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Abstract
It is well-known that consensus (one-set agreement) and total order broadcast are equivalent
in asynchronous systems prone to process crash failures. Considering wait-free systems, this
article addresses and answers the following question: which is the communication abstraction
that “captures” k-set agreement? To this end, it introduces a new broadcast communication
abstraction, called k-BO-Broadcast, which restricts the disagreement on the local deliveries of
the messages that have been broadcast (1-BO-Broadcast boils down to total order broadcast).
Hence, in this context, k = 1 is not a special number, but only the first integer in an increasing
integer sequence.

This establishes a new “correspondence” between distributed agreement problems and com-
munication abstractions, which enriches our understanding of the relations linking fundamental
issues of fault-tolerant distributed computing.
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1 Introduction

Agreement problems vs communication abstractions. Agreement objects are fundamental
in the mastering and understanding of fault-tolerant crash-prone asynchronous distributed
systems. The most famous of them is the consensus object. This object provides processes
with a single operation, denoted propose(), which allows each process to propose a value and
decide on (obtain) a value. The properties defining this object are the following: If a process
invokes propose() and does not crash, it decides a value (termination); No two processes
decide different values (agreement); The decided value was proposed by a process (validity).
This object has been generalized by S. Chaudhuri in [7], under the name k-set agreement
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27:2 Which Broadcast Abstraction Captures k-Set Agreement?

Table 1 Associating agreement objects and communication abstractions.

Concurrent object Communication abstraction
Consensus Total order broadcast [6]

Snapshot object [1, 2] (and R/W register) SCD-broadcast [11]
k-set agreement object (1 ≤ k < n) k-BO-broadcast (this paper)

Section 6

k-BO

k-SA Snapshot

Section 4

Figure 1 Global picture.

(k-SA), by weakening the agreement property: the processes are allowed to collectively decide
up to k different values, i.e., k is the upper bound on the disagreement allowed on the number
of different values that can be decided. The smallest value k = 1 corresponds to consensus.

On another side, communication abstractions allow processes to exchange data and
coordinate, according to some message communication patterns. Numerous communication
abstractions have been proposed. Causal message delivery [4, 19], total order broadcast,
FIFO broadcast, to cite a few (see the textbooks [3, 15, 16, 17]). In a very interesting way, it
appears that some high level communication abstractions “capture” exactly the essence of
some agreement objects, see Table 1. The most famous –known for a long time– is the Total
Order broadcast abstraction which, on one side, allows an easy implementation of a consensus
object, and, on an other side, can be implemented from consensus objects. A more recent
example is the SCD-Broadcast abstraction that we introduced in [11] (SCD stands for Set
Constrained Delivery). This communication abstraction allows a very easy implementation
of an atomic (Single Writer/Multi Reader or Multi Writer/Multi Reader) snapshot object
(as defined in [1]), and can also be implemented from snapshot objects. Hence, as shown
in [11], SCD-Broadcast and snapshot objects are the two sides of a same “coin”: one side
is concurrent object-oriented, the other side is communication-oriented, and none of them
is more computationally powerful than the other in asynchronous wait-free systems (where
“wait-free” means “prone to any number of process crashes”).

Aim and content of the paper. As stressed in [10], Informatics is a science of abstractions.
Hence, this paper continues our quest relating communication abstractions and agreement
objects. It focuses on k-set agreement in asynchronous wait-free systems. More precisely, the
paper introduces the k-BO-broadcast abstraction (BO stands for Bounded Order) and shows
that it matches k-set agreement in these systems.

k-BO-broadcast is a Reliable Broadcast communication abstraction [3, 15, 16, 17], enriched
with an additional property which restricts the disagreement on message receptions among
the processes. Formally, this property is stated as a constraint on the width of a partial order
whose vertices are the messages, and directed edges are defined by local message reception
orders. This width is upper bounded by k. For the extreme case k = 1, k-BO-broadcast
boils down to total order broadcast.
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The correspondence linking k-BO-broadcast and k-set agreement, established in the
paper, is depicted in Figure 1. The algorithm building k-SA on top of the k-BO-broadcast is
surprisingly simple (which is important, as communication abstractions constitute the basic
programming layer on top of which distributed applications are built). In the other direction,
we show that k-BO-broadcast can be implemented in wait-free systems enriched with k-SA
objects and snapshot objects. (Let us recall that snapshot objects do not require additional
computability power to be built on top of wait-free read/write systems.) This direction is not
as simple as the previous one. It uses an intermediary broadcast communication abstraction,
named k-SCD-broadcast, which is a natural and simple generalization of the SCD-broadcast
introduced in [11].

Roadmap. The paper is composed of 7 sections. Section 2 presents the basic crash-prone
process model, the snapshot object, and k-set agreement. Section 3 defines the k-BO
broadcast abstraction and presents a characterization of it. Then, Section 4 presents a simple
algorithm implementing k-set agreement on top of the k-BO broadcast abstraction. Section 5
presents another simple algorithm implementing k-BO broadcast on top of the k-SCD-
broadcast abstraction. Section 6 presents two algorithms whose combination implements
k-SCD-broadcast on top of k-set agreement and snapshot objects. Finally, Section 7 concludes
the paper. A global view on the way these constructions are related is presented in Figure 2
of the conclusion.

Due to page limitations, we recommend the reader to refer to the technical report [12]
for the proofs of some lemmas and theorems, as well as some considerations about the scope
of the results presented here.

2 Process Model, Snapshot, and k-Set Agreement

Process and failure model. The computing model is composed of a set of n asynchronous
sequential processes, denoted p1, . . . , pn. “Asynchronous” means that each process proceeds
at its own speed, which can be arbitrary and always remains unknown to the other processes.

A process may halt prematurely (crash failure), but it executes its local algorithm correctly
until its possible crash. It is assumed that up to (n−1) processes may crash in a run (wait-free
failure model). A process that crashes in a run is said to be faulty. Otherwise, it is non-faulty.
Hence a faulty process behaves as a non-faulty process until it crashes.

Snapshot object. The snapshot object was introduced in [1, 2]. It is an array REG[1..n] of
single-writer/multi-reader atomic read/write registers which provides the processes with two
operations, denoted write() and snapshot(). Initially, REG[1..n] = [⊥, . . . ,⊥]. The invocation
of write(v) by a process pi assigns v to REG[i], and the invocation of snapshot() by a process
pi returns the value of the full array as if the operation had been executed instantaneously.
Expressed in another way, the operations write() and snapshot() are atomic, i.e., in any
execution of a snapshot object, its operations write() and snapshot() are linearizable.

If there is no restriction on the number of invocations of write() and snapshot() by each
process, the snapshot object is multi-shot. Differently, a one-shot snapshot object is such
that each process invokes once each operation, first write() and then snapshot(). The one-
shot snapshot objects satisfy a very nice and important property, called Containment. Let
regi[1..n] be the vector obtained by pi, and viewi = {〈regi[x], i〉 | regi[x] 6= ⊥}. For any
pair of processes pi and pj which respectively obtain viewi and viewj , we have (viewi ⊆
viewj) ∨ (viewj ⊆ viewi).

DISC 2017
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Implementations of snapshot objects on top of read/write atomic registers have been
proposed (e.g., [1, 2, 13, 14]). The “hardness” to build snapshot objects in read/write systems
and associated lower bounds are presented in the survey [9].

k-Set agreement. k-Set agreement (k-SA) was introduced by S. Chaudhuri in [7] (see [18]
for a survey of k-set agreement in various contexts). Her aim was to investigate the impact
of the maximal number of process failures (t) on the agreement degree (k) allowed to the
processes, where the smaller the value of k, the stronger the agreement degree. The maximal
agreement degree corresponds to k = 1 (consensus).

k-SA is a one-shot agreement problem, which provides the processes with a single operation
denoted propose(). When a process pi invokes propose(vi), we say that it "proposes value vi”.
This operation returns a value v. We then say that the invoking process “decides v”, and “v
is a decided value”. k-SA is defined by the following properties.

Validity. If a process decides a value v, v was proposed by a process.
Agreement. At most k different values are decided by the processes.
Termination. Every non-faulty process that invoked propose() decides a value.

Repeated k-set agreement. This agreement abstraction is a simple generalization of k-set
agreement, which aggregates a sequence of k-set agreement instances into a single object.
Hence given such an object RKSA, a process pi invokes sequentially RKSA.propose(sn1

i , v
1
i ),

then RKSA.propose(sn2
i , v

2
i ), ..., RKSA.propose(snx

i , v
x
i ), etc, where sn1

i , sn
2
i , . . . , sn

x
i , . . . are

increasing (not necessarily consecutive) sequence numbers, and vx
i is the value proposed by

pi to the instance number snx
i . Moreover, the sequences of sequence numbers used by two

processes are sub-sequences of 0, 1, 2, etc., but are not necessarily the same sub-sequence. For
each sequence number sn, the invocations of RKSA.propose(sn, vi) verify the three properties
of k-set agreement.

3 The k-BO-Broadcast Abstraction

Communication operations. The k-Bounded Ordered broadcast (k-BO-Broadcast) abstrac-
tion provides the processes with two operations, denoted kbo_broadcast() and kbo_deliver().
The first operation takes a message as input parameter. The second one returns a mes-
sage to the process that invoked it. Using a classical terminology, when a process invokes
kbo_broadcast(m), we say that it “kbo-broadcasts the message m”. Similarly, when it invokes
kbo_deliver() and obtains a message m, we say that it “kbo-delivers m”; in the operating
system parlance, kbo_deliver() can be seen as an up call (the messages kbo-delivered are
deposited in a buffer, which is accessed by the application according to its own code).

The partial order 7→. An antichain is a subset of a partially ordered set such that any two
elements in the subset are incomparable, and a maximum antichain is an antichain that has
the maximal cardinality among all antichains. The width of a partially ordered set is the
cardinality of a maximum antichain.

Let 7→i be the local message delivery order at a process pi defined as follows: m 7→i m
′

if pi kbo-delivers the message m before it kbo-delivers the message m′. Let 7→def= ∩i 7→i.
This relation defines a partially ordered set relation which captures the order on message
kbo-deliveries on which all processes agree. In the following, we use the same notation ( 7→)
for the relation and the associated partially ordered graph. Let width( 7→) denote the width
of the partially ordered graph 7→.
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Properties on the operations. k-BO-broadcast is defined by the following set of properties,
where we assume –without loss of generality– that all the messages that are kbo-broadcast
are different and every non-faulty process keeps invoking the operation kbo_deliver() forever.

KBO-Validity. Any message kbo-delivered has been kbo-broadcast by a process.
KBO-Integrity. A message is kbo-delivered at most once by each process.
KBO-Bounded. width(7→) ≤ k.
KBO-Termination-1. If a non-faulty process kbo-broadcasts a message m, it terminates
its kbo-broadcast invocation and kbo-delivers m.
KBO-Termination-2. If a process kbo-delivers a message m, every non-faulty process
kbo-delivers m.

The reader can easily check that the Validity, Integrity, Termination-1, and Termination-2
properties define Uniform Reliable Broadcast.

The KBO-Bounded property, which gives its meaning to k-BO-broadcast, is new. Two
processes pi and pj disagree on the kbo-deliveries of the messages m and m′ if pi kbo-delivers
m before m′, while pj kbo-delivers m′ before m. Hence we have neither m 7→ m′ nor m′ 7→ m.

k-Bounded Order captures the following constraint: processes can disagree on message
sets of size at most k. (Said differently, there is no message set ms such that |ms| > k and
for each pair of messages m,m′ ∈ ms, there are two processes pi and pj that disagree on
their kbo-delivery order.) Let us consider the following example to illustrate this constraint.

An example. Let m1, m2, m3, m4, m5, and m6, be messages that have been kbo-broadcast
by different processes. Let us consider the following sequences of kbo-deliveries by the 3
processes p1, p2 and p3.

at p1: m1, m2, m3, m4, m5, m6.
at p2: m2, m1, m5, m3, m4, m6.
at p3: m2, m3, m1, m5, m4, m6.

The set of messages {m1,m2} is such that processes disagree on their kbo-delivery order.
We have the same for the sets of messages {m1,m3} and {m4,m5}. It is easy to see that,
when considering the set {m1,m2,m3,m4}, the message m4 does not create disagreement
with respect to the messages in the set {m1,m2,m3}.

The reader can check that there is no set of cardinality greater than k = 2 such that
processes disagree on all the pairs of messages they contain. On the contrary, when looking
at the message sets of size ≤ 2, disagreement is allowed, as shown by the sets of messages
{m1,m2}, {m1,m3}, and {m4,m5}. In conclusion, these sequences of kbo-deliveries are
compatible with 2-BO broadcast.

Let us observe that if two processes disagree on the kbo-deliveries of two messages m
and m′, these messages define an antichain of size 2. It follows that 1-BO-broadcast is total
order broadcast (which is computationally equivalent to Consensus [6]), while k = n imposes
no constraint on message deliveries.

Underlying intuition: the non-deterministic k-TO-channel notion. Let us define the
notion of a non-deterministic k-TO-channel as follows (TO stands for Total Order). There
are k different broadcast channels, each ensuring total order delivery on the messages broadcast
through it. The invocation of kbo_broadcast(m) by a process entails a broadcast on one and
only one of these broadcast channels, but the channel is selected by an underlying daemon,
and the issuing process never knows which channel has been selected for its invocation.

Let us consider the previous example, with k = 2. Hence, there are two TO-channels,
channel[1] and channel[2]. As shown by the following figure, they contained the following

DISC 2017
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operation propose(nb, v) is
(1) kbo_broadcast(〈nb, v〉); wait(∃ 〈nb, x〉 ∈ decisionsi); return(x).

when a message 〈sn, x〉 is kbo-delivered do
(2) if (〈sn,−〉 never added to decisionsi) then decisionsi.insert(〈sn, x〉) end if.

Algorithm 1 From k-BO-broadcast to repeated k-set agreement.

sequences of messages: channel[1] = m1, m5, m6 and channel[2] = m2, m3, m4. On
this figure, encircled grey areas represent maximum antichains.

channel[1]

channel[2]

•
m1

•
m2

•
m3

•
m4

•
m5 •

m6

m1 7→1 m2
m2 7→2 m1

It is easy to check that the sequence of messages delivered at any process pi is a merge of
the sequences associated with these two channels.

The assignment of messages to channels is not necessarily unique, it depends on the
behavior of the daemon. Considering k = 3 and a third channel channel[3], let us observe
that the same message kbo-deliveries at p1, p2, and p3, could have been obtained by the
following channel selection by the daemon: channel[1] as before, channel[2] = m3, m4,
and channel[3] = m2. Let us observe that, with k = 3 and this daemon behavior, the
message kbo-delivery m3, m1, m5, m4, m2, m6 would also be correct at p3.

A characterization. The previous non-deterministic k-TO-channel interpretation of k-BO-
broadcast is captured by the following characterization theorem.

I Theorem 1. A non-deterministic k-TO-channel and the k-BO-broadcast communication
abstraction have the same computational power.

I Remark. It is important to see that k-BO-broadcast and k-TO-channels are not only
computability equivalent but are two statements of the very same communication abstraction
(there is no way to distinguish them from a process execution point of view).

4 From k-BO-Broadcast to Repeated k-Set Agreement

Algorithm 1 implements repeated k-set agreement in a wait-free system enriched with k-
BO-Broadcast. Its simplicity demonstrates the very high abstraction level provided by
k-BO-Broadcast. All “implementation details” are hidden inside its implementation (which
has to be designed only once, and not for each use of k-BO-Broadcast in different contexts).
In this sense, k-BO-Broadcast is the abstraction communication which captures the essence
of (repeated) k-set agreement.

When a process pi invokes propose(nb, v), it kbo-broadcasts a message containing the pair
〈nb, v〉 and waits until a pair 〈nb,−〉 appears in its local set decisionsi (line 1). Such a pair
is added in decisionsi the first time pi k-BO-delivers a pair 〈nb, x〉 (line 2). Let us observe
that this algorithm is purely based on the k-BO-Broadcast communication abstraction.

I Lemma 2. If the invocation of propose(nb, v) returns x to a process, some process invoked
propose(nb, x).
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I Lemma 3. If a non-faulty process invokes propose(nb,−), it eventually decides a value x
such that 〈nb, x〉 is the first (and only) message 〈nb,−〉 it kbo-delivers.

I Lemma 4. The set of values returned by the invocations of propose(nb,−) contains at
most k different values.

Proof. Let Πnb be the set of processes returning a value from their invocations propose(nb,−).
For each pi ∈ Πnb, let 〈nb, xi〉 denote the first message 〈nb,−〉 received by pi. By Lemma 3,
Xnb = {xi : pi ∈ Πnb} is the set of all values returned by the invocations of propose(nb,−).

For any pair xi and xj of distinct elements of Xnb, we have that pi kbo-delivered xi before
xj , and pj kbo-delivered xj before xi. Hence, 〈nb, xj〉 67→i 〈nb, xi〉 and 〈nb, xi〉 67→j 〈nb, xj〉,
which means 〈nb, xi〉 and 〈nb, xj〉 are not ordered by 7→. Therefore, {〈nb, xi〉 : pi ∈ Πnb} is
an antichain of 7→. It then follows from the KBO-Bounded property that |{xi : pi ∈ Πnb}| =
|{〈nb, xi〉 : pi ∈ Πnb}| ≤ k. J

I Theorem 5. Algorithm 1 implements repeated k-set agreement in any system model
enriched with the communication abstraction k-BO-broadcast.

5 From k-SCD-Broadcast to k-BO-Broadcast

5.1 The intermediary k-SCD-Broadcast abstraction
This communication abstraction is a simple strengthening of the SCD-Broadcast abstraction
introduced in [11], where it is shown that SCD-Broadcast and snapshot objects have the
same computability power (SCD stands for Set Constrained Delivery).

SCD-Broadcast: definition. SCD-broadcast consists of two operations scd_broadcast()
and scd_deliver(). The first operation takes a message to broadcast as input parameter.
The second one returns a non-empty set of messages to the process that invoked it. By a
slight abuse of language, we say that a process “scd-delivers a message m” when it delivers a
message set ms containing m.

SCD-broadcast is defined by the following set of properties, where we assume –without
loss of generality– that all the messages that are scd-broadcast are different and that every
non-faulty process keeps invoking the operation scd_deliver() forever.

SCD-Validity. If a process scd-delivers a set containing a message m, then m was
scd-broadcast by some process.
SCD-Integrity. A message is scd-delivered at most once by each process.
SCD-Ordering. If a process pi scd-delivers first a message m belonging to a set msi and
later a message m′ belonging to a set ms′i 6= msi, then no process scd-delivers first m′ in
some scd-delivered set ms′j and later m in some scd-delivered set msj 6= ms′j .
SCD-Termination-1. If a non-faulty process scd-broadcasts a message m, it terminates
its scd-broadcast invocation and scd-delivers a message set containing m.
SCD-Termination-2. If a process scd-delivers a message set containing m, every non-faulty
process scd-delivers a message set containing m.

k-SCD-Broadcast: definition. This communication abstraction is SCD-Broadcast strength-
ened with the following additional property:

KSCD-Bounded. No set ms kscd-delivered to a process contains more than k messages.
In the following, all properties of k-SCD-broadcast are prefixed by “KSCD”.

DISC 2017
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operation kbo_broadcast(v) is kscd_broadcast(m).

when a message set ms is kscd-delivered do for each m ∈ ms do kbo_deliver(m) end for.

Algorithm 2 From k-SCD-broadcast to k-BO-broadcast.

An example. Like in Section 3, let m1, m2, m3, m4, m5, and m6 be messages that have
been kbo-broadcast by different processes. Let us consider the following sequences of message
sets k-scd-delivered by the 3 processes p1, p2 and p3.

at p1: {m1,m2}, {m3}, {m4,m5}, {m6}.
at p2: {m2}, {m1,m3}, {m4,m5}, {m6}.
at p3: {m1,m2}, {m3,m5}, {m4,m6}.

The processes do not agree on the message sets they k-scd-deliver. For example, p1 and
p3 k-scd-deliver m2 in the same set as m1, whereas p2 k-scd-deliver m2 in the same set as
m3. However, at any time, the union of message sets previously k-scd-delivered by any
process is part of the following sequence of message sets: {m2}, {m1,m2}, {m1,m2,m3},
{m1,m2,m3,m5}, {m1,m2,m3,m4,m5}, {m1,m2,m3,m4,m5,m6}, which implies the SCD-
Ordering property. Moreover, all k-scd-delivered message sets are of size at most k = 2.

5.2 From k-SCD-Broadcast to k-BO-Broadcast
Description of the algorithm. Algorithm 2 implements k-BO-Broadcast on top of any sys-
tem model providing k-SCD-Broadcast. It is an extremely simple self-explanatory algorithm.

I Theorem 6. Algorithm 2 implements k-BO-broadcast in any system model enriched with
the communication abstraction k-SCD-broadcast.

Proof. k-BO-Validity, k-BO-Integrity, k-BO-Termination-1 and k-BO-Termination-2 are
direct consequences of their homonym SCD-broadcast properties.

To prove the additional k-BO-Bounded property, let us consider a message set ms
containing at least (k+1) messages. For each process pi, let fmsi (resp. lmsi) denote the first
(resp. last) set containing a message in ms received by pi. Thanks to the KSCD-Ordering
property, there exists a message fm ∈ ∩i fmsi and a message lm ∈ ∩i lmsi. (Otherwise, we
will have messages m and m′ such that m ∈ fmsi ∧ m /∈ fmsj and m′ /∈ fmsi ∧ m′ ∈ fmsj .)

Let umsi denote the union of all the message sets k-scd-delivered by pi starting with
the set including fmsi and finishing with the set including lmsi. As, for each process pi,
umsi contains at least the (k + 1) messages of ms, we have fmsi 6= lmsi. Therefore, we have
fm 6= lm and fm 7→ lm. It follows that ms cannot be an antichain of 7→. Consequently, the
antichains of 7→ cannot contain more than k messages, hence width(7→) ≤ k. J

6 From Repeated k-Set Agreement and Snapshot to
k-SCD-Broadcast

6.1 The K2S abstraction
Definition. The following object, denoted K2S, is used by Algorithm 4 to implement k-SCD-
broadcast. “K2S” stands for k-set agreement plus two snapshots. A K2S object provides a
single operation k2s_propose(v) that can be invoked once by each process. Its output is a set
of sets whose size and elements are constrained by both k-set agreement and the input size
(number of different values proposed by processes). The output setsi of each process pi is a
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operation k2s_propose(v) is
(1) vali ← KSET .propose(v);
(2) SNAP1.write(vali); snap1i ← SNAP1.snapshot();
(3) viewi ← {snap1i[j] | snap1i[j] 6= ⊥};
(4) SNAP2.write(viewi); snap2i ← SNAP2.snapshot();
(5) setsi ← {snap2i[j] | snap2i[j] 6= ⊥};
(6) return(setsi).

Algorithm 3 An implementation of a K2S object.

non-empty set of non-empty sets, called views and denoted view, satisfying the following
properties. Let inputs denote the set of different input values proposed by the processes.

K2S-Validity. ∀ i: ∀ view ∈ setsi: (m ∈ view)⇒ (m was k2s-proposed by a process).
Set Size. ∀ i: 1 ≤ |setsi| ≤ min(k, |inputs|).
View Size. ∀ i : ∀ view ∈ setsi: (1 ≤ |view| ≤ min(k, |inputs|)).
Intra-process Inclusion.∀ i : ∀ view1, view2 ∈ setsi: view1 ⊆ view2 ∨ view2 ⊆ view1.
Inter-process Inclusion. ∀ i, j: setsi ⊆ setsj ∨ setsj ⊆ setsi.
K2S-Termination. If a non-faulty process pi invokes k2s_propose(), it returns a set setsi.

Algorithm. Algorithm 3 implements a K2S object. It uses an underlying k-set agreement
object KSET , and two one-shot snapshot objects denoted SNAP1 and SNAP2.

Phase 1 (line 1). When a process pi invokes k2s_propose(v), it first proposes v to the
k-set agreement object, from which it obtains a value vali (line 1).
Phase 2 (lines 2-3). Then pi writes vali in the first snapshot object SNAP1, reads its
content, saves it in snap1i, and computes the set of values (viewi) that, from its point of
view, have been proposed to the k-set agreement object.
Phase 3 (lines 4-6). Process pi then writes its view viewi in the second snapshot object
SNAP2, reads its value, and computes the set of views (setsi) obtained – as far as it
knows – by the other processes. Process pi finally returns this set of views setsi.

I Theorem 7. Algorithm 3 satisfies the properties defining a K2S object.

Repeated K2S. In the following we consider a repeated K2S object, denoted KSS . A
process pi invokes KSS .k2s_propose(r, v) where v is the value it proposes to the instance
number r. The instance numbers used by each process are increasing (but not necessarily
consecutive). Hence, two snapshot objects are associated with every K2S instance, and line 1
of Algorithm 3 becomes KSET .propose(r, v).

6.2 From k-Set Agreement and Snapshot to k-SCD-Broadcast
Algorithm 4 builds the k-SCD-Broadcast abstraction on top of k-set agreement and snapshot
objects.

Shared objects and local objects.
The processes cooperate through two concurrent objects: MEM [1..n], a multishot snapshot
object, such that MEM [i] contains the set of messages kscd-broadcast by pi, and a repeated
K2S object denoted KSS .
A process pi manages two local copies of MEM denoted mem1i and mem2i, two auxiliary
sets to_deliver1i and to_deliver2i, and a set deliveredi, which contains all the messages
it has locally kscd-delivered; mem1i[i] is initialized to an empty set.
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operation kscd_broadcast(m) is
(1) MEM .write(mem1i[i] ∪ {m}); mem1i ← MEM .snapshot();
(2) to_deliver1i ← (∪1≤j≤n mem1i[j]) \ deliveredi; wait(to_deliver1i ⊆ deliveredi).

background task T is
(3) repeat forever
(4) propi ← ⊥;
(5) if (seqi = ε) then mem2i ← MEM .snapshot();
(6) to_deliver2i ← (∪1≤j≤n mem2i[j]) \ deliveredi;
(7) if (to_deliver2i 6= ∅) then propi ← a message ∈ to_deliver2i end if
(8) else propi ← a message of the first message set of seqi
(9) end if ;
(10) if (propi 6= ⊥)
(11) then ri ← |deliveredi|; setsi ← KSS .k2s_propose(ri, propi); new_seqi ← ε;
(12) while (setsi 6= {∅}) do
(13) min_seti ← non-empty set of minimal size in setsi;
(14) new_seqi ← new_seqi ⊕min_seti;
(15) for each set s ∈ setsi do setsi ← (setsi \ {s}) ∪ {s \min_seti} end for
(16) end while;
(17) let auxi = all the messages in the sets of new_seqi;
(18) for each set s ∈ seqi do s← s \ auxi end for;
(19) seqi ← new_seqi ⊕ seqi; let firsti = head(seqi); let resti = tail(seqi);
(20) kscd_deliver(firsti); deliveredi ← deliveredi ∪ firsti; seqi ← resti

(21) end if
(22) end repeat.

Algorithm 4 From k-set agreement and snapshot objects to k-SCD-broadcast (code for pi).

ri denotes the next round number that pi will execute; setsi is a local set whose aim is
to contain the set of message sets returned by the last invocation of a K2S object.
Each process pi manages two sequences of messages sets, both initialized to ε (empty
sequence), denoted seqi and new_seqi; head(sq) returns the first element of the sequence
sq, and tail(sq) returns sq without its first element; ⊕ denotes sequence concatenation.
The aim of the local sequence new_seqi is to contain a sequence of message sets obtained
from setsi (last invocation of a K2S object) such that no message belongs to several sets.
As far as seqi is concerned, we have the following (at line 19 of Algorithm 4). Let
seqi = ms1, ms2, · · · ,ms`, where 1 ≤ ` ≤ k and each msx is a message set. This
sequence can be decomposed into two (possibly empty) sub-sequencesms1, ms2, · · · ,msy

and msy+1 · · · ,ms` such that:
ms1, ms2, · · · ,msy can be in turn decomposed as follows:
(ms1 ∪ms2 ∪ · · · ∪msa), (msa+1 ∪msa+2 ∪ · · · ∪msb), · · · , (msc ∪ · · · ∪msy)
where each union set (e.g., msa+1 ∪msa+2 ∪ · · · ∪msb) is a message set that has been
kscd-delivered by some process (some union sets can contain a single message set)1.
For each x : y + 1 ≤ x ≤ ` : mx is a message set whose messages have not yet been
kscd-delivered by a process.

Operation kscd_broadcast(). When it invokes kscd_broadcast(), a process pi first adds m
to the shared memory MEM , which contains all the messages it has already kscd-broadcast
(line 1). Then pi reads atomically the whole content of MEM , which is saved in mem1i

(line 1). Then, pi computes the set of messages not yet locally kscd-delivered and waits

1 Let us remark that it is possible that, while a process kscd-delivered the message set ms = ms1 ∪ms2 ∪
· · · ∪msa, another process kscd-delivered the messages in ms in several messages sets, e.g., first the
message set ms1 ∪ms2 ∪ms3 and then the message set ms4 ∪ · · · ∪msa.
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until all these messages appear in kscd-delivered message sets (line 2). Let us notice that, it
follows from these statements, that a process has kscd-delivered its previous message when it
issues its next kscd_broadcast().

Underlying task T . This task is the core of the algorithm. It consists of an infinite loop,
which implements a sequence of asynchronous rounds (lines 11-20). Each process pi executes
a sub-sequence of non-necessarily consecutive rounds. Moreover, any two processes do not
necessarily execute the same sub-sequence of rounds. The current round of a process pi is
defined by the value of |deliveredi| (number of messages already locally kscd-delivered).

The progress of a process from a round r to its next round r′ > r depends on the size of
the message set (denoted firsti in the algorithm, line 20) it kscd-delivers at the end of round
r (deliveredi becomes then deliveredi ∪ firsti). The message set firsti depends on the values
returned by the K2S object associated with the round r, as explained below.

Underlying task T : proposal computation. (Lines 4-9) Two rounds executed by a process
pi are separated by the local computation of a message value (propi) that pi will propose to
the next K2S object. This local computation is as follows (lines 5-9), where seqi (computed
at lines 18-20) is a sequence of message sets that, after some “cleaning”, are candidates to be
locally kscd-delivered. There are two cases.

Case 1: seqi = ε. In this case (similarly to line 2) pi computes the set of messages
(to_deliver2i) it sees as kscd-broadcast but not yet locally kscd-delivered (lines 5-6). If
to_deliver2i 6= ∅, a message of this set becomes its proposal propi for the K2S object
associated with the next round (line 7). Otherwise, we have propi = ε, which, due to the
predicate of line 10, entails a new execution of the loop (skipping lines 11-20).
Case 2: seqi 6= ∅. In this case, propi is assigned a message of the first set of seqi (line 8).

Underlying task T : benefiting from a K2S object to kscd-deliver a message set.
(Lines 11-20) If a proposal has been previously computed (predicate of line 10), pi exe-
cutes its next round, whose number is ri = |deliveredi|. The increase step of |deliveredi| can
vary from round to round, and can be any value ` ∈ [1..k] (lines 14 and 15). As already
indicated, while the round numbers have a global meaning (the same global sequence of
rounds is shared by all processes), each process executes a subset of this sequence (as defined
by the increasing successive values of |deliveredi|). Despite the fact processes skip/execute
different rounds, once combined with the use of K2R objects, round numbers allow processes
to synchronize in a consistent way. This round synchronization property is captured by
Lemmas 11-12.

From an operational point of view, a process starts a round with the invocation
KSS .k2s_propose(ri, propi) where ri = |deliveredi|, which returns a set of message sets
setsi (line 11). Then (“while” loop at lines 12-16), pi builds from the message sets belonging
to setsi a sequence of message sets new_seqi, that will be used to extract the next message
set kscd-delivered by pi (lines 17-20). The construction of new_seqi is as follows. Iteratively,
pi takes the smallest set of setsi (min_seti, line 13), adds it at the end of new_seqi (line 14),
and purges all the sets of setsi from the messages in min_seti (line 15), so that no message
will locally appear in two different messages sets of new_seqi.

When new_seqi is built, pi first purges all the sets of the sequence seqi from the messages
in new_seqi (lines 17-18), and adds then new_seqi at the front of seqi (line 19). Finally, pi

kscd-delivers the first message set of seqi, and updates deliveredi and seqi (lines 20).
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6.3 Proof of the algorithm
I Lemma 8. A message set kscd-delivered (line 20) contains at most k messages.

I Lemma 9. If a process kscd-delivers a message set containing a message m, m was
kscd-broadcast by a process.

Notations.
msg_seti(r) = message set kscd-delivered by process pi at round r if pi participated in
it, and ∅ otherwise.
seqi(r) = value of seqi at the end of the last round r′ ≤ r in which pi participated.
msgsi(r, r′) = set of messages contained in message sets kscd-delivered by pi between
rounds r (included) and r′ > r (not included), i.e. msgsi(r, r′) =

⋃
r≤r′′<r′ msg_seti(r′′).

KSS(r) = K2S instance accessed by KSS .k2s_propose(r,−) (line 11).
setsi(r) = set of message sets obtained by pi from KSS [r].

I Lemma 10. Let pi and pj be two processes that terminate round r, with |msg_seti(r)| ≤
|msg_setj(r)|. Then (i) msg_seti(r) ⊆ msg_setj(r), and (ii) there is a prefix prefi of
seqi(r) such that msg_setj(r) = msg_seti(r) ∪ (

⋃
msg_set ∈ prefi

msg_set).

Proof. Let pi and pj be two processes that kscd-deliver the message sets msg_seti(r) and
msg_setj(r), respectively, these sets being such that |msg_seti(r)| ≤ |msg_setj(r)|. Let us
observe that, as both pi and pj invoked KSS .k2s_propose(r,−) (lines 11 and 20), we have
setsi(r) ⊆ setsj(r) or setsj(r) ⊆ setsi(r) (Inter-process Inclusion).

As |msg_seti(r)| ≤ |msg_setj(r)|, it follows from the Inter-process and Intra-process
inclusion properties of KSS(r), and the definition of msg_seti(r) = firsti = min_seti ∈
setsi(r), and msg_setj(r) = firstj = min_setj ∈ setsj(r) ⊆ setsi(r), that msg_seti(r) ⊆
msg_setj(r), which completes the proof of (i).

As far as (ii) is concerned, we have the following. If msg_seti(r) = msg_setj(r), we
have prefi = ε and the lemma follows. So, let us assume msg_seti(r) ( msg_setj(r). As
msg_seti(r) is the smallest message set of setsi(r) (lines 13-14 and 19-20), and msg_setj(r)
is the smallest message set of setsj(r), it follows that setsj(r) ⊂ setsi(r). The property
msg_setj(r) = msg_seti(r) ∪ (

⋃
msg_set ∈ prefi

msg_set) follows then from the following
observation. Let setsi(r) = {s1, s2, ..., s`}, where ` ≤ k and s1 ( s2 ( · · · ( s`. As
setsj(r) ⊂ setsi(r), one sx is msg_setj(r). It follows that the union of the sets min_seti
computed by pi in the while loop of round r (lines 13-15) eventually includes all the messages
of msg_setj(r), from which we conclude that there is a prefix prefi of seqi(r) (lines 12-
19, namely a prefix of the sequence new_seqi, which is defined from the sequence of the
sets min_seti), such that msg_setj(r) = msg_seti(r) ∪ (

⋃
msg_set ∈ prefi

msg_set), which
completes the proof of the lemma. J

Lemmas 11-12 capture the global message set delivery synchronization among the processes.

I Lemma 11. Let pi and pj be two processes that terminate round r′ ≥ r + |msg_setj(r)|,
and are such that |msg_seti(r)| ≤ |msg_setj(r)|. Then (i) msgsi(r, r + |msg_setj(r)|) =
msgsj(r, r+|msg_setj(r)|), and (ii) pi and pj will both participate in round r+|msg_setj(r)|.

Proof. If |msg_seti(r)| = |msg_setj(r)| = α, both pi and pj are such that |deliveredi| =
|deliveredj | = r + α when they terminate round r. Consequently, they both proceed from
round r to round r+α, thereby skipping the rounds from r+1 until r+α−1. We then have (i)
msgsi(r, r + |msg_setj(r)|) = msg_seti(r) = msg_setj(r) = msgsj(r, r + |msg_setj(r)|),
(ii) both pi and pj will participate in round r + |msg_setj(r)|, and the lemma follows.
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Hence, let us consider that |msg_seti(r)| = α < |msg_setj(r)| = α+ β. The next round
executed by pi will be the round r + α, while the next round executed by pj will be the
round r + α + β. Moreover, to simplify and without loss of generality, let us assume that
msg_seti(r) (resp. msg_setj(r)) is the smallest (resp. second smallest) message set in the
sets of message sets sets output by KSS(r).

According to Lemma 10, after round r, the first element of seqi is msg_setj(r) \
msg_seti(r). This also applies to any other process that delivered msg_seti(r) at round r.
At round r+α, all these processes will then propose a message in msg_setj(r)\msg_seti(r).
Because of the K2S-Validity property of KSS(r + α), all these processes will then deliver a
subset of msg_setj(r) \msg_seti(r). For the same reason, until round r+α+β, no process
will propose a message not in msg_setj(r) \msg_seti(r). At round r + α + β, they will
then have delivered all the messages in msg_setj(r) \msg_seti(r), and they will participate
in round r + α+ β, from which the lemma follows. J

I Lemma 12. Let r be a round in which all the non-faulty processes participate. There is a
round r′ with r < r′ ≤ r + k in which all non-faulty processes participate and such that, for
any pair of non-faulty processes pi and pj, we have msgsi(r, r′) = msgsj(r, r′).

Proof. As initially ∀i : |deliveredi| = 0, KSS .k2s_propose(0,−) is invoked by all non-crashed
processes. We prove that there is a round r ∈ [1..k] in which all the non-crashed processes
participate, and for any pair of them pi and pj , we have msgsi(0, r) = msgsj(0, r). This
constitutes the base case of an induction. Then, the same reasoning can be used to show that
if the non-faulty processes participate in a round r, there is a round r′ with r < r′ ≤ r+k and
such that, for any pair of non-faulty processes pi and pj , we have msgsi(r, r′) = msgsj(r, r′).

Let us consider any two pi and pj that terminate round 0. Moreover, without loss of
generality, let us assume that, among the sets of message sets output by KSS(0), setsi(0) is
the greatest and setsj(0) is the smallest. It follows from the Inter-process inclusion property
that setsj(0) ⊆ setsi(0), and from line 13 plus the Intra-process inclusion property that
msg_seti(0) ⊆ msg_setj(0). Hence, |msg_seti(0)| ≤ |msg_setj(0)|. Moreover, due to the
View size property of KSS(0) we have |msg_seti(0)| ≤ |msg_setj(0)| = r ≤ k. Applying
Lemma 11, we have msgi(0, 0 + r) = msgj(0, 0 + r), which concludes the proof. J

I Lemma 13. If a process pi kscd-delivers first a message m belonging to a set msi and
later a message m′ belonging to a set ms′i 6= msi, then no process kscd-delivers first m′ in
some kscd-delivered set ms′j and later m in some kscd-delivered set msj 6= ms′j.

Proof. Let us first note that, at each process, the kscd-delivery of message sets establishes a
partial order on messages. Given a process pi, let →i be the partial order defined as follows2:
m→i m

′ if pi kscd-delivered first a message set msi including m, and later kscd-delivered a
message set ms′i including m′. Hence, if m and m′ were kscd-delivered in the same message
set by pi, we have m 6→i m

′ and m′ 6→i m.
Let us also note that, along the execution of a process pi, the partial order →i can only

be extended, i.e. if m→i m
′ at time t, we cannot have m 6→i m

′ at time t′ > t. This, along
with the fact that a faulty process executes its algorithm correctly until it crashes, allows us
to consider, in the context of this proof, that pi and pj are non-faulty.

In order to prove the lemma, we then have to show that the partial orders →i and
→j are compatible, i.e. for any two messages m and m′, (m →i m

′) ⇒ (m′ 6→j m) and
(m→j m

′)⇒ (m′ 6→i m).

2 This definition is similar to the definition of 7→i given in Section 3 devoted to kBO-broadcast.

DISC 2017



27:14 Which Broadcast Abstraction Captures k-Set Agreement?

k-SA

Algo. 1

Algo. 2
Algo. 4

Algo. in [11]

Snapshot

k-BO SCD-based

k-SCD

Figure 2 Detailing the global view.

According to Lemma 12, for each round r in which all processes participate, there is a
round r′ > r in which all processes participate. Moreover, for any two non-faulty process pi

and pj , we have msgsi(r, r′) = msgsj(r, r′). For any such round r, we then have that if pi

delivered message m strictly before round r and delivered m′ at round r or afterwards, we
have both (m→i m

′) and (m′ →j m). We will then consider the messages delivered between
two such rounds r and r′.

Without loss of generality, suppose that the message set kscd-delivered by pi at round
r is smaller than, or equal to, the message set kscd-delivered by pj at the same round, i.e.
|msg_seti(r)| ≤ |msg_setj(r)|. It follows from Lemma 11 that msgsi(r, |msg_setj(r)|) =
msgsj(r, |msg_setj(r)|). Moreover, as all the messages in msg_setj(r) were kscd-delivered
by pj in a single set, they are all incomparable when considering →j . The partial orders →i

and →j , when restricted to the messages in msg_setj(r), are thus compatible.
According to Lemma 11, pi and pj will both participate in round r+α = r+|msg_setj(r)|.

If r+α = r′, the lemma follows. Otherwise, let β = max(|msg_seti(r+α)|, |msg_setj(r+α)|).
The previous reasoning, again due to Lemma 11, can then be applied again to the messages
in msgsi(r + α, r + α+ β) = msgsj(r + α, r + α+ β), and pi and pj will both participate in
round r + α+ β. This can be repeated until round r′, showing that the partial orders →i

and →j are compatible, which concludes the proof of the lemma. J

I Lemma 14. No message m is kscd-delivered twice by a process pi.

I Lemma 15. Let m be a message that has been deposited into MEM . Eventually, m is
kscd-delivered (at least) by the non-faulty processes.

I Lemma 16. If a process kscd-delivers a message m, every non-faulty process kscd-delivers
a message set containing m.

I Lemma 17. If a non-faulty process pi kscd-broadcasts a message m, it terminates its
kscd-broadcast invocation and kscd-delivers a message set containing m.

I Theorem 18. Algorithm 4 implements KSCD-broadcast from k-set agreement and snapshot
objects.

7 Conclusion

This paper has introduced a new communication abstraction, denoted k-BO-broadcast,
which captures k-set agreement in asynchronous crash-prone wait-free systems. In the case
k = 1 (consensus is 1-set agreement), 1-BO-broadcast boils down to Total Order broadcast.
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“Capture” means here that (i) k-set agreement can be solved in any system model providing
the k-BO-broadcast abstraction, and (ii) k-BO-broadcast can be implemented from k-set
agreement in any system model providing snapshot objects. It follows that, when considering
asynchronous crash-prone wait-free systems where basic communication is through a set of
atomic read/write, or the asynchronous message-passing system enriched with the failure
detector Σ [5, 8], k-BO-broadcast and k-set agreement are the two faces of the same coin:
one is its communication-oriented face while the other one is its agreement-oriented face.

From a technical point of view, a complete picture of the content of the paper appears in
Figure 2. It is important to notice that the two constructions inside the dotted curve are
free from concurrent objects: each rests only on an underlying (appropriate) communication
abstraction.
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