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Abstract. A partial word is a word with holes (also called don’t cares:
special symbols which match any symbol). A p-square is a partial word
matching at least one standard square without holes (called a full square).
Two p-squares are called equivalent if they match the same sets of full
squares. Denote by psquares(T ) the number of non-equivalent p-squares
which are subwords of a partial word T . Let PSQUARESk(n) be the
maximum value of psquares(T ) over all partial words of length n with k
holes. We show asympthotically tight bounds:

c1 ·min(nk2, n2) ≤ PSQUARESk(n) ≤ c2 ·min(nk2, n2)

for some constants c1, c2 > 0. We also present an algorithm that com-
putes psquares(T ) in O(nk3) time for a partial word T of length n with k
holes. In particular, our algorithm runs in linear time for k = O(1) and its
time complexity near-matches the maximum number of non-equivalent
p-squares.

1 Introduction

A word is a sequence of letters from a given alphabet Σ. By Σ∗ we denote the set
of all words over Σ. A word of the form UU , for some word U , is called a square.
For a word W , a square factor is a factor of W which is a square. Enumeration
of square factors in words is a well-studied topic, both from a combinatorial and
from an algorithmic perspective. Obviously, a word of length n of may contain
Θ(n2) square factors (e.g. an), however, it is known that such a word contains
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only O(n) different square factors [16,20]; currently the best known upper bound
is 11

6 n [14]. Moreover, all different square factors of a word can be listed in O(n)
time using two different approaches [17,11].

A partial word is a sequence of letters from Σ ∪ {�♦}, where �♦ denotes a hole,
that is, a don’t care symbol. Two symbols a, b ∈ Σ ∪ {�♦} are said to match
(denoted as a ≈ b) if they are equal or one of them is a hole; note that this
relation is not transitive. The relation of matching is extended in a natural way
to partial words of the same length. A partial word UV is called a p-square if
U ≈ V . We define the length of a p-square as |U |. Same as in the context of
words, a p-square factor of a partial word W is a factor being a p-square; see
[2,9]. Alongside [2,8,9], we define a full square as a square of a word and square
subword of a partial word W as a full square that matches some p-square factor
of W .

We introduce the notion of equivalence of p-square factors in partial words.
By sq-val(UV ) let us denote the set of different full squares that match the
partial word UV : sq-val(UV ) = {XX : X ∈ Σ∗, XX ≈ UV }. Then p-squares
UV and U ′V ′ are called equivalent if sq-val(UV ) = sq-val(U ′V ′) (denoted as
UV ≡ U ′V ′). E.g., the following two sets are equivalence classes of p-squares:
A = {aa�♦�♦, �♦aa�♦, �♦�♦aa, a�♦�♦a} and B = {a�♦a�♦�♦�♦, �♦�♦aa�♦�♦, . . .}. Note that two p-
square factors of a partial wordW are equivalent in this sense iff they correspond
to exactly the same sets of square subwords. Our work is devoted to enumeration
of non-equivalent p-square factors of a partial word with a given number k of
holes.

We say that WW is a general form of a square UV (see [8]), denoted as
repr(UV ), if WW ≈ UV and sq-val(WW ) = sq-val(UV ) (in other words, W is
the “most general” partial word that matches both U and V ). Then UV ≡ U ′V ′
iff repr(UV ) = repr(U ′V ′). E.g., repr(A) = (aa)2 for all A ∈ A and repr(B) =
(a�♦a)2 for all B ∈ B.

Previous study of p-squares in partial words was mostly focused on their
combinatorics. It started with the case of k = 1 hole [8], in which case different
square subwords correspond to non-equivalent p-square factors. It was shown
that a partial word with one hole contains at most 7

2n different square subwords
[6] (later this bound was improved to 3n for binary partial words [19]). Also a
generalization of the three squares lemma for words [12] was proposed for partial
words [7].

As for a larger number of holes, the study was devoted mainly to counting
the number of different square subwords of a partial word [8,2] or all occurrences
of p-square factors [4,2]. Similarly, on the algorithmic side, [25] proved that the
problem of counting different square subwords of a partial word is #P-complete
and [15,24] and [9] showed quadratic- and nearly-quadratic-time algorithms for
finding all occurrences of p-square factors and primitively-rooted p-square factors
of a partial word, respectively. Other work includes avoidance of squares [18,3]
or abelian squares [5] in partial words.
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1.1 Our Results

We present the following combinatorial bounds and efficient algorithms related
to enumeration of non-equivalent p-square factors of a partial word of length
n with k of holes. A length p is called ambiguous if there are two holes at a
distance p. Otherwise it is called unambiguous.

Combinatorial results. We prove that a partial word of length n with k
holes contains O(nk2) non-equivalent p-squares. We also show an example of a
partial word of length n with k holes that contains Ω(nk2) non-equivalent p-
squares of ambiguous lengths and that contains Ω(nk) non-equivalent p-squares
of unambiguous lengths. This work can be viewed as a generalization of the
results on partial words with one hole [8,6,19] to k > 1 holes.

Algorithmic results. We present an algorithm that reports all non-equivalent
p-squares in a partial word in O(nk3) time. In particular, our algorithm runs in
linear time for k = O(1) and its time complexity near-matches the maximum
number of non-equivalent p-squares. Our algorithm generalizes the approach of
[11] and proposes, as an important tool, a non-obvious extension of the notion
of runs to partial words (another definition of runs in partial words appeared in
[9]).

2 Periodicity of Words and Partial Words

A word T is a sequence of letters over an alphabet Σ. By |T | = n we denote the
length of T , and by T [i], for i = 1, . . . , n, the ith letter of T . For 1 ≤ i ≤ j ≤ n,
T [i..j] denotes the factor of T equal to T [i] . . . T [j]. A positive integer q is called
a period of T if T [i] = T [i + q] for all i = 1, . . . , n − q. In this case, T [1..q] is
called a string period of T . Two equal-length words S and T are called cyclic
shifts if there exists an index i such that S[i..|S|]S[1..i− 1] = T .

A run (also called a maximal repetition) in T is a triple (a, b, q) such that
T [a..b] has the shortest period q, 2q ≤ b − a + 1, and the interval cannot be
extended to the left nor to the right without violating the above property, that
is, T [a−1] 6= T [a+q−1] and T [b−q+1] 6= T [b+1], provided that the respective
letters exist. The exponent of a run is defined as b−a+1

q . A word of length n has
at most n runs and they can all be computed in O(n) time [22,1].

From a run (a, b, q) we can produce all triples (a, b, kq) for integer k such that
2kq ≤ b− a+1; we call such triples generalized runs. In other words, the period
specified in a generalized run need not be the shortest period of the fragment.
The number of generalized runs is also O(n), as the sum of exponents of runs is
O(n) [22,1].

A partial word is a sequence of symbols from Σ′ = Σ ∪ {�♦}. For a partial
word T we use the same notation as for words: |T | for length, T [i] for the ith
letter, T [i..j] for a factor. The relation of matching on Σ′ is defined as a ≈ a,
a ≈ �♦ for all a ∈ Σ′. We define an operation ∧ such that a∧ a = a, a∧ �♦ = a for
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all a ∈ Σ′, and otherwise a ∧ b is undefined. Two equal-length partial words T
and S are said to match (denoted as T ≈ S) if T [i] ≈ S[i] for all i = 1, . . . , |T |.
In this case, by S ∧ T we denote the partial word S[1]∧ T [1], . . . , S[|S|]∧ T [|S|].
Note that if UV is a p-square, then repr(UV ) = (U ∧ V )2.

A quantum period of a partial word T is a positive integer q such that T [i] ≈
T [i + q] for all i = 1, . . . , |T | − q. T is called quantum periodic with a quantum
period q if 2q ≤ |T |. Let T be a partial word of length n. We say that a triple
(a, b, q) is a quantum generalized run (Q-run, for short) in T if T [a..b] is quantum
periodic with period q and none of the partial words T [a− 1..b] and T [a..b+ 1]
(if exists) has the quantum period q; see Example 1 and Fig. 2.

Example 1. The partial word T = caa�♦�♦�♦�♦�♦bbd contains one Q-run with period
2: (2, 10, 2) that corresponds to the factor aa�♦�♦�♦�♦�♦bb.

Generalized runs in standard words are strongly related to squares: (1) every
square belongs to a generalized run and, moreover, (2) all factors of length 2q
of a generalized run with period q are squares being each other’s cyclic shifts.
Unfortunately, Q-runs in partial words have only property (1). However, we can
introduce a type of run in partial words for which both properties (1) and (2)
hold. A pseudorun (P-run, in short) is a triple (a, b, q) such that:

(a) T [a..b] is quantum periodic with period q
(b) T [i] ∧ T [i+ q] = T [i+ q] ∧ T [i+ 2q] for all i such that i, i+ 2q ∈ [a, b],
(c) none of the partial words T [a − 1..b] and T [a..b + 1] (if exists) satisfies the

conditions (a) and (b).

We say that a p-square T [c..d] is induced by the P-run if the length of the
p-square is q and [c, d] ⊆ [a, b].

Observation 2. (1) Every p-square factor in T is induced by a P-run. (1) All
factors of length 2q of a P-run with period q are p-squares and their representa-
tives are each other’s cyclic shifts.

Proof. (1) Let T [i..j] be a p-square factor of length q = (j − i + 1)/2 in T .
Initially we set a = i, b = j; then (a, b, q) satisfies conditions (a) and (b) of
a pseudorun (the latter one trivially). Now we extend (a, b, q) until it becomes
maximal under the two conditions, i.e., decrement a while T [a−1]∧T [a+q−1] =
T [a+ q − 1] ∧ T [a+ 2q − 1], and same for b.

(2) Every factor of length 2q of a P-run is quantum periodic with period q,
hence a p-square. Consider two such consecutive factors X = T [i..i+2q−1] and
Y = T [i+ 1..i+ 2q]. Then repr(X) = T [i..i+ q − 1] ∧ T [i+ q..i+ 2q − 1] and

repr(Y ) = T [i+ 1..i+ q] ∧ T [i+ q + 1..i+ 2q]

= T [i+ 1..i+ q − 1] ∧ T [i+ q + 1..i+ 2q − 1], T [i+ q] ∧ T [i+ 2q]

= T [i+ 1..i+ q − 1] ∧ T [i+ q + 1..i+ 2q − 1], T [i] ∧ T [i+ q]

where the last equality is due to condition (b) of a P-run. Consequently, repr(X)
and repr(Y ) are cyclic shifts. ut
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Example 3. Let T = caa�♦�♦�♦�♦�♦bbd. Then T contains five P-runs with period 2:
(2, 5, 2), (3, 6, 2), (4, 8, 2), (6, 9, 2) and (7, 10, 2), that correspond to factors: aa�♦�♦,
a�♦�♦�♦, �♦�♦�♦�♦�♦, �♦�♦�♦b, and �♦�♦bb, respectively. The squares induced by the respective
P-runs are as follows: aa�♦�♦; a�♦�♦�♦; �♦�♦�♦�♦ (two times); �♦�♦�♦b; and �♦�♦bb.

3 Combinatorial Bounds

Theorem 4. There exists a partial word of length n with k holes that contains
Ω(nk2) non-equivalent p-squares, for k = O(

√
n).

Proof. Assume that 2 | k. Consider the following partial word:

Tm,k = am�♦
k/2am(ak/2−1�♦)k/2a3m

of length n = 4m+ (k2 )
2 + k

2 over Σ = {a, b}; here m = Θ(n). Point (a) follows
from the next claim.

a a a �♦ �♦ �♦ a a a a a �♦ a a �♦ a a �♦ a a · · ·
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

6
7
8

9
10
11

12
13
14

Fig. 1. Ambiguous lengths in T3,6.

Claim. For some k = O(
√
n), Tm,k contains Θ(mk2) non-equivalent p-squares

of ambiguous lengths.

Proof. First, note that that there are (k2 )
2 different ambiguous lengths and that

for each such length `, there is exactly one pair of holes at this distance in
Tm,k. Indeed, consider the i-th hole in the �♦k/2 part and the j-th hole in the
(ak/2−1�♦)k/2 part (1 ≤ i, j ≤ k

2 ). Then the distance between them is k
2 − i +

m+ k
2 · j =

k
2 · j − i+ (k2 +m). Finally, note that for i and j in the considered

range, values of the form k
2 · j − i are all distinct (this is a known example of a

differenece cover); see Fig. 1.
Let us choose k so that 2(m+(k2 )

2+ k
2 ) ≤

n
2 . Then for each ambiguous length

`, we have exactly ` p-square factors in Tm,k of the general form (ai�♦a`−i−1). As
` ≥ m = Θ(n), this concludes the proof. ut
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(b) ... ut

Now we proceed to the upper bound proof. Let us fix a partial word T of
length n with k holes. Let holes(a, b) denote the number of holes in T [a..b].

We say that a square subword has a solid occurrence if... By the following
fact, there are O(n) square subwords of T with solid occurrences.

Fact 5 ([16,20,14]). ≤ 2 rightmost occurrences.

Our upper bound for partial words is based on the following key lemma that
generalizes Fact 5. We call an interval [`, r) ⊆ [1, n] is short if r ≤ 3k+3

3k+2`.

Lemma 6. For a short interval [`, r), there are O(k′), where k′ = holes(i, i +
2r− 1), p-squares of unambiguous lengths without solid occurrences in [`, r] that
have their rightmost occurrence in T at position i.

Proof. Let us start with the following claim.

Claim 7. There exists an interval I = [a, b] ⊆ [i, i+`−1] such that holes(I) = 0,
holes(J) = 0 where J = [a+ `, b+ r), and I ≥ 2(r − `).

Proof. A position i cannot belong to I if T [i] is a hole or T [i+ `..i+ r] contains
a hole. In total, a hole in T [i..i+ `− 1] excludes one positions in [i, i+ `− 1] and
a hole in T [i+ `..i+ 2r − 1] excludes at most r − `+ 1 consecutive positions in
[i, i + ` − 1]. By the pigeonhole principle, there exists a non-excluded fragment
in T [i..i+ `− 1] of consecutive positions of length at least

`− k(r − l)
k + 1

≥ (3k + 2)(r − `)− k(r − l)
k + 1

= 2(r − `).

ut

Let X be the subword of T at positions in I. If there are at least two p-square
factors of the considered type starting at position i, then X is periodic (Galil...).
Let p be its shortest period.

Let UV be a p-square factor of unambiguous length of the considered type
and let WW = repr(UV ) There are three cases:

(a) WW has period p
(b) W has period p
(c) W does not have period p.

There is at most one p-square factor UV corresponding to case (a). Assume to
the contrary that there are two such p-squares, UV and U ′V ′, of lengths d < d′.
We have that p | d, d′ and the generalized forms of the two p-squares have the
same string period (as they share a subword U). Hence, repr(UV ) is a border of
repr(U ′V ′), so UV occurs in T at position i+ d′ − d.

We will show that there are at most k′ + 1 p-square subwords of type (b).
Assume to the contrary that at least k′+2 of them, of lengths d1 < . . . < dk′+2.
We see that dj mod k is the same, as the occurrences of X in the right half of the
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p-square in T differ by multiples of p. Consider the shortest UV and the longest
U ′V ′ these p-squares, with generalized forms WW and W ′W ′, and the subword
T [i + d1..i + dk′+2 − 1]. It matches a prefix P of length dk′+2 − d1 of W and a
suffix S of the same length of W ′. Both P and S have period P ; however, their
string periods are not equal. Consequently, in every occurrence of the period in
T [i+ d1..i+ dk′+2 − 1] there mus be a hole; this makes (dk′+2 − d1)/p ≥ k′ + 1
holes in total, a contradiction.

(c) Consider the occurrence of X in W . The periodicity of X does not cover
the wholeW , so there is a position j inW where the periodicity breaks. Assume
w.l.o.g. that j is to the right of X. Consider the positions j1 and j2 that corre-
spond to j in the subwords U , V of T . If any of T [j1] and T [j2] is not a hole, then
it is determined uniquely as the first position where the deterministic period p
breaks, starting from the corresponding occurrence of X. Hence, if both of them
are not holes, then |W | = j2 − j1 is uniquely determined. Otherwise, if T [j1]
or T [j2] is a hole (they cannot be both holes, as the length is unambiguous),
then one of j1, j2 is uniquely determined and there are at most k′ choices for the
other. Consequently, there are at most 4k′ + 2 such p-squares. ut

Theorem 8. A partial word T of length n with k holes contains O(nk2) non-
equivalent p-squares.

Proof. Obviously, in T there are at most k2 ambiguous lengths. Consequently,
there are O(nk2) non-equivalent p-squares of such lengths. Let us consider p-
squares of unambiguous lengths. By Fact 5, among them there are O(n) different
p-squares with a solid occurrence. From now on we consider only p-squares
without a solid occurrence.

Let [`, r] be a short interval. By Lemma 6, the total number of different
p-squares of unambiguous lengths in [`, r] in T is:

O

(
n∑

i=1

ki,i+2r−1

)
= O(rk). (1)

The equality is based on the fact that each of the k holes in T is counted in at
most 2r terms ki,i+2r−1.

Let us consider a family of endpoints r0, r1, . . .:

rj =

⌊
n

(1 + 1
3k+2 )

j

⌋
=

⌊
n
(

3k+2
3k+3

)j⌋
.

We divide the p-square lengths into short intervals [rj+1 + 1, rj ]. By (1), the
total number of p-squares in T is:

O

 ∞∑
j=0

rjk

 = O

nk ∞∑
j=0

(
3k+2
3k+3

)j = O

(
nk

1− 3k+2
3k+3

)
= O(nk2).

ut
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4 Main Algorithm

Let T be a partial word of length n with k holes.

4.1 Computing Q-runs

We divide Q-runs into solid Q-runs that do not contain a hole and the remaining
non-solid Q-runs. A solid Q-run is a generalized run in a maximal solid factor
of T . Thus all solid Q-runs can be computed in O(n) time via a linear-time
algorithm for computing runs in words [22,1].

Non-solid Q-runs are computed with a modification of Main-Lorentz algo-
rithm [23]. Let us first reformulate the algorithm in the language of computing
generalized runs in words. For a word S of length n, it finds a representation of
all p-squares that contain the position i = bn/2c and then makes recursive com-
putations in S[1..i] and S[i..n]. It first computes all the p-squares with first half
containing the position i and then computes the remaining p-squares containing
the position i symmetrically. For a pair of positions i, j, we define lcp(i, j) as
the length of the longest common prefix of S[i..n] and S[j..n] and lcs(i, j) as the
length of the longest common suffix of S[1..i] and S[1..j]. The algorithm for each
position j > i computes lcp(i, j) + lcs(i, j) and, if this value is at least j − i,
reports a generalized run (i − lcs(i, j)..j + lcp(i, j), j − i). To avoid duplicates,
the generalized run can be omitted if it reaches the end of the word in the recur-
sive call which does not coincide with the position 1 or n in the original word.
The algorithm’s running time is O(n log n) as lcp-queries and lcs-queries can be
answered in O(1)-time after preprocessing.

For a partial word T , the longest common compatible prefix of two positions
i, j, denoted lccp(i, j), is defined as the largest ` such that T [i..i+`−1] ≈ T [j..j+
` − 1]. Symmetrically, we can define lccs as the length of the longest common
compatible suffix. In [10] it was shown that after O(nk)-time preprocessing,
lccp-queries (hence, lccs-queries) can be answered in O(1) time.

Thus we could directly apply the Main-Lorentz scheme for partial words;
the result would be exactly the set of Q-runs in T . However, this would yield
O(n log n)-time computation. We aim only at computing non-solid Q-runs, which
lets us easily reduce the complexity to O(n log k). To this end, we only make
recursive calls in positions that contain holes, with the recursive call taking
place at the position of the

⌈
k
2

⌉
-th hole in T . Together with O(n)-time solid

Q-runs computation we arrive at the following.

Lemma 9. A partial word of length n with k holes contains O(n log k) Q-runs
and they can all be computed in O(n log k) time.

4.2 Computing Pseudoruns

Observation 10. If (a, b, p) is a P-run, then there exists a Q-run (a′, b′, p) such
that a′ ≤ a ≤ b ≤ b′.

8



From the set of m Q-runs of period p we can produce the set of all P-runs
with period p. The computation time is O(m+ k).

Lemma 11. A partial word of length n with k holes contains O(nk) P-runs and
they can all be computed in O(nk) time.

4.3 Reporting Squares

Assume that the alphabet Σ is ordered and that �♦ is smaller than all the letters
from Σ. We use Observation 2. If we group the P-runs by the minimal cyclic
shift of the induced p-squares, then we can apply the approach of [11] to count
the p-squares in time linear in the number of P-runs and n.

First, note that the minimal cyclic shift value for a P-run (a, b, p) can be
computed in O(k2) time using Theorem 23 from [21]. Indeed, we can represent
the representative of the p-square T [a..a+2p− 1] as a concatenation of at most
k factors of T and at most k single letters that appear elsewhere in T .

...

Theorem 12. All non-equivalent p-squares in a partial word of length n with k
holes can be reported (as factors of the partial word) in O(nk3) time.
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A Auxiliary Figures

a b �♦ �♦ b a �♦ a a b a �♦ b

Fig. 2. A partial word together with all its Q-runs. This partial word contains 5
p-squares of length 3: aaba�♦b, �♦aaba�♦, ab�♦�♦ba, a�♦aaba, b�♦�♦ba�♦. The following pair is
equivalent: ab�♦�♦ba ≡ a�♦aaba.
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