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1 Introduction

Compactifications on tori with magnetic flux play an important role in string theories

and higher-dimensional field theories (see, for example, [1–3]). Due to the index theorem

they lead to a multiplicity of chiral fermions, which can be used to explain the number of

quark-lepton generations [4]. Moreover, magnetic flux is an important source of supersym-

metry breaking [5]. Magnetic compactifications of higher-dimensional field theories have

been thoroughly studied in ref. [6]. These results have been used to construct interesting

supersymmetric models of particle physics and to compute Yukawa couplings (see, for ex-

ample, [6–8]). Making use of flux configurations that break supersymmetry one can also

construct extensions of the Standard Model with high-scale supersymmetry [9].

The components of higher-dimensional gauge fields along compact dimensions play a

special role for compact spaces with non-trivial topology. Their zero modes, often called

Wilson-line (WL) scalars are interesting candidates for Higgs fields in four dimensions

(4d) [10–12]. Compactifying a five-dimensional (5d) theory on a circle, or a six-dimensional

(6d) theory on a torus, one finds a discrete set of large gauge transformations in the 4d

theory, due to the higher-dimensional gauge invariance and the non-trivial topology of the

compact manifold. These large gauge transformations act as discrete shifts on WL scalars

and can therefore protect their masses from quadratic divergencies. Identifying Higgs fields

as WL scalars, one obtains finite Higgs masses, determined by size of the extra dimensions,

m2
H ∝ L−2, where L is a typical length scale of the internal space [13–15]. This mechanism

to protect Higgs masses is of interest in scenarios with large extra dimensions, where the

scale of electroweak symmetry breaking is tied to the size of the compact space.

How can one protect scalar masses if the ultraviolet cutoff of the theory lies much above

the scale of electroweak symmetry breaking? In this case the only known candidate for a

protection mechanism is a continuous shift symmetry, like the Peccei-Quinn symmetry [16]

in axion physics or the shift symmetry of a Goldstone boson in composite Higgs models

(see, for example, [17]). Such a mechanism would be needed in models of high-scale super-

symmetry, like the one considered in [9]. In the following we shall give an example that
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illustrates how such a shift symmetry can indeed arise in compactifications with magnetic

flux, and we shall identify the higher-dimensional origin of the symmetry.

In ref. [18] we have worked out the magnetic compactification of a supersymmetric

6d Abelian gauge theory on a torus, and we have compared the results with the standard

compactification without flux. In the latter case bosonic and fermionic one-loop corrections

to the mass of the WL scalar are separately finite and cancel each other due to unbroken

supersymmetry. On the contrary, in the case of flux compactification, bosonic and fermionic

contributions are zero separately, once the complete tower of massive states is taken into

account. We argued that this surprizing cancellation of an infinite number of terms is a

consequence of a 6d symmetry, the invariance under translations on the torus under which

the WL scalar transforms with a shift. The vanishing of the one-loop corrections to the

mass of the WL scalar has subsequently been carefully studied in [19].

Notice that our field theory setup was widely studied in string theory compactifica-

tions with internal magnetic fields [5, 20] and in the T-dual version of D-branes at angles

(or intersecting brane models) [21–23], as a way to partially or completely break super-

symmetry and to induce fermion chirality. However, a field theory approach has its own

advantages, namely, more flexibility in searching for realistic models of particle physics and

the avoidance of technical difficulties with quantum corrections for string theory models

with broken supersymmetry, see e.g. [24].

In this paper we study the cancellation of loop corrections to the mass of the WL scalar

in more detail. Since the cancellation is independent of supersymmetry, we focus on the

simplest possible model, a single 6d Weyl fermion interacting with an Abelian gauge field.

In section 2 we provide details of the flux compactification on a torus with emphasis on the

symmetries of the 6d theory and the couplings of the tower of massive states in the effective

4d theory. Quantum corrections to the mass of the WL scalar are discussed in section 3.

We first recall the cancellations at one-loop order once the tower of massive states is taken

into account. We then show that the 4d action possesses an exact shift symmetry, including

the couplings to all massive states. In section 4, we summarize our results and discuss the

prospects to extend the presented model to chiral Higgs models. The connection between

the considered field theory and quantum mechanics on a magnetized torus is discussed in

the appendix.

2 Flux compactification on a torus

Let us now consider a left-handed 6d Weyl fermion interacting with an Abelian gauge field,1

S6 =

∫
d6x

(
−1

4
FMNFMN + iΨΓMDMΨ

)
, (2.1)

where DM = ∂M + iqAM , M = 0, . . . 6, FMN = ∂MAN − ∂NAM and Γ7Ψ = −Ψ. The 6d

space is a product of 4d Minkowski space and a square torus T 2 of area L2. It is convenient

1In the following we ignore anomalies. Note that our discussion will not change for an anomaly-free

fermion spectrum.
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to decompose the 6d Weyl spinor into two independent two-component Weyl spinors ψ and

χ. For gamma matrices in the Weyl basis, one has2

Ψ =

(
ψL
ψR

)
: γ5ψL = −ψL , γ5ψR = ψR ,

ψL =

(
ψ

0

)
, ψR =

(
0

χ

)
.

(2.2)

The Weyl fermions ψ and χ have charges q and −q, respectively, and the fermionic part of

the action (2.1) reads

S6f =

∫
d6x
(
− iψσµDµψ − iχσµDµχ

− χ
(
∂z +

√
2qφ
)
ψ − χ

(
∂z̄ +

√
2qφ
)
ψ
)
,

(2.3)

where Dµ = ∂µ + iqAµ, Dµ = ∂µ − iqAµ and

φ =
1√
2

(A6 + iA5) , z =
1

2
(x5 + ix6) , ∂z = ∂5 − i∂6 . (2.4)

The coordinates take values in the interval x5,6 ∈ [0, L). In the following we set L = 1.

The gauge kinetic term can be expressed in terms of the fields Aµ and φ,

S6g =

∫
d6x

(
− 1

4
FMNFMN

)
=

∫
d6x

(
− 1

4
FµνFµν − ∂µφ∂µφ−

1

4

(
∂zφ+ ∂z̄φ

)2
− 1

2
∂z̄A

µ∂zAµ −
i√
2
∂µA

µ
(
∂zφ− ∂z̄φ

))
.

(2.5)

Constant magnetic flux in the compact dimensions corresponds to a vacuum configuration.

For 〈A5〉 = −1
2fx6, 〈A6〉 = 1

2fx5, corresponding to 〈φ〉 = 1√
2
fz̄, the vacuum field equations

are satisfied,3

∂z
(
∂z〈φ〉+ ∂z̄〈φ〉

)
= 0 . (2.6)

The magnetic flux is quantized in units of the torus area,

q

2π

∫
T 2

F =
q

2π
f = N ∈ Z . (2.7)

Shifting the scalar field φ around the flux background,

φ =
f√
2
z̄ + ϕ , (2.8)

2We follow the conventions in ref. [25]. Our 6d gamma matrices satisfy the algebra {ΓM ,ΓN} = −2ηMN ,

with diag(ηMN ) = (−1,+1, . . . ,+1).
3Note that this non-trivial gauge background requires the introduction of four patches on the torus.
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the 6d action takes the form of eqs. (2.3) and (2.5), with φ replaced by ϕ, up to a cosmo-

logical constant4 and a flux-dependent bilinear term of the Weyl fermions,

S6 =

∫
d6x

(
− 1

4
FµνFµν − ∂µϕ∂µϕ−

1

4
(∂zϕ+ ∂z̄ϕ)2 − 1

2
f2

− 1

2
∂z̄A

µ∂zAµ −
i√
2
∂µA

µ (∂zϕ− ∂z̄ϕ)

− iψσµDµψ − iχσµDµχ

− χ
(
∂z + qf z̄ +

√
2qϕ

)
ψ − χ

(
∂z̄ + qfz +

√
2qϕ

)
ψ

)
.

(2.9)

The action is invariant under translations on the torus, which act in the standard way as

δT = ε∂z + ε∂z̄ on the fields Aµ, ψ and χ. The breaking of translational invariance by the

background gauge field can be compensated by a shift of ϕ,

δTϕ = (ε∂z + ε∂z̄)ϕ+
ε̄√
2
f . (2.10)

The Lagrangian density in (2.9) then transforms into a total divergence.5 Furthermore,

the action is invariant with respect to the following local 6d transformation,

ϕΛ = ϕ− 1√
2
∂zΛ , ψΛ = eqΛψ , χΛ = e−qΛχ , Λ = f (αz̄ − ᾱz) , (2.11)

where α is a complex parameter. Such transformations have first been considered in [26].

Note that they change the boundary conditions of the fermion wave functions. For in-

finitesimal α the transformation reads

δΛϕ = − 1√
2
∂zΛ , δΛψ = qΛψ , δΛχ = −qΛχ . (2.12)

For the complex scalar field, the gauge transformation corresponds to a shift,

δΛϕ =
ᾱ√
2
f . (2.13)

In order to obtain the effective 4d action one expands the 6d fields into mode functions

corresponding to eigenstates of the kinetic term of the compact dimensions. For charged

fields these are Landau levels obtained from an harmonic oscillator algebra [5, 15, 27]. The

identification of annihilation and creation operators depends on the sign of qf . Without

loss of generality we choose qf > 0. There are two pairs of annihilation and creation

operators

a+ =
i√
2qf

(∂z + qf z̄) , a†+ =
i√
2qf

(∂z̄ − qfz) , (2.14)

a− =
i√
2qf

(∂z̄ + qfz) , a†− =
i√
2qf

(∂z − qf z̄) . (2.15)

4Once gravity is included, the backreaction of the cosmological term on the compact manifold has to be

taken into account. However, we have applications in mind with f �MPL, where gravitational corrections

are expected to be small.
5To prove the invariance of the action one has to take into account that gauge field and charged fermions

are fiber bundles defined on four patches of the torus.
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They satisfy the commutation relations [a±, a
†
±] = 1, [a±, a∓] = 0, [a±, a

†
∓] = 0. In terms

of the annihilation and creation operators the mass-square operators for the fermions ψ

with charge +q and χ with charge −q are given by

M2
+ = 2qfa†+a+ , M2

− = 2qf
(
a†−a− + 1

)
. (2.16)

The ground state wave functions are determined by

a+ξ0,j = 0 , a−ξ0,j = 0 , (2.17)

where j = 0, . . . |N | − 1 labels the degeneracy of the ground state. An orthonormal set of

higher mode functions is given by

ξn,j =
in√
n!

(
a†+

)n
ξ0,j , ξn,j =

in√
n!

(
a†−

)n
ξ0,j . (2.18)

Annihilation and creation operators act on these mode functions as

a+ξn,j = i
√
n ξn−1,j , a†+ξn,j = −i

√
n+ 1 ξn+1,j , (2.19)

a−ξn,j = i
√
n ξn−1,j , a†−ξn,j = −i

√
n+ 1 ξn+1,j , (2.20)

and the mode expansions of the fermion fields ψ and χ with charges +q and −q, respec-

tively, read

ψ =
∑
n,j

ψn,jξn,j , χ =
∑
n,j

χn,jξn,j . (2.21)

Since the gauge fields Aµ and ϕ do not feel the flux, they have an expansion in terms of

standard Kaluza-Klein modes. The theory has a number of 4d zero modes. According to

eq. (2.16), and in accord with the index theorem, there are |N | left-handed fermionic zero

modes ψ0,j . Moreover, there will be zero modes A0µ due to 4d gauge invariance, and, up

to quantum corrections, a massless complex scalar ϕ0.6 The action for the zero mode ϕ0,

A0µ, and the matter fields is easily obtained by inserting the expansions (2.21) into the

action (2.9). The result reads

S4 =

∫
d4x

(
− ∂µϕ0∂µϕ0 +

∑
n,j

(
− iψn,jσµDµψn,j − iχn,jσµDµχn,j

−
√

2qf(n+ 1)χn,jψn+1,j −
√

2qϕ0χn,jψn,j + h.c.
))

.

(2.22)

This is the fermionic part of the supersymmetric action derived in [18]. It describes |N |
left-handed fermions ψLj and an infinite tower of massive Dirac fermions Ψn,j ,

ψLj =

(
ψ0,j

0

)
, Ψn,j =

(
ψn+1,j

χn,j

)
, (2.23)

6Note that in a supergravity extension of the present model the zero modes A0µ become massive due

to the Stueckelberg mechanism. For a recent discussion of the interplay of flux and the Green-Schwarz

mechanism, see [28].
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which interact via Yukawa couplings with a massless scalar,

S4 =

∫
d4x

(
− ∂µϕ0∂µϕ0 +

∑
n,j

(
iψLjγ

µDµψLj + iΨn,jγ
µDµΨn,j

+
√

2qf(n+ 1) Ψn,jΨn,j +
√

2qϕ0

(
Ψ0,j

1− γ5

2
ψLj + Ψn+1,j

1−γ5
2 Ψn,j

)
+
√

2qϕ0

(
ψLj

1 + γ5

2
Ψ0,j + Ψn,j

1 + γ5

2
Ψn+1,j

)))
.

(2.24)

Note that the scalar ϕ0 couples to different mass eigenstates. Integrating out the heavy

fermions Ψn,j yields the effective low energy action of the zero modes ϕ0 and ψLj . The

first contribution is due to the exchange of Ψ0,j . Expanding the propagator as

〈Ψ0,j(x)Ψ0,j′(x
′)〉 = − i

m0

(
1 +

iγµ∂µ
m0

+ . . .

)
δj,j′δ

4(x− x′) , (2.25)

with m0 =
√

2qf , one obtains

Seff =

∫
d4x

(
− ∂µϕ0∂µϕ0 + iψLjγ

µDµψLj

+ i
q2

m2
0

ψL,jγ
µψL,j (ϕ0∂µϕ0 − ∂µϕ0ϕ0) + . . .

)
,

(2.26)

where we have used the equation of motion for ψLj to leading order, i.e. γµ∂µψLj = 0. One

easily verifies that this effective action is invariant under a constant shift of ϕ0.

The effective action (2.26) is very different from the 4d action without magnetic flux.

In this case one obtains a vector-like theory, and after spontaneous symmetry breaking

the lowest states of the spectrum consist of a Dirac fermion, a real scalar and a vector,

which all have masses of the order of the compactification scale. No massless states are

left. On the contrary, the action (2.26) does contain massless chiral fermions and a WL

scalar which is kept massless by a continuous shift symmetry. However, contrary to the

case of the Standard Model, its vacuum expectation value does not give mass to the chiral

fermions.

3 Quantum corrections and shift symmetry

In general, Yukawa interactions violate the shift symmetry of a free massless scalar, and

as a consequence quantum corrections generate a mass term. Indeed, keeping the lightest

massive fermion Ψ0,j in addition to the zero modes ΨLj , one obtains from the standard

one-loop diagrams (see figure 1, left),

δm2
ϕ0

= −2q2|N |
∫

d4k

(2π)4

2k2

k2 (k2 + 2qf)

= −q
2|N |
4π2

(
Λ2 − 2qf ln

(
Λ2

2qf

)
+ . . .

)
,

(3.1)

– 6 –
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ϕ0 ϕ0

ψLj

Ψ0,j

ϕ0 ϕ0

Ψn,j

Ψn+1,j

Figure 1. One-loop contributions to the scalar mass term. Left: contribution of ψLj and Ψ0,j ;

right: contributions of the massive fermions Ψn,j and Ψn+1,j .

where we have introduced a momentum cutoff Λ as regulator. Usually, the quadratic

divergence is removed by a counter term, leaving an undetermined finite mass for the

scalar ϕ0. In ref. [18] it was shown that the situation drastically changes once the Yukawa

couplings to the entire tower of massive states are taken into account (see figure 1, right).

One then obtains

δm2
ϕ0

= −2q2|N |
∑
n

∫
d4k

(2π)4

2k2

(k2 + 2qfn) (k2 + 2qf(n+ 1))

= 4q2|N |
∑
n

∫
d4k

(2π)4

(
n

k2 + 2qfn
− n+ 1

k2 + 2qf(n+ 1)

)
.

(3.2)

Using the Schwinger representation of the propagators, performing the momentum inte-

grations and interchanging t-integration and summation, one finds

δm2
ϕ0

=
q2

4π2
|N |

∑
n

∫ ∞
0

dt
1

t2

(
ne−2qfnt − (n+ 1)e−2qf(n+1)t

)
=

q2

4π2
|N |

∫ ∞
0

dt
1

t2

(
e2qft

(e2qft − 1)2
− e2qft

(e2qft − 1)2

)
= 0 .

(3.3)

To obtain this remarkable cancellation it is crucial to perform the summation before the

momentum integration, as in ref. [14]. In this way the symmetries of the gauge theory in

the compact dimensions are preserved.

What is the origin of the cancellation of the quantum corrections to the scalar mass

term and can one understand it at the level of the four-dimensional theory? As discussed

in the previous section the six-dimensional theory is invariant under translations, which

include a shift of the scalar field ϕ0. The generators of the translations, ∂z and ∂z̄, do

not commute with the mass-squared operators M2
±. However, the mode functions are

eigenfunctions ofM2
±. Therefore, they have no simple transformation law under the action

of ∂z and ∂z̄. Instead, the whole tower is reshuffled. A simple transformation of the mode

function can be obtained by combining translations with the transformation δΛ, eq. (2.12),

– 7 –
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as follows:

δψ = (δT + δΛ,α=ε)ψ

= (ε∂z + ε̄∂z̄ + qf(εz̄ − ε̄z))ψ

= −i
√

2qf(εa+ + ε̄a†+)ψ .

(3.4)

Clearly, this infinitesimal transformation only connects mode functions of neighboring mass

eigenvalues. As we show in appendix A, this symmetry also manifests itself in the quantum

mechanical analysis of a charged particle on a magnetized torus. Using eqs. (2.19) one

obtains

δψ = −i
√

2qf
∑
n,j

ψn,j(εa+ + ε̄a†+)ξn,j =
∑
n,j

δψn,jξn,j ,

δψn,j =
√

2qf(ε
√
n+ 1 ψn+1,j − ε̄

√
n ψn−1,j) .

(3.5)

Analogously, the transformation of the matter field χ with charge −q is given by

δχ = (δT + δΛ,α=ε)χ

= (ε∂z + ε̄∂z̄ − qf(εz̄ − ε̄z))χ

= −i
√

2qf(εa†− + ε̄a−)χ .

(3.6)

Using eqs. (2.20) one finds

δχ = −i
√

2qf
∑
n,j

χn,j(εa
†
− + ε̄a−)ξn,j =

∑
n,j

δχn,jξn,j ,

δχn,j =
√

2qf(−ε
√
n χn−1,j + ε̄

√
n+ 1 χn+1,j) .

(3.7)

Given the transformation laws (3.5) and (3.7) it is straightforward to verify the invariance

of the action (2.22). For instance, for the Yukawa term one has

δ

(∑
n,j

χn,jψn,j

)
=
√

2qf
∑
n,j

(
− ε
√
n χn−1,jψn,j + ε̄

√
n+ 1 χn+1,jψn,j

+ ε
√
n+ 1 χn,jψn+1,j − ε̄

√
n χn,jψn−1,j

)
= 0 .

(3.8)

Similarly, also the fermion kinetic terms are invariant. The remaining part is

δS4 ⊃
∫
d4x
(
− ∂µδϕ0∂µϕ0 − ∂µϕ0∂µδϕ0

+
∑
n,j

(
−
√

2qf(n+ 1)δ (χn,jψn+1,j)−
√

2qδϕ0χn,jψn,j + h.c.
))
.

(3.9)

The variation of the mass term reads

δ

(∑
n,j

√
n+ 1χn,jψn+1,j

)
=
√

2qf
∑
n,j

√
n+ 1

(
− ε
√
n χn−1,jψn+1,j

+ ε̄
√
n+ 1 χn+1,jψn+1,j + ε

√
n+ 2 χn,jψn+2,j − ε̄

√
n+ 1 χn,jψn,j

)
=− ε̄

√
2qf

∑
n,j

χn,jψn,j , (3.10)
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ϕ0 ϕ0

ψLj

Ψ0,j

ψLj′

Ψ0,j′

Aµ,l,m ϕ0 ϕ0

Ψn,j

Ψn+1,j

Ψn′,j′

Ψn′+1,j′

Aµ,l,m

Figure 2. Two-loop contributions to the scalar mass term which involve Kaluza-Klein modes of

the vector field.

which yields for the 4d action

δS4 ⊃
∫
d4x

(
− ∂µδϕ0∂µϕ0 − ∂µϕ0∂µδϕ0

+ (2qf ε̄−
√

2qδϕ0)
∑
n,j

χn,jψn,j + h.c.

)
.

(3.11)

Hence, the action is invariant if the scalar ϕ0 transforms as

δϕ0 =
√

2ε̄f . (3.12)

This is precisely the shift inferred from the two transformation laws of the 6d field ϕ given

in eqs. (2.10) and (2.13).

So far we have discussed the coupling of the zero mode ϕ0 to the matter fields ψn,j and

χn,j , and we have seen that at one-loop order no mass term is generated. However, the

full theory also contains the Kaluza-Klein excitations of the gauge fields Aµ and ϕ, which

enter at higher loop order (see figure 2), and it is an important question whether also these

corrections preserve the shift symmetry of ϕ0. Splitting the gauge fields into zero modes

and KK excitations, one has

ϕ = ϕ0 + ϕ′ , Aµ = A0µ +A′µ ,

ϕ′ =
∑
l,m

ϕl,mλl,m , A′µ =
∑
l,m

Aµ,l,mλl,m ,
(3.13)

with zero modes (l = m = 0) excluded in the sum, and with the standard orthonormal

mode functions

λl,m = ezMl,m−z̄M l,m = λ−l,−m , Ml,m = 2π(m+ il) . (3.14)

Since the vector field is real, one has Aµ,l,m = Aµ,−l,−m. For the gauge fields the mass-

squared operator is given by M2 = −∂z̄∂z, which commutes with the generators of trans-

lations. In fact, they are eigenfunctions of ∂z̄ and ∂z. Hence, a simple transformation law

is obtained for the transformation δ,

δϕ′ = (ε∂z + ε̄∂z̄)ϕ
′ =

∑
l,m

δϕl,mλl,m , (3.15)

δA′µ = (ε∂z + ε̄∂z̄)A
′
µ =

∑
l,m

δAµ,l,mλl,m , (3.16)

– 9 –
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which yields the transformation law of the mode functions

δϕl,m = (εMl,m − ε̄M l,m)ϕl,m , (3.17)

δAµ,l,m = (εMl,m − ε̄M l,m)Aµ,l,m . (3.18)

These equations together with eqs. (3.5), (3.7) and (3.12),

δϕ0 =
√

2εf ,

δψn,j =
√

2qf
(
ε
√
n+ 1ψn+1,j − ε

√
nψn−1,j

)
,

δχn,j =
√

2qf
(
−ε
√
nχn−1,j + ε

√
n+ 1χn+1,j

)
,

define the transformation behavior of all 4d fields.

Given the mode expansions (2.21) and (3.13) it is straightforward to obtain the full

effective 4d action from the 6d action (2.9). The result reads

S4 =

∫
d4x

(
− 1

4
Fµν0 F0µν − ∂µϕ0∂µϕ0 −

1

2
f2

+
∑
l,m

(
− 1

4
Fµν−l,−mFµν,l,m +

1

2
M−l,−mMl,mA

µ
−l,−mAµ,l,m

− ∂µϕl,m∂µϕl,m −
1

4

∣∣M−l,−mϕ−l,−m +M l,mϕl,m
∣∣2

− i√
2
Aµ−l,−m∂µ

(
M−l,−mϕ−l,−m −M l,mϕl,m

))
+
∑
n,j

(
− iψn,jσµDµψn,j − iχn,jσµDµχn,j

−
√

2qf(n+ 1)χn,jψn+1,j −
√

2qϕ0χn,jψn,j

−
√

2qf(n+ 1)χn,jψn+1,j −
√

2qϕ0χn,jψn,j

)
+

∑
l,m;n,j;n′,j′

C l,mn,j;n′,j′

(
− qψn′,j′σ

µAµ,l,mψn,j + qχn,jσ
µAµ,l,mχn′,j′

−
√

2qϕl,mχn,jψn′,j′ −
√

2qϕ−l,−mχn′,j′ψn,j

))
.

(3.19)

Here the covariant derivatives Dµ, Dµ only involve the zero mode A0µ of the gauge field,

and the cubic couplings of the gauge and matter KK modes are given by the overlap

integrals

C l,mn,j;n′,j′ =

∫
T2

d2xλl,mξn,jξn′,j′ . (3.20)

The action (3.19) describes the gauge modes ϕ0, ϕl,m, A0µ, Aµ,l,m and the fermion modes

ψn,j , χn,j as well as their interactions. In unitary gauge the mixing between Aµl,m and

one linear combination of ϕl,m and ϕl,m is eliminated whereas the orthogonal combination

describes a tower of real, massive scalars.7

7In the supersymmetric case this was discussed in [18].
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The mode functions of the charged matter fields are related by creation or annihilation

operators, for instance (cf. (2.14), (2.19)),

ξn−1,j = − i√
n
a−ξn,j =

1√
2nqf

(∂z̄ + qfz)ξn,j . (3.21)

Using expressions of this kind and performing partial integrations one easily derives the

following relations between the cubic couplings:√
2qf

(√
nC l,mn−1,j;n′,j′ −

√
n′ + 1C l,mn,j;n′+1,j′

)
= M l,mC

l,m
n,j;n′,j′ ,√

2qf
(
−
√
n+ 1C l,mn+1,j;n′,j′ +

√
n′C l,mn,j;n′−1,j′

)
= −Ml,mC

l,m
n,j;n′,j′ .

(3.22)

With these relations it is straightforward to prove the invariance of the action (3.19) under

the transformations (3.5), (3.7), (3.12), (3.17) and (3.18). For instance, for the Yukawa

interactions one has

δ
∑

l,m;n,j;n′,j′

C l,mn,j;n′,j′ϕl,mχn,jψn′,j′

=
(
−
(
ε̄M l,m − εMl,m

)
C l,mn,j;n′,j′

+
√

2qf
(
−ε
√
n+ 1C l,mn+1,j;n′,j′ + ε̄

√
nC l,mn−1,j;n′,j′

)
−
√

2qf
(
ε
√
n′C l,mn,j;n′−1,j′ + ε̄

√
n′ + 1C l,mn,j;n′+1,j′

))
ϕl,mχn,jψn′,j′

=
(
− ε̄
(
M l,mC

l,m
n,j;n′,j′ +

√
2qf

(√
nC l,mn−1,j;n′,j′ −

√
n′ + 1C l,mn,j;n′+1,j′

))
+ ε
(
Ml,mC

l,m
n,j;n′,j′ −

√
2qf

(√
n+ 1C l,mn+1,j;n′,j′ −

√
n′C l,mn,j;n′−1,j′

))
× ϕl,mχn,jψn′,j′ .

(3.23)

Using eqs. (3.22) one finds

δ
∑

l,m;n,j;n′,j′

C l,mn,j;n′,j′ϕl,mχn,jψn′,j′ = 0 . (3.24)

In the same way one shows the invariance of the other cubic and bilinear terms in the

action (3.19) involving gauge KK modes. For the invariance of the remaining terms, which

was already demonstrated above, the shift (3.12) of the zero mode is crucial, δϕ0 =
√

2ε̄f .

It is instructive to contrast this result with the generation of a mass for the WL scalar in

gauge-Higgs unification without flux. The inverse size of the torus plays the role of a cutoff,

and a discrete symmetry, a remnant of the gauge symmetry in the compact dimensions,

keeps the mass finite. Explicit expressions for the effective potential of the WL scalar have

been obtained in refs. [14, 29]. For a square torus of size L = 2πR one obtains [30]

m2
ϕ0
≈ 0.19× α

π

1

R2
. (3.25)

As expected, the result is the product of a loop factor and the cutoff. Turning on flux

changes the situation drastically. The full 4d action including the couplings of all KK modes
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is invariant with respect to a symmetry under which the scalar ϕ0 shifts by a constant. The

origin of this symmetry is the shift of ϕ under translations on the torus, which compensates

for the spontaneous breaking of translation invariance by the flux potential. As a result,

the mass of the WL scalar vanishes.

4 Summary and outlook

Motivated by the hierarchy problem of the electroweak theory we have studied the effect

of magnetic flux on quantum corrections to a scalar mass term in a model of gauge-Higgs

unification. We considered the simplest possible example, a 6d Weyl fermion with Abelian

gauge interaction, compactified on a torus.

We first analyzed the symmetries of the 6d theory on a torus. In the presence of

the background gauge field translational invariance is realized non-linearly, and the Higgs

field transforms with a shift. Moreover, the theory has a well known local 6d symmetry

under which the Higgs field also transforms with a shift, and which changes the boundary

conditions of the charged fields. Using the familiar harmonic oscillator algebra a complete

orthonormal set of mode functions was constructed for the two 4d Weyl fermions with

opposite charge, which are contained in the 6d Weyl fermion. The Higgs field and the

vector field have the standard Kaluza-Klein mode expansion. The effective 4d action

contains as zero modes a multiplicity of Weyl fermions, determined by the magnetic flux,

and a complex scalar with chiral couplings to pairs of different fermions.

Quantum corrections were studied in three steps. Keeping just the lowest lying mas-

sive Dirac fermion, a quadratic divergence for the scalar mass term is generated at one

loop, as expected. However, once the full tower of massive states is included, the total

correction to the scalar mass term vanishes, confirming our earlier result. The origin of

this cancellation of quantum corrections is a symmetry of the 4d effective action. Starting

from the two symmetries of the 6d theory, translations and gauge invariance, we identified

a transformation law of the 4d fields which leaves the 4d action invariant. Under this

transformation the complex scalar transforms with a shift, which prevents the generation

of a mass term.

In a third step we generalized this result to the complete 4d theory, including the

Kaluza-Klein excitations of scalar and vector fields. Using properties of the mode functions

we obtained relations among the cubic couplings, which allowed us to demonstrate that

the full 4d theory has an exact symmetry under which the complex Higgs field transforms

with a shift. The origin of this shift symmetry are the translation symmetries of the torus.

Assuming a renormalization scheme, which preserves this symmetry, we conclude that no

scalar mass term will be generated at any loop order. This is the main result of the

present paper.

What is the relevance of this result for the hierarchy problem of the electroweak theory?

The effective low energy action of our model was given in section 2. The action has a shift

symmetry, and a vacuum expectation value of the scalar field does not generate mass

terms for chiral fermions, which is the key feature of the Standard Model. In order to

obtain more realistic low energy models one has to consider non-Abelian gauge theories in

– 12 –
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higher dimensions. It is then possible to obtain flux compactifications with gauge-Higgs

unification where the Higgs field couples to chiral fermions and all fields have Landau-level

excitations. It remains to be seen whether also in these theories, where the Higgs field is

charged, an approximate shift symmetry can be realized once the contribution of Kaluza-

Klein excitations is taken into account. These questions are currently under investigation.
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A Quantum mechanics on the magnetized torus

It is possible to understand the properties under translations on the magnetized torus by

using elementary quantum mechanics arguments (see e.g. [31, 32]). In the presence of a

magnetic field, F56 = f , the gauge potential in the two directions of the torus, in the

symmetric gauge we used in the previous sections, is given by

A5 = −1

2
fx6 + a5 , A6 =

1

2
fx5 + a6 , (A.1)

where a5,6 are constants (i.e. Wilson lines). The non-trivial transformations of the gauge

potentials under translations along the two cycles of the torus are

A5(x5, x6 + ε6) = A5(x5, x6)− 1

2
fε6 , A6(x5 + ε5, x6) = A6(x5, x6) +

1

2
fε5 , (A.2)

which can also be described as gauge transformations with parameters,

Λ5 = Λ
(0)
5 +

1

2
fε5 x6 , Λ6 = Λ

(0)
6 −

1

2
fε6 x5 , (A.3)

where Λ
(0)
5,6 describe constant gauge transformations which allow us to eliminate trivial (by

constant factors) transformations of the wave functions. The Hamiltonian H of a particle

of charge q on the magnetized torus is given by

H =
1

2

(
P5 −

qf

2
x6 + qa5

)2

+
1

2

(
P6 +

qf

2
x5 + qa6

)2

, (A.4)

where P5, P6 are the momenta, acting on the wave functions in the standard way P5,6 =

−i∂5,6. The operators related to translations by ε5,6 on the torus in a flux background have

to commute with the Hamiltonian (A.4). They are explicitly given by

Π5 = eiε5(P5+ qf
2
x6) , Π6 = eiε6(P6− qf2 x5) . (A.5)
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Since they commute with H one can choose wave functions which are eigenvectors of the

translations operators. From (A.5) or (A.3) one can derive the transformation behavior of

wave functions of charged fields under lattice translations

Ψ(x5 + L, x6) = e−
i
2
qfLx6+iqLa5 Ψ(x5, x6) ,

Ψ(x5, x6 + L) = e
i
2
qfLx5+iqLa6 Ψ(x5, x6) .

(A.6)

Notice that by taking closed loops around the two cycles, ε5,6 = L, and imposing single-

valuedness of the wave function, one can derive the quantization of the magnetic flux [5, 31].

By defining complex translations with

ε =
1

2
(ε5 + iε6) , (A.7)

one obtains a complex translation operator on the torus implementing z → z + ε. Using

the Campbell-Hausdorff formula one finds

Πε = Π6Π5 = exp

(
ε∂z + ε̄∂̄z − qf(εz̄ − ε̄z)− qf

2
(ε2 − ε̄2)

)
= exp

(
− i
√

2qf (εa†− + ε̄a−)− qf

2
(ε2 − ε̄2)

)
,

(A.8)

with a− and a†− defined in eqs. (2.15). This symmetry of the Hamiltonian is a standard

one since, as we will discuss below, a− and a†− are acting in the degenerate Fock space of

Landau levels of a given mass, creating the degeneracy described by the quantum number j.

On the other hand, the Schrödinger equation of a charged particle in the magnetic

field has another, less obvious symmetry. Let us search for a symmetry of the Schrödinger

equation,

HΨ = EΨ , H ′Ψ′ = EΨ′ , (A.9)

which mixes states of different mass. It is possible to realize this, while keeping the en-

ergy eigenvalue E invariant, if one also performs changes of the field ϕ. First of all, the

Hamiltonian (A.4) can be written as

H = qf

(
a†+a+ +

1

2

)
+ iq

√
qf(ϕa†+ − ϕa+) + q2|ϕ|2 , (A.10)

with a+ and a†+ defined in eqs. (2.14). A symmetry of the Schrödinger equation is of

the form

Ψ′ = UΨ , H ′ = UHU−1 , (A.11)

with a unitary operator U . For an infinitesimal transformation U = eiT ' 1 + iT , with T

a hermitian generator, one finds

δΨ = iTΨ , δH = i[T,H] , (A.12)
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where in our case

δH = iq
√
qf(δϕa†+ − δϕa+) + q2(ϕδϕ+ ϕδϕ) . (A.13)

It is then straightforward to verify that (A.12) is satisfied, with

T = −
√

2qf(εa+ + ε̄a†+) ,

δϕ =
√

2ε̄f .
(A.14)

Finally, the hidden and non-linearly realized symmetry of the Schrödinger equation acts as

δΨ = −i
√

2qf(εa+ + ε̄a†+)Ψ ,

δϕ =
√

2ε̄f .
(A.15)

This is the quantum mechanical analog of the higher-dimensional symmetry found in field

theory, mixing all Landau mass levels, under which the scalar ϕ transforms as a Goldstone

boson, see eqs. (3.4), (3.6) and (3.12). In the quantum mechanical case, in which the

gauge field is external (not quantized), this would just imply that the gauge potential is

unphysical and can be set to zero.

Finally, we would like to briefly discuss the properties of wave functions in the magnetic

field in the symmetric gauge that we are using (see, for example [32]). One can introduce

an angular momentum operator8

−J = x5P6 − x6P5 = z∂z − z̄∂z̄ = a†+a+ − a†−a− . (A.16)

Notice that [H0, J ] = 0 and [J,Πε] 6= 0, where H0 = H(ϕ = 0). Hence, one can choose

wave functions with definite angular momentum or eigenvectors of the translation operator,

but in general not both simultaneously. The usual choice are states of definite angular

momentum j. In this case, a−, a†− generate the Fock space of states |n, j〉, j = 0, . . . , N −1

for a given oscillator quantum number n, where N is the magnetic field flux. Indeed, notice

in particular that, in non-compact space,

|0, j〉 =
(a†−)j
√
j!
|0, 0〉 ∼ z̄je−qf |z|2 , (A.17)

with corresponding wave functions in the compact space constructed by adding images, as

usual. The Fock space of wave functions can be explicitly constructed according to

|n, j〉 =
(a†+)n
√
n!

(a†−)j
√
j!
|0, 0〉 . (A.18)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

8The negative sign in its definition is a matter of convention.
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