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Abstract. We introduce a variational framework for separating shading
and reflectance from a series of images acquired under different angles,
when the geometry has already been estimated by multi-view stereo.
Our formulation uses an l

1-TV variational framework, where a robust
photometric-based data term enforces adequation to the images, total
variation ensures piecewise-smoothness of the reflectance, and an addi-
tional multi-view consistency term is introduced for resolving the arising
ambiguities. Optimisation is carried out using an alternating optimi-
sation strategy building upon iteratively reweighted least-squares. Pre-
liminary results on both a synthetic dataset, using various lighting and
reflectance scenarios, and a real dataset, confirm the potential of the
proposed approach.
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1 Introduction

Acquiring the shape and the reflectance of a scene is a key issue for the
movie industry, as it allows proper relighting. Well-established shape acquisition
techniques such as multi-view stereo can provide accurate 3D-reconstructions
in a robust manner. Nevertheless, they do not aim at recovering the surface
reflectance. Hence, the original input images are usually mapped onto the 3D-
reconstruction as texture. Since the images mix shading information (induced by
lighting and geometry) and reflectance (which characterises the surface), relight-
ing based on this approach is usually unsatisfactory. To improve results, the
reflectance needs to be further extracted. As shown in Fig. 1, our aim is to
separate shading and reflectance using several images of a surface taken under
different angles, assuming known (but possibly gross) geometry.

We formulate this task as a variational problem, introducing the knowl-
edge that the albedo (we assume Lambertian surface, hence albedo charac-
terizes reflectance) is independent from the viewing angle as a prior within
the variational model. We further tackle the problem of robustness to spec-
ularities and imperfect alignment, using a robust l1-norm-based photometric



Fig. 1. Overview of our contribution. From a set of n images of a surface acquired
under different angles, and a coarse geometry obtained for instance using multi-view
stereo, we estimate a shading-free reflectance map per view. (Color figure online)

data term. Assuming that the albedo is piecewise-smooth, we further involve a
TV-regularizer.

After reviewing related approaches in Sect. 2, we present our variational solu-
tion in Sect. 3. Our numerical strategy for solving this variational problem, which
is presented in Sect. 4, is based on alternating optimisation of reflectance and
lighting, and on an iteratively reweighted least-squares strategy for handling
the l1-terms. Preliminary experiments on both synthetic and real data are con-
ducted in Sect. 5, which confirm the interest of multi-view shading-reflectance
decomposition strategy. Our work is eventually summarised in Sect. 6.

2 Related Work

The problem of decomposing an image into a low-frequency component (repre-
senting reflectance) and a higher-frequency one has been tackled in various ways.
One famous example is the so-called “cartoon-texture” image decomposition [2],
which can be achieved efficiently using an l1-TV approach [8]. Yet, such methods
may fail in the presence of smooth brightness variations due to shading.

In this view, a photometric model would be helpful, as it would explicitely
describe the interactions between the geometry, the potentially complex lighting
and the reflectance. Yet, it is not possible to estimate all these parameters from
a single image. In fact, estimating only the geometry, with known reflectance
and lighting, is already an ill-posed problem, known as shape-from-shading [4].
It can be disambiguated by using several images obtained from the same angle,
but under varying lighting, a variant known as photometric stereo [14] which
can simultaneously recover shape, reflectance and lighting [3].

Still, photometric stereo requires very controlled acquisition environments,
which limit potential applications. Multi-view stereo (MVS) methods [12], which
focus on estimating the shape, are less restrictive. These techniques have seen
significant growth over the last decade, an expansion which goes hand in hand
with the development of structure-from-motion (SfM) solutions [10]. Indeed,
MVS requires the cameras’ parameters, outputs of the SfM algorithm. Nowadays,



these mature methods are commonly used in uncontrolled environments, or even
with large scale Internet data [1].

Considering strengths and weaknesses of both photometric and multi-view
methods, a joint approach may help recovering a precise 3D-reconstruction as
well as albedo and lighting information. For instance, the method in [5] iteratively
refines the object surface using shading information, assuming that the albedo is
constant or piecewise-constant [5]. This assumption was recently relaxed in [6,7],
by resorting to properly designed priors on shape, shading and reflectance.

Still, these methods aim at refining a mesh by adding fine-scaled surface
details, along with the associated reflectance information. As a result, the com-
plexity of the mesh may be a source of concern when it comes to real-time
manipulation by graphic artists. We argue that it may be more meaningful to
keep the geometry simple, yet providing the artists with a series of 2D-maps
representing reflectance and fine-scale geometry, under the form of albedo and
depth maps. A first step in this direction has recently been achieved in [9], where
a variational framework for the joint recovery of depth, reflectance and lighting
maps is introduced. Yet, this approach relies on the choice of a single reference
view, the other views being used only for the sake of stereo matching.

On the contrary, we target a symmetric approach, where all the reflectance
maps corresponding to the different views are simultaneously recovered, thus
avoiding the problem of selecting the main image. We focus in this exploratory
work on separating shading and reflectance, using the MVS results, and not yet
on refining fine-scale geometric surface details. Indeed, we will see that even with
a smoothed geometry, reasonable reflectance estimation can be carried out. In
this view, the next section introduces a simple and effective l1-TV variational
model for estimating a set of reflectance maps, assuming known geometry.

3 Joint Variational Estimation of the Albedo

and of Spherical Harmonics Lighting

We consider a set of n pictures of an object, obtained under different angles (and,
possibly, different lighting) {Ii : Ωi ⊂ R

2 → R}i=1...n, where Ωi represents the
mask of the object of interest in image Ii. These masks are assumed to be known,
as well as a (possibly inaccurate) representation of the geometry under the form
of normal maps n

i : Ωi → R (which can be obtained by using SfM and MVS).
Our aim is to extract, from each image Ii, a representation of the surface

reflectance through an albedo map ρi : Ωi → R, and an estimate of the lighting
in this image. Assuming Lambertian reflectance and general lighting, a second-
order spherical harmonics lighting model can be used [11], and thus the i-th
lighting can be represented by a vector σi ∈ R

9. Our problem then comes down
to solving the following set of equations1:

Ii(p) = ρi(p)σi · νi(p), ∀p ∈ Ωi, ∀i = 1 . . . n, (1)

where vectors νi(p) ∈ R
9 can be deduced from the normals coordinates [3].

1 This model is valid for greyscale images. To handle RGB images, our approach can
be applied independently to each color channel.



Obviously, it is not possible to solve the set of Eq. (1) without introducing
additional priors. Although a global (i.e., same for each image and each pixel)
scale ambiguity on the albedo is acceptable (because these values can always
be normalized), the set of Eq. (1) exhibits such an ambiguity for each image.
We tackle this issue by proposing a multi-view consistency prior on the albedo.
Indeed, the albedo characterizes the surface, and is thus independent from the
view. Besides, to ensure spatial consistency of the albedo estimate, a total vari-
ation prior is also introduced. Eventually, to ensure robustness to specularities,
we solve the set of Eq. (1) in the l1-norm sense. Overall, this leads us to estimate
{σi ∈ R

9, ρi : Ωi → R}i=1...n as minimisers of the following energy:

ε({σi, ρi}i) =

n
∑

i=1

εPhoto(σ
i, ρi)+λ

n
∑

i=1

εSmooth(ρi) + µ
∑ ∑

i<j

εMV(ρi, ρj). (2)

In Eq. (2), the first component ensures photometric consistency:

εPhoto(σ
i, ρi) =

∑

p∈Ωi

|Ii(p) − ρi(p)σi · νi(p)|, (3)

the second one ensures albedo smoothness:

εSmooth(ρi) =
∑

p∈Ωi

|∂xρi(p)| + |∂yρi(p)|, (4)

where ∇ρi(p) =
[

∂xρi(p), ∂yρi(p)
]⊤

represents the gradient of ρi at pixel p

(approximated, in practice, using first-order forward stencils), and the third
component ensures multi-view consistency of the albedo estimate:

εMV(ρi, ρj) =
∑

pi∈Ωi

∑

pj∈Ωj

Ci,j(p
i, pj)|ρi(pi) − ρj(pj)|, (5)

where Ci,j is a “correspondence function” defined as follows:

Ci,j(p
i, pj) =

{

1 if pixels pi and pj correspond to the same surface point;

0 otherwise.
(6)

At last, λ and µ are tunable hyper-parameters controlling the reflectance smooth-
ness and the multi-view consistency, respectively.

The values of function Ci,j are easily deduced from an initial geometry esti-
mate, as proposed for instance by Langguth et al. in [7] for their evaluation of
geometric error.

Applying an SfM algorithm to the images {Ii}i=1...n, we obtain the cameras
intrinsics K

i ∈ R
3×3, and the poses of the cameras, represented by rotation

matrices R
i ∈ R

3×3 and translation vectors ti ∈ R
3. Then, a point X ∈ R

3 on
the surface is projected to a pixel pi ∈ R

2 in the i-th image according to

[pi⊤, 1]⊤ = πi(X) = K
i(RiX + ti), (7)

where πi stands for the projection from surface to image Ii.



Hence, the correspondence function Ci,j defined in Eq. (6) can be redefined as
follows, introducing some threshold ǫ > 0 (we use ǫ = 3, in the experiments) and
using the known depth (obtained by MVS) to compute the inverse projections:

Ci,j(p
i, pj) =

{

1 if
∥

∥

∥πi
−1([pi⊤, 1]⊤) − πj

−1([pj⊤
, 1]⊤)

∥

∥

∥ ≤ ǫ,

0 otherwise.
(8)

4 Resolution

Let us now introduce our numerical strategy for minimising the energy (2).
This problem being bi-convex, we opt for an alternating estimation strategy: at
iteration (k), we successively update the lighting and the albedo as:

{σi,(k+1)}i = argmin
{σi∈R9}i

ε({σi, ρi,(k)}i), (9)

{ρi,(k+1)}i = argmin
{ρi: Ωi→R}i

ε({σi,(k+1), ρ}i), (10)

taking as initial guess ρi,(0) ≡ Ii and σi,(0) = 1R9 .
To handle the non-differentiable l1-norm terms, we opt for an iteratively

reweighted least-squares approach. Since the n lighting vectors σi, i = 1 . . . n, are
independent, Eq. (9) is then replaced by the following n independent reweighted
least-squares updates, which can be solved by resorting to the pseudo-inverse:

σi,(k+1) = argmin
σi∈R9

∑

p∈Ωi

w
(k)
i (p)|Ii(p) − ρi,(k)(p)σi · νi(p)|2, ∀i = 1 . . . n,(11)

with

w
(k)
i (p) =

1

|Ii(p) − ρi,(k)(p)σi,(k) · νi(p)|δ
, (12)

where we denote |·|δ = max{δ, |·|} (we use δ = 10−4, in the experiments).
Similarly, albedo update (10) is approximated as follows:

{ρi,(k+1)}i = argmin
{ρi: Ωi→R}i

n
∑

i=1

∑

p∈Ωi

w
(k)
i (p)|Ii(p) − ρi(p)σi,(k) · νi(p)|2

+ λ

n
∑

i=1

∑

p∈Ωi

w
(k)
∂xρi(p)|∂xρi(p)|2 + w

(k)
∂yρi(p)|∂yρi(p)|2

+ µ
∑ ∑

i<j

∑

pi∈Ωi

∑

pj∈Ωj

Ci,j(p
i, pj)w

(k)
i,j (pi, pj)|ρi(pi) − ρj(pj)|2, (13)



with

w
(k)
∂xρi(p) =

1

|∂xρi,(k)(p)|δ
, (14)

w
(k)
∂yρi(p) =

1

|∂yρi,(k)(p)|δ
, (15)

w
(k)
i,j (pi, pj) =

1

|ρi,(k)(pi) − ρj,(k)(pj)|δ
. (16)

This time, due to the multi-view consistency prior, the albedo estimates w.r.t.
the different images are not independent: all estimations must be carried out
simultaneously. Stacking all the albedo values in a large vector ρ ∈ R

N , with
N =

∑

i|Ωi|, the optimisation problem (13) can be turned into the following
large, sparse, linear least-squares problem:

ρ(k+1) = argmin
ρ∈RN

∥

∥

∥

∥
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∥

∥

∥

∥

∥
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∥
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Diag({
√

w
(k)
i (p) σi,(k+1) · νi(p)}i,p)√

λ Diag({
√

w
(k)
∂xρi(p)}i,p) Dx

√
λ Diag({

√

w
(k)
∂yρi(p)}i,p) Dy

√
µDiag({

√

w
(k)
i,j (pi, pj)}i,j,pi,pj ) C

















ρ

−











Diag({
√

w
(k)
i (p)}i,p)I

0N×1

0N×1

0∑n−1

i=1
(n−i)|Ωi|×1











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

. (17)

In the least-squares problem (17), the first matrix block stacks the weighted
shading values, Dx and Dy are large sparse matrices obtained by concatenating
the n finite differences matrices relative to each domain Ωi, i = 1 . . . n, and the
last one is a large

∑n−1
i=1 (n − i)|Ωi| × N matrix used to represent the corre-

spondence functions defined in Eq. (6). As for the non-null vector in the second
row of Eq. (17), it stacks all the intensity values in I, and weights them. Each
function Ci,j is easily represented as an |Ωi|× |Ωj | matrix Ci,j with at most one
nonzero element per row. By arranging these matrices by block in a matrix C,
all values Ci,j(p

i, pj)
(

ρi(pi) − ρj(pj)
)

can be compactly represented in matrix
form as Cρ. For instance, considering an n = 4 pictures set, we get the following
matrix:

C =

















B1,2 C1,2

B1,3 C1,3

B1,4 C1,4

B2,3 C2,3

B2,4 C2,4

B3,4 C3,4

















, (18)

where Bi,j is a diagonal |Ωi| × |Ωi| matrix with entries equal to −1 on the lines
where Ci,j is non-null.



Problem (17) is a linear least-squares problem where the matrix is very
sparse. For its resolution, we apply a conjugate gradient algorithm to the asso-
ciated normal equations. We iterate optimisation steps (9) and (10) until con-
vergence or a maximum iteration number is reached. In our experiments, we
found 50 iterations were always sufficient to reach a stable solution (10−3 rel-
ative residual between two consecutive energy values). Proving convergence of
our scheme is beyond the scope of this paper, but it was empirically observed in
all experiments, although the convergence rate seems to be sublinear.

5 Results

We first test our shading-reflectance decomposition method in a very simple
situation. Let us simulate n = 13 pictures of the object in Fig. 2-a, supposed
purely-Lambertian, with a camera whose intrinsic and extrinsic parameters are
known, under a “sky-dome” lighting. Since the object geometry is known, the
problem unknows are reflectance and lighting in each surface point.

Fig. 2. (a) 3D-shape used in the tests (the well-known “Joyful Yell” 3D-model), which
will be covered with two different albedos. (b) Same 3D-shape after smoothing, thus
less accurate. (c)–(d) Zooms of (a) and (b), respectively, near the neck.

Figure 3 shows three of these pictures, of size 540 × 960, generated using a
renderer, and the estimated colored albedo using our method.

As expected, since the lighting used in this simulation (sky-dome) is the
most appropriate to a spherical harmonics modelisation, these first results are
very satisfactory. As a comparison, the third row of Fig. 3 shows the results of
the cartoon-texture decomposition method described in [8]. This method needs
only one image. The “cartoon” part, which is more or less equivalent to an
albedo, is far less uniform than the albedo estimated using shading-reflectance
decomposition, in the four parts (hair, face, shirt and plinth) which have received
a uniform albedo (compare the second and third lines of Fig. 3).

This comparison a posteriori confirms our basic idea i.e., that reflectance
estimation benefits in two ways from the multi-view framework: indeed, this



Fig. 3. First line: Three (out of n = 13) synthetic views of the object of Fig. 2-a,
computed with a purely-Lambertian reflectance divided into four parts (hair, face,
shirt and plinth) which receive a uniform albedo, under “sky-dome” lighting. Second
line: Colored estimated albedos, using the proposed approach. Geometry and camera
parameters are supposed to be known, but the lighting is unknown. Third line: Empir-
ical estimation of the albedo using the cartoon-texture decomposition described in [8].
(Color figure online)

allows us not only to estimate the 3D-shape, but also to constrain the albedo
of each surface point to be the same in all the pictures where it is visible. In
contrast, the cartoon-texture decomposition cannot correct the shading effects,
which explains, for instance, why the cartoon is so dark inside the mouth.

As we dispose of the albedo ground truth, we can numerically evaluate these
results by estimating the albedo variance in the n = 13 pictures, in each part of
the object where the albedo is uniform2. The values presented in Table 1 confirm
that our estimation is more accurate. As well, we observe that the albedo variance
is higher for both zones which have concave parts, namely hair and face (in this
last case, the albedo is largely under-estimated in the mouth). Indeed, such
points only partly see the sky-dome, which causes a penumbra effect.

Since we also know the object geometry, it seems that we could compensate
for penumbra. However, this would require that the lighting is known as well,
which is not the case in the framework of the targeted usecase, since an outdoors
lighting is uncontrolled. Moreover, we would have to consider not only the pri-
mary lighting, but also the successive bounces of light on the different parts of
the scene (these were taken into account by the ray-tracing algorithm). Actually,
one of the main difficulties of our problem is to consider unknown lighting.

2 In order to compare comparable things, we scale the estimated albedos in each part,
so that its median is equal to the associated ground truth value.



Table 1. Variances of the estimated albedos inside each of the four homogeneous parts
of the colored 3D-model used for the tests of Fig. 3, computed after renormalization,
in the three channels. In each box: the real value of the albedo is given on the left;
on the right, the variances computed from our shading-reflectance decomposition, and
from the cartoon-texture decomposition are given, respectively, above and below.

Channel Hair Face Shirt Plinth

Red 1.0000 0.0135 1.0000 0.0015 0.0196 0.0002 0.1216 0.0004

0.0274 0.0106 0.0006 0.0005

Green 0.0314 0.0007 0.5333 0.0016 0.0549 0.0000 0.1216 0.0003

0.0007 0.0065 0.0001 0.0005

Blue 0.0000 0.0000 0.3608 0.0006 1.0000 0.0104 0.1216 0.0001

0.0000 0.0031 0.0217 0.0003

Fig. 4. Same test as in Fig. 3, but the scene is illuminated by four extended light
sources. Obviously, the results are not much affected by the light configuration, since
the shading-reflectance decomposition is still effective. (Color figure online)

Another test, where the sky-dome lighting is replaced with four extended light
sources, is thus appropriate. Figure 4 shows that, under the same assumptions as
for Fig. 3, the results are really close. The proposed method seems little sensitive
to the lighting configuration, which is a significant advantage.

As we use a TV-smoothing term, which favors piecewise-constant albedos,
the satisfactory results of Figs. 3 and 4 were predictable. Let us now modify the
shirt albedo in order to simulate thin stripes. Figure 5 shows that the proposed
method still works well if the smoothing weight λ is well-tuned (λ is 12 times
smaller for Fig. 5 than for Figs. 3 and 4).

The use of an l1-term for photometric consistency offers a competitive advan-
tage to our method: it is robust to outliers such as deviations from the Lam-
bertian model (1), which are unavoidable in practice. We generated a new set
of n = 13 pictures, considering now the hair and plinth reflectances as partly
specular. Indeed, the results presented in Fig. 6 are similar to those of Fig. 5.



Fig. 5. Same tests as in Fig. 4, with a single extended light source, but the shirt has
now a non-uniform albedo. Our method still works well, although the new configuration
of the shirt albedo with fine stripes is a priori less adapted to a TV-smoothing term.
(Color figure online)

Fig. 6. Same test as in Fig. 5, but the hair and plinth reflectances are now partly
specular. Our method seems to be robust against outliers, due to the l

1-data term.
(Color figure online)

For the next step, we suppose moreover that the scene geometry is inaccu-
rately known. This will necessarily be the case with real data. The surface shown
in Fig. 2-b (zoomed in Fig. 2-d) is obtained by smoothing the original 3D-shape of
Fig. 2-a (zoomed in Fig. 2-c), using a tool from the meshlab software. The results
provided in Fig. 7 show that our method is robust as well to small inaccuracies
in the object geometry, and is thus relevant for the intended application.

As a digest of all these tests, Table 2 gives the variance of the albedo estimated
inside the hair part in the red channel, which is the most significant.

Finally, we put this work in real context. The proposed algorithm is applied
to the outputs of an SfM/MVS pipeline, which provides a rough geometry and
camera parameters estimates. Figure 8 confirms that small inaccuracies in the
geometry input do not degrade significantly the results of our method.



Fig. 7. Same test as in Fig. 6, using a coarse version of the 3D-shape (cf. Fig. 2-b and
d). Our method is robust as well to small inaccuracies in the object geometry. (Color
figure online)

Table 2. Variance of the estimated albedo inside the hair part in the red channel, for
all tests on the synthetic dataset, except that of Fig. 5 (which would give the same
value as that of Fig. 4).

Channel Figure 3 Figure 4 Figure 6 Figure 7

Red 0.0135 0.0367 0.0475 0.0626

Fig. 8. Left: One real view of the object ‘fountain-P11’ [13]. Right: Colored estimated
albedo, using the proposed approach. Geometry and camera parameters estimates are
outputs of an SfM/MVS pipeline using 25 input images. Only 8 images have been used
as inputs of our algorithm. (Color figure online)

6 Conclusion and Perspectives

We have proposed a variational framework for separating shading and reflectance
from images based on an initial 3D-reconstruction obtained by SfM and MVS
techniques. We have shown that the ambiguities can be raised by introducing a
multi-view consistency prior on the reflectance. Robustness is further enforced
by considering an l1-norm-based photometric data term, and a piecewise-
smoothness constraint on the albedo is introduced under the form of total



variation regularization. Preliminary results on a synthetic dataset covered with
two different albedos, and lit in various manners, as well as on a real dataset,
demonstrate the potential of the approach.

We now plan to estimate not only the reflectance, but also fine-scale geometric
details. In this view, our alternating scheme will be modified in order to include
an additional step aiming at estimating the normals, in the spirit of the recent
multi-view shape-from-shading approach presented in [9].
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