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RESOLUTION OF THE SYMMETRIC ALGEBRA OF AN

(N+1)-GENERATED IDEAL OF DEPTH N

RÉMI BIGNALET-CAZALET

Abstract. We provide a locally free resolution of the symmetric algebra of
the ideal of an (n + 1)-generated ideal sheaf of depth n over a regular quasi-

projective variety. The resolution is given in terms of the resolution of the

ideal itself and of a Buchsbaum-Rim complex associated to an explicit map.

1. Introduction

Consider a rational map Φ : Pn 99K Pn with base locus Z. In order to compute
some invariants of Φ, for instance its degree, one should resolve the indeterminacies
of Φ, which amounts to blow-up Z or equivalently to work with the Rees algebra
of the ideal IZ of Z in Pn. This is not quite easy in general, however a first step is
to take the symmetric algebra Sym(IZ) of IZ , this is a larger algebra as the Rees
algebra is obtained from it by killing the torsion part [Mic64, Lemme 1]. So a
natural question is what is the shape of the resolution of Sym(IZ), in particular, is
it determined by some process involving the resolution of IZ?

Focusing on the case where Z is finite, the goal of this paper is to give an
affirmative answer to this question by providing a resolution of Sym(IZ) as the
mapping cone of two complexes, one being a modification of the resolution of IZ ,
the other being the first Buchsbaum-Rim complex associated to an explicit map.

Although our main motivation comes from the algebro-geometric question above,
finding a resolution of the symmetric algebra also has a purely algebraic interest.
This problem was tackled in [BJ03] or [BC05] by investigating the symmetric alge-
bra of a base ideal I of a map Φ : Pn−1 99K Pn. Moreover, in [CU02, Proposition
3.6(iii)], the two authors established that the resolution of Sym(I) is in particu-
lar sublinear, see Definition 2.9, by controlling spectral sequences related to the
resolution of I.

In this paper, as our main result, we give the explicit description of the mor-
phisms of a resolution of Sym(I) provided some assumptions on I. The sublinearity
of the resolution of Sym(I) can then be recovered via this description, see Corol-
lary 2.10 below.

Let us now state the main result of this note in the algebraic framework and
come back later to the geometric problem above. Let R be a noetherian ring, I be
an R-ideal generated by n+ 1 elements and

(F•) . . . F2 F1 F0
d3 d2 d1
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2 RÉMI BIGNALET-CAZALET

be a free resolution of R/I where F0 = R and rank(F1) = n + 1. Recall that the
depth depth(I,R) is the length of any maximal R-sequence in I [Eis95, 17.2]. Put

R̃ = Sym(F1), (̃ ) = ( ) ⊗R R̃ and τ : F̃1 = F1 ⊗ R̃ → R̃ for the multiplication
morphism. Then:

Theorem A. Assuming that depth(I,R) = n, a resolution of Sym(I) by finitely

generated free R̃-modules is the mapping cone of two complexes:

• one is the complex

. . . F̃4 F̃3 F̃2 R̃,
d̃5 d̃4 d̃3 τ◦d̃2

• the second one is the Buschsbaum-Rim complex associated to the morphism

Ψ =

(
d̃1

τ

)
: F̃1 → G̃

where G̃ is a free R̃-module of rank 2.

See Theorem 2.4 for a more precise version of this result. Here is an example
whose numerical data are extracted from [PRV01, Théorème 3.3.1]).

Example 1.1. Over any field k, let

I = (x2
1 − x1x3, x

2
2 − x2x3, x1x2, x0x3)

be an ideal of R = k[x0, . . . , x3]. In this situation, remark that the scheme Z = V(I)
in P3 is finite and supported over four points. One can compute a minimal graded
free resolution of I, for example using Macaulay2:

(F•)
0 R(−3)2︸ ︷︷ ︸

F3

R(−1)2

⊕
R(−2)3︸ ︷︷ ︸

F2

R4︸︷︷︸
F1

R(2)︸︷︷︸
F0

.
d3 d2

d1=
(
φ0 ... φ3

)

where φ0 = x2
1−x1x3, . . . , φ3 = x0x3 are the previously mentioned generators of I.

Let R[y0, . . . , y3] = R̃ = Sym(R4), then Sym(I) is generated over R̃ by the entries

in the matrix
(
y0 . . . y3

)
d̃2, where d̃2 stands for the base change of d2 to R̃. The

ring R̃ being bi-graded by the variables x0, . . . , x3 from one side and by y0, . . . , y3

for the other side, we write R̃(−i,−j) for a shift of degree i in the variables x and a
shift of degree j in the variables y. Consider now the first Buchsbaum-Rim complex
(cf Subsection 2.1) associated to the map

Ψ : F̃1 = R̃4 G̃ =
R̃(2, 0)
⊕

R̃(0, 1)

φ0 ... φ3

y0 ... y3



which provides a minimal free resolution of ker(Ψ):

(B•)
0

R̃(−2,−3)
⊕

R̃(−4,−2)︸ ︷︷ ︸
B2

R̃(−2,−2)4︸ ︷︷ ︸
B1

ker(Ψ) 0.
δ2
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Then Theorem A establishes that a bi-graded resolution of Sym(I) reads:

(F•)
0

R̃(−2,−3)
⊕

R̃(−4,−2)︸ ︷︷ ︸
F3

R̃(−2,−2)4

⊕
R̃(−3,−1)2︸ ︷︷ ︸

F2

R̃(−1,−1)2

⊕
R̃(−2,−1)3︸ ︷︷ ︸

F̃2=F1

R̃︸︷︷︸
F0

(
y0 ... y3

)
d̃2

which can be verified by a numerical computation.

In the third and last section of this paper, we formulate this result in the geo-
metric setting, that is when I is replaced by the ideal sheaf of a subscheme Z of
depth n and generated by n+ 1 elements over a regular quasi-projective variety X.
Looking back to the rational map Φ : X 99K Pn and the canonical map p : PnX → X,
our motivation in this case is to study the length of a subscheme obtained as zero
locus of a global section of the sheaf p∗(OP(I)(1)n) and relate it to the topological
degree of Φ, see [Dol11] for these definitions. Theorem 3.3 ensures that all higher
direct image sheaves of p∗ vanish.

The explicit computations given in this paper were made using Macaulay2.
The corresponding codes are available on request.

2. Free resolution of Sym(I)

In all the section, we let R be a commutative noetherian ring and I be an R-ideal
generated by n+ 1 elements with depth(I,R) = n. Let also

(F•) . . . F2 F1 F0
d3 d2 d1

be a free resolution of R/I where F0 = R and rank(F1) = n+ 1.

Let R̃ = Sym(F1), ˜ be the functor −⊗ R̃ and τ : F̃1 → R̃ be the multiplication
morphism

τ : F̃1 = F1 ⊗ Sym(F1) R̃
multiplication

where, more explicitly, given a basis of F1, R̃ = Sym(F1) is the polynomial ring

R[y0, . . . , yn] and τ : F̃1 → R̃ is represented by the matrix
(
y0 . . . yn

)
.

Since the surjection F1
d1→ I gives rise to a surjection Sym(F1)→ Sym(I) whose

kernel is Im(d2) ⊂ F1 ⊂ Sym(F1) [Bou70, A.III.69.4], it is relevant to describe a
resolution F• of Sym(I) by free Sym(F1)-modules, the geometric counterpart of this
fact simply being that given a projective scheme Z = V(I) with I generated by
n + 1 elements, the projectivization P(I) = Proj

(
Sym(I)

)
of I can be embedded

into PnR.
Consider now the following slight modification of the resolution (F•) tensored

by R̃:

(F̃•) . . . F̃3 F̃2 R̃.
d̃4 d̃3 τ◦d̃2

Since Im(d2) ⊂ F1 ⊂ Sym(F1) is the kernel of the surjection Sym(F1)→ Sym(I), it

means that the zero-th homology in (F̃•) is Sym(I). Moreover, since (F•) is exact,

the homologies H•(F̃i+2
d̃i+2→ F̃i+1

d̃i+1→ F̃i) vanish for i ≥ 2.

Hence, the point is to handle the homology H•(F̃3
d̃3→ F̃2

τ◦d̃2→ R̃) in (F̃•).
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2.1. Algebraic background about the Buchsbaum-Rim complex. We de-
scribe here the Buchsbaum-Rim complex associated to the morphism

Ψ =

(
d̃1

τ

)
: F̃1 → G̃

where G̃ is a free R̃-module of rank 2. We follow the presentation and notation in
[Eis95, A2.6]. This background, and especially the description of the differentials,
will be used in Subsection 2.3.

Definition 2.1. The Buchsbaum-Rim complex associated to the morphism

Ψ : F̃1 G̃ = R̃2

d̃1
τ



is the complex

(2.1) 0 ∧n+1F̃1 ⊗R̃ Dn−2G̃
∗ . . . ∧3F̃1 ⊗R̃ D0G̃

∗ F̃1 G̃
δn−1 δ2 ε Ψ

where DiG̃
∗ is the ith divided power of G̃∗, G̃∗ standing for HomR̃(G̃, R̃), and

ε : ∧3F̃1 ⊗R̃ D0G̃
∗ → F̃1 is the splice morphism in the Buchsbaum-Rim complex

which, in this case, is the composition

∧3F̃1 ∧1F̃1 ⊗R̃ ∧
2F̃1 F̃1 ⊗R̃ ∧

2G̃.
co-multiplication c 1⊗ ∧2Ψ

ε

More explicitly, given the choice of an isomorphism ∧2G̃ ' R̃, a basis (φ̃0, . . . , φ̃n)

of F̃1 and letting ι being a subset {i1, i2, i3, i1 < i2 < i3} of {0, . . . , n} and φ̃ι =

φ̃i1 ∧ φ̃i2 ∧ φ̃i3 for the corresponding product, then

(2.2) ε(φ̃ι) =
∑

κ⊂ι,|κ|=2

sgn(κ ⊂ ι)( det(Ψκ))φ̃ι\κ

where Ψκ is the 2 × 2-submatrix of Ψ with columns corresponding to the basis
elements indexed by κ, sgn(κ ⊂ ι) is the sign of the permutation of ι that puts the

elements of κ into the first 2 positions, and φ̃ι\κ is indexed by the element of the set

ι\κ. Given 2 ≤ i ≤ n−1 the morphism δi : ∧i+2F̃1⊗R̃Di−1G̃
∗ → ∧i+1F̃1⊗R̃Di−2G̃

∗

is defined as follows

(2.3)
δi : ∧i+2F̃1 ⊗R̃ Di−1G̃

∗ ∧i+1F̃1 ⊗R̃ Di−2G̃
∗

u⊗ v
∑
s,t

[Ψ∗(u′s)](v
′
t) · u′′s ⊗ v′′t

with the notation that u ∈ ∧i+2F̃1 decomposes as
∑
s u
′
s ⊗ u′′s ∈ F̃1 ⊗ ∧i+1F̃1 and

v ∈ Di−1G̃
∗ decomposes as

∑
l v
′
t ⊗ v′′t ∈ G̃∗ ⊗Di−2G̃

∗ (this explicit description of
these Eagon-Northcott morphisms δi can be found in [Eis05, A2H]).

The fact that (2.1) is a complex is explained for example in [Eis95, A2.6].
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Proposition 2.2. Assume that depth(I,R) = n where I = (φ0, . . . , φn), then the
Buchsbaum-Rim complex (2.1) is a free resolution of coker(Ψ). Thus, the complex

(B•)
0 ∧n+1F̃1 ⊗R̃ Dn−2G̃

∗︸ ︷︷ ︸
Bn−1

. . . ∧3F̃1 ⊗R̃ D0G̃
∗︸ ︷︷ ︸

B1

ker(Ψ) 0
δn−1 δ2

is a free resolution of ker(Ψ).

Proof. By [Eis95, Theorem A.2.10 and the discussion about the Buchsbaum-Rim
complex just before], it suffices to show that, since the ideal I = (φ0, . . . , φn) verifies
depth(I,R) = n, the ideal I2(Ψ) contains a regular sequence of length n. This

follows from the fact that R̃/I2(Ψ) is Cohen-Macaulay because it is determinantal
[Eis95, Theorem 18.18] so its depth is equal to its height. Hence it suffices to show

that I2(Ψ) has height n. Now, given basis such that d̃1 is represented by the matrix(
φ̃0 . . . φ̃n

)
and τ by the matrix

(
y0 . . . yn

)
, Ψ is represented by the matrix

M =

(
φ̃0 . . . φ̃n
y0 . . . yn

)
.

Remark first that height
(
I2(M)

)
≤ n by [BV88, Theorem 2.1]. Now, since

depth(I,R) = n over the ring R in n+1 variables, we have necessarily height(I) = n
and there are two cases:

• given p ∈ Spec(R) such that I ⊂ p (hence height(p) ≥ n), then I2(M) ⊂ p̃
and height

(
I2(Ψ)

)
≤ height p̃ = height p,

• if p ∈ R is such that I 6⊂ p, then the sequence φ0 ⊗ Rp, . . . , φn ⊗ Rp is
regular in Rp. This implies that I2(M) has height n by [BV88, Theorem
2.5] when localising at p.

Hence, we have that height
(
R̃/I2(Ψ)

)
= n.

�

2.2. Mapping cone between B• and F̃•. Let us describe now a map α between
the complex

(B•)
0 ∧n+1F̃1 ⊗R̃ Dn−2G̃

∗︸ ︷︷ ︸
Bn−1

. . . ∧3F̃1 ⊗R̃ D0G̃
∗︸ ︷︷ ︸

B1

δn−1 δ2

and the complex

(F̃•) . . . F̃3 F̃2
d̃4 d̃3

defined above. First, take any map of complexes µ : ∧•F1 → F• from the Koszul
complex

(∧•F1) 0 ∧n+1F1 . . . ∧2F1 F1 F0
kn+1(d1) k3(d1) k2(d1) d1

associated to d1 to the complex (F•) that extends the identity map in degrees 0
and 1. Such a map µ exists because of the freeness of the considered modules and

because Im(k2(d1)) ⊂ ker(d1). Now, define the map α : B• → F̃• such that given
1 ≤ i ≤ n− 1, the morphisms

αi : Bi = ∧i+2F̃1 ⊗R̃ Di−1G̃
∗ → F̃i+1
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are the compositions

(2.4) ∧i+2F̃1 ⊗R̃ Di−1G̃
∗ ∧1F̃1 ⊗ ∧i+1F̃1 R̃⊗ F̃i+1

αi

c⊗p1 τ⊗µ̃i+1

where c : ∧i+2F̃1 → ∧1F̃1⊗∧i+1F̃1 is the co-multiplication map sending θ1∧. . .∧θi+2

to
∑
i θi ⊗ θ1 ∧ . . . ∧ θ̂i ∧ . . . ∧ θi+2 and

p1 : Di−1G̃
∗ R̃

e
∗(i−1−j)
1 ⊗ e∗(j)2

{
1 if j = 0

0 if j ≥ 1

for the dual basis (e∗1, e
∗
2) of a basis (e1, e2) of G̃.

Lemma 2.3. The map α : B• → F̃• is a map of complexes.

Proof. Given 1 ≤ i ≤ n− 2, we have to show that the square:

(2.5)

Bi+1 = ∧i+3F̃1 ⊗R̃ DiG̃
∗ ∧i+2F̃1 ⊗R̃ Di−1G̃

∗ = Bi

F̃i+2 F̃i+1

αi+1

δi+1

αi

d̃i+1

is commutative. This commutativity is verified by writing explicitly the composition

αi ◦ δi+1 and the composition d̃i+1 ◦ αi+1 and by using the fact that the square

∧i+2F1 ∧i+1F1

Fi+2 Fi+1

µi+2

ki+2(d1)

µi+1

di+2

is commutative so that d̃i+2 ◦ µ̃i+2 = µ̃i+1 ◦ ˜ki+2(d1). �

As we are going to explain now, the mapping cone of α provides a resolution of
Sym(I).

2.3. Description of the resolution of Sym(I). Let us state our main result.
Recall that the morphisms αi and δi are defined respectively in Subsection 2.2 and

Subsection 2.1 and, by convention, we complete the resolution F̃• and B• by zero

maps and zero R̃-modules in order to make the dots consistent in (F•).

Theorem 2.4. Let R be a commutative noetherian ring and I be an R-ideal gener-
ated by n+ 1 elements such that depth(I,R) = n. Following the previous notation,
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a minimal free resolution of Sym(I) by R̃-modules reads:

(F•) . . .

B2

⊕
F̃4︸︷︷︸
F3

B1

⊕
F̃3︸︷︷︸
F2

F̃2︸︷︷︸
F1

R̃︸︷︷︸
F0

.

 δ3 0

α3 d̃5

  δ2 0

α2 d̃4

 (
α1 d̃3

)
τ◦d̃2

The proof of Theorem 2.4 is contained in the following two lemmas.

Lemma 2.5. Let S be a commutative ring,

F3 F2 F1 R
d3 d2 d1

be an exact sequence of S-modules and τ : F1 → R be an S-module homomorphism.
Then there is an S-module isomorphism

ker(F1

d1

τ


−→ R2) ' H•(F3

d3→ F2
τ◦d2−→ R)

Proof. If u ∈ ker

(
d1

τ

)
, then u = d2v for some v ∈ F2 since ker(d1) = Im(d2). Thus

we can define the morphism

ker

(
d1

τ

)
H•(F3

d3→ F2
τ◦d2−→ R)

u [v]

where [v] stands for the homology class of v. Since ker(d2) = Im(d3), the image of
u depends only on the class of [v] so this morphism is well defined and its inverse
is explicitly given by:

d2v [v]

which is also well defined by definition of the homology H•(F3
d3→ F2

τ◦d2−→ R). �

Lemma 2.6. We have the following equality:

d̃2 ◦ α1 = ε

where ε is the splice map, cf Definition 2.1.

Proof. Recall that the splice map ε is defined as the following composition

∧3F̃1 ∧1F̃1 ⊗R̃ ∧
2F̃1 F̃1 ⊗R̃ ∧

2G̃ ' F̃1

co-multiplication c 1⊗ ∧2Ψ

ε

so, as in the proof of Lemma 2.3, it suffices to write down explicitly the composition

d̃2 ◦ α1, that is:
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∧3F̃1 ∧1F̃1 ⊗R̃ ∧
2F̃1 R̃⊗R̃ ∧

2F̃1 ' F̃2 F̃1

co-multiplication c τ ⊗ µ̃2 d̃2

α1

and to use that d̃2 ◦ µ̃2 = k̃2(d1) which implies the equality d̃2 ◦ α1 = ε (recall the
explicit description (2.2) of the splice map ε). �

Proof of Theorem 2.4. By Lemma 2.5 with S = R̃, we have that

H•(F̃3
d̃3→ F̃2

τ◦d̃2→ R̃) ' ker(Ψ).

Since this isomorphism is the one appearing in ε = d̃2 ◦ µ̃2 by Lemma 2.6, we have

that (F•) is a resolution of Sym(I) by R̃-modules. �

2.4. Consequences of Theorem 2.4. We develop here some consequences of
Theorem 2.4.

Corollary 2.7. Let R be a commutative noetherian ring and I be an R-ideal gen-
erated by n + 1 element and such that depth(I,R) = n. Assume in addition that

R/I has projective dimension n, then R̃/Sym(I) has projective dimension n.

Proof. Under our assumption, let:

(F•) 0 Fn . . . F2 F1 F0
dn d3 d2 d1

be a resolution of R/I. By the explicit description of the resolution of Sym(I) in

Theorem 2.4, R̃/Sym(I) has resolution

(F•)
0 Bn−1︸ ︷︷ ︸

Fn

Bn−2

⊕
F̃n︸ ︷︷ ︸
Fn−1

. . .

B1

⊕
F̃3︸︷︷︸
F2

F̃2︸︷︷︸
F1

R̃︸︷︷︸
F0

which concludes the proof. �

Given 1 ≤ i ≤ n − 1, let denote Bi =
i−1
⊕
j=0

R̃(−(i − j)δ,−j − 2)(
n+1
i+2) where the

convention is that R̃(−k,−l) denotes a shift k in the variables of R and a shift l in

the variables of R̃.

Corollary 2.8. Assume now that R is a graded commutative noetherian ring and
let I be an R-ideal with depth(I,R) = n and generated by n + 1 elements all
homogeneous of the same degree δ. Let also

(F•)
. . . ⊕

j≥2
R(−j)β3j︸ ︷︷ ︸
F3

⊕
j≥1

R(−j)β2j︸ ︷︷ ︸
F2

Rn+1︸ ︷︷ ︸
F1

R(δ)︸︷︷︸
F0

d4 d3 d2 d1

be a minimal graded free resolution of I, where βji ≥ 0 for all i ≥ 2, j ≥ i− 1.
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Then a bi-graded minimal free resolution of Sym(I) reads:

(F•) . . .

B1

⊕
⊕
j≥2

R̃(−j,−1)β3j︸ ︷︷ ︸
F̃3︸ ︷︷ ︸
F2

⊕
j≥1

R̃(−j,−1)β2j︸ ︷︷ ︸
F1

R̃︸︷︷︸
F0

.

 δ2 0

α2 d̃4

 (
α1 d̃3

)
τ◦d̃2

Proof. It suffices to consider all the explicit morphisms in the resolution (F•) of
Sym(I) from Theorem 2.4 and to keep track of the shifts in the graduation. From

the definition of τ and d̃2, it is clear that F1 = ⊕
j≥1

R̃(−j,−1)β2i .

Let focus now on B1. First B1 = ∧3R̃n+1 ' R̃(n+1
3 ) and it remains to identify

the shifts. To this end, recall that the composition τ ◦ d̃2 ◦ α1 is equal to τ ◦ ε, see
Lemma 2.6. By the description (2.2) of ε via the 2-minors of Ψ and then by the
composition of ε with τ , the shift has thus degree δ in the variables of R and degree

2 in the variables of R̃. Hence B1 = R̃(−δ,−2)(
n+1
3 ). The other shifts in the pieces

Bi for 2 ≤ i ≤ n− 1 are then given by the morphisms δi, see (2.3).
The resolution is moreover minimal because no morphism in this resolution has

constant entries (constant entries meaning entries belonging to the degree-zero part
of R). �

Next we observe that the differentials in our resolution are linear or constant in
the y variables.

Definition 2.9. Assuming that R is a graded commutative noetherian ring, let I
be an R-ideal generated by n + 1 elements all homogeneous of the same degree δ

and let denote y0, . . . , yn the variables of R̃ = Sym(Rn+1). A complex F• of free

R̃-module is sublinear if for all i the differential Fi → Fi−1 is linear or constant in
y0, . . . , yn.

With this definition, we have:

Corollary 2.10. Assuming that R is a graded commutative noetherian ring, let
I be an R-ideal generated by n + 1 elements all homogeneous of the same degree
δ and such that depth(I,R) = n. Then the ideal Sym(I) admits a sublinear free

resolution over R̃.

Proof. This follows from the description of the morphisms of the resolution (F•) of
Sym(I) in Theorem 2.4. Indeed, for any i ≥ 1, the morphisms δi : Bi → Bi−1 and

αi : Bi → F̃i+1 are linear or constant in the variables y0, . . . , yn, see the respective
definitions of δi and αi in (2.3) and (2.4). �

This latter result is sharp in the following sense. If depth(I,R) < n + 1, then
the resolution of X might not be sublinear as shown in the following example. This
example was explained to us by Aldo Conca.

Example 2.11. In P3, consider the zero locus Z of the ideal IZ = (−x3
2x3 +

x4
3,−x4

2 − x4
3,−x1x

3
3 − x4

3, x
2
2x

2
3 + x4

3). We have depth(IZ , R) = 2 over the ring
R = k[x0, . . . , x3], dim(Z) = 1, and a minimal graded free resolution of IP(IZ) over

the ring R̃ = R[y0, . . . , y3] reads:
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0 R̃(−5,−3)

R̃(−5,−2)
⊕

R̃(−4,−3)3

R̃(−4,−1)
⊕

R̃(−3,−2)3

⊕
R̃(−4,−2)
⊕

R̃(−3,−3)

R̃(−1,−1)
⊕

R̃(−2,−1)2

⊕
R̃(−3,−1)

IP(IZ) 0
l2

where, as above, we wrote the shift in the y variables in the right position. As
one can check from a computation (via a computer algebra system), the morphism
l2 has several quadratic entries in y, hence the resolution of IP(IZ) is not sublinear.

3. Locally free resolution of P(I)

To finish, let us come back to our initial geometric motivation. Fix a field k
and let X be a regular quasi-projective variety over k. Let L be a line bundle
over X and let V be an (n + 1)-dimensional subspace of H0(X,L). The image of
the evaluation map V⊗L∨ → OX is an ideal sheaf IZ of a closed subscheme Z in
X. Given a basis (φ0, . . . , φn) of V, this provides a rational map Φ : X 99K P(V)
sending x ∈ X to

(
φ0(x) : . . . : φn(x)

)
and defined away from Z.

Denoting X the projectivization Proj
(

Sym(IZ)
)

of the ideal sheaf IZ , the surjec-
tion V⊗L∨ → IZ induces a closed embedding X ↪→ PnX . This is just the geometric
counterpart of the fact that Sym(IZ) is an ideal sheaf of Sym(V⊗L∨) with the
notation of Section 2.

We describe now a locally free resolution of the ideal sheaf IX in PnX assuming
that Z has depth n in X. To this end, let

(F•) 0 Fn . . . F1 F0
dn d2 d1

be a locally free resolution of OZ⊗L = (OPn/IZ)⊗L. Remark that (F•) has lenght
n in view of the Auslander-Buchsbaum formula and because X is regular. Let also
p : PnX → X be the projective bundle map, ξ be the first Chern class c1

(
OPn

X
(1)
)

of
OPn

X
(1) and, depending on the context, η be either c1(L) or the pull back p∗c1(L)

of c1(L) by p. Given the variables y0, . . . , yn of PnX , let Ψ be the map

Ψ : F̃1 = V⊗OPn
X

G̃ =
OPn

X
(η)
⊕

OPn
X

(ξ)

φ0 ... φn

y0 ... yn



Lemma 3.1. Assuming Z has depth n, a locally free resolution of ker(Ψ) reads:

(B•) 0 Bn−1 . . . B1 ker(Ψ) 0.
δn−1 δ2

where Bi = ∧i+2F̃1 ⊗R̃ Di−1G̃∗
(

det(G̃∗)
)

for 1 ≤ i ≤ n− 1.

Proof. The arguments are the same as in the proof of Proposition 2.2. �

Now, as in Subsection 2.2, we define a mapping cone from (B•) and

(F̃•) . . . F̃3 F̃2.
d̃4 d̃3
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Lemma 3.2. For each 1 ≤ i ≤ n − 1, there exists a morphism αi : Bi → F̃i+1

such that the collection of the morphisms α1, . . . αn−1 defines a map of complexes

between (B•) and (F̃•).

Proof. Let first define α1. To this end, consider the following commutative diagram:

0 ker(Ψ) F̃1

OPn
X

(η)
⊕

OPn
X

(ξ)

0 ker(Φ̃) F̃1 OPn
X

(η)

Ψ

pr1

Φ̃

where pr1 is the first projection. Since (B•) resolves ker(Ψ) and (F̃•) resolves

ker(Φ̃), we have a morphism ker(Ψ)→ ker(Φ̃) and thus by composition a morphism

B1 → ker(Φ̃). Hence we are looking for a lift α1 of the latter morphism as in the
following diagram:

B1

F̃2 ker(Φ̃).

α1

The existence of α1 follows from the vanishing of the sheaf Ext1
(
B1, ker(d̃2)

)
since,

by using the resolution

. . . F̃3 ker(d̃2)
d̃4

of ker(d̃2) and by diagram chasing, Ext1(B1, ker(d̃2)) = 0. In turn, to prove this
vanishing, by diagram chasing it suffices to show that

Ext1(B1, F̃3) = Ext2(B1, F̃4) = . . . = Extn−2(B1, F̃n) = 0.

These latter vanishings hold since for any 1 ≤ j ≤ n− 2,

Extj(B1, F̃j+2) ' Hj(PnX ,B∨1 ⊗ F̃j+2) = 0

in view of the projection formula and cohomological vanishings of the projective
space, see [Har77, III.5, III.9.3].

The existence of the morphisms α2, . . . , αn−2 follows then from a finite induction
(the base case being the existence of α1 above). Indeed, for each 2 ≤ i ≤ n − 2,

assuming the existence of a morphism αi−1 : Bi−1 → F̃i that commutes with the

associated morphisms δ and d̃ in (B•) and (F̃•) (induction hypothesis), we have a

morphism Bi → ker(d̃i) and we are looking for a lift αi of the latter morphism as
in the following diagram:

Bi

F̃i+1 ker(d̃i).

αi

As in the base case, the existence of this lift αi follows from a diagram chasing that
insures the vanishing of Ext1

(
Bi, ker(di+1)

)
since

Extj(Bi, F̃j+i+1) ' Hj(PnX ,B∨i ⊗ F̃j+i+1) = 0 for 1 ≤ j ≤ n− i− 1.
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The last morphism αn−1 : Bn−1 → F̃n is then built from the morphism Bi−1 →
ker(d̃i−1) and the identification 0→ F̃n → ker(d̃i−1)→ 0. �

Theorem 3.3. Under the assumption that depth(Z) = n, a locally free resolution
of the ideal sheaf IX of X = P(IZ) reads:

(3.1) 0 Bn−1

Bn−2

⊕
F̃n

. . .

B1

⊕
F̃3

F̃2 OPn
X
.

δn−1

αn−1

  δn−2 0

αn−2 d̃n

  δ2 0

α2 d̃4

 (
α1 d̃3

)

Proof. To show that (3.1) is a locally free resolution, we have to show that it is a
resolution over every affine open set of PnX . To this end, consider the restriction of
(3.1) to such an affine open set U . Since the formation of the symmetric algebra
commutes with base change, we have that this restriction coincides with the reso-
lution obtained in the affine case in Theorem 2.4. Thus, this restriction provides a
free resolution over U which concludes the proof. �
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[BC05] L. Busé and M. Chardin. Implicitizing rational hypersurfaces using approximation com-

plexes. J. of Symbolic Computation, 40:1150–1168, 2005. ↑1
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