδλ|{p})). J

Our lower bound directly follows from Lemmata 14 and 15:

I Theorem 16. Any n-process comparison-based 2-obstruction-free SWMR memory imple-
mentation requires n+ 1 MWMR registers.

Proof. By contradiction, suppose that an n-register algorithm exists. We show, by induction,
that there is a reachable configuration in which a process is confused on all registers.
Lemma 14 shows that there exists a reachable configuration in which n − 1 processes are
confused on two registers. We can therefore apply Lemma 15 and obtain a configuration with
a confusion with strictly more registers. By induction, there exist then a set of configurations
D and p ∈ Π such that Confused({p},R,D).

Thus, any strict subset of R is covered by the remaining n − 1 processes in some
configuration in the (indistinguishable for p) set of configurations D. But a process p may
complete a Write operation if and only its write value is present in a register which is not
covered (by a process not aware of the value) in any of the configurations indistinguishable
to p. Therefore, in an infinite solo execution of p, p must write infinitely often to all registers.
But then any arbitrarily long execution by any other process can be hidden by incorporating
sufficiently many steps of p , violating 2-obstruction-freedom—a contradiction. J

5 Concluding remarks

This paper shows that the optimal space complexity of SWMR implementations depends
on the desired progress condition: lock-free algorithms trivially require n registers, while
2-obstruction-free ones (and, thus, also 2-lock-free ones) require n + 1 registers. We also
extend the upper bound to k-lock-freedom, for all k = 1, . . . , n, by presenting a k-lock-free
SWMR implementation using n+ k − 1 registers. A natural conjecture is that the algorithm
is optimal, i.e., no such algorithm exists for n+ k − 2 registers for all k = 1, . . . , n. Since for
k = 1, 2 and n, k-obstruction-freedom and k-lock-freedom impose the same space complexity,
it also appears natural to expect that this is also true for all k = 1, . . . , n.

An interesting corollary to our results is that to implement a 2-obstruction-free SWMR
memory we need strictly more space than to implement a 1-lock-free one. But the two
properties are, in general, incomparable: a 2-solo run in which only one process makes
progress satisfies 1-lock-freedom, but not 2-obstruction-freedom, and a run in which 3 or
more processes are correct but no progress is made satisfies 2-obstruction-freedom, but
not 1-lock-freedom. The relative costs of incomparable progress properties, e.g., in the
(`, k)-freedom spectrum [5], are yet to be understood.

An SWMR memory can be viewed as a stable-set abstraction with a conventional put/get
interface: every participating process can put values to the set and get the set’s content,
and every get operation returns the values previously put. For the stable-set abstraction,
we can extend our results to the anonymous setting, where processes are not provided with
unique identifiers. Indeed, we claim that the same algorithm may apply to the stable-set
abstraction for anonymous systems when the number of participating processes n is known.
But the question of whether an adaptive solution exists (expressed differently, a solution that
does not assume any upper bound on the number of participating processes) for anonymous
systems remains open.

OPODIS 2017

9:16 Progress-Space Tradeoffs in Single-Writer Memory Implementations

References

1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.
Atomic snapshots of shared memory. J. ACM, 40(4):873–890, 1993. doi:10.1145/153724.
153741.

2 Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rüdiger Reischuk. Renaming
in an asynchronous environment. J. ACM, 37(3):524–548, 1990. doi:10.1145/79147.
79158.

3 Zohir Bouzid, Michel Raynal, and Pierre Sutra. Anonymous obstruction-free (n, k)-set
agreement with n-k+1 atomic read/write registers. In 19th International Conference on
Principles of Distributed Systems, OPODIS ’15, pages 18:1–18:17, 2015.

4 James E Burns and Nancy A Lynch. Bounds on shared memory for mutual exclusion.
Information and Computation, 107(2):171–184, 1993.

5 Victor Bushkov and Rachid Guerraoui. Safety-liveness exclusion in distributed computing.
In 34th ACM Symposium on Principles of Distributed Computing, PODC ’15, pages 227–
236, 2015.

6 Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Leslie Lamport. Adaptive re-
gister allocation with a linear number of registers. In International Symposium on Distrib-
uted Computing, DISC ’13, pages 269–283, 2013.

7 Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Sergio Rajsbaum. Black art:
Obstruction-free k-set agreement with |mwmr registers| < |proccesses|. In 1st International
Conference on Networked Systems, NETYS ’13, pages 28–41, 2013.

8 Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni, and Sergio Rajsbaum. Linear space
bootstrap communication schemes. Theoretical Computer Science, 561:122–133, 2015.

9 Carole Delporte-Gallet, Hugues Fauconnier, Petr Kuznetsov, and Eric Ruppert. On the
space complexity of set agreement? In 34th ACM Symposium on Principles of Distributed
Computing, PODC ’15, pages 271–280, 2015.

10 Panagiota Fatourou, Faith Ellen Fich, and Eric Ruppert. Time-space tradeoffs for imple-
mentations of snapshots. In 38th ACM Symposium on Theory of Computing, STOC ’06,
pages 169–178, 2006.

11 Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In 23rd International Conference on Distributed
Computing Systems, ICDCS ’03, pages 522–529, 2003.

12 Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for non-blocking
implementations (preliminary version). In 15th ACM Symposium on Principles of Distrib-
uted Computing, PODC ’96, pages 257–266, 1996.

13 Leslie Lamport. On interprocess communication; part I and II. Distributed Computing,
1(2):77–101, 1986.

14 F. P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical
Society, 30:264–286, 1930.

15 Gadi Taubenfeld. Contention-sensitive data structures and algorithms. In 23rd Interna-
tional Conference on Distributed Computing, DISC’09, pages 157–171, 2009.

16 Nayuta Yanagisawa. Wait-free solvability of colorless tasks in anonymous shared-memory
model. In 18th International Symposium on Stabilization, Safety, and Security of Distrib-
uted Systems, SSS ’06, pages 415–429, 2016.

17 Leqi Zhu. A tight space bound for consensus. In 48th ACM Symposium on Theory of
Computing, STOC ’16, pages 345–350, 2016.

http://dx.doi.org/10.1145/153724.153741
http://dx.doi.org/10.1145/153724.153741
http://dx.doi.org/10.1145/79147.79158
http://dx.doi.org/10.1145/79147.79158

D. Imbs, P. Kuznetsov, and T. Rieutord 9:17

A Proofs for Algorithm 1 (k-lock-free SWMR implementation)

I Lemma 2. Let, at some point of a run of the algorithm, value (v, id, c) be present in some
register r and such that no process is poised to execute an update on r (i.e., no process is
between taking the snapshot of MEM (line 9) and the update of r (line 12)), then at all
subsequent times (v, id, c) ∈ r, i.e., the value is present in the set of values stored in r.

Proof. Suppose that at time τ , a register R contains (v, id, c) and no process is poised to
execute an update on R. Suppose, by contradiction, that R does not contain it at some time
τ ′ > τ . Let τmin, τmin > τ , be the smallest time such that (v, id, c) is not in R. Therefore, a
write must have been performed on R, by some process q, at time τmin with a view which does
not contain (v, id, c). Such a write can only be performed at line 12, with a view including
the last snapshot of MEM performed by q at line 9. Process q must have performed this
snapshot operation on R at some τR < τ as (v, id, c) is present in R between times τ and
τmin and as τR < τmin. Thus q is poised to write on R at time τ — a contradiction. J

I Lemma 3. If process p returns from a Write operation (v, id(p), c) at time τ , then for any
time τ ′ ≥ τ there is a register containing (v, id(p), c).

Proof. Before returning from its Write operation, p takes a snapshot of MEM at some time
τS , τS < τ (line 9), which returns a view of the memory in which at least n registers contain
the triplet (v, id(p), c). As p is taking a snapshot at line 9 at time τS , at most n− 1 processes
can be poised to perform an update on some register at time τS . As a process can be poised
to perform an update on at most one register at a time, there can be at most n− 1 distinct
registers covered at time τS . Therefore, at time τS , there is at least one uncovered register
containing (v, id(p), c), let us call it r. By Lemma 2, (v, id(p), c) will be present in r at any
time τ ′ > τS , and thus at any time τ ′ > τ as τ > τS . J

I Lemma 5. Write operations in Algorithm 1 satisfy 1-lock-freedom.

Proof. Suppose, by way of contradiction, that Write operations do not satisfy 1-lock-freedom.
Then, eventually, all n first registers are infinitely often updated only by correct processes
unsuccessfully trying to complete a Write operation. Thus, eventually each of the n first
registers contain the value from one of these incomplete Write operations. As there are
at most n− 1 covered registers when a snapshot is taken, one of these value is eventually
permanently present in some register (Lemma 2). This value is then eventually contained in
the local view of every correct process, and thus, will eventually be present in every update
of all the n first registers. The process with this Write value must therefore eventually pass
the test on line 15 and, thus, complete its Write operation — a contradiction. J

I Lemma 6. If a process q performing infinitely many operations sees (v, id(p), c), and if p
is correct, then p eventually completes its cth Write operation.

Proof. By Lemma 3, if process q returns from a Write operation with value (v, id(q), c′)
at time τ , then for any time τ ′ ≥ τ there is a register containing (v, id(q), c′). But note
that (v, id(q), c′) is written to a register only associated with q’s local view. Thus, as q
completes an infinite number of Write operations, each local view of q will eventually be
forever present in some register. It will then eventually be observed in every snapshot
taken by correct processes, and, therefore, included in their local view. This implies that
it will eventually be present in every register written infinitely often, in particular in the
first n registers. Process p will then eventually pass the test at line 15 and complete its
corresponding cth Write operation. J

OPODIS 2017

	Introduction
	Model
	States, configurations and executions
	Comparison-based algorithms
	SWMR memory
	Progress conditions

	Upper bound: k-lock-free SWMR memory with n+k-1 registers
	Overview of the algorithm
	Safety
	Progress

	Lower bound: impossibility of 2-obstruction-free SWMR memory implementations with n MWMR registers
	Overview of the lower bound
	Preliminaries
	The lower bound

	Concluding remarks
	Proofs for Algorithm 1 (k-lock-free SWMR implementation)

