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Abstract

This paper presents an analysis of refinement indicators for the simulation of steady and unsteady
flows by means of p-adaptive algorithms for discontinuous Galerkin (DG) methods. Residual-
error, discretization-error and feature-based indicators are compared by studying their effect on
convergence history, computational gain and refinement regions selected by the adaptive algo-
rithm. The analysis is initially carried out on steady flow configurations. Static p-adaptive simu-
lations of the periodic flow past a cylinder at Re = 100 are then performed. Compared to uniform
p-refinement, a reduction between 50% and 75% in the number of degrees of freedom is obtained
for all test cases considered. The accuracy and efficiency observed for the VMS [1] and spec-
tral decay [2] indicators demonstrate their great potential for the adaptive simulation of unsteady
flows.

Keywords: error-based adaptation; high-order discontinuous Galerkin; a posteriori error
estimation; p-refinement; discretization error estimation; residual error estimation;

1. Introduction

Discontinuous Galerkin (DG) methods [3, 4, 5, 6] are a class of high-order methods based on
the variational projection of the Navier-Stokes equations and combine features of Finite Volume
(FV) and Finite Element (FE) methods. One remarkable property of this method is the possibility
of largely reducing the computational cost of the simulations by increasing the local spatial
resolution by either locally reducing the mesh size (h-refinement), or by locally increasing the
polynomial order of the approximation within the elements (p-refinement). Local p-refinement
can reduce dissipation and dispersion errors in regions where the solution is smooth thus allowing
for the accurate resolution of unsteady turbulent phenomena with a lower number of degrees of
freedom (DOFs) as compared to Finite Difference (FD) and FV methods [7, 8]. In addition,
h-refinement can be employed in combination with p-refinement to isolate regions characterized
by geometrical and physical discontinuities.

hp-adaptive techniques are based on the definition of a refinement indicator and an sp-decision
algorithm. Refinement indicators, usually relying on a posteriori error estimates, identify regions
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where an increased spatial resolution is required. The hp-decision procedure, often based on the
evaluation of the smoothness of the solution, selects the refinement strategy (% or p) to be adopted.

Considerable efforts have been dedicated to the development of robust a posteriori error
estimators for partial differential equations. We refer to the works by Roy [9], Houston and Siili
[10], and Mitchell and McClain [11], for a review of error estimation strategies and their use for
hp-adaptive algorithms.

The selection of the most appropriate refinement indicator for an adaptive procedure is the
result of a compromise between the computational overhead due to the evaluation of the error
estimator, the desired level of accuracy of the adapted solution and the robustness of the re-
finement indicator. This is of particular interest for the development of adaptive algorithms for
turbulent flow simulations because of the high computational cost required for this type of ap-
plications. However, a fair analysis of different refinement indicators is an arduous task. This
is the consequence of the lack of a systematic comparison using the same configuration and nu-
merical scheme, as well as the fact that the same refinement indicator can be open to multiple
interpretations.

The goal of this work is thus to provide such an analysis with the specific objective of iden-
tifying advantages and drawbacks in the development of adaptive algorithms for the simulation
of unsteady flows by means of DG methods. The focus of this research is on the analysis of
p-refinement algorithms, the extension of these results to i- or hp-adaptive algorithms is the
subject of future research.

The large variety of refinement indicators reported in the literature can be classified in three
main groups:

(1) Feature based indicators are often derived from physical or theoretical properties of the
problem to be solved or from the observation that some phenomena must be fully resolved
in order to obtain an accurate representation of the flow field. Examples include methods
for vortex detection [12], boundary layer detection, or interface detection for two-phase
flows [13]. These methods are often inefficient, lack of robustness and do not take into
account error propagation. However, they are often inexpensive, simple to implement and
can provide reasonably good results when employed by expert users.

(ii) Discretization-Error (DE) based indicators identify for refinement regions characterized
by high values of the error between the numerical and the exact solution. The most
common strategy to estimate DE is to perform two simulations on successively refined
discretization spaces and compare the two numerical solutions [14]. Other possible ap-
proaches include the computation of estimates of higher-order solutions [15], estimates
of truncation error through the decay rate of Legendre expansion coefficients [16] or the
exploitation of superconvergent phenomena [17]. A possible drawback is that the DE is
produced in regions of insufficient spatial resolution and then diffused and convected as a
scalar quantity [9, 18]. An adaptation process which is driven by local values of DE would
thus also refine regions where the error is transported and not produced thus exhibiting
sub-optimal performance. For this reason, Residual-Error (RE) based and 7-based (TE)
methods are often employed in the FE and FV frameworks respectively. This is justified
by the fact that the TE and the RE appear as production terms in the discretization error
transport equations [9, 18, 19, 20, 21]. In the FE framework RE-based methods can often
be classified as DE-based estimator since RE estimates can provide DE bounds provided
that suitable norms are employed.
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(iii)) Goal oriented indicators evaluate the contribution of the numerical error to the error in
the evaluation of a target functional (e.g. the drag or the lift coefficient). Their deriva-
tion requires the computation of element-wise residuals which are weighted by the solu-
tion of a dual problem derived from the discretization employed and the target quantity.
These methods capture the inherent mechanism of error propagation in hyperbolic and
nearly-hyperbolic problems. Thanks to this property, they have been shown to provide the
lowest computational cost to achieve a prescribed level of accuracy when a target func-
tional is the goal of a simulation [21, 22, 23, 24]. The solution of the adjoint problem must
be performed in a refined discretization space [22] and requires the backward integration
in time for unsteady problems, thus requiring the numerical solution to be known at each
previous time step.

In this work, we focus our analysis on DE- and RE-based refinement indicators. Goal
oriented/adjoint-based methods are not considered here. Despite the fact that a vast number
of authors have demonstrated their superiority with respect to DE methods for steady problems,
their high memory requirements and high computational cost prohibit their application to tur-
bulent flow configurations of industrial interest. Conversely, DE- and feature-based refinement
indicators have already been successfully applied to LES and are of interest thanks to the very
limited computational overhead required [12, 25, 26, 27].

The analysis proposed in this work targets the research of possible advantages or drawbacks
of different DE and RE error estimators for p-adaptive simulations of steady and unsteady flows.
For this purpose, we study the effect of different indicators on the convergence history of the
adaptive procedure, the computational gain provided and the spatial regions selected for refine-
ment. We do not compare the efficiency of different refinement indicators on estimating the error
of the numerical solution as different indicators measure different errors or employ different
norms.

This paper is organised as follows. In section 2 the governing equations and the DG method
are briefly introduced. In section 3 a brief review of the considered refinement indicators is pre-
sented along with their relationship with other refinement indicators employed in the literature.
In section 4 the direct comparison of refinement indicators on inviscid and viscous steady and
unsteady flows is provided. A comparison in terms of potential implementation issues and com-
putational cost is reported in section 5. The main conclusions from this research are presented in
section 6.

2. Model problem and discretization

The simulations presented in this work have been performed using the DG unstructured
solver Aghora developed at ONERA [28] solving the compressible Navier-Stokes equations.
The physical model and the DG method used in this work are recalled in this section.

2.1. Physical model

Let Q € R? be a bounded domain, where d is the space dimension, the compressible Navier-
Stokes equations take the form :

ou+V-F.(w)-V-F,(u,Vu) =0 (1)

with associated initial conditions u(-, 0) = uy(-) and appropriate boundary conditions prescribed
on Q. The vector u = (p, pv, pE)” represents the conservative state variables, with p being the
3
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p is the static pressure and y = g—’ > 1 the ratio of specific heats. The nonlinear convective and
diffusive fluxes in Eq. (1) are defined respectively as:

density, v = (Uy, U, U3)" the velocity vector and E = + %5+ the specific total energy. Here,

pU,‘ 0
pULU; + péi Til
Fei) =| pUrU; + pén Fri(a,Vu) = T ()
pUsU; + pdi T3
pUE TicUr — qi
with
oU;, oU; 23U,
=M+t — - 57—9; 3
i (6x,~ Oxj 3 0x; J) 3)
oT
A Y 4
q o, 4

where u is the dynamic viscosity, described by the Sutherland law, T denotes the temperature,
related to the pressure and density by the equation of state, 4 = ,u% is the thermal conductivity
and Pr refers to the Prandtl number.

2.2. The DG method

The domain Q is partitioned in a shape-regular mesh 7k consisting of N non-overlapping
and non-empty elements K of characteristic size hgx. We also define the sets &; and &;, of interior
and boundary faces in 7k such that &, = &, U &;.

Let S} = {(;S € L*(Q) : plx € PP(K),VK € TK} be the functional space formed by piecewise

polynomials of either total or partial degree at most p defined in the element, and (¢}(, ... g”) €
PP(K) a hierarchical and orthonormal basis of $?(K) of dimension N, = (p + 1)Y. The poly-
nomial degree p will in general depend on the element and will be indicated as px when neces-
sary. For the DG method used in this research, the orthonormal basis is obtained by applying a
modified Gram-Schmidt procedure to a tensor product of monomials of degree at most p. This
produces a diagonal mass matrix even on curved elements [29]. The solution in each element is
thus expressed as

NF
wy(x, 1) = Z P (Ul (1), Vx e K,K € Tx, ¥t >0 (5)
=1

in which the polynomial coefficients (u’,()l <1<, represent the DOFs of the discrete problem in
element K. The semi-discrete variational form of Eq. (1) therefore reads: find u;, in S Z such that
v¢h €S Z
Gn0pdV + Le(up, ¢p) + Lo(ay, i) =0 (6)
Tk
In Eq. (6) L, and L, represent the variational projection of the convective and viscous terms
onto the functional space S Z . For a given interface e in & we define u* and u~ the value of a



variable at both sides of the element faces, the average operator {u}} = (u* + u~) /2 and the jump
operator [[u]] = u* — u~. The DG discretization of the convective terms then reads

L(uy, ¢n) = —f Fe(ay) - VigpdV + f [gnllHe(uy, w,,m)dS + | ¢, Fe(up) -ndS  (7)
Tk &

Ep

The boundary values u, = ub(u;, Uy, ), With Uy a reference external state, are computed
in order to impose the appropriate boundary condition on each boundary &p.

The function H. in Eq. (7) is a numerical flux that approximates the convective flux on an
element face and must be chosen to be conservative and consistent. In the simulations presented
in this work the local Lax-Friedrichs (LLF) fluxhas been employed.

For the discretization of the viscous terms in Eq. (6) the BR2 method of Bassi and coworkers
[30, 31] has been employed, namely:

L,(uy, ¢p) = f Fv(uy, Viu, + Ly) - VgrdV — f [on (T (g, Viuy, + 1.17)) - ndS
Tk &i
- f ¢n Fo(up, Vuy, +n.0;) -ndS  (8)
Ep

where 7, is a numerical parameter that ensures the stability of the method. The global lifting
operator Ly, is defined as the sum of the local lifting operators I : L, = X.cox I; where I] has
support on the elements adjacent to e € &; and is obtained from the solution of the following
problem on the internal faces:

f AV = f (G uldS ey e 87 ©)

KUK~

A similar expression for the local lifting coefficients, consistent with the boundary conditions, is
obtained on &y,

The semi-discrete equation Eq. (6) is discretized in time by means of a time integration
scheme. In this work all steady solutions are obtained by employing an implicit backward-Euler
scheme relying on the GMRES method and ILU(0) preconditioning for the solution of the cor-
responding linear system. The last unsteady test case considered is solved via an explicit second
order Runge-Kutta Heun scheme.

The integrals in Eq. (6) are computed by means of the Gauss-Legendre quadrature with
q = p+ 1+ m points in each space direction, where m denotes the number of overintegration
points used for dealiasing purposes.

3. Refinement and marking procedure

An adaptive p-refinement algorithm defines locally the polynomial degree px used to ap-
proximate the solution within a given element. In the case of p-adaptive simulations of steady
flows the refinement procedure acts as follows. First a converged steady solution is obtained for a
given refinement level. A global refinement indicator 775 is then computed in order to estimate
the accuracy of the obtained solution (e.g. total variation of entropy in a subsonic inviscid flow).
This quantity is then compared to a user-defined threshold w that specifies the desired level of
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accuracy. Refinement is therefore deemed necessary if ng0p > w. In this case, element-wise
refinement indicators 77 are computed and used to identify elements where the spatial resolution
must be increased.
In this work, we use the maximum marking criterion. Namely, an element K is marked for
refinement if :
Nk > 922%57& (10)

where 6 € [0, 1] is a user-defined marking parameter. Moreover, we have decided to limit to one
the maximum change in polynomial degree between two neighbouring elements. For this reason
additional elements may be marked for refinement.

Once the marking is completed, a new set of p values is computed by increasing by one the
polynomial degree in marked elements. A maximum local polynomial degree is also specified by
the user to avoid instability issues and/or the need for excessive memory storage. The simulation
is then restarted from the previous solution based on this new set of p values.

The same procedure can be applied for static p-adaptation of unsteady periodic flows. In this
case, the p-adaptive algorithm is applied once the periodic state of the flow is reached. A time-
independent field must be defined in order to identify regions where increased spatial resolution
is required in order to improve the accuracy of the simulation. In this work, the local refinement
indicator is computed as the maximum of the instantaneous values of the error over a number of
periods corresponding to the time interval 7':

i = max (1) an

where 7k is any error estimator computed from the instantaneous solution. Once these values
have been computed, Eq. (10) can be applied by substituting 7, in place of 77k to mark elements
for refinement. Note that the instantaneous values 7x(#) do not need to be computed at every
discrete time step.

Other possible approaches could be defined in place of Eq. (11), e.g. by averaging in time the
instantaneous refinement indicators or by applying error estimation techniques to the mean flow
solution. Employing Eq. (11) has the advantage of removing the need for long integration times
to obtain converged time-averaged values.

3.1. Review of refinement Indicators

In this section, the refinement indicators considered in this research are presented. First, three
refinement indicators that can be classified as DE- or feature-based indicators are presented: the
VMS indicator, the spectral decay indicator and the non-conformity error indicator. Second, two
additional indicators will be introduced: the residual-based and residuum-ncf based indicator.
These can be described as RE-based indicators.

3.1.1. The VMS indicator

The first refinement indicator that we consider in this work has been developed by Kuru et
al. [1] in the context of the variational multiscale simulation (VMS) approach [32] and is defined
as:

Nk = (fK lovny - (PV)h,p—1”2 av) = [0V = (@VInp-i “LZ(K) (12)
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where (ov);, -1 is the projection of the discrete momentum density on the reduced-order space
st

This refinement indicator acts as a DE estimate for u;,, based on a lower-order solution. It
can also be interpreted as a feature-based refinement indicator, measuring the ‘kinetic energy’
associated with the highest-order modes.

This estimator bears strong similarities with the error indicator developed by Mavriplis [16,
33] for which an additional term that depends on the decay rate of the modal coefficients is
also included. The corresponding DE estimate developed, however, has been shown to produce
relatively poor estimates of the exact DE for two- and three-dimensional problems [34]. For this
reason, this indicator is not considered here.

As regards the original version of the VMS indicator, we have observed that poor results can
be obtained from the use of this indicator when a mesh with large variation in element size in
the domain is employed. In this work a normalized version of the VMS indicator is therefore
considered, namely,

1

vms ”(pv)h,p - (pv)h,p—] ||i2(K) ’

A K

13)

where |K] is the size of the element.

3.1.2. The spectral decay indicator

The so-called spectral decay indicator has been first introduced as a discontinuity sensor by
Persson and Peraire [35] for shock capturing to stabilize numerical simulations in the presence
of discontinuities. The spectral decay indicator, also known as smoothness indicator, is defined
as:

) = fanp 0l 2
o [l£unp)

(14)

LX(K)

where u,, ,_| represents the projection of the numerical solution on § Z “!and f is a function that
depends on the solution. In [35], the authors have employed this smoothness indicator as a shock
capturing parameter based on either the entropy or the enthalpy for f(u). In successive works,
Gassner et al. [36] have considered Eq. (14) based on the momentum density in one direction as
a refinement indicator. Finally, Tumolo et al. [2, 37, 25, 27] have used this refinement indicator
for the adaptive simulation of various CFD configurations. Following their approach, we define
the spectral decay indicator as:

b ”(pv)h,p - (PV)h,p—l
TIK B ”(pv)h,p

Note that Eq. (15) corresponds to the VMS indicator in Eq. (12) normalized by the total ‘energy’
in the cell defined by ||(ov)s,»

L2(K)

5)

L2(K)

[

3.1.3. The non-conformity error indicator

The third refinement indicator considered in this work is the so-called non-conformity (NCF)
error. This indicator is based on the assumption that, unless a physical discontinuity is present,
the exact solution is continuous across element faces. This implies that a jump in the numerical
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solution can be considered as a measure of the error. For this reason, Krivodonova et al. [38, 39]
have introduced the following discontinuity sensor:

[ (x)T] ‘
2{un(xj)}

where u, is a variable, such as the density or the pressure, and x; are the positions of the quadra-
ture points on the element faces. This error estimator can also be considered as a local DE
estimator thanks to the superconvergent phenomena at outflow boundaries exhibited by some
particular formulations of the DG method [38, 39]. Gassner and Altmann [36] have employed
this quantity as a refinement indicator. Following their approach, we indicate as non-conformity
error indicator:

7k = max max (16)

EeoK

NCF |‘(pvh)+(xj) - (pvh)_(xj)”
Ng = Mmaxmax (17)
€k 2 [tV x|

3.1.4. The residual-based indicator

The residual-based refinement indicator described here follows from the classical derivation
of residual-based error estimators for FE methods [40] and that by Hartmann and Houston [41].
Let us write the semidiscrete form of Eq. (6) as:

Ni(up, ) =0  VgpeSs) (18)

and let J(u) be a nonlinear target functional. Provided that the target functional satisfies a com-
patibility condition and the discretized operator is adjoint consistent [21], it is possible to show
that:

J() = J(up) = =Ny(up, 2) 19)

where z is the solution of an adjoint problem derived from the target functional J(u). The deriva-
tion of this result corresponds to the general derivation of duality-based a posteriori error esti-
mators. Manipulating the semidiscrete operator Eq. (18), it is possible to obtain:

Ni(uy, ) = Z f

KeTk K

R(u,)¢dV + f r(u,)¢"dS + f rp(uy,)e*dS (20)
OKNE; OKNE,

in which the terms on the right-hand side are defined as:

RGw) = 45 ()~ 9 -, Vi + L) e
r(w,) = [He(u), u;,m) = Fo(u) - n| = [{Fp, Viwy, + neri)h = Fuluf, Vg + Ly)] - (22)
rp(w) = [Feuy) = Fe(w))] - n = [Fo(wy, Vawy + nerf) = Fo(uy, Vouy + L) - m (23)

In Eq. (21) to (23), R(u;,) measures how accurately the numerical solution within an element sat-
isfies the (continuous) mathematical model, the inter-element residual r(u;) measures the jump in
the convective and viscous fluxes at the internal faces, and the boundary residual r;(u;,) measures
the error in the imposition of the boundary conditions.
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Provided that the adjoint solution is z|x € H*(K) with2 < s < p+ 1,VK € Tk, it can be
shown [21] that the error in the target functional is bounded by

J(w) = J(up)| < cim[ > ni] (24)
KeTk

with Ciy a positive constant which depends on the regularity of the mesh, the polynomial degree
p and the regularity of the dual solution, and

s—1 s=3
Nk = e IR0 + g * Ir@lzaxns) + i Ies@illzaxns,) 25)

On the basis of numerical experiments, Hartmann and Houston have actually employed the
following residual-based indicator:

1

2
1 1
nx = hi [IR@)I k) + g Iv@u)l 20k + Mg sl 20k, 5 Telob = [ Z ’7%(] (26)
KETK

In the work presented in this paper, a normalized variant of this indicator is also considered:

_1 _1
e = IRl k) + b Ie@)ll20x0s) + I @20k, 27
3.1.5. The residuum-NCF based indicator

In [42] Dolejsi has proposed a refinement indicator based on the following global error defi-
nition:

E:= (R(u,1)2 + NCF(uh)z)% (28)

where R(uy,) is called residuum error and NCF(u;,) is a measure of the non-conformity error.
Denoting by X = H*(Q,Tx) = {¢ ¢ € H*(K),VK € ‘TK} the broken Sobolev space, these
quantities are defined as:

INACTR

(29)
sex\ioy  1llx

R(u,) = INy(uy, )lly =

1

NCF(uy) = f B i, %dS + f Ik (ay —up)*dS 5 NCF(uy) =(Z NCFi(uh)] (30)

OK<E,; OK<E) KeTk

For the analytical solution we have that N,(u,¢) = 0,V¢ € X, while for the numerical
solution this is true only for ¢ € S P thus the residuum error is a measure of the residual in the
weak form of Eq. (1) .

Using Eq. (19) and Eq. (29), it can be readily shown that

/() = J(up)| = INy(ap, 2)| < R(ap) [1zllx €29

Therefore, limiting the residuum error has a similar effect to limiting the residual-based indi-
cator defined in Eq. (25) in the evaluation of the error in a target functional. The residuum error
9



cannot be exactly computed, as it is defined on an infinite-dimensional space. Thus, the residuum
error estimator and the local or element-wise residuum error estimator are used in practice and
are defined as:

on(up) = sup IN (s, P 32)
¢€SZ+]\[0] ||¢||X

prrtwy = sup VG2 (33)
(f)ESZH\{()} ||¢||X

The spaces S Z“ and S ?1 correspond, respectively, to the space of piecewise polynomials of
maximum degree p + 1 and its restriction to the considered element K for the evaluation of the
local residuum error estimator, defined by:

i = {p € LK) : ¢lk € PUK), Bl = 0.V K € Ti K # K| B9

As regards the norm ||-|[y employed in this work, following Dolejsi [42], we use the following
definition

1
1 2
— 2 2
”“X = (”.”LZ(Q) + Rel : |H'(Q,TK)) (35)

where Re is the Reynolds number and | - [ is the broken Sobolev seminorm. Other norms have
also been employed in the literature [43, 44]. It can be shown (see [43]) that, based on this choice,
the residuum error estimator can be directly computed from the element-wise values, namely,

o)’ = D" puk(w)’ (36)

KeTk

The residuum-NCF refinement indicator therefore takes the final form:

=
-

7 = (onk(p)” + NCFx()®)’ 5 Ngiob :=(Z ni] = (pa(w,)* + NCF(w,)*)*  (37)

KeTk

In order to evaluate this indicator, the local residuum estimator pj, x(u;,) is computed by seeking a

solution of the form ¢ = Zf\;’f ' £:¢;, where {#it1<isn,,, is a basis for § ?1 and &; are the unknown
coefficients, such that [NV, (uy, ¥)| is maximum and |||y = 1. This leads to a constrained optimi-
sation problem which can be solved via the Lagrange multipliers technique, which requires the
computation of the residuals N, (uy, ¢;).

It should be noted that N, (uy, ¥), V¢ € S ‘[2 should be identically null by virtue of the Galerkin
orthogonality property. In practice this is not the case due to the presence of an algebraic error
which is the combination of the aliasing and, for steady problems, iterative errors. Thus, in order
to evaluate this contribution, we compute the quantity N,(u;, {) by using an increased number

of quadrature points compared to the ones used to compute uy,.
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4. Evaluation of the performance of refinement indicators

In this section we present the results from the application of adaptive p-refinement based on
the indicators described above. Firstly, we consider the inviscid flow over a Gaussian bump at
Mach number M = 0.5. Secondly, we analyse two laminar steady configurations: the laminar
flow past a Joukowski airfoil at Reynolds number Re = 1000 and M = 0.5, and the laminar flow
past a cylinder at Re = 40 and M = 0.1. Finally, the p-adaptation methodology developed in this
research is applied to the unsteady periodic laminar flow past a cylinder at Re = 100 and M = 0.1.

In order to compare the different refinement indicators considered, we proceed in the fol-
lowing way. The p-adaptive algorithm is applied starting from the solution corresponding to a
uniform polynomial degree p = ppi, and limiting the maximum polynomial degree to a user-
defined value pn.x. At each iteration of the algorithm, a new distribution of polynomial degrees
is defined based on local error estimates (as explained in Sec. 3) and a new numerical solution is
computed.

In order to determine whether the p-adaptive algorithm is converged different approaches can
be considered. One approach consists in the definition of a global error indicator, 17410p, Which can
be derived from the element-wise error estimates g as seen in Sec. 3. However this choice would
lead to different measures of accuracy and convergence criteria for the refinement indicators
analysed. In order to simplify the comparison, the accuracy of the adaptive solution and the
convergence of the adaptive algorithm are measured by evaluating the error in the computation of
prescribed target quantities. As the maximum polynomial degree is limited, the maximum local
spatial resolution is also bounded and the highest possible accuracy produced by the adaptive
algorithm is the same as that corresponding to uniform polynomial degree p = pmax, albeit
with a reduced number of DOFs. The p-adaptive algorithm is therefore considered converged
when, for all quantities of interest, the same accuracy as that of the simulation with uniform
polynomial degree p = pmax 1s achieved. The reduction in computational cost provided by
adaptive refinement are then measured by comparing the results from the p-adaptive simulations
with those obtained from uniform p-refinement.

In order to identify possible advantages or drawbacks of different refinement indicators, we
also analyse the maps of polynomial degrees obtained at a similar number of DOFs. This allows
us to identify the different regions selected by the adaptive algorithm and provides useful infor-
mation on the sensitivity of some indicators to mesh quality, the marking algorithm or specific
features of the flow. Repeating this analysis for different test cases allows us to corroborate our
observations and therefore to draw general conclusions from our study.

Table 1 compiles the main parameters that have been employed in the adaptive algorithm for
the considered test cases. We further note that all simulations have been performed by employing
g = p + 5 quadrature points in each spatial direction. This is necessary to avoid aliasing errors
arising from the quadrature due to the non-linear convective terms and the use of high-order
curved meshes. For each simulation we have verified that further increasing this value has a
negligible effect on the results.

4.1. Steady Euler flow over a Gaussian Bump

The first test case considered is the inviscid flow over a Gaussian bump at M = 0.5, widely
studied at the series of International Workshops of High-Order CFD Methods (HiOCFD) [45].
The configuration is 2D and consists of a subsonic inlet and an outlet with a prescribed static
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Physical model  pmin ~ Pmax 6 Target quantity

Case 1 Euler steady 2 4 0.5 entropy error

Case 2 N-S steady 2 5 0.1  Cp, llev) = (PV)retll;2 ()
Case 3 N-S steady 2 6 0.5 Cp, llov) — (oV)refll 20
Case4 | N-Sunsteady 2 6 01 CpC),St

Table 1: Numerical parameters for the p-adaptive algorithm.
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Figure 1: Euler flow over a Gaussian bump at M = 0.5 : evolution of global entropy error Eq. (38) under uniform and
adaptive refinement.

pressure. Slip boundary conditions are imposed at the upper and bottom walls. The mesh em-
ployed in the simulations presented here is a 4”-order mesh which is generated based on the
analytical expression of the bump corresponding to a Gaussian profile.

The accuracy of the performed simulations is measured by the entropy error on the full do-

main, namely:
y 2
2 P [P

where p., and p., are the static pressure and density corresponding to the prescribed inlet con-
ditions. For inviscid subsonic flows with uniform inlet conditions no entropy variations are
expected in the domain. This quantity |le||;» therefore represents an exact measure of the dis-
cretization error.

Figure 1 shows the variation of this error measure versus the number of DOFs when uniform
p-refinement is performed (solid black line with circles) as well as for the locally p-adapted sim-
ulations (coloured curves with dots). For the latter, we report the results based on the refinement
indicators introduced in the previous section with the exception of the normalized variant of the
residual-based indicator Eq. (27). Indeed, in this case the residual-based indicator and its nor-
malized variant provide identical results due to the very limited variation of the characteristic
element size of the mesh employed. As reference, we also report the results obtained by using
the local entropy error as refinement indicator (light blue dots in Fig. 1). Figure 2 shows the maps
of local polynomial degree at the last iteration of the refinement procedure for the six indicators
considered.

As seen from Fig. 1 and 2a, the results obtained for the local entropy error indicator illustrate
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Figure 2: Euler flow over a Gaussian bump at M = 0.5 : map of local polynomial degrees obtained based on different
refinement indicators.

one of the possible drawbacks of DE-based refinement indicators as mentioned in Sec. 1. In fact,
for this configuration it is expected that a higher spatial resolution is required in the proximity
of the bump. In underresolved simulations an error in the entropy is produced in this region and
is convected downstream. For this reason, as can be seen in Fig. 2a, this refinement indicator
effectively selects for further refinement the region behind the bump. This is the cause of the
suboptimal performance exhibited by this estimator, as seen in Fig. 1.

In spite of their very different formulation, implementation and computational cost, the other
refinement indicators show very similar behaviour. The residual-based, residuum-NCF and NCF
refinement indicators show slightly better performance after the initial refinement step. The
residual-based indicator leads to a reduction in the number of DOFs necessary to achieve the
same convergence level as the uniform p = 4 simulation of approximatively 63%. In the case
of the VMS and spectral decay indicators the savings in terms of DOFs are of about 58%. It
is also interesting to note that, despite being DE estimators, the VMS, spectral decay and NCF
indicators do not share the deficiencies exhibited by the local entropy error indicator. A possible
explanation for this is that the production of errors is concentrated in the high-frequency content
of the solution. By definition, the above mentioned indicators identify regions where the largest
amount of energy is contained in the high-frequency content of the solution thus selecting for
refinement regions where errors are being generated rather than those where they have been
convected.

Coming back to Fig. 2, we observe that the VMS and spectral decay indicators produce al-
most identical maps of local polynomial degree. The residual-based, residuum-NCF and NCF
indicators also provide refinement patterns which are very similar to each other. By comparing
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these to the pattern shown by the VMS indicator, we can observe that they present a smaller
refinement region while the number of elements with higher polynomial degree is increased.
As expected, the residuum-NCF indicator generates a polynomial degree map which is in be-
tween the ones produced by the residual-based and the NCF-based estimators. Finally, it is
worth noting the checkerboard-like pattern generated by the NCF indicator and to some extent
the residuum-NCF indicator. This is despite the initial smooth distribution of the refinement
indicator at the beginning of the adaptive procedure. Through numerical experiments, we have
observed that this pattern appears to be strongly influenced by the refinement history. Indeed
modifying the marking algorithm or its parameters actually leads to the generation of a different
checkerboard-like pattern. A much weaker influence has been observed for the refinement levels
generated by the other refinement indicators.

4.2. Steady laminar flow past a Joukowski airfoil

The first laminar test case considered is the flow past a symmetric Joukowski airfoil at zero
incidence (¢ = 0°), M = 0.5 and Re = 1000 based on the chord length. This configuration
has been proposed as a test case of the 4" and 5" HiOCFD [46, 47]. The flow field is two-
dimensional laminar and symmetric. The solution is free of shocks or recirculation bubbles but
the cusped trailing edge introduces a geometric singularity which could negatively impact the
convergence rate of the p-refinement algorithm. It is therefore interesting to investigate how the
different refinement indicators deal with this singularity.

4.2.1. Computational details

The simulations presented here are performed by considering a computational domain de-
fined by a semicircular region of radius R = 100 chords centered at the leading edge, followed
by a rectangular region extending up to 100 chords from the trailing edge. The dynamic viscosity
coeflicient is taken constant, adiabatic wall boundary conditions are imposed on the airfoil and
non-reflecting conditions are imposed at the external boundaries. From numerical experiments,
we know that this extent of the computational domain is not sufficient to obtain a solution com-
pletely independent of the imposed far-field boundary conditions. However, in our numerical
tests the artificial boundary does not appear to have a negative effect on the numerical solution.

All computations are performed using one of the meshes provided by the 4* HiOCFD [46].!
We note that this mesh is characterized by a strong refinement localized in proximity of the
trailing edge. This limits the harmful effect of the geometrical singularity on the convergence
rate of the simulation.

In order to compare the accuracy of the adapted solutions obtained based on the different
indicators, we consider the convergence history of both the error in the drag coefficient and in the
L?-norm of momentum density. These error quantities are computed by considering as reference
the numerical solution obtained with uniform polynomial degree p = 7. It has been verified that
the drag coefficient computed from this reference solution (Cp = 0.1219) is in agreement with
the results reported in [46, 47].

The next section presents the main results obtained from the p-adaptive simulations.
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Figure 3: Laminar flow past a Joukowski airfoil, Re = 1000, M = 0.5, @ = 0°: Convergence history of the drag coefficient
under uniform and adaptive p-refinement.
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Figure 4: Laminar flow past a Joukowski airfoil, Re = 1000, M = 0.5, « = 0°: L%-norm of the error in momentum
density under uniform and adaptive p-refinement.

4.2.2. Analysis of the p-adaptive results

Figures 3 and 4 show the convergence history of the drag coefficient (Fig. 3a) and its corre-
sponding error (Fig. 3b) as well as the L?-norm of the error in momentum density (Fig. 4) under
uniform and adaptive p-refinement. From these figures, we can observe that for a target value
of the error in the drag coefficient, ACp = 1077, most refinement indicators achieve a reduction
in the number of DOFs with respect to the uniform refinement of approximately 53%. Only the
residual-based indicator leads to a smaller reduction of about 30%.

These results show that, among the considered error estimators, the VMS indicator produces
the fastest reduction of the error in the drag coefficient, followed by the spectral decay, NCF,
residuum-NCF and normalized residual-based indicator. By analysing the L?>-norm of the error
in the momentum density we can observe however that the standard residual-based indicator
exhibits the best performance, with the VMS and spectral decay indicators providing the slowest

IThe mesh employed corresponds to the first refinement level of the mesh composed of 4”-order quads that can be
found on [46].
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(e) Residual-based indicator (f) Normalized residual-based indicator
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Figure 5: Laminar flow past a Joukowski airfoil, Re = 1000, M = 0.5, @ = 0°: Local polynomial degree distribution
obtained for different refinement indicators.

convergence. Nonetheless, in terms of number of DOFs required to achieve the target error level,
very small differences are found between the different error indicators.

These results clearly illustrate that in order to draw meaningful conclusions from the compar-
ison of different refinement techniques it is necessary to consider more than one error measure.
Moreover, it is essential to look at the full convergence history, as considering only isolated
values of the error measure can lead to misleading results.

The different performance observed between the different indicators can be better analysed
by studying the maps of polynomial degrees (Fig. 5 and a close up in the region around the airfoil
in Fig. 6) obtained at a similar number of DOFs (for this particular example NDOFs? ~ 180).
As seen from Fig. 3, at this refinement level the p-adaptive algorithm has achieved the target
level of accuracy for all refinement indicators, with the exception of the standard residual-based
indicator. In Fig. 5 and 6 we observe that the maps of the distribution of polynomial degrees
corresponding to the VMS and spectral decay indicators are almost identical. This was also the
case for the Euler configuration considered in section 4.1. For the present configuration however,
the spectral decay indicator presents higher refinement levels, compared to the VMS indicator, in
the proximity of the trailing edge. This behaviour suggests a strong sensitivity of this indicator
to the presence of singularities in the solution. The normalized residual-based indicator also
appears to be sensitive to the presence of the singularity, while all other refinement indicators
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Figure 6: Laminar flow past a Joukowski airfoil, Re = 1000, M = 0.5, @ = 0°: Close up view of local polynomial degree
distribution obtained for different refinement indicators.
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select for refinement this region only after several refinement steps. Further testing would be
required in order to assess the generality of these results.

Moreover, we can observe from Fig. 5 that, compared to other indicators, the VMS and spec-
tral decay indicators generate a larger refinement region upstream of the airfoil and lower refine-
ment levels in the far-wake region. This behaviour can explain the results shown in Fig. 3 and 4.
As seen in these figures, the VMS and spectral decay indicators produce a faster reduction of the
error in the drag coefficient by increasing, in the initial refinement steps, the spatial resolution
in the upstream region and in the proximity of the airfoil (see Fig. 5a and 5b). In contrast, all
the other considered indicators introduce stronger refinement in the far-wake region (Fig. Sc-f)
which is characterized by large and rapid variation of element size and high aspect ratio. This
poor mesh quality is possibly the source of high values of the error in the momentum density in
the far-wake region. Thus increasing the spatial resolution in this region can improve this error
measure even if it has a minor effect on the error in the drag coefficient. In particular, among all
considered indicators, the residual-based indicator shows the strongest sensitivity to mesh quality
and mesh size.

Similar conclusions can be drawn by analysing the maps of error distribution. As an example
we report in Fig. 7 the distribution of the considered refinement indicators evaluated for the
solution obtained with a uniform polynomial degree p = 2. For completeness the element-wise
L?-norm of the error in momentum density is also presented (Fig. 7g).

Finally, we note that the checkerboard-like pattern displayed by the NCF and residuum-NCF
indicators in the Euler test case can also be observed in Fig. 5 and 6 as well as at intermediate
steps of the p-adaptive algorithm (not shown here).

4.3. Steady laminar flow past a cylinder at Re = 40

The second viscous flow configuration considered is the laminar flow past a circular cylinder
at Re = 40 and M = 0.1. For the considered Reynolds number the flow field is two-dimensional,
symmetric and steady. The flow separates leading to the formation of two recirculation bubbles
in the near wake that need to be correctly resolved in order to compute the drag coefficient
accurately. This configuration therefore constitutes an interesting test case for the validation of
CFD codes.

4.3.1. Numerical details

Two-dimensional simulations are thus performed by imposing no-slip boundary conditions
at the wall and non-reflecting boundary conditions on the external boundary.

Extensive research has been dedicated in the literature to the analysis of the effect of the size
of the computational domain on the solution of this unbounded flow. It has been shown that the
presence of the artificial boundary is responsible for blockage effects and can distort phenomena
generated in the internal domain and convected through the artificial boundary [48, 49]. In this
research, a computational domain of radius R = 2000D is therefore employed. For this extension
of the computational domain, it has been verified that the effect of the external boundary on the
drag coefficient is of the order of O107).

The mesh employed for the following simulations is an O-type 4-order mesh with 18 and 28
elements in the radial and azimuthal directions respectively. In the radial direction the element
size changes following a geometric progression of ratio 1.25 up to r = 6D and 1.65 up to the
external boundary.
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Figure 7: Laminar flow past a Joukowski airfoil, Re = 1000, M = 0.5, @ = 0°: Error and refinement indicators for

uniform polynomial degree p = 2.
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Figure 8: Laminar flow past a cylinder, Re = 40, M = 0.1: Evolution of the drag coefficient and corresponding error
under uniform and adaptive p-refinement.
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Figure 9: Laminar flow past a cylinder, Re = 40, M = 0.1: L>-norm of the error in the momentum density under uniform
and adaptive p-refinement.

Given the slow convergence in the drag coefficient observed for the standard residual-based
indicator in the previous configuration, only its normalized version is considered for this test
case.

4.3.2. Analysis of the p-adaptive results

Figures 8 and 9 show the evolution of the error in the drag coefficient and in the L?-norm
of the momentum density using uniform and adaptive p-refinement with respect to a reference
solution obtained with uniform p = 7 for which Cp = 1.5022.

All refinement indicators are able to reduce by about 75% the number of DOFs necessary to
achieve the same accuracy as that provided by a uniform polynomial degree p = 6. These results
fall in line with those obtained in the previous test case, with all refinement indicators leading
to a comparable computational gain in terms of numbers of DOFs. If we consider the error in
the drag coefficient shown in Fig. 8b, we can observe that the normalized residual-based and the
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Figure 10: Laminar flow past a cylinder, Re = 40, M = 0.1: Local polynomial degree distribution obtained with different
refinement indicators.
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Figure 11: Laminar flow past a cylinder, Re = 40, M = 0.1: Local polynomial degree distribution obtained with different
refinement indicators.
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residuum-NCF refinement indicators show slightly better performance than the other indicators
considered. On the other hand, for the previous configuration the fastest convergence of the drag
coefficient has been obtained using the VMS and spectral decay indicator (Fig. 3). Nonetheless,
for this test case only minor differences can be observed and do not indicate a clear advantage in
the use of one of the refinement indicators. As regards the discretization error plotted in Fig. 9,
the residuum-NCF refinement indicator and the VMS estimator appear to lead to the fastest
convergence, with the residuum-NCF indicator performing best.

It is also interesting to inspect the maps of the distribution of local polynomial degrees cor-
responding to the last iteration of the adaptive refinement procedure for different estimators. For
this last iteration, the number of degrees of freedom is approximatively 12000 (NDOFS% ~ 110).
These are shown in Fig. 10 and 11. While some differences can be observed between the different
maps, the distributions of local polynomial degree are overall fairly similar for all the considered
refinement indicators. As an example, all the indicators appear to select for refinement an ap-
proximately circular region around the cylinder as well as the shear region extending up to the
outer boundary. Moreover, they all select for further refinement the regions right upstream of the
cylinder and those located at an angle of 90°, before the separation of the flow which is located
at 125°[48].

One of the main differences that can be observed is the disparity in the refinement levels
obtained in the recirculation region and in proximity of the cylinder base. Among all refinement
indicators, the VMS and spectral decay indicators lead respectively to the lowest and highest
refinement levels in this region. This different behaviour between the VMS and spectral decay
indicators, already observed in the previous configuration, is somewhat expected. Indeed the
spectral decay indicator is based on a normalized estimate of DE by using the total ‘energy’ of
the flow and therefore tends to select for further refinement regions that are characterized simul-
taneously by lower values of the error and of the ‘energy’ (e. g. recirculation regions or stagnation
points). This difference could be the cause of the slower convergence rate demonstrated by the
spectral decay indicator in terms of the L,-norm of the error in the momentum density.

As already mentioned above, all refinement indicators select for refinement the far-wake
region extending to the outer boundary. This is certainly due to the large size of the elements in
this region requiring an increase in polynomial degree in order to correctly represent the flow.
We can see from Fig. 9 that this increase in refinement level leads to a reduction of the L,-norm
of the error in the momentum density even though the effect on the convergence of the drag
coefficient is rather limited as can be seen in Fig. 8. This behaviour can be compared with the
one observed in the previous test case in Fig. 7. Indeed for the adaptive simulation of the laminar
flow past a Joukowski airfoil, different refinement levels have been obtained in the far-wake
region depending on the refinement indicator employed, while the same refinement levels have
been obtained for this configuration. This difference can be explained by a stronger sensitivity
of the NCF, residuum-NCF and normalized residual-based indicators to rapid variations of the
mesh size or aspect ratio rather than directly on mesh size. In fact, even though the mesh used in
this test case is also characterized by large variations in element size, a more gradual variation is
present here and lower values of the aspect ratio are obtained.

Finally, we would like to note that the checkerboard-like pattern pointed out in the previ-
ous configurations for the NCF-indicator, has also been observed here over the course of the
refinement process. This is however not noticeable in Fig. 10.
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4.4. Periodic laminar flow past a cylinder at Re = 100

Finally, we investigate the applicability of the analysed refinement indicators to the simula-
tion of unsteady flows. The considered test case is the unsteady periodic flow past a cylinder at
Re = 100 and M = 0.1. The flow is two-dimensional, laminar, subsonic and unsteady periodic,
characterized by the well known vortex shedding phenomenon.

The choice of a periodic flow allows for the comparison of different refinement indicators
for the adaptive solution of an unsteady flow employing static p-refinement. The use of static
p-refinement in place of a dynamic algorithm greatly simplifies the comparison. Indeed, for a
dynamic p-refinement algorithm the choice of the marking strategy and the frequency of adap-
tation have a strong influence on the accuracy of the adaptive solution. In addition, a dynamic
algorithm requires the use of a coarsening criterion which makes the comparison more complex.

4.4.1. Numerical details

The simulations are performed using a circular computational domain of radius R = 200D.
The viscosity is assumed to be constant and adiabatic non-slip wall boundary conditions are
applied on the cylinder wall. Far-field non-reflecting boundary conditions are applied at the
outer boundary. An O-type 4"-order mesh is employed with 28 and 42 elements in the radial
and azimuthal directions respectively. In the radial direction the element size varies following a
geometric progression with ratio 1.2 up to » = 4D and 1.24 up to the outer boundary.

The time discretization considered is a second-order Runge-Kutta Heun scheme with con-
stant time step Af = 5 - 107> normalised by the cylinder diameter and the reference velocity. We
have verified that this choice does not have an influence on the solution.

A first simulation using a uniform polynomial degree p = 2 is performed until the flow is
fully developed and a periodic state has been reached. For each successive uniform or adaptive
refinement level, the simulations are performed by restarting from the previous solution. All
simulations are let to evolve for at least 40 shedding cycles before extracting the quantities of
interest. The refinement indicators are then computed and the p-adaptive algorithm is applied.
The periodic state is considered to be reached when the variation in the Strouhal number and the
average drag coefficient measured between two shedding cycles are respectively ASt < 1078 and
ACp <1077

The solution obtained from a simulation using a uniform polynomial degree p = 7 is used
as a reference. The corresponding average drag coefficient Cp, Strouhal number St and root
mean square of the lift coefficient C} are reported in Table 2 and compared to the numerical and
experimental results available in the literature.

For the p-adaptive algorithm, we consider the VMS, the spectral decay, the NCF and the
normalized residual-based indicators. The residuum-NCF indicator is not included in this study.
We have seen from the previous sections that this indicator provides a level of accuracy which
is comparable to that provided by other estimators. However, as reported in Sec. 5 it requires a
much higher computational cost for the current implementation in the Aghora solver.

In order to evaluate the time-independent refinement indicators used in the static p-refinement
algorithm, 5 additional shedding cycles are simulated once the periodic state is achieved. The
error estimators are computed at each subsequent time step. For each refinement indicator the
element-wise maximum value in time is then used to define the time-independent error field as
explained in Sec. 3.
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Figure 12: Laminar flow past a cylinder, Re = 100, M = 0.1: Convergence history of average drag coefficient, Strouhal
number and rms of lift coefficient.
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Cp C; St M  domain size
Rajani et al. [50] 1.3353 0.1792 1.569 0 R =20D
Ferrero et al. [51] 1.36 - 1.63 0.2 R =100D
Posdziech et al. [49] 1.320 0.318 1.638 0  h/2=200D
Qu et al. [52] 1.319 0.225 1.648 0 h/2 = 60D
Tritton (exp) [53] 1.24-1.26 - 1.57 - 1.64
Norberg (exp) [54] - 0.227 1.64
Wieselberg (exp) [55] 1.33 - -
Williamson (exp) [56] 1.33 - 1.60 - 1.64
current 1.326 0.2266 1.638 0.1 R =200D

Table 2: Flow parameters obtained through numerical simulations and experiments in the literature for the flow past a
cylinder at Re = 100.

4.4.2. Analysis of the p-adaptive results

We start our comparison of different refinement indicators by analysing the convergence
history of the global quantities Cp, St and C} and their corresponding errors. These results
are reported in Fig. 12. In this figure, we observe that all the refinement indicators are able
to achieve the desired level of accuracy while reducing the number of DOFs by about 62%
compared to uniform refinement.

It is interesting to note that, among the considered error estimation strategies, only the nor-
malized residual-based indicator includes in its formulation a term related to the temporal evo-
lution of the solution (see Eq. 21 and 27). For this reason, we would expect this refinement
indicator to exhibit the best performance. However, this does not appear to be the case and simi-
lar if not superior results are produced by the other three refinement indicators. These results are
in agreement with the conclusions drawn from the two N-S test cases previously considered.

In order to asses the performance of the normalized residual-based indicator, with respect to
the VMS estimator, in resolving the near-wake region, for these two estimators the convergence
history of the momentum density is analysed at two probes located respectively at (x = 3D,y =
0D) on the symmetry plane and at (x = 3D,y = 1D). The rms of the momentum density
components at the first probe and the average momentum density components at the second are
reported in Fig. 13. The two indicators actually lead to similar efficiency and a rapid convergence
to the solution corresponding to a uniform polynomial degree p = pmax = 6, as expected.

Following the same methodology employed for the previous test cases, we report in Fig. 14
and 15 the p-refinement level maps corresponding to NDOFs? ~ 145. These results are in agree-
ment with those obtained in the previously analysed configurations. The VMS and spectral decay
indicators select the same refinement regions with higher refinement required by the latter in the
low energy region at the base of the cylinder. The normalized residual-based indicator presents
a smaller refinement region in the proximity of the cylinder. Moreover, we have observed that
this indicator introduces higher levels of refinement in the near and far-wake region in the initial
refinement steps. The NCF indicator shows a similar behaviour to the normalized residual-based
indicator. The generation of the already described checkerboard-like pattern is also visible from
the plots shown in Fig. 14c and 14d.

The results obtained for this configuration thus corroborate the conclusions drawn from the
steady laminar test cases. These indicate that very similar performance can be obtained for the
p-adaptive simulation of unsteady flows by employing the VMS and spectral decay indicators
compared to the more complex and computationally expensive residual-based indicator.
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Figure 13: Laminar flow past a cylinder, Re = 100, M = 0.1: Convergence history of rms of momentum density
components at location [3D, 0D] (top) and average momentum density components at location [3D, 1D] (bottom).
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Figure 14: Laminar flow past a cylinder, Re = 100, M = 0.1: Local polynomial degree distribution obtained for different
refinement indicators.
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Figure 15: Laminar flow past a cylinder, Re = 100, M = 0.1: Local polynomial degree distribution obtained for different
refinement indicators.
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Figure 16: Euler flow over a Gaussian bump at M = 0.5 : global entropy error vs number of DOFs and CPU time under
uniform and adaptive refinement.

5. Implementation issues and computational cost

In section 4, the performance of the different refinement indicators has been analysed in
terms of the reduction in the number of DOFs achieved by each estimator. It is indeed difficult
to compare the computational time required by each approach due to the presence of several
parameters that might affect the results and therefore the conclusions drawn.

To demonstrate the difficulties in carrying out such an analysis, we report in Fig. 16 the con-
vergence history of the global entropy error for the inviscid flow over a Gaussian bump presented
in section 4.1. The convergence history obtained using uniform p-refinement is also presented
and compared to the results of adaptive p-refinement based on the VMS and residual-based indi-
cators for two values of the marking fraction parameter: 6 = 0.5 and 6 = 0.1.

In the left panel of Fig. 16, the computational cost is expressed in terms of number of DOFs.
Only minor differences can be identified when comparing the results obtained with the same
indicator and the two values of 0. This illustrates that to a certain extent, the results obtained are
not influenced by the specific marking procedure employed.

The right panel of Fig. 16 plots the error versus the computational cost in terms of CPU time
for the same four simulations. Each simulation is restarted from the solution obtained at the
previous refinement level and is performed on a single processor. It is clear that the choice of the
marking fraction parameter or, more generally speaking, of the marking procedure, does have a
strong influence on the number of refinement steps of the adaptive algorithm and consequently
on the total computational time.

Another important aspect to take into account is that the computational cost of the refine-
ment indicators depends significantly on the implementation details of the DG solver (e.g. modal
or nodal approach). Finally, direct comparison in terms of computational times for distributed
memory computations will also be influenced by the possibility of achieving a good load balance
by taking into account the local polynomial degree p. These considerations indicate that com-
paring results in terms of CPU time would lead to conclusions that are specific to the CFD code,
the numerical implementation, the marking algorithm and the test case considered.

In this section, we make some general observations that might be useful even when consid-
ering a different implementation from the one employed in our work. In particular, we consider
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the locality properties of the refinement indicators and their possible effect on parallel efficiency,
the ease of implementation in an existing CFD code and the number of operations required by
each indicator.

As regards locality, we can see from the definition of the different refinement indicators
provided in Sec. 3 that the only two indicators which are fully local are the VMS and spectral
decay indicators as their computation only requires the knowledge of the solution inside the
element (see. Eq. (13) and (15)). On the other hand, the computation of the NCF indicator (given
in Eq. (17)) requires knowledge of the projection at the interface of the solution from the direct
neighbours, while the residual-based and the residuum-NCF indicators will require additional
information to be exchanged for the computation of the numerical fluxes. In the framework of
distributed memory computations this lack of locality will involve blocking message passing
operations which may lead to a reduced parallel efficiency.

Considering now the number of operations involved in the computation of each indicator, we
observe that the VMS and spectral decay indicators require the projection of the solution on the
reduced-order space Sg_l and the computation of the integrals required to evaluate the L,-norm
in Eq. (13) and (15). In the case of a modal DG approach based on hierarchical basis functions,
the scale separation is readily available and the required integrals can be efficiently computed by
employing information contained in the mass matrix (see Tumolo et al. [2]). On the other hand,
if a non-hierarchical basis is employed (e.g. nodal approach), the additional projection operation
and the integration by quadrature necessary to compute the L,-norm will lead to higher compu-
tational cost. In this particular case, the NCF indicator would be more computationally efficient
as it only requires the interpolation of the solution at the gauss points on each interface. As re-
gards the residual-based and residuum-NCF indicators, their computation is more expensive as
compared to the other indicators in either the nodal or modal approach. Indeed, the evaluation of
the former requires the computation and integration over the elements and faces of the element
residuals, numerical fluxes and the convective and diffusive fluxes obtained from the internal re-
construction F (u,;r, Vu;;). Finally, we expect the residuum-NCF to be the most expensive among
the considered indicators, regardless of the particular CFD solver considered. This is because,
the contribution of the nonconformity error is more expensive to compute than the NCF indi-
cator alone as it requires the integration of the jump terms that appear in the expression of the
NCF indicator. The evaluation of the residuum-error contribution, on the other hand, requires the
computation of the discrete residuals Ny (uy, ¢;) with ¢; being the basis functions corresponding
to the space S ZH. To this we have to add the cost of the Lagrange multiplier method involved in
the computation of this indicator which requires the solution of a linear system of size (pg + 2)¢
for each element.

Finally, with regard to the ease of implementation, it is interesting to note that the complexity
of computing the residuals corresponding to the refined polynomial space Sf *! involved in the
evaluation of the residuum-NCF indicator, strongly depends on the numerical implementation
of the CFD method. In the case of a CFD code based on orthonormal basis functions built
in the physical space, like the one employed in this work, this requires the computation and
storage of the basis functions for Sﬁ“ as well as their derivatives at the corresponding set of
quadrature points. In general, important modifications of the employed CFD solver might be
required to achieve a computationally efficient implementation of the residuum-NCF indicator.
Similar considerations can be drawn for the residual-based indicator for which the different terms
involved in its definition (Eq. (21) to (23)) depend directly on the set of equations being solved
and the discretization employed. This is not the case for the VMS, spectral decay and NCF
indicators which can be easily implemented even as external post-processing tools independently
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of the employed solver.

6. Conclusion

In this work we have compared the performance of various refinement indicators for the
p-adaptive simulation of steady and unsteady flows using DG methods. Five refinement indica-
tors based on discretization-error and residual-error estimates have been considered. They have
been selected for their potential suitability for the development of a dynamic p-adaptive algo-
rithm for the simulation of unsteady turbulent flows. For this reason we have not considered in
this study adjoint-based refinement indicators, due to their high computational cost in the context
of unsteady flow simulations.

The considered indicators have been compared first in the context of three steady inviscid
and viscous flow configurations: the inviscid flow over a Gaussian bump at M = 0.5, the laminar
flow around a Joukowski airfoil at @« = 0°, M = 0.5 and Re = 1000, and the laminar flow past
a cylinder at M = 0.1 and Re = 40. The applicability of the obtained results for the simulation
of unsteady flows has then been verified by considering static p-adaptive simulations of the flow
past a cylinder at M = 0.1 and Re = 100.

The computational gain provided by a p-adaptive procedure based on any of the considered
indicators has been clearly demonstrated. For all the configurations considered we have obtained
a reduction in the number of degrees of freedom necessary to achieve the prescribed level of
accuracy between 50% and 75% as compared to uniform p-refinement.

Overall, very similar results have been observed for all refinement indicators both in terms of
convergence history and of the spatial regions selected for refinement. This is of interest because
the VMS, spectral decay and NCF indicators require a very limited computational overhead and
can be easily implemented as a post-processing operation. Moreover they do not depend on
the physical model considered or the employed discretization. In contrast, the computation of
the residual-based and residuum-NCF indicators might require a considerable effort in order to
obtain an efficient implementation well-adapted for the solver at hand.

With regard to the VMS and spectral decay indicators, the former demonstrated similar if
not superior performance as compared to the latter in each case considered. Moreover the VMS
indicator presents a lower computational cost regardless of the employed implementation as the
evaluation of the L,-norm used to normalize the spectral decay indicator does not need to be
computed, as seen in Sec. 5.

On the other hand, the analysis of the distribution of polynomial degree yielded by the differ-
ent refinement indicators, has revealed that the NCF, residual-based and residuum-NCF indica-
tors present a stronger sensitivity to the mesh quality compared to the other indicators. Further-
more, the NCF indicator generates a checkerboard-like pattern which appears to be related to the
refinement history and therefore the employed marking strategy. This pattern could potentially
damage the convergence of the refinement algorithm and the accuracy of the solution as it intro-
duces an irregularity in the spatial discretization. However, it is not excluded that this indicator
could be used efficiently in conjunction with another refinement indicator, following for example
an approach similar to the residuum-NCF indicator.

With all these considerations in mind, it can be argued that the VMS or spectral decay in-
dicators constitute a good choice for p-adaptive simulations of unsteady flows, as they combine
accuracy, computational efficiency and ease of implementation. The extension of these results
to dynamic p-adaptive simulations of turbulent flows and Ap-adaptation, in particular based on
these two estimators, is the subject of current research.
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